Sample records for strong initial thermal

  1. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary massmore » even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.« less

  2. Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects

    NASA Astrophysics Data System (ADS)

    Bian, Dongfen; Liu, Jitao

    2017-12-01

    This paper is concerned with the initial-boundary value problem to 2D magnetohydrodynamics-Boussinesq system with the temperature-dependent viscosity, thermal diffusivity and electrical conductivity. First, we establish the global weak solutions under the minimal initial assumption. Then by imposing higher regularity assumption on the initial data, we obtain the global strong solution with uniqueness. Moreover, the exponential decay rates of weak solutions and strong solution are obtained respectively.

  3. Quantum dynamics of thermalizing systems

    NASA Astrophysics Data System (ADS)

    White, Christopher David; Zaletel, Michael; Mong, Roger S. K.; Refael, Gil

    2018-01-01

    We introduce a method "DMT" for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method performs well for both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states.

  4. Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2016-12-01

    We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.

  5. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar.

    PubMed

    Kwon, Yang-Hee; Kang, Sung-Hoon; Hong, Sung-Gul; Moon, Juhyuk

    2017-02-24

    Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days). A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity), X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.

  6. Thermal width of the upsilon at large 't Hooft coupling.

    PubMed

    Noronha, Jorge; Dumitru, Adrian

    2009-10-09

    We use the anti-de Sitter/conformal field theory correspondence to show that the heavy quark (static) potential in a strongly coupled plasma develops an imaginary part at finite temperature. Thus, deeply bound heavy quarkonia states acquire a small nonzero thermal width when the 't Hooft coupling lambda = g2N(c) > 1 and the number of colors N(c) --> infinity. In the dual gravity description, this imaginary contribution comes from thermal fluctuations around the bottom of the classical sagging string in the bulk that connects the heavy quarks located at the boundary. We predict a strong suppression of Upsilon's in heavy-ion collisions and discuss how this may be used to estimate the initial temperature.

  7. Global thermal analysis of air-air cooled motor based on thermal network

    NASA Astrophysics Data System (ADS)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  8. On the effects of higher convection modes on the thermal evolution of small planetary bodies

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, J.

    1979-01-01

    The effects of higher modes of convection on the thermal evolution of a small planetary body is investigated. Three sets of models are designed to specify an initially cold and differentiated, an initially hot and differentiated, and an initially cold and undifferentiated Moon-type body. The strong temperature dependence of viscosity enhances the thickening of lithosphere so that a lithosphere of about 400 km thickness is developed within the first billion years of the evolution of a Moon-type body. The thermally isolating effect of such a lithosphere hampers the heat flux out of the body and increases the temperature of the interior, causing the solid-state convection to occur with high velocity so that even the lower modes of convection can maintain an adiabatic temperature gradient there. It is demonstrated that the effect of solid-state convection on the thermal evolution of the models may be adequately determined by a combination of convection modes up to the third or the fourth order harmonic. The inclusion of higher modes does not affect the results significantly.

  9. Thermal-stress fracture and fractography in UO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, C.R.; Bandyopadhyay, G.

    1976-01-01

    Pressed and sintered UO/sub 2/ pellets were thermally shocked by quenching into a water bath at room temperature. The cracking behavior and strength degradation, as measured by the diametral compression technique, in these quench tests are discussed. Fractography of the thermally shocked specimens by scanning-electron microscopy indicated predominantly intergranular fracture in UO/sub 2/ in severe thermal-shock tests. The implication of this observation is that intergranular cracking may occur during the initial heat up in a reactor. Because fission gas bubbles tend to migrate toward the grain boundary, preferential microcracking along the boundary may strongly affect subsequent fission gas release behavior.

  10. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.

    PubMed

    Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H

    2012-06-01

    Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.

  11. Effects of basin-forming impacts on the thermal evolution and magnetic field of Mars

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Arkani-Hamed, J.

    2017-11-01

    The youngest of the giant impact basins on Mars are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present at the time those basins formed. Eight basins are sufficiently large that the impact heating associated with their formation could have penetrated below the core-mantle boundary (CMB). Here we investigate the thermal evolution of the martian interior and the fate of the global magnetic field using 3D mantle convection models coupled to a parameterized 1D core thermal evolution model. We find that the survival of the impact-induced temperature anomalies in the upper mantle is strongly controlled by the mantle viscosity. Impact heating from subsequent impacts can accumulate in stiffer mantles faster than it can be advected away, resulting in a thermal blanket that insulates an entire hemisphere. The impact heating in the core will halt dynamo activity, at least temporarily. If the mantle is initially cold, and the core initially superheated, dynamo activity may resume as quickly as a few Myr after each impact. However unless the lower mantle has either a low viscosity or a high thermal conductivity, this restored dynamo will last for only a few hundred Myr after the end of the sequence of impacts. Thus, we find that the longevity of the magnetic field is more strongly controlled by the lower mantle properties and relatively insensitive to the impact-induced temperature anomalies in the upper mantle.

  12. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations for charged particles (electrons, positive and negative ions), and with the electric circuit equation. The electric circuit comprises power supply, ballast resistor connected in series with the discharge and capacity. Rate coefficients for electron-assisted reactions were calculated from solving the two-term spherical harmonic expansion of the Boltzmann equation. Such an approach allows us to describe influence of thermal chemistry reactions (burning) on the discharge characteristics. Results of comparison between the discharge and thermal ignition effects for mixtures of hydrogen or ethylene with dry air will be reported. Effects of acceleration of ignition by discharge plasma will be analyzed. In particular, the role of singlet oxygen produced effectively in the discharge in ignition speeding up will be discussed.

  13. Direct-Photon Spectra and Anisotropic Flow in Heavy Ion Collisions from Holography

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-03-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated by using holographic models for QCD in the Veneziano limit (V-QCD). These emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in the quark gluon plasma (QGP) including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological model mimicking the strongly coupled QGP (sQGP) are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at intermediate and high momenta, which improve the agreements with data. Moreover, by using IP-glassma initial states, both the elliptic flow and triangular flow of direct photons are amplified at high momenta (pT > 2.5 GeV) for V-QCD, while they are suppressed at low momenta compared to wQGP. The distinct results in holography stem from the blue-shift of emission rates in strong coupling. In addition, the spectra and flow in small collision systems were evaluated for future comparisons. It is found that thermal photons from the deconfined phase are substantial to reconcile the spectra and flow at high momenta.

  14. Thermal-depth matching in dynamic scene based on affine projection and feature registration

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang

    2018-03-01

    This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.

  15. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    USGS Publications Warehouse

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  16. Heliocentric zoning of the asteroid belt by aluminum-26 heating

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.; Mcsween, H. Y., Jr.

    1993-01-01

    Variations in petrology among meteorites attest to a strong heating event early in solar system history, but the heat source has remained unresolved. Aluminum-26 has been considered the most likely high-energy, short-lived radionuclide (half-life 0.72 million years) since the discovery of its decay product - excess Mg-26 - in Allende CAI's. Furthermore, observation of relict Mg-26 in an achondritic clast and in feldspars within ordinary chondrites (3,4) provided strong evidence for live Al-26 in meteorite parent bodies and not just in refractory nebular condensates. The inferred amount of Al-26 is consistent with constraints on the thermal evolution of both ordinary and carbonaceous chondrite parent objects up to a few hundred kilometers in diameter. Meteorites can constrain the early thermal evolution of their parent body locations, provided that a link can be established between asteroid spectrophotometric signature and meteorite class. Asteroid compositions are heliocentrically distributed: objects thought to have experienced high metamorphic or even melting temperatures are located closer to the sun, whereas apparently unaltered or mildly heated asteroids are located farther away. Heliocentric zoning could be the result of Al-26 heating if the initial amount of the radionuclide incorporated into planetesimals was controlled by accretion time, which in turn varies with semimajor axis. Analytic expressions for planetary accretion may be integrated to given the time, tau, required for a planetesimal to grow to a specified radius: tau varies as a(sup n), where n = 1.5 to 3 depending on the assumptions about variations in the surface density of the planetesimal swarm. Numerical simulations of planetesimal accretion at fixed semimajor axis demonstrate that variations in accretion time among small planetesimals can be strongly nonlinear depending on the initial conditions and model assumptions. The general relationship with semimajor axis remains valid because it depends only on the initial orbit properties and distribution of the planesimal swarm. In order to demonstrate the basic dependence of thermal evolution on semimajor axis, we parameterized accretion time across the asteroid belt according to tau varies as a(sup n) and calculated the subsequent thermal history. Objects at a specified semimajor axis were assumed to have the same accretion time, regardless of size. We set the initial Al-26/Al-27 ratio = 6 x 10(exp -5) and treated n and tau(sub 0) at a(sub 0) = 3 AU as adjustable parameters. The thermal model included temperature-dependent properties of ice and rock (CM chondrite analog) and the thermodynamic effects of phase transitions.

  17. Shock initiation of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C.S.; Holmes, N.C.

    1993-12-31

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.

  18. Dynamics of isolated quantum systems: many-body localization and thermalization

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.

    2016-05-01

    We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.

  19. Preparation of poly(MAA-g-EG) hydrogel nanoparticles by a thermally-initiated free radical dispersion polymerization.

    PubMed

    Deng, Liandong; He, Xiaohua; Li, Aigui; Yang, Qiuxia; Dong, Anjie

    2007-02-01

    Poly(methacrylic acid-grafted-poly(ethylene glycol)) (P(MAA-g-EG)) hydrogel nanoparticles (HNPs) were prepared by a thermally-initiated free radical dispersion polymerization method. The effects of various reaction parameters on the preparation of HNPs were investigated, including the quantity of monomer, temperature, initiator dosage, crosslinker dosage, and co-stabilizer concentration. The reaction temperature at 75 degrees C was found to be suitable for preparing stable and small P(MAA-g-EG) HNPs. By adding a little amount of polyvinyl alcohol in the reaction media, P(MAA-g-EG) HNPs with narrow size distribution could be obtained. The effects of pH and the crosslinker dosage on the equilibrium swelling behavior of P(MAA-g-EG) HNPs were also studied. The P(MAA-g-EG) HNPs perform pH-responsive swelling behavior, which is strongly influenced by the crosslinker dosage.

  20. Initial-state-independent equilibration at the breakdown of the eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Khodja, Abdellah; Schmidtke, Daniel; Gemmer, Jochen

    2016-04-01

    This work aims at understanding the interplay between the eigenstate thermalization hypothesis (ETH), initial state independent equilibration, and quantum chaos in systems that do not have a direct classical counterpart. It is based on numerical investigations of asymmetric Heisenberg spin ladders with varied interaction strengths between the legs, i.e., along the rungs. The relaxation of the energy difference between the legs is investigated. Two different parameters, both intended to quantify the degree of accordance with the ETH, are computed. Both indicate violation of the ETH at large interaction strengths but at different thresholds. Indeed, the energy difference is found not to relax independently of its initial value above some critical interaction strength, which coincides with one of the thresholds. At the same point the level statistics shift from Poisson-type to Wigner-type. Hence, the system may be considered to become integrable again in the strong interaction limit.

  1. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    NASA Astrophysics Data System (ADS)

    Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.

    2015-09-01

    A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.

  2. Anomalous Thermal Diffusivity in Bad Metals

    NASA Astrophysics Data System (ADS)

    Zhang, Jiecheng; Levenson-Falk, Eli M.; Ramshaw, Brad J.; Bonn, Douglas A.; Liang, Ruixing; Hardy, Walter N.; Hartnoll, Sean A.; Kapitulnik, Aharon

    Local measurements of thermal diffusivity are used to analyze the transport of heat in the bad metallic regime of several strongly correlated materials. In underdoped YBCO systems, we use the in-plane anisotropy to analyze transport in this system. Specifically, we find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy and drops sharply below the charge order transition, suggesting that both anisotropies have the same origin. We interpret our results through a strong electron-phonon scattering picture and find that both electronic and phononic contributions to the diffusivity exhibit a saturated scattering time of ℏ /kB T . Our results suggest that neither well-defined electron nor phonon quasiparticles are present in underdoped YBCO systems, and thermal transport exhibits a collective behavior of a ''soup'' of strongly coupled electrons and phonons which moves at a velocity that is smaller than the Fermi velocity, but larger than the speed of sound. We generalize this treatment to measurements of other bad metals and discuss its implications. Work supported by the Gordon and Betty Moore Foundation through the EPiQS Initiative, Grant GBMF4529, and by a Department of Energy Early Career Award (SAH).

  3. Finite-element modelling of thermal micracking in fresh and consolidated marbles

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Fuller, E.; Siegesmund, S.

    2003-04-01

    The initial stage of marble weathering is supposed to be controlled by thermal microcracking. Due to the anisotropy of the thermal expansion coefficients of calcite, the main rock forming mineral in marble, stresses are caused which lead to thermally-induced microcracking, especially along the grain boundaries. The so-called "granular disintegration" is a frequent weathering phenomenon observed for marbles. The controlling parameters are the grain size, grain shape and grain orientation. We use a finite-element approach to constrain magnitude and directional dependence of thermal degradation. Therefore, different assumptions are validated including the fracture toughness of the grain boundaries, the effects of the grain-to-grain orientation and bulk lattice preferred orientation (here referred to as texture). The resulting thermal microcracking and bulk rock thermal expansion anisotropy are validated. It is evident that thermal degradation depends on the texture. Strongly textured marbles exhibit a clear directional dependence of thermal degradation and a smaller bulk thermal degradation than randomly oriented ones. The effect of different stone consolidants in the pore space of degraded marble is simulated and its influence on mechanical properties such as tensile strength are evaluated.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram

    Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. Themore » challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.« less

  5. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2006-12-14

    The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.

  6. Power-law decay exponents: A dynamical criterion for predicting thermalization

    NASA Astrophysics Data System (ADS)

    Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.

    2017-01-01

    From the analysis of the relaxation process of isolated lattice many-body quantum systems quenched far from equilibrium, we deduce a criterion for predicting when they are certain to thermalize. It is based on the algebraic behavior ∝t-γ of the survival probability at long times. We show that the value of the power-law exponent γ depends on the shape and filling of the weighted energy distribution of the initial state. Two scenarios are explored in detail: γ ≥2 and γ <1 . Exponents γ ≥2 imply that the energy distribution of the initial state is ergodically filled and the eigenstates are uncorrelated, so thermalization is guaranteed to happen. In this case, the power-law behavior is caused by bounds in the energy spectrum. Decays with γ <1 emerge when the energy eigenstates are correlated and signal lack of ergodicity. They are typical of systems undergoing localization due to strong onsite disorder and are found also in clean integrable systems.

  7. Strong thermal leptogenesis and the absolute neutrino mass scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re, E-mail: pdb1d08@soton.ac.uk, E-mail: sk1806@soton.ac.uk, E-mail: m.re-fiorentin@soton.ac.uk

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint existsmore » thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.« less

  8. Dynamical origin of non-thermal states in galactic filaments

    NASA Astrophysics Data System (ADS)

    Di Cintio, Pierfrancesco; Gupta, Shamik; Casetti, Lapo

    2018-03-01

    Observations strongly suggest that filaments in galactic molecular clouds are in a non-thermal state. As a simple model of a filament, we study a two-dimensional system of self-gravitating point particles by means of numerical simulations of the dynamics, with various methods: direct N-body integration of the equations of motion, particle-in-cell simulations, and a recently developed numerical scheme that includes multiparticle collisions in a particle-in-cell approach. Studying the collapse of Gaussian overdensities, we find that after the damping of virial oscillations the system settles in a non-thermal steady state whose radial density profile is similar to the observed ones, thus suggesting a dynamical origin of the non-thermal states observed in real filaments. Moreover, for sufficiently cold collapses, the density profiles are anticorrelated with the kinetic temperature, i.e. exhibit temperature inversion, again a feature that has been found in some observations of filaments. The same happens in the state reached after a strong perturbation of an initially isothermal cylinder. Finally, we discuss our results in the light of recent findings in other contexts (including non-astrophysical ones) and argue that the same kind of non-thermal states may be observed in any physical system with long-range interactions.

  9. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    Winterfeldt, M.; Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2014-08-01

    GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPPlat) at high power. An experimental study of the factors limiting BPPlat is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910 nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPPlat is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPPlat, whose influence on total BPPlat remains small, provided the overall polarization purity is >95%.

  10. The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Benatov, Latchezar Latchezarov

    This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure initial states do not thermalize well in our system, indicating that mixed state thermalization stems from the thermal nature of the initial bath state. Under the influence of a thermal TLS bath, oscillator Fock states decay in an approximately exponential manner, but there is also a concave-down trend at very early times, possibly indicative of Gaussian decay. In the case of initial Fock state superpositions, the diagonal density matrix element behaves very similarly to single initial Fock states, while the off-diagonal matrix element decays sinusoidally with an exponentially decreasing amplitude. The off-diagonal decay time is much smaller then the diagonal one, indicating that superposition states decohere much faster than they decay. Both decay times decrease with increasing Fock state number, but more slowly than the 1/n dependence seen in the presence of an external ohmic bath.

  11. Thermal Fatigue Testing of ZrO2-Y2O3 Thermal Barrier Coating Systems using a High Power CO2 Laser

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure, under thermal loads that simulate diesel engine conditions, are investigated. The surface cracks initiate early and grow continuously under thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N*(sub NCF), which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 microns/LCF cycle for a pure LCF test to 2.8 microns/LCF cycle for a combined LCF and HCF test at N*(sub NCF) about 20,000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that HCF damage effect increases with increasing surface temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as with the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  12. Shock initiation of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C.S.; Holmes, N.C.

    1994-07-10

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. A broad, but strong emission has been observed in a spectral range between 350 nm and 700 nm from the shocked nitromethane above 9 GPa. The temporal profile suggests that the shocked nitromethane detonates through three characteristic periods, namely an induction period, a shock initiation period, and a thermal explosion period. In this paper we will discuss the temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15more » GPa. [copyright]American Institute of Physics« less

  13. Trajectory Control of Small Rotating Projectiles by Laser Sparks

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard

    2015-09-01

    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  14. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    PubMed

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  15. Relaxation and thermalization in the one-dimensional Bose-Hubbard model: A case study for the interaction quantum quench from the atomic limit

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Pollet, Lode; Sorg, Stefan; Vidmar, Lev

    2015-03-01

    We study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site and is the ground state of a system with infinitely strong repulsive interactions at unit filling. The same interaction quench was realized in a recent experiment. Using exact diagonalization and the density-matrix renormalization-group method, we compute the time dependence of such observables as the multiple occupancy and the momentum distribution function. We discuss our numerical results in the framework of the eigenstate thermalization hypothesis and we observe that the microcanonical ensemble describes the time averages of many observables reasonably well for small and intermediate interaction strength. Moreover, the diagonal and the canonical ensembles are practically identical for our initial conditions already on the level of their respective energy distributions for small interaction strengths. Supported by the DFG through FOR 801 and the Alexander von Humboldt foundation.

  16. Lightweight thermal energy recovery system based on shape memory alloys: a DOE ARPA-E initiative

    NASA Astrophysics Data System (ADS)

    Browne, Alan L.; Keefe, Andrew C.; Alexander, Paul W.; Mankame, Nilesh; Usoro, Patrick; Johnson, Nancy L.; Aase, Jan; Sarosi, Peter; McKnight, Geoffrey P.; Herrera, Guillermo; Churchill, Christopher; Shaw, John; Brown, Jeff

    2012-04-01

    Over 60% of energy that is generated is lost as waste heat with close to 90% of this waste heat being classified as low grade being at temperatures less than 200°C. Many technologies such as thermoelectrics have been proposed as means for harvesting this lost thermal energy. Among them, that of SMA (shape memory alloy) heat engines appears to be a strong candidate for converting this low grade thermal output to useful mechanical work. Unfortunately, though proposed initially in the late 60's and the subject of significant development work in the 70's, significant technical roadblocks have existed preventing this technology from moving from a scientific curiosity to a practical reality. This paper/presentation provides an overview of the work performed on SMA heat engines under the US DOE (Department of Energy) ARPA-E (Advanced Research Projects Agency - Energy) initiative. It begins with a review of the previous art, covers the identified technical roadblocks to past advancement, presents the solution path taken to remove these roadblocks, and describes significant breakthroughs during the project. The presentation concludes with details of the functioning prototypes developed, which, being able to operate in air as well as fluids, dramatically expand the operational envelop and make significant strides towards the ultimate goal of commercial viability.

  17. Sealing Penetrating Eye Injuries Using Photoactivated Bonding

    DTIC Science & Technology

    2014-10-01

    treatment parameters that produce strong, immediate water- tight sealing of penetrating cornea and scleral wounds using rabbit eye models. The seal...conventional, bare fiber system using ex vivo rabbit eyes and the standard treatment protocol (Appendix 1). The bonding strength produced by two...wounds in rabbit eyes . Initial studies demonstrated that thermal damage to the iris are not a concern during the 7 treatment . A prototype light delivery

  18. Mechanistic elucidation of thermal runaway in potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.

    2018-01-01

    For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.

  19. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  1. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    PubMed Central

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  2. The role of thermodynamics in mantle convection: is mantle-layering intermittent?

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Cagney, N.; Lithgow-Bertelloni, C. R.

    2016-12-01

    We examine the thermal evolution of the Earth using a 1D model in which mixing length theory is used to characterise the role of thermal convection. Unlike previous work, our model accounts for the complex role of thermodynamics and phase changes through the use of HeFESTo (Stixrude & Lithgow-Bertelloni, Geophys. J. Int. 184, 2011), a comprehensive thermodynamic model that enables self-consistent computation of phase equilibria, physical properties (e.g. density, thermal expansivity etc.) and mantle isentropes. Our model also accounts for the freezing of the inner core, radiogenic heating and Arrhenius rheology, and is validated by comparing our results to observations, including the present-day size of the inner core and the heat flux at the surface.If phase changes and the various thermodynamic effects on mantle properties are neglected, the results are weakly dependent on the initial conditions, as has been observed in several previous studies. However, when these effects are accounted for, the initial temperature profile has a strong influence on the thermal evolution of the mantle, because small changes in the temperature and phase-assemblage can lead to large changes in the local physical properties and the adiabatic gradient.The inclusion of thermodynamic effects leads to some new and interesting insights. We demonstrate that the Clapeyron slope and the thermal gradient at the transition zone both vary significantly with time; this causes the mantle to switch between a layered state, in which convection across the transition zone is weak or negligible, and an un-layered state, in which there is no resistance to mass transfer between the upper and lower mantles.Various plume models describe plumes either rising directly from the CMB to the lithosphere, or stalling at the transition zone before spawning new plumes in the upper mantle. The observance of switching behaviour indicates that both models may be applicable depending on the state of the mantle: plumes may rise directly from the CMB when the mantle is un-layered, but stall at the transition zone when it is strongly layered. This has significant implications for the geochemical interpretation of ancient and present-day OIB and LIPs. This switching also has a very strong effect on the Rayleigh number, which in turn controls the mixing time of the mantle.

  3. Assessment of anxiety in open field and elevated plus maze using infrared thermography.

    PubMed

    Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe

    2016-04-01

    Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Error-growth dynamics and predictability of surface thermally induced atmospheric flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, X.; Pielke, R.A.

    1993-09-01

    Using the CSU Regional Atmospheric Modeling System (RAMS) in its nonhydrostatic and compressible configuration, over 200 two-dimensional simulations with [Delta]x = 2 km and [Delta]x = 100 m are performed to study in detail the initial adjustment process and the error-growth dynamics of surface thermally induced circulation including the sensitivity to initial conditions, boundary conditions, and model parameters, and to study the predictability as a function of the size of surface heat patches under a calm mean wind. It is found that the error growth is not sensitive to the characterisitics of the initial perturbations. The numerical smoothing has amore » strong impact on the initial adjustment process and on the error-growth dynamics. The predictability and flow structures, it is found that the vertical velocity field is strongly affected by the mean wind, and the flow structures are quite sensitive to the initial soil water content. The transition from organized flow to the situation in which fluxes are dominated by noncoherent turbulent eddies under a calm mean wind is quantitatively evaluated and this transition is different for different variables. The relationship between the predictability of a realization and of an ensemble average is discussed. The predictability and the coherent circulations modulated by the surface inhomogeneities are also studied by computing the autocorrelations and the power spectra. The three-dimensional mesoscale and large-eddy simulations are performed to verify the above results. It is found that the two-dimensional mesoscale (or fine resolution) simulation yields very close or similar results regarding the predictability as those from the three-dimensional mesoscale (or large eddy) simulation. The horizontally averaged quantities based on two-dimensional fine-resolution simulations are insensitive to initial perturbations and agree with those based on three-dimensional large-eddy simulations. 87 refs., 25 figs.« less

  5. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    NASA Astrophysics Data System (ADS)

    Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu

    2016-10-01

    SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  6. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion.

    PubMed

    Luo, Xiaofan; Ou, Runqing; Eberly, Daniel E; Singhal, Amit; Viratyaporn, Wantinee; Mather, Patrick T

    2009-03-01

    In this paper, we report on the development of a new and broadly applicable strategy to produce thermally mendable polymeric materials, demonstrated with an epoxy/poly(-caprolactone) (PCL) phase-separated blend. The initially miscible blend composed of 15.5 wt % PCL undergoes polymerization-induced phase separation during cross-linking of the epoxy, yielding a "bricks and mortar" morphology wherein the epoxy phase exists as interconnected spheres (bricks) interpenetrated with a percolating PCL matrix (mortar). The fully cured material is stiff, strong, and durable. A heating-induced "bleeding" behavior was witnessed in the form of spontaneous wetting of all free surfaces by the molten PCL phase, and this bleeding is capable of repairing damage by crack-wicking and subsequent recrystallization with only minor concomitant softening during that process. The observed bleeding is attributed to volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). In controlled thermal-mending experiments, heating of a cracked specimen led to PCL extrusion from the bulk to yield a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals formed at the site of the crack, restoring a significant portion of the mechanical strength. When a moderate force was applied to assist crack closure, thermal-mending efficiencies exceeded 100%. We further observed that the DEB phenomenon enables strong and facile adhesion of the same material to itself and to a variety of materials, without any requirement for macroscopic softening or flow.

  7. Off-equilibrium sphaleron transitions in the Glasma

    DOE PAGES

    Mace, Mark; Schlichting, Soren; Venugopalan, Raju

    2016-04-28

    We perform the first, to our knowledge, classical-statistical real time lattice simulations of topological transitions in the nonequilibrium glasma of weakly coupled but highly occupied gauge fields created immediately after the collision of ultrarelativistic nuclei. Simplifying our description by employing SU(2) gauge fields, and neglecting their longitudinal expansion, we find that the rate of topological transitions is initially strongly enhanced relative to the thermal sphaleron transition rate and decays with time during the thermalization process. Qualitative features of the time dependence of this nonequilibrium transition rate can be understood when expressed in terms of the magnetic screening length, which wemore » also extract nonperturbatively. Furthermore, a detailed investigation of auto-correlation functions of the Chern-Simons number (N CS) reveals non-Markovian features of the evolution distinct from previous simulations of non-Abelian plasmas in thermal equilibrium.« less

  8. Strong thermal SO(10)-inspired leptogenesis in the light of recent results from long-baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Chianese, Marco; Di Bari, Pasquale

    2018-05-01

    We confront recent experimental results on neutrino mixing parameters with the requirements from strong thermal SO(10)-inspired leptogenesis, where the asymmetry is produced from next-to-lightest right-handed neutrinos N 2 independently of the initial conditions. There is a nice agreement with latest global analyses supporting sin δ < 0 and normal ordering at ˜ 95% C.L. On the other hand, the more stringent experimental lower bound on the atmospheric mixing angle starts to corner strong thermal SO(10)-inspired leptogenesis. Prompted and encouraged by this rapid experimental advance, we obtain a precise determination of the allowed region in the plane δ versus θ 23. We confirm that for the benchmark case α 2 ≡ m D2 /m charm = 5 , where m D2 is the intermediate neutrino Dirac mass setting the N 2 mass, and initial pre-existing asymmetry N B - L p,i = 10- 3, the bulk of solutions lies in the first octant. Though most of the solutions are found outside the 95% C.L. experimental region, there is still a big allowed fraction that does not require a too fine-tuned choice of the Majorana phases so that the neutrinoless double beta decay effective neutrino mass allowed range is still m ee ≃ [10 , 30] meV. We also show how the constraints depend on N B - L p,i and α 2. In particular, we show that the current best fit, ( θ 23 , δ) ≃ (47° , -130°), can be reproduced for N B - L p,i = 10- 3 and α 2 = 6. Such large values for α 2 have been recently obtained in a few realistic fits within SO(10)-inspired models. Finally, we also obtain that current neutrino data rule out N B - L p,i ≳ 0.1 for α 2 ≲ 4.7.

  9. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    PubMed

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  10. Molecular Gas Heating Mechanisms, and Star Formation Feedback in Merger/Starbursts: NGC 6240 and Arp 193 as Case Studies

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.; Weiss, Axel; van der Werf, Paul; Israel, F. P.; Greve, T. R.; Isaak, Kate G.; Gao, Y.

    2014-06-01

    We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L IR >= 1011 L ⊙). The high-J CO SLEDs are then combined with ground-based low-J CO, 13CO, HCN, HCO+, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging from J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L FIR/L CO, 1 - 0, L HCN/L CO (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (~5%-15%) of dense gas (n >= 104 cm-3) unlike NGC 6240 where most of the molecular gas (~60%-70%) is dense (n ~ (104-105) cm-3). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.

  11. Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa

    2018-05-01

    A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.

  12. Non-thermal Processes in Colliding-wind Massive Binaries: the Contribution of Simbol-X to a Multiwavelength Investigation

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.

    2009-05-01

    Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.

  13. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.

    PubMed

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  14. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders

    NASA Astrophysics Data System (ADS)

    Wang, A.; Tadjer, M. J.; Calle, F.

    2013-05-01

    We investigated the impact of diamond heat spreading layers on the performance of AlGaN/GaN high-electron-mobility-transistors (HEMTs). A finite element method was used to simulate the thermal and electrical characteristics of the devices under dc and pulsed operation conditions. The results show that the device performance can be improved significantly by optimized heat spreading, an effect strongly dependent on the lateral thermal conductivity of the initial several micrometers of diamond deposition. Of crucial importance is the proximity of the diamond layer to the heat source, which makes this method advantageous over other thermal management procedures, especially for the device in pulsed operation. In this case, the self-heating effect can be suppressed, and it is not affected by either the substrate or its thermal boundary resistance at the GaN/substrate at wider pulses. The device with a 5 µm diamond layer can present 10.5% improvement of drain current, and the self-heating effect can be neglected for a 100 ns pulse width at 1 V gate and 20 V drain voltage.

  15. Numerical time evolution of ETH spin chains by means of matrix product density operators

    NASA Astrophysics Data System (ADS)

    White, Christopher; Zaletel, Michael; Mong, Roger; Refael, Gil

    We introduce a method for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method works on both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE \\x901144469 and by the Caltech IQIM, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore.

  16. Preliminary test data using the MOS DRO with Si:In detector material

    NASA Technical Reports Server (NTRS)

    Fowler, A. M.; Britt, J. P.; Joyce, R. R.; Probst, R. G.; Gates, J. L.

    1986-01-01

    The initial testing performed on the Hughes Metal Oxide Semiconductor Direct Readout (MOS DRO) with a Si:In extrinsic infrared array is described. The testing to date was of a screening nature and the results are primarily qualitative rather than quantitative. At a later date the performance optimization phase will be initiated. An encouraging result is that this response is strongly dependent on the detector temperature, to the extent that thermal transients introduced during the chip readout will affect the performance. A responsivity of 1 A/W at 2.2 microns with a bias of 15 volts, which is well below what is optimum bias, was obtained.

  17. Supersymmetric SO(10)-inspired leptogenesis and a new N{sub 2}-dominated scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bari, Pasquale Di; Fiorentin, Michele Re, E-mail: pdb1d08@soton.ac.uk, E-mail: M.Re-Fiorentin@soton.ac.uk

    2016-03-01

    We study the supersymmetric extension of SO(10)-inspired thermal leptogenesis showing the constraints on neutrino parameters and on the reheat temperature T{sub RH} that derive from the condition of successful leptogenesis from next-to-lightest right handed (RH) neutrinos (N{sub 2}) decays and the more stringent ones when independence of the initial conditions (strong thermal leptogenesis) is superimposed. In the latter case, the increase of the lightest right-handed neutrino (N{sub 1}) decay parameters helps the wash-out of a pre-existing asymmetry and constraints relax compared to the non-supersymmetric case. We find significant changes especially in the case of large tanβ values (∼> 15). In particular,more » for normal ordering, the atmospheric mixing angle can now be also maximal. The lightest left-handed neutrino mass is still constrained within the range 010 ∼< m{sub 1}/meV ∼< 3 (corresponding to 075∼< ∑{sub i} m{sub i}/meV ∼< 12). Inverted ordering is still disfavoured, but an allowed region satisfying strong thermal leptogenesis opens up at large tanβ values. We also study in detail the lower bound on T{sub RH} finding T{sub RH}∼> 1 × 10{sup 10} GeV independently of the initial N{sub 2} abundance. Finally, we propose a new N{sub 2}-dominated scenario where the N{sub 1} mass is lower than the sphaleron freeze-out temperature. In this case there is no N{sub 1} wash-out and we find T{sub RH} ∼> 1× 10{sup 9} GeV . These results indicate that SO(10)-inspired thermal leptogenesis can be made compatible with the upper bound from the gravitino problem, an important result in light of the role often played by supersymmetry in the quest of a realistic model of fermion masses.« less

  18. Non-thermal mechanism of weak microwave fields influence on neurons

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2013-09-01

    A non-thermal mechanism of weak microwave field impact on a nerve fiber is proposed. It is shown that in the range of about 30-300 GHz, there are strongly pronounced resonances associated with the excitation of ultrasonic vibrations in the membrane as a result of interaction with electromagnetic radiation. The viscous dissipation limits the resonances and results in their broadening. These forced vibrations create acoustic pressure, which may lead to the redistribution of the protein transmembrane channels, and thus changing the threshold of the action potential excitation in the axons of the neural network. The influence of the electromagnetic microwave radiation on various specific areas of myelin nerve fibers was analyzed: the nodes of Ranvier, and the initial segment—the area between the neuron hillock and the first part of the axon covered with the myelin layer. It was shown that the initial segment is the most sensitive area of the myelined neurons from which the action potential normally starts.

  19. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  20. A qubit coupled with confined phonons: The interplay between true and fake decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouthier, Vincent

    2013-08-07

    The decoherence of a qubit coupled with the phonons of a finite-size lattice is investigated. The confined phonons no longer behave as a reservoir. They remain sensitive to the qubit so that the origin of the decoherence is twofold. First, a qubit-phonon entanglement yields an incomplete true decoherence. Second, the qubit renormalizes the phonon frequency resulting in fake decoherence when a thermal average is performed. To account for the initial thermalization of the lattice, the qua- ntum Langevin theory is applied so that the phonons are viewed as an open system coupled with a thermal bath of harmonic oscillators. Consequently,more » it is shown that the finite lifetime of the phonons does not modify fake decoherence but strongly affects true decoherence. Depending on the values of the model parameters, the interplay between fake and true decoherence yields a very rich dynamics with various regimes.« less

  1. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  2. Oxidation behavior of a thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1984-01-01

    Thermal barrier coatings, consisting of a plasma sprayed calcium silicate ceramic layer and a CoCrAlY or NiCrAlY bond coat, were applied on B-1900 coupons and cycled hourly in air in a rapid-response furnace to maximum temperatures of 1030, 1100, or 1160 C. Eight specimens were tested for each of the six conditions of bond-coat composition and temperature. Specimens were removed from test at the onset of failure, which was taken to be the formation of a fine surface crack visible at 10X magnification. Specimens were weighed periodically, and plots of weight gain vs time indicate that weight is gained at a parabolic rate after an initial period where weight was gained at a much greater rate. The high initial oxidation rate is thought to arise from the initially high surface area in the porous bond coat. Specimen life (time to first crack) was found to be a strong function of temperature. However, while test lives varied greatly with time, the weight gain at the time of specimen failure was quite insensitive to temperature. This indicates that there is a critical weight gain at which the coating fails when subjected to this test.

  3. An ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine.

    PubMed

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-10-21

    Ab initio molecular dynamics simulations were performed to study the thermal decomposition of isolated and crystal 3,6-di(azido)-1,2,4,5-tetrazine (DiAT). During unimolecular decomposition, the three different initiation mechanisms were observed to be N-N2 cleavage, ring opening, and isomerization, respectively. The preferential initial decomposition step is the homolysis of the N-N2 bond in the azido group. The release mechanisms of nitrogen gas are found to be very different in the early and later decomposition stages of crystal DiAT. In the early decomposition, DiAT decomposes very fast and drastically without forming any stable long-chains or heterocyclic clusters, and most of the nitrogen gases are released through rapid rupture of nitrogen-nitrogen and carbon-nitrogen bonds. But in the later decomposition stage, the release of nitrogen gas is inhibited due to low mobility, long distance from each other, and strong carbon-nitrogen bonds. To overcome the obstacles, the nitrogen gases are released through slow formation and disintegration of polycyclic networks. Our simulations suggest a new decomposition mechanism for the organic polyazido initial explosive at the atomistic level.

  4. A thermoplastic polyimidesulfone

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A.

    1982-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composities). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  5. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19-polystyrene bilayer composite

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.; El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.

    2016-03-01

    Soft-magnetic NiCoP coated hard-magnetic M-type ferrite BaFe12O19 (BaM)-polystyrene (PS) bilayer composite film was successfully synthesized. X-ray diffraction peaks exhibited no change in the structure of BaM after coating with PS. The NiCoP coated BaM-PS composite exhibited a wasp-waisted magnetic hysteretic loop with remarkable reduction in the coercivity, remanence and squareness with respect to BaM-PS, which is useful for the core of a magnetic switching device to control currents so large that they are unmanageable. Moreover, the initial permeability measurement exhibits initial permeability of around 100 000 and thermal stability up to 558 K, which is good for flux-amplifying components of smaller inductors.

  6. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.

    2017-07-01

    We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.

  7. Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.

    PubMed

    Gibson, J; Penfold, T J

    2017-03-22

    The temperature dependent rate of a thermally activated process is given by the Arrhenius equation. The exponential decrease in the rate with activation energy, which this imposes, strongly promotes processes with small activation barriers. This criterion is one of the most challenging during the design of thermally activated delayed fluorescence (TADF) emitters used in organic light emitting diodes. The small activation energy is usually achieved with donor-acceptor charge transfer complexes. However, this sacrifices the radiative rate and is therefore incommensurate with the high luminescence quantum yields required for applications. Herein we demonstrate that the spin-vibronic mechanism, operative for efficient TADF, overcomes this limitation. Nonadiabatic coupling between the lowest two triplet states give rise to a strong enhancement of the rate of reserve intersystem crossing via a second order mechanism and promotes population transfer between the T 1 to T 2 states. Consequently the rISC mechanism is actually operative between initial and final state exhibiting an energy gap that is smaller than between the T 1 and S 1 states. This contributes to the small activation energies for molecules exhibiting a large optical gap, identifies limitations of the present design procedures and provides a basis from which to construct TADF molecules with simultaneous high radiative and rISC rates.

  8. Multiple stable isotope fronts during non-isothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.

  9. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  10. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite.

    PubMed

    Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-03-15

    Tetragonal PbTiO(3)-BiFeO(3) exhibits a strong negative thermal expansion in the PbTiO(3)-based ferroelectrics that consist of one branch in the family of negative thermal expansion materials. Its strong negative thermal expansion is much weakened, and then unusually transforms into positive thermal expansion as the particle size is slightly reduced. This transformation is a new phenomenon in the negative termal expansion materials. The detailed structure, temperature dependence of unit cell volume, and lattice dynamics of PbTiO(3)-BiFeO(3) samples were studied by means of high-energy synchrotron powder diffraction and Raman spectroscopy. Such unusual transformation from strong negative to positive thermal expansion is highly associated with ferroelectricity weakening. An interesting zero thermal expansion is achieved in a wide temperature range (30-500 °C) by adjusting particle size due to the negative-to-positive transformation character. The present study provides a useful method to control the negative thermal expansion not only for ferroelectrics but also for those functional materials such as magnetics and superconductors.

  11. Tidally-induced thermal runaway on extrasolar Earth: Impact on habitability

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.

    2010-12-01

    Low mass extrasolar bodies start to be discovered owing to the increased precision of detection surveys. As the detection probability decreases with the star-body distance, these planets (and the numerous candidates already announced for the coming years) are likely to orbit their parent stars in a close distance. These short-period planets undergo a strong tidal forcing and their orbits are tidally locked. The associated heat production may influence the internal thermal evolution of these bodies: it has even been suggested that the habitable zone could be influenced by tidal heating (Barnes et al. 2008; Henning et al. 2009). In this study, we further investigate the effect of tidal heating on thermal evolution of tidally locked Earth-like planets. Owing to the strong temperature dependence of the mechanical properties of both the long-term evolution and the tidal deformations, the two processes are coupled. Nevertheless, the tidal deformation has no direct effect on the convective flow and only the dissipative part is included as a heat source for mantle dynamics since the time scales of the two processes strongly differs. For significant tidal dissipation rates, the strong positive feedback leads, in some cases, to thermal runaways. We focus here on the susceptibility of Earth-like planets to tidal dissipation for fixed orbital parameters (eccentricity, orbital period and the spin-orbit resonance type) and on the associated timescales for runaway (if any). In order to describe this behavior and the three dimensional nature of both the tidal forcing and the temperature anomalies, a fully three-dimensional approach solving the two processes simultaneously is employed (Běhounková et al., JGR, in press). We consider an extrasolar planet having the internal properties similar to the Earth. Two modes for heat transfer are modeled through the choice of convective parameters (Rayleigh number and temperature dependence of viscosity, amount of radiogenic heating): a relatively effective plate-tectonics-like regime and a one-plate (stagnant lid) regime. For all numerical experiments sharing the same initial temperature conditions, the reciprocal value of the runaway timescale depends linearly on the initial tidal dissipation. Moreover, the occurrence of tidally driven runaways is associated to large scale melting of the interior having an impact on the habitability of the planet. In the case of runaway timescales between 0.1 and 1Gy and for the plate-tectonics-like heat transfer, the habitable zone is affected by the thermal runaway only for high eccentricities (e≳0.2) for 0.1M sun stars and 1:1 resonance. In the case of the 3:2 orbital resonance, whatever the eccentricity is, the runaway affects the habitable zone for orbital periods lower than 7-12 days. The impact on the habitable zone is even higher for one-plate planets due to the ineffective heat transfer. For more massive stars (>0.5M sun), tidal heating in the habitable zone is not significant and has no impact on the internal evolution.

  12. Out-of-equilibrium chiral magnetic effect from chiral kinetic theory

    NASA Astrophysics Data System (ADS)

    Huang, Anping; Jiang, Yin; Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2018-02-01

    Recently there has been significant interest in the macroscopic manifestation of chiral anomaly in many-body systems of chiral fermions. A notable example is the Chiral Magnetic Effect (CME). Enthusiastic efforts have been made to search for the CME in the quark-gluon plasma created in heavy ion collisions. A crucial challenge is that the extremely strong magnetic field in such collisions may last only for a brief moment and the CME current may have to occur at so early a stage that the quark-gluon matter is still far from thermal equilibrium. This thus requires modeling of the CME in an out-of-equilibrium setting. With the recently developed theoretical tool of chiral kinetic theory, we make a first phenomenological study of the CME-induced charge separation during the pre-thermal stage in heavy ion collisions. The effect is found to be very sensitive to the time dependence of the magnetic field and also influenced by the initial quark momentum spectrum as well as the relaxation time of the system evolution toward thermal equilibrium. Within the present approach, such pre-thermal charge separation is found to be modest.

  13. Driving Roles of Tropospheric and Stratospheric Thermal Anomalies in Intensification and Persistence of the Arctic Superstorm in 2012

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong

    2017-10-01

    Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.

  14. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.

  15. Molecular gas heating mechanisms, and star formation feedback in merger/starbursts: NGC 6240 and Arp 193 as case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.

    2014-06-20

    We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L {sub IR} ≥ 10{sup 11} L {sub ☉}). The high-J CO SLEDs are then combined with ground-based low-J CO, {sup 13}CO, HCN, HCO{sup +}, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging frommore » J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L {sub FIR}/L {sub CO,} {sub 1} {sub –0}, L {sub HCN}/L {sub CO} (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (∼5%-15%) of dense gas (n ≥ 10{sup 4} cm{sup –3}) unlike NGC 6240 where most of the molecular gas (∼60%-70%) is dense (n ∼ (10{sup 4}-10{sup 5}) cm{sup –3}). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.« less

  16. Heat amplification and negative differential thermal conductance in a strongly coupled nonequilibrium spin-boson system

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Chen, Xu-Min; Sun, Ke-Wei; Ren, Jie

    2018-05-01

    We investigate the nonequilibrium quantum heat transfer in a quantum thermal transistor, constructed by a triangle-coupled spin-boson system in a three-terminal setup. By exploiting the nonequilibrium noninteracting blip approximation approach combined with full counting statistics, we obtain the steady-state thermal transport, such as heat currents. We identify the giant heat amplification feature in a strong coupling regime, which results from the negative differential thermal conductance with respect to the gate temperature. Analysis shows that the strong coupling between the gate qubit and corresponding gate thermal bath plays the crucial role in exhibiting these far-from-equilibrium features. These results would have potential implications in designing efficient quantum thermal transistors in the future.

  17. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone.

  18. A thermoplastic polyimidesulfone. [synthesis of processable and solvent resistant system

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Yamaki, D. A.

    1984-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composites). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  19. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  20. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less

  1. Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip? Insights from friction experiments with variable thermal evolutions

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Niemeijer, André R.; Shimamoto, Toshihiko; Platt, John D.

    2016-07-01

    To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using host blocks of different thermal conductivities. When temperature rises are relatively low, we observe high friction in nano-MgO tests and unexpected slip strengthening following initial weakening in marble slice tests, suggesting that the dominant weakening mechanisms are of thermal origin. Solely the rolling of nanoparticles without significant temperature rise is insufficient to cause dynamic fault weakening. For nano-MgO experiments, comprehensive investigations suggest that flash heating is the most likely weakening mechanism. In marble experiments, flash heating controls the unique evolutions of friction, and the competition between bulk temperature rise and wear-induced changes of asperity contact numbers seems to strongly affect the efficiency of flash heating.

  2. High performance UV and thermal cure hybrid epoxy adhesive

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  3. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    NASA Astrophysics Data System (ADS)

    Keranen, Katie M.; Klemperer, Simon L.; Julia, Jordi; Lawrence, Jesse F.; Nyblade, Andy A.

    2009-05-01

    The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ≤4.3 km/s in the uppermost mantle, both ˜0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (˜400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension.

  4. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension. ?? 2009 by the American Geophysical Union.

  5. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  6. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  7. Episodic large-scale overturn of two-layer mantles in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Herrick, D. L.; Parmentier, E. M.

    1994-01-01

    It is usually assumed that the upper and lower mantles of a chemically stratified planet are arranged so that the upper mantle is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two mantle layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower mantle more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper mantle cools more efficiently than the lower mantle and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer mantle over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower mantle, to which it is approximately proportional. Geologically interesting overturn periods on the order of 107 to 109 years result for lower mantle viscosities of 1022 to 1024 Pa s for the Earth and Venus, and 1021 to 1023 Pa s for Mars. The mantles of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale mantle overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole mantle thermal convection.

  8. Episodic large-scale overturn of two-layer mantles in terrestrial planets

    NASA Technical Reports Server (NTRS)

    Herrick, David L.; Parmentier, E. M.

    1994-01-01

    It is usually assumed that the upper and lower mantles of a chemically stratified planet are arranged so that the upper mantle is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two mantle layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower mantle more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper mantle cools more efficiently than the lower mantle and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer mantle over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower mantle, to which it is approximately proportional. Geologically interesting overturn periods on the order of 10(exp 7) to 10(exp 9) years result for lower mantle viscosities of 10(exp 22) to 10(exp 24) Pa s for the Earth and Venus, and 10(exp 21) to 10(exp 23) Pa s for Mars. The mantles of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale mantle overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole mantle thermal convection.

  9. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  10. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park

    NASA Astrophysics Data System (ADS)

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  11. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park.

    PubMed

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  12. The Feasibility of Using Thermal Strain Imaging to Regulate Energy Delivery During Intracardiac Radio-Frequency Ablation

    PubMed Central

    Seo, Chi Hyung; Stephens, Douglas N.; Cannata, Jonathan; Dentinger, Aaron; Lin, Feng; Park, Suhyun; Wildes, Douglas; Thomenius, Kai E.; Chen, Peter; Nguyen, Tho; de La Rama, Alan; Jeong, Jong Seob; Mahajan, Aman; Shivkumar, Kalyanam; Nikoozadeh, Amin; Oralkan, Omer; Truong, Uyen; Sahn, David J.; Khuri-Yakub, Pierre T.; O’Donnell, Matthew

    2011-01-01

    A method is introduced to monitor cardiac ablative therapy by examining slope changes in the thermal strain curve caused by speed of sound variations with temperature. The sound speed of water-bearing tissue such as cardiac muscle increases with temperature. However, at temperatures above about 50°C, there is no further increase in the sound speed and the temperature coefficient may become slightly negative. For ablation therapy, an irreversible injury to tissue and a complete heart block occurs in the range of 48 to 50°C for a short period in accordance with the well-known Arrhenius equation. Using these two properties, we propose a potential tool to detect the moment when tissue damage occurs by using the reduced slope in the thermal strain curve as a function of heating time. We have illustrated the feasibility of this method initially using porcine myocardium in vitro. The method was further demonstrated in vivo, using a specially equipped ablation tip and an 11-MHz microlinear intracardiac echocardiography (ICE) array mounted on the tip of a catheter. The thermal strain curves showed a plateau, strongly suggesting that the temperature reached at least 50°C. PMID:21768025

  13. Ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  14. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  15. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE PAGES

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham; ...

    2017-03-01

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  16. Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Barker, J. Mark; Field, Robert E. (Technical Monitor)

    2003-01-01

    The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).

  17. Mature Thunderstorm Cloud-Top Structure and Dynamics: A Three-Dimensional Numerical Simulation Study.

    NASA Astrophysics Data System (ADS)

    Schlesinger, Robert E.

    1984-05-01

    An anelastic three-dimensional model is used to investigate the effects of vertical wind shear regime on cloud-top structure and internal properties of mature isolated midlatitude thunderstorms. Four comparative experiments, designated A through D, are performed with varying shear profiles in otherwise identical initializations. Cases A-C assume strong shear, differing only in the veering of the low-level hodograph: moderate in A, strong in B and none in C. Weak shear, everywhere 40% as great as in C, is assumed in case D.The strong-shear cases A-C show moderately vigorous quasi-steady mature updrafts with strong midlevel mesovortex couplets, and marked anvil elongation along the net vertical shear vector. Differences are modest, especially at cloud top, though with low-level hodograph curvature the updraft is enhanced and skewed toward the cyclonic right flank. The weak-shear case D shows a weaker and less persistent mature updraft than A-C, along with weaker midlevel rotation and a much more newly circular anvil.In the strong-shear experiments, the cloud top considerably resembles geostationary satellite observations of tornadic storms (Negri, 1982), even though the model storm interiors lack the significant low-level mesocyclone and very strong concentrated updraft typical of observed tornadic storms. Both model and observations show a persistent cloud-top temperature pattern featuring a cold area slightly upshear of the cloud summit, with a warm area downshear in the absence of a local height minimum, though in the model the thermal couplet is smaller-scale with lower amplitude and lacks the well-developed `V' shape seen in the observations. The thermal couplet is also present with weak shear, but is only about half as strong, largely due to a much weaker cold area.Several dynamic features of the cloud-top thermal couplet are revealed by backward and forward parcel trajectory analyses for Case B: 1) The cold and warm areas at cloud top result from ascent and descent, respectively, of stratospheric air from upshear. 2) Only slightly below cloud top, shallow downward extensions of the warm and cold areas consist of air that originates from downshear in the lower troposphere, traverses' the updraft core and overshoots the tropopause. 3) Strong turbulent mixing between these contrasting airflow branches takes place astride the cloud top. 4) Parcels intercepting the cold region subside subsequently into the warm region. 5) The perturbation vertical pressure gradient force is an important factor in the trajectories.

  18. The role of thermal stratification in tidal exchange at the mouth of San Diego Bay

    USGS Publications Warehouse

    Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.

    1996-01-01

    We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.

  19. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  20. Ventless pressure control of two-phase propellant tanks in microgravity.

    PubMed

    Kassemi, Mohammad; Panzarella, Charles H

    2004-11-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  1. Ventless pressure control of two-phase propellant tanks in microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Panzarella, Charles H.

    2004-01-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  2. Synthesis and characterization of oil palm empty fruit bunch-grafted-polyvinyl alcohol (OPEFB-g-PVA) hydrogel for removal of copper ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah

    2017-12-01

    Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.

  3. Thermalization near Integrability in a Dipolar Quantum Newton's Cradle

    NASA Astrophysics Data System (ADS)

    Tang, Yijun; Kao, Wil; Li, Kuan-Yu; Seo, Sangwon; Mallayya, Krishnanand; Rigol, Marcos; Gopalakrishnan, Sarang; Lev, Benjamin L.

    2018-04-01

    Isolated quantum many-body systems with integrable dynamics generically do not thermalize when taken far from equilibrium. As one perturbs such systems away from the integrable point, thermalization sets in, but the nature of the crossover from integrable to thermalizing behavior is an unresolved and actively discussed question. We explore this question by studying the dynamics of the momentum distribution function in a dipolar quantum Newton's cradle consisting of highly magnetic dysprosium atoms. This is accomplished by creating the first one-dimensional Bose gas with strong magnetic dipole-dipole interactions. These interactions provide tunability of both the strength of the integrability-breaking perturbation and the nature of the near-integrable dynamics. We provide the first experimental evidence that thermalization close to a strongly interacting integrable point occurs in two steps: prethermalization followed by near-exponential thermalization. Exact numerical calculations on a two-rung lattice model yield a similar two-timescale process, suggesting that this is generic in strongly interacting near-integrable models. Moreover, the measured thermalization rate is consistent with a parameter-free theoretical estimate, based on identifying the types of collisions that dominate thermalization. By providing tunability between regimes of integrable and nonintegrable dynamics, our work sheds light on the mechanisms by which isolated quantum many-body systems thermalize and on the temporal structure of the onset of thermalization.

  4. Observation of prethermalization in long-range interacting spin chains

    PubMed Central

    Neyenhuis, Brian; Zhang, Jiehang; Hess, Paul W.; Smith, Jacob; Lee, Aaron C.; Richerme, Phil; Gong, Zhe-Xuan; Gorshkov, Alexey V.; Monroe, Christopher

    2017-01-01

    Although statistical mechanics describes thermal equilibrium states, these states may or may not emerge dynamically for a subsystem of an isolated quantum many-body system. For instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale, and instead relax to quasi-stationary prethermal states that can be described by statistical mechanics, when approximately conserved quantities are included in a generalized Gibbs ensemble (GGE). We experimentally study the relaxation dynamics of a chain of up to 22 spins evolving under a long-range transverse-field Ising Hamiltonian following a sudden quench. For sufficiently long-range interactions, the system relaxes to a new type of prethermal state that retains a strong memory of the initial conditions. However, the prethermal state in this case cannot be described by a standard GGE; it rather arises from an emergent double-well potential felt by the spin excitations. This result shows that prethermalization occurs in a broader context than previously thought, and reveals new challenges for a generic understanding of the thermalization of quantum systems, particularly in the presence of long-range interactions. PMID:28875166

  5. A Method to Constrain Mass and Spin of GRB Black Holes within the NDAF Model

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Xue, Li; Zhao, Xiao-Hong; Zhang, Fu-Wen; Zhang, Bing

    2016-04-01

    Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, I.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r0, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass MBH ˜ 5-9 M⊙, spin parameter a* ≳ 0.6, and disk mass 3 M⊙ ≲ Mdisk ≲ 4 M⊙. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.

  6. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 2: Effect of spray parameters on the performance of several hafnia-yttria and zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.

    1993-01-01

    This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.

  7. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    PubMed

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  8. Non-Markovian Complexity in the Quantum-to-Classical Transition

    PubMed Central

    Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

    2015-01-01

    The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002

  9. Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique

    NASA Astrophysics Data System (ADS)

    Tiron, L. G.; Pintilie, Ș C.; Vlad, M.; Birsan, I. G.; Baltă, Ș

    2017-06-01

    Abstract Membrane technology is one of the most used water treatment technology because of its high removal efficiency and cost effectiveness. Preparation techniques for polymer membranes show an important aspect of membrane properties. Generally, polysulfone (PSf) and polyethersulfone (PES) are used for the preparation of ultrafiltration (UF) membranes. Polysulfone (PSf) membranes have been widely used for separation and purification of different solutions because of their excellent chemical and thermal stability. Polymeric membranes were obtained by phase inversion method. The polymer solution introduced in the nonsolvent bath (distilled water) initiate the evaporation of the solvent from the solution, this phenomenon has a strong influence on the transport properties. The effect of the coagulation bath temperature on the membrane properties is of interest for this study. Membranes are characterized by pure water flux, permeability, porosity and retention of methylene blue. The low temperature of coagulation bath improve the membrane’s rejection and its influence was most notable.

  10. Schwinger mechanism with energy dissipation in ``glasma''

    NASA Astrophysics Data System (ADS)

    Iwazaki, Aiichi

    2011-12-01

    Initial states of “glasma” in high-energy heavy-ion collisions are longitudinal classical color electric and magnetic fields. Assuming finite color electric conductivity, we show that the color electric field decays by quark pair production with the lifetime of the order of Qs-1, i.e., the inverse of the saturation momentum. Quarks and antiquarks created in the pair production are immediately thermalized as long as their temperature β-1 is lower than Qs. Namely, the relaxation time of the quarks to be thermalized is much shorter than Qs-1 when β-1≪Qs. We also show that the quarks acquire longitudinal momentum of the order of Qs by the acceleration of the electric field. To discuss the quark pair production, we use chiral anomaly, which has been shown to be a very powerful tool in the presence of strong magnetic field.

  11. Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers.

    PubMed

    Hu, Xuehao; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2016-07-01

    Bragg gratings are photo-inscribed in trans-4-stilbenemethanol doped PMMA fibers using a 325 nm He-Cd laser and a phase mask. Two distinct behaviors are reported depending on the laser power density. In the high-density regime with 637  mW/mm2, the grating reflectivity is stable over time after the writing process, but the reflected spectrum is of limited quality, as the grating length is limited to the laser width (1.2 mm). The beam is then enlarged to 6 mm, decreasing the power density to 127  mW/mm2. In this case, the grating reflectivity strongly decays after the writing process. A fortunate property here results from the recovery of the initial reflectivity using a post-inscription thermal annealing. Both behaviors are attributed to the evolution between trans- and cis-isomers.

  12. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model.

    PubMed

    Kollath, Corinna; Läuchli, Andreas M; Altman, Ehud

    2007-05-04

    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.

  13. Failure propagation in multi-cell lithium ion batteries

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  14. Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.

    2016-11-01

    It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (I.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.

  15. Numerical and analytical simulation of the production process of ZrO2 hollow particles

    NASA Astrophysics Data System (ADS)

    Safaei, Hadi; Emami, Mohsen Davazdah

    2017-12-01

    In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm ≤ D_{p0} ≤ 160 μ m) and various initial porosities ( 0.2 ≤ p ≤ 0.7) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of D_{p0} = 60 μm and initial porosity of p = 0.3, p = 0.5, and p = 0.7. Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values ( p < 0.3), while the particle disintegrates at high initial porosity values ( p > 0.6.

  16. Objective quantification of perturbations produced with a piecewise PV inversion technique

    NASA Astrophysics Data System (ADS)

    Fita, L.; Romero, R.; Ramis, C.

    2007-11-01

    PV inversion techniques have been widely used in numerical studies of severe weather cases. These techniques can be applied as a way to study the sensitivity of the responsible meteorological system to changes in the initial conditions of the simulations. Dynamical effects of a collection of atmospheric features involved in the evolution of the system can be isolated. However, aspects, such as the definition of the atmospheric features or the amount of change in the initial conditions, are largely case-dependent and/or subjectively defined. An objective way to calculate the modification of the initial fields is proposed to alleviate this problem. The perturbations are quantified as the mean absolute variations of the total energy between the original and modified fields, and an unique energy variation value is fixed for all the perturbations derived from different PV anomalies. Thus, PV features of different dimensions and characteristics introduce the same net modification of the initial conditions from an energetic point of view. The devised quantification method is applied to study the high impact weather case of 9-11 November 2001 in the Western Mediterranean basin, when a deep and strong cyclone was formed. On the Balearic Islands 4 people died, and sustained winds of 30 ms-1 and precipitation higher than 200 mm/24 h were recorded. Moreover, 700 people died in Algiers during the first phase of the event. The sensitivities to perturbations in the initial conditions of a deep upper level trough, the anticyclonic system related to the North Atlantic high and the surface thermal anomaly related to the baroclinicity of the environment are determined. Results reveal a high influence of the upper level trough and the surface thermal anomaly and a minor role of the North Atlantic high during the genesis of the cyclone.

  17. High Temperature Equation of State of Enstatite and Forsterite: Implications for Thermal Origins and Evolution

    NASA Astrophysics Data System (ADS)

    Fratanduono, D.

    2015-12-01

    The thermal history of terrestrial planets depends upon the melt boundary as it represents the largest rheological transition a material can undergo. This change in rheological behavior with solidification corresponds to a dramatic change in the thermal and chemical transport properties. Because of this dramatic change in thermal transport, recent work by Stixrude et al.[1] suggests that the silicate melt curve sets the thermal profile within super-Earths during their early thermal evolution. Here we present recent decaying shock wave experiments studying both enstatite and forsterite. The continuously measured shock pressure and temperature in these studies ranged from 8 to 1.5 Mbar and 20,000-4,000 K, respectively. We find a point on the MgSiO3 liquidus at 6800 K and 285 GPa, which is nearly a factor of two higher pressure than previously measured and provides a strong constraint on the temperature profile within super-Earths. Our shock temperature measurements on forsterite and enstatite provide much needed equation of state information to the planetary impact modeling community since the shock temperature data can be used to constrain the initial entropy state of a growing planet. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 1. Stixrude, L., Melting in super-earths. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2014).

  18. Strong Coupling Corrections in Quantum Thermodynamics

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.

    2018-03-01

    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

  19. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    NASA Astrophysics Data System (ADS)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  20. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  1. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water

    USGS Publications Warehouse

    Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.

  2. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3

    PubMed Central

    Liu, Beiying; Qin, Feng

    2017-01-01

    Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143

  3. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  4. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    PubMed

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 30 CFR 250.521 - How do I manage the thermal effects caused by initial production on a newly completed or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I manage the thermal effects caused by... do I manage the thermal effects caused by initial production on a newly completed or recompleted well... manage thermal casing pressure; therefore, you do not need to evaluate these operations as a casing...

  6. 30 CFR 250.521 - How do I manage the thermal effects caused by initial production on a newly completed or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I manage the thermal effects caused by... Casing Pressure Management § 250.521 How do I manage the thermal effects caused by initial production on... a normal and necessary operation to manage thermal casing pressure; therefore, you do not need to...

  7. Thermal expansion and phase transitions of α-AlF{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelock, Cody R.; Hancock, Justin C.; Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppmmore » K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.« less

  8. The delineation and interpretation of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1987-01-01

    The geoid and topographic fields of the central Pacific were delineated and shown to correlate closely at intermediate wavelengths (500 to 2500 km). The associated admittance shows that anomalies having wavelengths less than about 1000 km are probably supported by the elastic strength of the lithosphere. Larger wavelength anomalies are due to dynamic effects in the sublithosphere. Direct modeling of small scale convection in the asthenosphere shows that the amplitudes of observed geoid and topographic anomalies can be independently matched, but that the observed admittance cannot. Only by imposing an initial regional variation in the thermal regime is it possible to match the admittance. It is proposed that this variation may be due to differences in the onset time of convection beneath the lithosphere of different ages. That is, convection beneath thickening lithosphere is strongly dependent on the rate of thickening (V) relative to the rise time for convection. The critical Rayleigh number contains the length scale K/V, where K is thermal diffusivity. Young, fast growing lithosphere stabilizes the underlying asthenosphere unless it has an unusually low viscosity. Lithosphere of different age, separated by fracture zones, will go unstable at different times, producing regional horizontal temperature gradient that may strongly influence convection. Laboratory and numerical experiments are proposed to study this form of convection and its influence on the geoid.

  9. Interface thermal conductance of van der Waals monolayers on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan

    2017-03-01

    Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.

  10. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  11. Feedback control of thermal lensing in a high optical power cavity.

    PubMed

    Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J

    2008-10-01

    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

  12. On the evolution of jet energy and opening angle in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-01

    We calculate how the energy and the opening angle of jets in {N} = 4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet /dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet /dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that {N} = 4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the {N} = 4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  13. On the evolution of jet energy and opening angle in strongly coupled plasma

    DOE PAGES

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-17

    We calculate how the energy and the opening angle of jets in N = 4SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say themore » opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N = 4SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N = 4SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. In conclusion, we close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.« less

  14. 30 CFR 250.522 - How do I manage the thermal effects caused by initial production on a newly completed or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I manage the thermal effects caused by... Management § 250.522 How do I manage the thermal effects caused by initial production on a newly completed or... operation to manage thermal casing pressure; therefore, you do not need to evaluate these operations as a...

  15. 30 CFR 250.522 - How do I manage the thermal effects caused by initial production on a newly completed or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I manage the thermal effects caused by... Management § 250.522 How do I manage the thermal effects caused by initial production on a newly completed or... operation to manage thermal casing pressure; therefore, you do not need to evaluate these operations as a...

  16. 30 CFR 250.521 - How do I manage the thermal effects caused by initial production on a newly completed or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I manage the thermal effects caused by... Management § 250.521 How do I manage the thermal effects caused by initial production on a newly completed or... operation to manage thermal casing pressure; therefore, you do not need to evaluate these operations as a...

  17. 40Ar/39Ar thermochronologic constraints on the tectonothermal evolution of the Northern East Humboldt range metamorphic core complex, Nevada

    USGS Publications Warehouse

    McGrew, A.J.; Snee, L.W.

    1994-01-01

    The northern East Humboldt Range (NEHR) of northeastern Nevada exposes a suite of complexly deformed migmatitic, upper amphibolite-facies rocks in the footwall of the Ruby Mountains-East Humboldt Range (RM-EHR) detachment fault. New 40Ar/39Ar data on hornblende, muscovite, biotite, and potassium feldspar help constrain the kinematic and thermal evolution of this terrain during Tertiary extensional exhumation. Hornblende samples from relatively high structural levels yield discordant age spectra that suggest initial cooling during early Tertiary time (63-49 Ma). When coupled with petrological constraints indicating a strongly decompressional P-T-t path above 550??C, the hornblende data suggest that exhumation of the RM-EHR may have initiated in early Tertiary time, approximately coincident with the initial phases of unroofing in the Wood Hills immediately to the east and with the end of thrusting in the late Mesozoic to early Tertiary Sevier orogenic belt of eastern Nevada and western Utah. This temporal coincidence suggests that gravitational collapse of tectonically thickened crust in the internal zone of the Sevier belt could have driven the initial phases of unroofing. Thermal history during the final stage of exhumation of the NEHR is constrained by discordant hornblende cooling ages of 36-29 Ma from deep structural levels and biotite, muscovite, and potassium feldspar cooling ages of 27-21 Ma from a range of structural levels. Comparison of muscovite, biotite, and potassium feldspar cooling ages with previously published fission-track cooling ages implies very rapid cooling rates at temperatures below the closure temperature for muscovite (270??-350??C), but time gaps of > 7 m.y. between hornblende and mica cooling ages suggest that cooling at higher temperatures was more gradual. In addition, comparison of 40Ar 39Ar mica cooling ages with previously published fission-track apatite cooling ages suggests pronounced thermal gradients between the NEHR and adjacent areas during latest Oligocene to earliest Miocene time. Such thermal gradients could be readily explained if the RM-EHR detachment fault dipped > 30?? between the 300??C and 100??C isotherms. Finally, 40Ar 39Ar biotite cooling ages increase southward through the East Humboldt Range, compatible with northward extrapolation of a previously recognized pattern of WNW-younging biotite cooling ages from the Ruby Mountains. A simple model involving the propagation of footwall uplift in the direction of tectonic transport beneath an initially listric normal fault can explain the principle features of the Oligoce??ne to Miocene thermochronologic data set for the RM-EHR. ?? 1994.

  18. Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Schaeffer, N.; Vidal, J.; Cardin, P.

    2017-09-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here, we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct numerical simulation. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superseded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are smoothly connected. As the planetary core rotates faster, the smooth transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek <10-6. Here, the strong branch persists even as the thermal forcing drops well below the linear onset of convection (Ra =0.7 Racrit in this study). We highlight the importance of the Reynolds stress, which is required for convection to subsist below the linear onset. In addition, the Péclet number is consistently above 10 in the strong branch. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets through a subcritical bifurcation.

  19. Mature thunderstorm cloud-top structure and dynamics - A three-dimensional numerical simulation study

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1984-01-01

    The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.

  20. The Thermal Pressure in Low Metallicity Galaxies

    NASA Astrophysics Data System (ADS)

    Wolfire, Mark; McKee, Christopher; Ostriker, Eve C.; Bolatto, Alberto; Jenkins, Edward

    2015-08-01

    The thermal pressure in the diffuse interstellar medium (ISM) is a relatively small fraction of the total ISM pressure yet it is extremely important for the evolution of the ISM phases. A multi-phase medium can exist between a range of thermal pressures Pmin < Pth < Pmax. The phase separation is driven by thermal instability and produces a cold (T ˜ 100 K) neutral atomic gas and a warm (T ˜ 8000 K) neutral atomic gas separated by thermally unstable gas. At thermal pressures greater than Pmax only the cold phase can exist and at thermal pressures less than Pmin only the warm phase can exist. The ISM is also highly turbulent and turbulence can both initiate the thermal phase transition and be produced in a rapid phase transition. Hydrodynamic modeling also points to a strong two-phase distribution (.e.g., Kim et al. 2011; Audit & Hennebelle 2010) with a median thermal pressure in the cold gas very near the expected two-phase pressure. Global, theoretical models including star-formation feedback have been developed for the molecular fraction in galactic disks using, at their core, the paradigm that thermal pressure determines the phase transitions to warm, cold, or multiphase medium (e.g., Krumholz et al. 2009; Ostriker et al. 2010).Here we present a phase diagram for a low metallicity galaxy using the Small Magellanic Clouds as an example. We find that although the heating rates and metallicities can differ by factors of 5 to 10 from the Milky Way, the resulting two-phase pressure and physical conditions of the phases are not very different from Galactic. We also confirm that a widely used fitting function for Pmin presented in Wolfire et al. 2003 provides an accurate prediction for the new results. We demonstrate how the variation in input parameters determine the final pressures and physical conditions.

  1. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  2. Thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, James; Zlatic, Veljko

    2006-03-01

    The formalism for thermal transport in strongly correlated multilayered nanostructures is developed. We employ inhomogeneous dynamical mean-field theory and the Kubo formula to derive relevant thermal transport coefficients, which take the form of matrices with respect to the planar indices. We show how to define the local versions of the current and heat current operators so that heat-current correlation functions can be easily evaluated via the Jonson-Mahan theorem. Thermal transport in nanostructures is complicated by the fact that the thermal current need not be conserved through the device, and a given experimental set-up determines both how the thermal current can change through the device and how the steady-state temperature profile can be determined. Formulae to analyze classic experiments such as the Peltier and Seebeck effects, the thermal conductivity, and for running a thermoelectric cooler or power generator are also discussed.

  3. Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition

    NASA Astrophysics Data System (ADS)

    Dutta, Jaideep; Kundu, Balaram

    2018-05-01

    This paper aims to develop an analytical study of heat propagation in biological tissues for constant and variable heat flux at the skin surface correlated with Hyperthermia treatment. In the present research work we have attempted to impose two unique kind of oscillating boundary condition relevant to practical aspect of the biomedical engineering while the initial condition is constructed as spatially dependent according to a real life situation. We have implemented Laplace's Transform method (LTM) and Green Function (GFs) method to solve single phase lag (SPL) thermal wave model of bioheat equation (TWMBHE). This research work strongly focuses upon the non-invasive therapy by employing oscillating heat flux. The heat flux at the skin surface is considered as constant, sinusoidal, and cosine forms. A comparative study of the impact of different kinds of heat flux on the temperature field in living tissue explored that sinusoidal heat flux will be more effective if the time of therapeutic heating is high. Cosine heating is also applicable in Hyperthermia treatment due to its precision in thermal waveform. The result also emphasizes that accurate observation must be required for the selection of phase angle and frequency of oscillating heat flux. By possible comparison with the published experimental research work and published mathematical study we have experienced a difference in temperature distribution as 5.33% and 4.73%, respectively. A parametric analysis has been devoted to suggest an appropriate procedure of the selection of important design variables in viewpoint of an effective heating in hyperthermia treatment.

  4. Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis.

    PubMed

    Nagano, Yatsuhisa; Ode, Koji L

    2014-08-01

    The thermal dissipation of activated eggs and embryos undergoing development from cleavage to the tailbud stage of the African clawed frog Xenopus laevis was measured as a function of incubation time at temperatures ranging from T = 288.2 K to 295.2 K, using a high-precision isothermal calorimeter. A23187-mediated activation of mature eggs induced stable periodic thermal oscillations lasting for 8-34 h. The frequency agreed well with the cell cycle frequency of initial cleavages at the identical temperature. In the developing embryo, energy metabolism switches from embryonic to adult features during gastrulation. The thermal dissipation after gastrulation fit well with a single modified Avrami equation, which has been used for modeling crystal-growth. Both the oscillation frequency of the activated egg and the growth rate of the embryo strongly depend on temperature with the same apparent activation energy of approximately 87 kJ mole(-1). This result suggests that early development proceeds as a single biological time, attributable to a single metabolic rate. A temperature-independent growth curve was derived by scaling the thermogram to the biological time, indicating that the amount of energy expenditure during each developmental stage is constant over the optimal temperature range.

  5. Thermal behavior of Charmonium in the vector channel from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.

    2010-11-01

    The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.

  6. Generation of mechanical interference fringes by multi-photon counting

    NASA Astrophysics Data System (ADS)

    Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.

    2018-05-01

    Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.

  7. Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect

    NASA Astrophysics Data System (ADS)

    Nozariasbmarz, Amin; Dsouza, Kelvin; Vashaee, Daryoosh

    2018-02-01

    It is rather strange and not fully understood that some materials decrystallize when exposed to microwave radiation, and it is still debatable if such a transformation is a thermal or non-thermal effect. We hereby report experimental evidences that weight the latter effect. First, a single crystal silicon wafer exposed to microwaves showed strong decrystallization at high temperature. Second, when some areas of the wafer were masked with metal coating, only the exposed areas underwent decrystallization. Transmission electron microscopy analysis, x-ray diffraction data, and thermal conductivity measurements all indicated strong decrystallization, which occurred in the bulk of the material and was not a surface effect. These observations favor the existence of a non-thermal microwave effect.

  8. Stream temperature monitoring and modeling: Recent advances and new tools for managers

    Treesearch

    Daniel J. Isaak

    2011-01-01

    Stream thermal regimes are important within regulatory contexts, strongly affect the functioning of aquatic ecosystems, and are a primary determinant of habitat suitability for many sensitive species. The diverse landscapes and topographies inherent to National Forests and Grasslands create mosaics of stream thermal conditions that are intermingled with strong...

  9. Assimilation of water temperature and discharge data for ensemble water temperature forecasting

    NASA Astrophysics Data System (ADS)

    Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André

    2017-11-01

    Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.

  10. Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B

    PubMed Central

    Özeş, Ali R.; Feoktistova, Kateryna; Avanzino, Brian C.; Fraser, Christopher S.

    2011-01-01

    Eukaryotic initiation factor 4A (eIF4A) is a DEAD-box helicase that stimulates translation initiation by unwinding mRNA secondary structure. The accessory proteins, eIF4G, eIF4B, and eIF4H enhance the duplex unwinding activity of eIF4A, but the extent to which they modulate eIF4A activity is poorly understood. Here, we use real time fluorescence assays to determine the kinetic parameters of duplex unwinding and ATP hydrolysis by these initiation factors. To ensure efficient duplex unwinding, eIF4B and eIF4G cooperatively activate the duplex unwinding activity of eIF4A. Our data reveal that eIF4H is much less efficient at stimulating eIF4A unwinding activity than eIF4B, implying that eIF4H is not able to completely substitute for eIF4B in duplex unwinding. By monitoring unwinding and ATPase assays using identical conditions, we demonstrate that eIF4B couples the ATP hydrolysis cycle of eIF4A with strand separation, thereby minimizing non-productive unwinding events. Using duplex substrates with altered GC contents, but with similar predicted thermal stabilities, we further show that the rate of formation of productive unwinding complexes is strongly influenced by the local stability per base pair in addition to the stability of the entire duplex. This finding explains how a change in the GC content of a hairpin while maintaining overall predicted thermal stability is able to influence translation initiation. PMID:21840318

  11. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    NASA Astrophysics Data System (ADS)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  12. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    PubMed

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  13. Effects of geometrical parameters on thermal-hydraulic performance of wavy microtube

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, Morteza; Chamanroy, Zohreh

    2018-03-01

    Laminar flow and heat transfer characteristics of water flow through wavy microtubes (WMTs) with different values of wave length ( l) and wave amplitude ( a) are investigated experimentally. The tested WMTs are fabricated from copper microtube with the internal diameter of 914 μm. Experiments encompass the Reynolds numbers from 640 to 1950. In order to validate the experimental setup and create a base line for comparison, initial tests are also carried out for a straight microtube. The results show that both the heat transfer coefficient and the pressure drop are strongly affected by the studied geometrical factors. For a given Reynolds number, these parameters increase as the wave length decreases and the wave amplitude increases. However, in the studied ranges, the effect of wave amplitude is more than that of wave length. A considerable thermal-hydraulic factor of 1.78 is obtained for a WMT with l = 14.3 mm and a = 6 mm. Finally, correlations are developed to predict the Colburn factor and friction factor of water flow in the WMTs.

  14. Doppler-resolved kinetics of saturation recovery

    DOE PAGES

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; ...

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  15. Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects

    PubMed Central

    Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard

    2013-01-01

    The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316

  16. Fabrication and Characterization of Large-Area Unpatterned and Patterned Plasmonic Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Do, Minh Thanh; Tong, Quang Cong; Luong, Mai Hoang; Lidiak, Alexander; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-05-01

    We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.

  17. New estimates for Io eruption temperatures: Implications for the interior

    USGS Publications Warehouse

    Keszthelyi, L.; Jaeger, W.; Milazzo, M.; Radebaugh, J.; Davies, A.G.; Mitchell, K.L.

    2007-01-01

    The initial interpretation of Galileo data from Jupiter's moon, Io, suggested eruption temperatures ≥1600°C. Tidal heating models have difficulties explaining Io's prodigious heat flow if the mantle is >1300°C, although we suggest that temperatures up to ~1450°C may be possible. In general, Io eruption temperatures have been overestimated because the incorrect thermal model has been applied. Much of the thermal emission from high-temperature hot spots comes from lava fountains but lava flow models were utilized. We apply a new lava fountain model to the highest reported eruption temperature, the SSI observation of the 1997 eruption at Pillan. This resets the lower temperature limit for the eruption from ~1600 to ~1340°C . Additionally, viscous heating of the magma may have increased eruption temperature by ~50-100°C as a result of the strong compressive stresses in the ionian lithosphere. While further work is needed, it appears that the discrepancy between observations and interior models is largely resolved.

  18. The Fine Tuning of Pain Thresholds: A Sophisticated Double Alarm System

    PubMed Central

    Plaghki, Léon; Decruynaere, Céline; Van Dooren, Paul; Le Bars, Daniel

    2010-01-01

    Two distinctive features characterize the way in which sensations including pain, are evoked by heat: (1) a thermal stimulus is always progressive; (2) a painful stimulus activates two different types of nociceptors, connected to peripheral afferent fibers with medium and slow conduction velocities, namely Aδ- and C-fibers. In the light of a recent study in the rat, our objective was to develop an experimental paradigm in humans, based on the joint analysis of the stimulus and the response of the subject, to measure the thermal thresholds and latencies of pain elicited by Aδ- and C-fibers. For comparison, the same approach was applied to the sensation of warmth elicited by thermoreceptors. A CO2 laser beam raised the temperature of the skin filmed by an infrared camera. The subject stopped the beam when he/she perceived pain. The thermal images were analyzed to provide four variables: true thresholds and latencies of pain triggered by heat via Aδ- and C-fibers. The psychophysical threshold of pain triggered by Aδ-fibers was always higher (2.5–3°C) than that triggered by C-fibers. The initial skin temperature did not influence these thresholds. The mean conduction velocities of the corresponding fibers were 13 and 0.8 m/s, respectively. The triggering of pain either by C- or by Aδ-fibers was piloted by several factors including the low/high rate of stimulation, the low/high base temperature of the skin, the short/long peripheral nerve path and some pharmacological manipulations (e.g. Capsaicin). Warming a large skin area increased the pain thresholds. Considering the warmth detection gave a different picture: the threshold was strongly influenced by the initial skin temperature and the subjects detected an average variation of 2.7°C, whatever the initial temperature. This is the first time that thresholds and latencies for pain elicited by both Aδ- and C-fibers from a given body region have been measured in the same experimental run. Such an approach illustrates the role of nociception as a “double level” and “double release” alarm system based on level detectors. By contrast, warmth detection was found to be based on difference detectors. It is hypothesized that pain results from a CNS build-up process resulting from population coding and strongly influenced by the background temperatures surrounding at large the stimulation site. We propose an alternative solution to the conventional methods that only measure a single “threshold of pain”, without knowing which of the two systems is involved. PMID:20428245

  19. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.

  20. Geodynamics of seafloor spreading extinction: Constraints from the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Behn, M. D.

    2016-12-01

    We investigate magmatism and mantle thermal structure beneath fossil spreading centers in the South China Sea (SCS), focusing on two aspects: (1) mantle thermal structure and melting, and (2) magmatism associated with seamounts. We carried out 3D geodynamic models to study thermal structure beneath the SCS during the process from initiation to cessation of seafloor spreading. Modeling results suggested that the overall mantle temperatures of the East Subbasin were significantly greater than that of the Southwest Subbasin when the seafloor spreading of both subbasins ceased at about 15-16 Ma. However, the differences in thermal structure between the two subbasins were calculated to have decreased with time. Work is in progress to couple geochemical and geophysical constraints with geodynamic modeling to investigate melt generation, fractional crystallization, and melt extraction at the fossil spreading centers in the SCS. Among the seamounts that can be identified on multi-beam bathymetry data, about half of them are located along the fossil spreading centers while the remaining located off axis. This is in contrast to fossil spreading ridges in the West Scotia Sea and Phoenix Ridge, where most seamounts are located off axis. The off-axis seamounts in the SCS also show strong asymmetry about the fossil spreading centers with most seamounts concentrated in the northern flank. Work is in progress to investigate the melting processes associated with seamounts.

  1. Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.

    2015-11-01

    Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q < ~0.15 AU) that form comae rich in mineral sublimation products, but lack typical cometary ice sublimation products (H2O, CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV spectrometer could potentially detect the presence or absence of strong ultraviolet mercury lines on rock comets or rock comet candidates.

  2. Double-diffusive translation of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Deguen, R.; Alboussiére, T.; Labrosse, S.

    2018-03-01

    The hemispherical asymmetry of the inner core has been interpreted as resulting form a high-viscosity mode of inner core convection, consisting in a translation of the inner core. A thermally driven translation, as originally proposed, is unlikely if the currently favoured high values of the thermal conductivity of iron at core conditions are correct. We consider here the possibility that inner core translation results from an unstable compositional gradient, which would develop either because the light elements present in the core become increasingly incompatible as the inner core grows, or because of a possibly positive feedback of the development of the F-layer on inner core convection. Though the magnitude of the destabilising effect of the compositional field is predicted to be similar to or smaller than the stabilising effect of the thermal field, the huge difference between thermal and chemical diffusivities implies that double-diffusive instabilities can still arise even if the net buoyancy increases upward. Using linear stability analysis and numerical simulations, we demonstrate that a translation mode can indeed exist if the compositional field is destabilising, even if the temperature profile is subadiabatic, and irrespectively of the relative magnitudes of the composition and potential temperature gradients. The existence of this double diffusive mode of translation requires that the following conditions are met: (i) the compositional profile within the inner core is destabilising, and remains so for a duration longer than the destabilisation timescale (on the order of 200 My, but strongly dependent on the magnitude of the initial perturbation); and (ii) the inner core viscosity is sufficiently large, the required value being a strongly increasing function of the inner core size (e.g. 1017 Pa.s when the inner core was 200 km in radius, and ≃ 3 × 1021 Pa.s at the current inner core size). If these conditions are met, the predicted inner core translation rate is found to be similar to the inner core growth rate, which is more consistent with inferences from the geomagnetic field morphology and secular variation than the higher translation rate predicted for a thermally driven translation.

  3. Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect

    NASA Astrophysics Data System (ADS)

    He, Dahai; Thingna, Juzar; Cao, Jianshu

    2018-05-01

    We study the effect of system-bath coupling strength on quantum thermal transport through the interface of two weakly coupled anharmonic molecular chains by using a quantum self-consistent phonon approach. The approach inherently assumes that the two segments (anharmonic molecular chains) are approximately in local thermal equilibrium with respect to the baths that they are connected to and transforms the strongly anharmonic system into an effective harmonic one with a temperature-dependent transmission. Despite the approximations, the approach is ideal for our setup, wherein the weak interfacial coupling guarantees an approximate local thermal equilibrium of each segment and short chain length (less than the phonon mean-free path) ensues from the effective harmonic approximation. Remarkably, the heat current shows a resonant to bi-resonant transition due to the variations in the interfacial coupling and temperature, which is attributed to the delocalization of phonon modes. Delocalization occurs only in the strong system-bath coupling regime and we utilize it to model a thermal rectifier whose ratio can be nonmonotonically tuned not only with the intrinsic system parameters but also with the external temperature.

  4. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  5. Holographic thermalization with initial long range correlation

    DOE PAGES

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS 3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v 2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integratedmore » Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  6. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

    PubMed Central

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-01-01

    This study addresses the effects of the SOC (State of Charge) and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging. PMID:28772588

  7. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.

    PubMed

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-02-25

    This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  8. Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Braungardt, Sibylle; Rodríguez, Mirta; Sen(de), Aditi; Sen, Ujjwal; Glauber, Roy J.; Lewenstein, Maciej

    2011-01-01

    Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.

  9. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    PubMed

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.

  10. Dynamical Typicality Approach to Eigenstate Thermalization

    NASA Astrophysics Data System (ADS)

    Reimann, Peter

    2018-06-01

    We consider the set of all initial states within a microcanonical energy shell of an isolated many-body quantum system, which exhibit an arbitrary but fixed nonequilibrium expectation value for some given observable A . On the condition that this set is not too small, it is shown by means of a dynamical typicality approach that most such initial states exhibit thermalization if and only if A satisfies the so-called weak eigenstate thermalization hypothesis (wETH). Here, thermalization means that the expectation value of A spends most of its time close to the microcanonical value after initial transients have died out. The wETH means that, within the energy shell, most eigenstates of the pertinent system Hamiltonian exhibit very similar expectation values of A .

  11. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    PubMed

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  12. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian

    We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less

  14. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to themore » formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.« less

  15. Diagnostics of red-shifted H-alpha line emission from a C-class flare with full non-LTE radiative and hydrodynamic approach

    NASA Astrophysics Data System (ADS)

    Druett, M. K.; Zharkova, V. V.; Scullion, E.; Zharkov, S.; Matthews, S. A.

    2016-12-01

    We analyse H-alpha line profiles with strong redshifts during the C1.8 flare on 1st July 2012 obtained from the Swedish Solar Telescope (SST) closely resembling the previous observations (Wuelser and Marti, 1989). The flare has a magnetic field configuration with two levels of loop structures. The kernels with red shifts are observed in one of the H-alpha ribbons in the south-west location formed after the main impulse recorded in the north-east. The locations of H-alpha kernels with red shifts reveal close temporal and spatial correlation with weaker HXR signatures and coincide with the locations of coronal jets observed with AIA/SDO. For interpretation we apply a revised 1D hydrodynamic and non-LTE (NLTE) radiative model for 5 level plus continuum model hydrogen atom (Druett & Zharkova, 2016) considering radiative, thermal and non-thermal excitation and ionisation by beam electrons with the updated beam densities (Zharkova & Dobranskis, 2016) and analytical excitation/ionisation rates (Zharkova& Kobylinskijj, 1993). We find the simultaneous solutions of steady state and radiative transfer equations in all optically-thick lines and continua. The electron and ion temperatures, ambient density and macrovelocity of the ambient plasma are derived from a 1D hydrodynamic model with initial condition of the pre-flaring photosphere for the two fluid ambient plasma heated by beam electrons (Zharkova & Zharkov, 2007). We simulate distributions over precipitation depth of ionisation and departure coefficients for all the hydrogen atom transitions including the deviation of ionisation from Saha equation affected by non-thermal electron beams. We show that in the very first seconds after the beam onset Balmer line profiles are sensitive to the effect of beam electrons. The combination of the additional ionisation caused by beam electrons leading to a very strong Stark effect in Balmer lines with the hydrodynamic heating and formation of a low temperature shock in the chromosphere is shown to closely account for the visible asymmetric H-alpha line profiles with strong red shifts observed now and in the past. The interplay between the ambient plasma heating and non-thermal collisional excitation and ionisation rates by beam electrons is shown to define the Balmer line red shifts and continuum enhancements.

  16. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations

    PubMed Central

    Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi

    2017-01-01

    Tri-block copolymer styrene–butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG–DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as –OH, C=O, –COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds on the molecular structure of aged SBS. PMID:28773124

  17. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations.

    PubMed

    Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi

    2017-07-07

    Tri-block copolymer styrene-butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG-DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as -OH, C=O, -COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds on the molecular structure of aged SBS.

  18. 76 FR 3694 - The Advisory Committee on the 100,000 Strong Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF STATE [Public Notice: 7242] The Advisory Committee on the 100,000 Strong Initiative... of State announces the intent to establish the Advisory Committee on the 100,000 Strong Initiative... information and advice on the implementation of the 100,000 Strong Initiative in the private sector through...

  19. 76 FR 65318 - ``100,000 Strong'' Initiative Federal Advisory Committee: Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF STATE [Public Notice 7606] ``100,000 Strong'' Initiative Federal Advisory Committee... gives notice of a public meeting of the ``100,000 Strong'' Initiative Federal Advisory Committee. The...: Implementation of the 100,000 Strong Initiative in the private sector. Time and Place: The meeting will take...

  20. Historical thermal regimes define limits to coral acclimatization.

    PubMed

    Howells, Emily J; Berkelmans, Ray; van Oppen, Madeleine J H; Willis, Bette L; Bay, Line K

    2013-05-01

    Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n=20 colonies) or partial (50%) mortality at temperatures 1.1 degrees C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n=10 colonies) or partial (42%) mortality at temperatures 2.5 degrees C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern native site. All parameters investigated (bleaching, mortality, Symbiodinium type fidelity, reproductive timing) demonstrated strong interactions between genotype and environment, indicating that the acclimatization potential of A. millepora populations may be limited by adaptation of the holobiont to native thermal regimes.

  1. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

  2. Eigenstate Phase Transitions

    NASA Astrophysics Data System (ADS)

    Zhao, Bo

    Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.

  3. Counter-IED Initiative PPE Horizon 0, Phase 1, Protection Versus Performance Preliminary Trade-off Analysis, Behavioural Task Analysis (Initiative d’epi pour la Lutte aux IED - Horizon 0 Phase 1 - Analyse de Compromis Preliminaire de la Protection par Rapport au Rendement Analyse Comportementale des Taches)

    DTIC Science & Technology

    2007-05-01

    RESULTS .............................................................................92 TABLE 17: RATINGS OF THE THERMAL COMFORT ON A 7 POINT SCALE...98. In addition to the body mapping of thermal discomfort, participants also rated thermal comfort acceptability for hot spots, ventilation and...overall comfort. Additionally each participant completed a thermal comfort Humansystems® Counter IED Page 91 questionnaire that examined ventilation

  4. Origin and structure of major orogen-scale exhumed strike-slip

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San Andreas Fault, Alpine Fault in New Zealand) and transtensional rift zones such as the East African rift. In many cases, subsequent shortening exhumes such faults from depth to the surface. A major aspect of many exhumed strike-slip faults is its lateral thermal gradient induced by the juxtaposition of hot and cool levels of the crust controlling relevant properties of such fault zones, e.g. the overall fault architecture (e.g., fault core, damage zone, shear lenses, fault rocks) and the thermal structure. These properties and the overall fault architecture include strength of fault rocks, permeability and porosity, the hydrological regime, as well as the nature and origin of circulating hydrothermal fluids.

  5. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation.

    PubMed

    Demmig-Adams, Barbara; Muller, Onno; Stewart, Jared J; Cohu, Christopher M; Adams, William W

    2015-11-01

    In nature, photosynthetic organisms cope with highly variable light environments--intensities varying over orders of magnitudes as well as rapid fluctuations over seconds-to-minutes--by alternating between (a) highly effective absorption and photochemical conversion of light levels limiting to photosynthesis and (b) powerful photoprotective thermal dissipation of potentially damaging light levels exceeding those that can be utilized in photosynthesis. Adjustments of the photosynthetic apparatus to changes in light environment involve biophysical, biochemical, and structural adjustments. We used electron micrographs to assess overall thylakoid grana structure in evergreen species that exhibit much stronger maximal levels of thermal energy dissipation than the more commonly studied annual species. Our findings indicate an association between partial or complete unstacking of thylakoid grana structure and strong reversible thermal energy dissipation that, in contrast to what has been reported for annual species with much lower maximal levels of energy dissipation, is similar to what is seen under photoinhibitory conditions. For a tropical evergreen with tall grana stacks, a loosening, or vertical unstacking, of grana was seen in sun-grown plants exhibiting pronounced pH-dependent, rapidly reversible thermal energy dissipation as well as for sudden low-to-high-light transfer of shade-grown plants that responded with photoinhibition, characterized by strong dark-sustained, pH-independent thermal energy dissipation and photosystem II (PSII) inactivation. On the other hand, full-sun exposed subalpine confers with rather short grana stacks transitioned from autumn to winter via conversion of most thylakoids from granal to stromal lamellae concomitant with photoinhibitory photosynthetic inactivation and sustained thermal energy dissipation. We propose that these two types of changes (partial or complete unstacking of grana) in thylakoid arrangement are both associated with the strong non-photochemical quenching (NPQ) of chlorophyll fluorescence (a measure of photoprotective thermal energy dissipation) unique to evergreen species rather than with PSII inactivation per se. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    NASA Astrophysics Data System (ADS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  7. Numerical Large Deviation Analysis of the Eigenstate Thermalization Hypothesis

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Iyoda, Eiki; Sagawa, Takahiro

    2018-05-01

    A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal properties. We numerically investigate the ETH by focusing on the large deviation property, which directly evaluates the ratio of athermal energy eigenstates in the energy shell. As a consequence, we have systematically confirmed that the strong ETH is indeed true even for near-integrable systems. Furthermore, we found that the finite-size scaling of the ratio of athermal eigenstates is a double exponential for nonintegrable systems. Our result illuminates the universal behavior of quantum chaos, and suggests that a large deviation analysis would serve as a powerful method to investigate thermalization in the presence of the large finite-size effect.

  8. Analysis of a Chevron Beam Thermal Actuator

    NASA Astrophysics Data System (ADS)

    Joshi, Amey Sanjay; Mohammed, Hussain; Kulkarni, S. M., Dr.

    2018-02-01

    Thermal MEMS (Micro-Electro-Mechanical Systems) actuators and sensors have a wide range of applications. The chevron type thermal actuators comparatively show superior performance over other existing electrostatic and thermal actuators. This paper describes the design and analysis of chevron type thermal actuator. Here standard design of Chevron type thermal actuator is considered which comprises of proof mass at center and array of six beams of a uniform cross section of 3 3 microns and an initial angle of 5°. The thermal actuator was designed and analyzed using analytical and finite element method and the results were compared. The model was also analyzed for initial angles of 2.5° and 7.5°, and the results were compared with FEA model. The cross section of the beam was varied and the finite element analysis of all three models was compared to suggest the best suitable thermal actuator structure.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue frommore » J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.« less

  10. MnNi-based spin valve sensors combining high thermal stability, small footprint and pTesla detectivities

    NASA Astrophysics Data System (ADS)

    Silva, Marília; Leitao, Diana C.; Cardoso, Susana; Freitas, Paulo

    2018-05-01

    Magnetoresistive sensors with high thermal robustness, low noise and high spatial resolution are the answer to a number of challenging applications. Spin valve sensors including MnNi as antiferromagnet layer provide higher exchange bias field and improved thermal stability. In this work, the influence of the buffer layer type (Ta, NiFeCr) and thickness on key sensor parameters (e.g. offset field, Hf) is investigated. A Ta buffer layer promotes a strong (111) texture which leads to a higher value of MR. In contrast, Hf is lower for NiFeCr buffer. Micrometric sensors display thermal noise levels of 1 nT/Hz1/2 and 571 pT/Hz1/2 for a sensor height (h) of 2 and 4 μm, respectively. The temperature dependence of MR and sensitivity is also addressed and compared with MnIr based spin valves. In this case, MR abruptly decreases after heating at 160°C (without magnetic field), contrary to MnNi-based spin valves, where only a 10% MR decrease (relative to the initial value) is seen at 275°C. Finally, to further decrease the noise levels and improve detectivity, MnNi spin-valves are deposited vertically, and connected in parallel and series (in-plane) to create a device with low resistance and high sensitivity. A field detection at thermal level of 346 pT/Hz1/2 is achieved for a device with a total of 300 SVs (4 vertical, 15 in series, 5 in parallel).

  11. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  12. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jukola, H.; Nikkola, L.; Tukiainen, M.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined usingmore » combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.« less

  13. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  14. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae

    NASA Astrophysics Data System (ADS)

    Wooldridge, S. A.

    2013-03-01

    Impairment of the photosynthetic machinery of the algal endosymbiont ("zooxanthellae") is the proximal driver of the thermal breakdown of the coral-algae symbiosis ("coral bleaching"). Yet, the initial site of damage, and early dynamics of the impairment are still not well resolved. In this perspective essay, I consider further a recent hypothesis which proposes an energetic disruption to the carbon-concentrating mechanisms (CCMs) of the coral host, and the resultant onset of CO2-limitation within the photosynthetic "dark reactions" as a unifying cellular mechanism. The hypothesis identifies the enhanced retention of photosynthetic carbon for zooxanthellae (re)growth following an initial irradiance-driven expulsion event as a strong contributing cause of the energetic disruption. If true, then it implies that the onset of the bleaching syndrome and setting of upper thermal bleaching limits are emergent attributes of the coral symbiosis that are ultimately underpinned by the characteristic growth profile of the intracellular zooxanthellae; which is known to depend not just on temperature, but also external (seawater) nutrient availability and zooxanthellae genotype. Here, I review this proposed bleaching linkage at a variety of observational scales, and find it to be parsimonious with the available evidence. Future experiments are suggested that can more formally test the linkage. If correct, the new cellular model delivers a valuable new perspective to consider the future prospects of the coral symbiosis in an era of rapid environmental change, including: (i) the underpinning mechanics (and biological significance) of observed changes in resident zooxanthellae genotypes, and (ii) the now crucial importance of reef water quality in co-determining thermal bleaching resistance.

  15. Shear viscosities of photons in strongly coupled plasmas

    DOE PAGES

    Yang, Di-Lun; Müller, Berndt

    2016-07-18

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N=4 super Yang–Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  16. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  17. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  18. Black hole genesis of dark matter

    NASA Astrophysics Data System (ADS)

    Lennon, Olivier; March-Russell, John; Petrossian-Byrne, Rudin; Tillim, Hannah

    2018-04-01

    We present a purely gravitational infra-red-calculable production mechanism for dark matter (DM) . The source of both the DM relic abundance and the hot Standard Model (SM) plasma is a primordial density of micro black holes (BHs), which evaporate via Hawking emission into both the dark and SM sectors. The mechanism has four qualitatively different regimes depending upon whether the BH evaporation is 'fast' or 'slow' relative to the initial Hubble rate, and whether the mass of the DM particle is 'light' or 'heavy' compared to the initial BH temperature. For each of these regimes we calculate the DM yield, Y, as a function of the initial state and DM mass and spin. In the 'slow' regime Y depends on only the initial BH mass over a wide range of initial conditions, including scenarios where the BHs are a small fraction of the initial energy density. The DM is produced with a highly non-thermal energy spectrum, leading in the 'light' DM mass regime (~260 eV and above depending on DM spin) to a strong constraint from free-streaming, but also possible observational signatures in structure formation in the spin 3/2 and 2 cases. The 'heavy' regime (~1.2 × 108 GeV to MPl depending on spin) is free of these constraints and provides new possibilities for DM detection. In all cases there is a dark radiation component predicted.

  19. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose

    PubMed Central

    Li, Tian; Song, Jianwei; Zhao, Xinpeng; Yang, Zhi; Pastel, Glenn; Xu, Shaomao; Jia, Chao; Dai, Jiaqi; Chen, Chaoji; Gong, Amy; Jiang, Feng; Yao, Yonggang; Fan, Tianzhu; Yang, Bao; Wågberg, Lars; Yang, Ronggui; Hu, Liangbing

    2018-01-01

    There has been a growing interest in thermal management materials due to the prevailing energy challenges and unfulfilled needs for thermal insulation applications. We demonstrate the exceptional thermal management capabilities of a large-scale, hierarchal alignment of cellulose nanofibrils directly fabricated from wood, hereafter referred to as nanowood. Nanowood exhibits anisotropic thermal properties with an extremely low thermal conductivity of 0.03 W/m·K in the transverse direction (perpendicular to the nanofibrils) and approximately two times higher thermal conductivity of 0.06 W/m·K in the axial direction due to the hierarchically aligned nanofibrils within the highly porous backbone. The anisotropy of the thermal conductivity enables efficient thermal dissipation along the axial direction, thereby preventing local overheating on the illuminated side while yielding improved thermal insulation along the backside that cannot be obtained with isotropic thermal insulators. The nanowood also shows a low emissivity of <5% over the solar spectrum with the ability to effectively reflect solar thermal energy. Moreover, the nanowood is lightweight yet strong, owing to the effective bonding between the aligned cellulose nanofibrils with a high compressive strength of 13 MPa in the axial direction and 20 MPa in the transverse direction at 75% strain, which exceeds other thermal insulation materials, such as silica and polymer aerogels, Styrofoam, and wool. The excellent thermal management, abundance, biodegradability, high mechanical strength, low mass density, and manufacturing scalability of the nanowood make this material highly attractive for practical thermal insulation applications. PMID:29536048

  20. Resonant Thermalization of Periodically Driven Strongly Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Peronaci, Francesco; Schiró, Marco; Parcollet, Olivier

    2018-05-01

    We study the dynamics of the Fermi-Hubbard model driven by a time-periodic modulation of the interaction within nonequilibrium dynamical mean-field theory. For moderate interaction, we find clear evidence of thermalization to a genuine infinite-temperature state with no residual oscillations. Quite differently, in the strongly correlated regime, we find a quasistationary extremely long-lived state with oscillations synchronized with the drive (Floquet prethermalization). Remarkably, the nature of this state dramatically changes upon tuning the drive frequency. In particular, we show the existence of a critical frequency at which the system rapidly thermalizes despite the large interaction. We characterize this resonant thermalization and provide an analytical understanding in terms of a breakdown of the periodic Schrieffer-Wolff transformation.

  1. Carrier interactions and porosity initiated reversal of temperature dependence of thermal conduction in nanoscale tin films

    NASA Astrophysics Data System (ADS)

    Kaul, Pankaj B.; Prakash, Vikas

    2014-01-01

    Recently, tin has been identified as an attractive electrode material for energy storage/conversion technologies. Tin thin films have also been utilized as an important constituent of thermal interface materials in thermal management applications. In this regards, in the present paper, we investigate thermal conductivity of two nanoscale tin films, (i) with thickness 500 ± 50 nm and 0.45% porosity and (ii) with thickness 100 ± 20 nm and 12.21% porosity. Thermal transport in these films is characterized over the temperature range from 40 K-310 K, using a three-omega method for multilayer configurations. The experimental results are compared with analytical predictions obtained by considering both phonon and electron contributions to heat conduction as described by existing frequency-dependent phenomenological models and BvK dispersion for phonons. The thermal conductivity of the thicker tin film (500 nm) is measured to be 46.2 W/m-K at 300 K and is observed to increase with reduced temperatures; the mechanisms for thermal transport are understood to be governed by strong phonon-electron interactions in addition to the normal phonon-phonon interactions within the temperature range 160 K-300 K. In the case of the tin thin film with 100 nm thickness, porosity and electron-boundary scattering supersede carrier interactions, and a reversal in the thermal conductivity trend with reduced temperatures is observed; the thermal conductivity falls to 1.83 W/m-K at 40 K from its room temperature value of 36.1 W/m-K. In order to interpret the experimental results, we utilize the existing analytical models that account for contributions of electron-boundary scattering using the Mayadas-Shatzkes and Fuchs-Sondheimer models for the thin and thick films, respectively. Moreover, the effects of porosity on carrier transport are included using a previous treatment based on phonon radiative transport involving frequency-dependent mean free paths and the morphology of the nanoporous channels. The systematic modeling approach presented in here can, in general, also be utilized to understand thermal transport in semi-metals and semiconductor nano-porous thin films and/or phononic nanocrystals.

  2. Large thermal Hall effect in a frustrated pyrochlore magnet

    NASA Astrophysics Data System (ADS)

    Hirschberger, Max; Krizan, Jason; Cava, Robert J.; Ong, N. Phuan

    2015-03-01

    In frustrated magnetism, the nature of the ground state and its elementary excitations are a matter of considerable debate. We present a detailed study of the full thermal conductivity tensor κij, including the Righi-Leduc (or thermal Hall) effect, in single crystals of the frustrated quantum spin-ice pyrochlore Tb2Ti2O7. The off-diagonal response κxy / T is large in this insulating material, despite the absence of itinerant electrons experiencing the Lorentz force. Our experiments over the temperature range of 0 . 8 - 200 K and in fields up to 14 T reveal a remarkable phenomenology: A sizeable field-linear Hall effect κxy / T is observed below 100 K, and its slope with respect to magnetic field increases strongly as we cool the sample. We observe significant curvature in the field dependence of κxy / T below 15 K. At the lowest temperatures, both κxx / T and the initial slope limB-->0 [κxy / TB ] are constant in temperature, behavior reminiscent of fermionic heat conduction in dirty metals. Experimental methods and verification of the intrinsic nature of the effect will be discussed. R.J.C. and N.P.O. are supported by a MURI Grant (ARO W911NF-12-1-0461) and by the US National Science Foundation (Grant Number DMR 0819860).

  3. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  4. Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing; Evans, Philip G.; Grice, Warren P.

    In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less

  5. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  6. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    NASA Astrophysics Data System (ADS)

    Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten

    2016-03-01

    Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  7. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  8. Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution

    DOE PAGES

    Qi, Bing; Evans, Philip G.; Grice, Warren P.

    2018-01-01

    In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less

  9. Particle Methods for Simulating Atomic Radiation in Hypersonic Reentry Flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Wang, A.; Levin, D. A.; Modest, M.

    2008-12-01

    With a fast reentry speed, the Stardust vehicle generates a strong shock region ahead of its blunt body with a temperature above 60,000 K. These extreme Mach number flows are sufficiently energetic to initiate gas ionization processes and thermal and chemical ablation processes. The nonequilibrium gaseous radiation from the shock layer is so strong that it affects the flowfield macroparameter distributions. In this work, we present the first loosely coupled direct simulation Monte Carlo (DSMC) simulations with the particle-based photon Monte Carlo (p-PMC) method to simulate high-Mach number reentry flows in the near-continuum flow regime. To efficiently capture the highly nonequilibrium effects, emission and absorption cross section databases using the Nonequilibrium Air Radiation (NEQAIR) were generated, and atomic nitrogen and oxygen radiative transport was calculated by the p-PMC method. The radiation energy change calculated by the p-PMC method has been coupled in the DSMC calculations, and the atomic radiation was found to modify the flow field and heat flux at the wall.

  10. The effects of magnetic fields on the growth of thermal instabilities in cooling flows

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Bregman, Joel N.

    1989-01-01

    The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.

  11. Radiation-based near-field thermal rectification with phase transition materials

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Basu, Soumyadipta; Wang, Liping

    2013-10-01

    The capability of manipulating heat flow has promising applications in thermal management and thermal circuits. In this Letter, we report strong thermal rectification effect based on the near-field thermal radiation between silicon dioxide (SiO2) and a phase transition material, vanadium dioxide (VO2), separated by nanometer vacuum gaps under the framework of fluctuational electrodynamics. Strong coupling of surface phonon polaritons between SiO2 and insulating VO2 leads to enhanced near-field radiative transfer, which on the other hand is suppressed when VO2 becomes metallic, resulting in thermal rectification. The rectification factor is close to 1 when vacuum gap is at 1 μm and it increases to almost 2 at sub-20-nm gaps when emitter and receiver temperatures are set to 400 and 300 K, respectively. Replacing bulk SiO2 with a thin film of several nanometers, rectification factor of 3 can be achieved when the vacuum gap is around 100 nm.

  12. Miniature and low cost fiber Bragg grating interrogator for structural monitoring in nano-satellites

    NASA Astrophysics Data System (ADS)

    Toet, P. M.; Hagen, R. A. J.; Hakkesteegt, H. C.; Lugtenburg, J.; Maniscalco, M. P.

    2017-11-01

    In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the beginning of 2013 and is financed by the Seventh Framework Program (FP7) of the European Commission. Within the PEASSS project, a Nano-Satellite is being designed and manufactured to be equipped with new technology that will help keep Europe on the cutting edge of space research, potentially reducing the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. After on ground testing the satellite is planned to be launched at the end of 2015. Within the satellite, different technologies will be demonstrated on orbit to show their capabilities for different in-space applications. For our application the FBG interrogator monitors the structural and thermal behaviour of a so called "smart panel". These panels will enable fine angle control and thermal and vibration compensation in order to improve all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. The Fiber Optic (FO) system in PEASSS includes four FBG strain sensors and two FBG temperature sensors. The 3 channel interrogator has to have a small footprint (110x50x40mm), is low cost, low in mass and has a low power consumption. In order to meet all these requirements, an interrogator has been designed based on a tunable Vertical-Cavity Surface-Emitting Laser (VCSEL) enabling a wavelength sweep of around 7 nm. To guarantee the absolute and relative performance, two reference methods are included internally in the interrogator. First, stabilized reference FBG sensors are used to obtain absolute wavelength calibrations. This method is used for the temperature sensors in the system, which will be measured with an accuracy of +/-1°C. Second, the strain sensors will be used to monitor deformation of piezo actuators (bimorph plates) in a way that temperature compensation is not required. Using FBGs on top and on the bottom of the plates, relative wavelength differences are measured. In order to have a high accuracy, inside the interrogator a fiber interferometer is used to track the wavelength change. Using this reference technology we are able to measure the (relative) wavelength difference between two FBGs well below 0.1pm.

  13. Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinsman, Colin; Li, Gang; Asaba, Tomoya

    2016-06-27

    The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less

  14. Subcritical thermal convection of liquid metals in a rapidly rotating sphere

    NASA Astrophysics Data System (ADS)

    Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.

    2017-12-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek<10-6 when Pr=0.01. Here the strong branch persists even as the thermal forcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.

  15. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas

    2017-09-01

    Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.

  16. Direct evidence for the gas phase thermal polymerization of styrene. Determination of the initiation mechanism and structures of the early oligomers by ion mobility.

    PubMed

    Alsharaeh, Edreese H; Ibrahim, Yehia M; El-Shall, M Samy

    2005-05-04

    We present here direct evidence for the thermal self-initiated polymerization of styrene in the gas phase and establish that the initiation process proceeds via essentially the same mechanism (the Mayo mechanism) as in condensed phase polymerization. Furthermore, we provide structural identifications of the dimers and trimers formed in the gas phase.

  17. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization

    NASA Astrophysics Data System (ADS)

    Pérez, J. B.; Arce, J. C.

    2018-06-01

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ˜1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  18. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization.

    PubMed

    Pérez, J B; Arce, J C

    2018-06-07

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ∼1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  19. Thermal Noise in the Initial LIGO Interferometers

    NASA Astrophysics Data System (ADS)

    Gillespie, Aaron D.

    1995-01-01

    Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.

  20. Natural selection on thermal performance in a novel thermal environment

    PubMed Central

    Logan, Michael L.; Cox, Robert M.; Calsbeek, Ryan

    2014-01-01

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming. PMID:25225361

  1. Natural selection on thermal performance in a novel thermal environment.

    PubMed

    Logan, Michael L; Cox, Robert M; Calsbeek, Ryan

    2014-09-30

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming.

  2. Initialization of hydrodynamics in relativistic heavy ion collisions with an energy-momentum transport model

    NASA Astrophysics Data System (ADS)

    Naboka, V. Yu.; Akkelin, S. V.; Karpenko, Iu. A.; Sinyukov, Yu. M.

    2015-01-01

    A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.

  3. Thermal Casimir-Polder forces on a V-type three-level atom

    NASA Astrophysics Data System (ADS)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  4. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their solar absorptivity and thermal emissivity values determined experimentally. The three simulants included JSC 1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that alpha/epsilon varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be significantly lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the moon will be strongly dependent on the and of the dust in the specific locality.

  5. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  6. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  7. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  8. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  9. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  10. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp; Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp; Department of Fusion Science, SOKENDAI

    2015-10-15

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) andmore » the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.« less

  11. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nafari, F.; Ghoranneviss, M., E-mail: ghoranneviss@gmail.com

    2016-08-15

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperaturemore » for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.« less

  12. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and themore » efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.« less

  13. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth

    PubMed Central

    Han, D.; Kedzierski, Mark A.

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°–80°), the vibration displacement (10 µm–50 µm), the vibration frequency (5 Hz–25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described. PMID:28747812

  14. Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids

    DOE PAGES

    DeGottardi, Wade; Matveev, K. A.

    2015-06-12

    In this paper, we study the transport properties of long quantum wires by generalizing the Luttinger liquid approach to allow for the finite lifetime of the bosonic excitations. Our theory accounts for long-range disorder and strong electron interactions, both of which are common features of experiments with quantum wires. We obtain the electrical and thermal resistances and thermoelectric properties of such quantum wires and find a strong deviation from perfect conductance quantization. Finally, we cast our results in terms of the thermal conductivity and bulk viscosity of the electron liquid and give the temperature scale above which the transport canmore » be described by classical hydrodynamics.« less

  15. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Alternative thermal histories. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Interpretations supporting a differentiated, once active Mercury are listed. Alternative scenarios of the planet's thermal history involve: different distributions of accreted materials, including uranium and thorium-rich materials; variations of early melting; and different modes of plains and scarp formation. Arguments are advanced which strongly favor plains formation by volcanism, lack of a primordial surface, and possible identification of remnant tensional features. Studies of remotely sensed data which strongly suggest a modestly homogeneous surface of silicates imply core separation. Reasons for accepting or rejecting various hypotheses for thermal histories of the planet are mentioned.

  16. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    NASA Astrophysics Data System (ADS)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  17. Computer simulation of low-temperature composites sintering processes for additive technologies

    NASA Astrophysics Data System (ADS)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.

    2017-12-01

    This is impact research of mixture raw components characteristics on the low-temperature composites structure formation during the sintering process. The obtained results showed that the structure determination of initial compacts obtained after thermal destruction of the polymer binder lets quantify the concentrations of main components and the refractory crystalline product of thermal destruction. Accounting for the distribution of thermal destruction refractory product allows us to refine the forecast of thermal stresses in the matrix of sintered composite. The presented results can be considered as a basis for optimization of initial compositions of multilayer low-temperature composites obtained by additive technologies.

  18. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    PubMed Central

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G.; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G.; Lowry, Gregory V.; Wohlleben, Wendel; Demokritou, Philip

    2015-01-01

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of a widely used NEP, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications. PMID:26642449

  19. Microwave-Induced Interfacial Nanobubbles.

    PubMed

    Wang, Lei; Miao, Xiaojun; Pan, Gang

    2016-11-01

    A new method for generating nanobubbles via microwave irradiation was verified and quantified. AFM measurement showed that nanobubbles with diameters ranging from 200 to 600 nm were generated at a water-HOPG surface by applying microwave radiation to aqueous solutions with 9.0-30.0 mg/L dissolved oxygen. Graphite displays strong microwave absorption and transmits high thermal energy to the surface. Because of the high dielectric constant (20 °C, 80 F/m) and dielectric loss factor, water molecules have a strong ability to absorb microwave radiation. The thermal and nonthermal effects of microwave radiation made contributions to decreasing the gas solubility, thus facilitating nanobubble nucleation. The yield of nanobubbles increased about 10-fold when the irradiation time increased from 60 to 120 s at 200 W of microwave radiation. The nanobubble density increased from 0.8 to 15 μm -2 by improving the working power from 200 to 600 W. An apparent improvement in nanobubbles yield was obtained between 300 and 400 W, and the resulting temperature was 34-52 °C. When the initial dissolved oxygen increased from 11.3 to 30.0 mg/L, the density of nanobubbles increased from 1.2 to 13 μm -2 . The generation of nanobubbles could be well controlled by adjusting the gas concentration, microwave power, or irradiation time. The method may be valuable in preparing surface nanobubbles quickly and conveniently for various applications, such as catalysis, hypoxia/anoxia remediation, and templates for preparing nanoscale materials.

  20. Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.

    We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scalemore » for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.« less

  1. Graphene in the Sky and Beyond

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.

    2014-01-01

    With the premium placed on strong, lightweight structures, carbon materials have a long history of use in aerospace applications. Graphitized carbon and carbon/carbon composites are used in thermal protection systems and heat shields, carbon fiber composites in aircraft, and more recently, carbon nanotubes have been used on spacecraft. As the newest member of this family of materials, graphene also has a number of interesting properties that intersect with unique aerospace requirements. Despite its many attractive properties, graphene-based structures and systems, like any other material used in aerospace, must clear a number of hurdles before it will be accepted for use in flight structures. Carbon fiber, for example, underwent a development period of several decades between initial discovery and large-scale application in commercial aircraft.

  2. Firework Model: Time Dependent Spectral Evolution of GRB

    NASA Astrophysics Data System (ADS)

    Barbiellini, Guido; Longo, Francesco; Ghirlanda, G.; Celotti, A.; Bosnjak, Z.

    2004-09-01

    The energetics of the long duration GRB phenomenon is compared with models of a rotating BH in a strong magnetic field generated by an accreting torus. The GRB energy emission is attributed to magnetic field vacuum breakdown that gives origin to a e +/- fireball. Its subsequent evolution is hypothesized in analogy with the in-flight decay of an elementary particle. An anisotropy in the fireball propagation is thus naturally produced. The recent discovery in some GRB of an initial phase characterized by a thermal spectrum could be interpreted as the photon emission of the fireball photosphere when it becomes transparent. In particular, the temporal evolution of the emission can be explained as the effect of a radiative deceleration of the out-moving ejecta.

  3. Position space analysis of the AdS (in)stability problem

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Fotios V.; Freivogel, Ben; Lippert, Matthew; Yang, I.-Sheng

    2015-08-01

    We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the space of initial conditions does not collapse on this time scale. We perform an analysis in position space to study this puzzle, and our formalism allows us to directly study the vanishing-amplitude limit. We show that gravitational self-interaction leads to tidal deformations which are equally likely to focus or defocus energy, and we sketch the phase diagram accordingly. We also clarify the connection between gravitational evolution in global AdS and holographic thermalization.

  4. The effects of thick sediment upon continental breakup: seismic imaging and thermal modeling of the Salton Trough, southern California

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.

    2015-12-01

    Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is maintained hot and weak by the overlying sedimentary thermal blanket. The lower crust stretches by ductile flow and magmatism is not localized. In this passive rift driven by distant plate motions, rapid sedimentation and its thermal effects delay final breakup of the crust and the onset of seafloor spreading.

  5. Ozone and OH-induced oxidation of monoterpenes: Changes in the thermal properties of secondary organic aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Watne, Ågot K.; Westerlund, Jonathan; Hallquist, Åsa M.; Brune, William H.; Hallquist, Mattias

    2017-12-01

    The behaviour of secondary organic aerosols (SOA) in the atmosphere is highly dependent on their thermal properties. Here we investigate the volatility of SOA formed from alpha-pinene, beta-pinene and limonene upon ozone- and OH-induced oxidation, and the effect of OH-induced ageing on the initially produced SOA. For all three terpenes, the ozone-induced SOA was less volatile than the OH-induced SOA. The thermal properties of the SOA were described using three parameters extracted from the volatility measurements: the temperature at which 50 per cent of the volume has evaporated (TVFR0.5), which is used as a general volatility indicator; a slope factor (SVFR), which describes the volatility distribution; and TVFR0.1, which measures the volatility of the least volatile particle fraction. Limonene-derived SOA generally had higher TVFR0.5 values and shallower slopes than SOA derived from alpha- and beta-pinene. This was especially true for the ozone-induced SOA, partially because the ozonolysis of limonene has a strong tendency to cause SOA formation and to produce extremely low volatility VOCs (ELVOCs). Ageing by OH exposure did not reduce TVFR0.5 for any of the studied terpenes but did increase the breadth of the volatility distribution by increasing the aerosols heterogeneity and contents of substances with different vapour pressures, also leading to increases in TVFR0.1. This stands in contrast to previously reported results from smog chamber experiments, in which TVFR0.5 always increased with ageing. These results demonstrate that there are two opposing processes that influence the evolution of SOAs thermal properties as they age, and that results from both flow reactors and static chambers are needed to fully understand the temporal evolution of atmospheric SOA thermal properties.

  6. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  7. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    NASA Astrophysics Data System (ADS)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  8. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    PubMed

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  9. Effects of lithium insertion on thermal conductivity of silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen; Institute of High Performance Computing, A*STAR, Singapore, Singapore 138632; Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg

    2015-04-27

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reductionmore » in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.« less

  10. Effects of lithium insertion on thermal conductivity of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-04-01

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.

  11. Thermal Tolerance in Anuran Embryos with Different Reproductive Modes: Relationship to Altitude

    PubMed Central

    Lynch, John D.

    2013-01-01

    Anurans are ectothermic animals very sensitive to temperature, mainly during the embryonic stage. In addition, environmental temperature decreases with altitude, and the amphibian fauna changes. Therefore, we studied the relationship between the embryonic thermal tolerances of twelve species of anurans and the temperatures of their microhabitat along an altitudinal gradient from 430 m to 2600 m. We hypothesized that there is a strong thermal adjustment of embryos to their microhabitat and, consequently, that temperature could be a limiting factor of altitudinal distribution of the anurans. We also compared the embryonic thermal tolerances according to six postulated reproductive modes of the study species. We found a significant relationship between the maximum and minimum thermal tolerances of the anuran embryos and the maximum and minimum temperatures of their microhabitat and altitudinal distribution. We also found a wide range of embryonic thermal tolerances for aquatic breeding species and a narrower range for terrestrial breeding species. Particularly, embryos of direct development species were the most sensitive to temperature. These results show the strong thermal adjustment of anuran embryos to their microhabitat and elevation and do not reject the hypothesis that temperature can be a limiting factor of their altitudinal distribution. PMID:23766678

  12. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

    PubMed

    Dixon, Groves B; Davies, Sarah W; Aglyamova, Galina A; Meyer, Eli; Bay, Line K; Matz, Mikhail V

    2015-06-26

    As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection. Copyright © 2015, American Association for the Advancement of Science.

  13. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  14. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  15. Degradation Characterization of Thermal Interface Greases: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  16. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  17. Observed seasonal and interannual variability of the near-surface thermal structure of the Arabian Sea Warm Pool

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Ramakrishna, S. S. V. S.

    2017-06-01

    The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990-2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November-December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air-sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February-March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air-sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater cooling of the near-surface layers during the summer monsoon season of the preceding year. On the other hand, the downwelling Rossby wave is stronger during pre-monsoon months during the strong ASWP regime when compared to weak ASWP regime leading to lesser cooling during strong ASWP regime.

  18. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  19. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    NASA Astrophysics Data System (ADS)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  20. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less

  1. Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons

    NASA Astrophysics Data System (ADS)

    Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.

    2018-03-01

    Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.

  2. Dynamics and protection of tripartite quantum correlations in a thermal bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long

    2015-03-15

    We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successfulmore » protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.« less

  3. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    DTIC Science & Technology

    2017-01-25

    Beaumont, TX (4/16). “Studying Strongly Coupled Systems with Ultracold Plasmas," Department of Physics and Astronomy Colloquium, University of South...Alabama, Mobile, AL (11/15). “Collective Modes and Correlations in Strongly Coupled Ultracold Plasmas," Department of Physics and Astronomy

  4. High quality, giant crystalline-Ge stripes on insulating substrate by rapid-thermal-annealing of Sn-doped amorphous-Ge in solid-liquid coexisting region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Ryo; JSPS Research Fellow, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083; Kai, Yuki

    Formation of large-grain (≥30 μm) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies;more » however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (∼40 μm) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ∼ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (∼200 μm) are obtained for the stripe width of 3 μm. This “Si-seed free” technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.« less

  5. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.

    2016-05-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s-1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (˜11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.

  6. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  7. 21st Century Locomotive Technology: Quarterly Technical Status Report 28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lembit Salasoo; Ramu Chandra

    2010-02-19

    Thermal testing of a subscale locomotive sodium battery module was initiated.to validate thermal models. The hybrid trip optimizer problem was formulated. As outcomes of this project, GE has proceeded to commercialize trip optimizer technology, and has initiated work on a state-of-the-art battery manufacturing plant for high energy density, sodium-based batteries.

  8. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  9. Experiment on large scale plume interaction with a stratified gas environment resembling the thermal activity of a autocatalytic recombiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignot, G.; Kapulla, R.; Paladino, D.

    Computational Fluid Dynamics codes (CFD) are increasingly being used to simulate containment conditions after various transient accident scenarios. Consequently, the reliability of such codes must be tested against experimental data. Such validation experiments related to gas mixing and hydrogen transport within containment compartments addressing the effect of heat source are presented in this paper. The experiments were conducted in the large-scale thermal-hydraulics PANDA facility located at the Paul-Scherrer-Inst. (PSI) in Switzerland, in the frame of the OECD/SETH-2 project. A 10 kW electric heater simulating the thermal activity of the autocatalytic recombiner was activated at full power in a containment vesselmore » at the top of which a thick helium layer is initially present. The hot plume interacts with the bottom of the helium layer which is slowly eroded until complete break up at 1350 s. After final erosion of the layer a strong temperature and concentration gradient is maintained in the vessel below the heater inlet as well as in the adjacent vessel below the interconnecting pipe. A detailed characterization of the operating heater suggests the presence of cold gas ingress at the outlet that affects the flow in the chimney. This can be of concern if present in a real PAR unit. (authors)« less

  10. Potential for solar industrial process heat in the United States: A look at California

    NASA Astrophysics Data System (ADS)

    Kurup, Parthiv; Turchi, Craig

    2016-05-01

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  11. Potential for Solar Industrial Process Heat in the United States: A Look at California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendlymore » policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.« less

  12. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    NASA Astrophysics Data System (ADS)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  13. Thermally-driven Coupled THM Processes in Shales

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation modulus decreases with temperature while the rate creep deformations increase with temperature. Such temperature dependency also affects the well stability and zonal sealing across shale layers.

  14. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  15. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  16. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lapas, Panteleimon; Stamokostas, Georgios; Fiete, Gregory

    2015-03-01

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  17. Heat waves connect abrupt polar climate changes during the past 67ka: evidence from sediment core GeoB3912-1

    NASA Astrophysics Data System (ADS)

    Yang, X.; Rial, J. A.

    2014-12-01

    According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.

  18. Effect of Initiators on Thermal Changes in Soft Tissues Using a Diode Laser.

    PubMed

    Romanos, Georgios E; Sacks, Danielle; Montanaro, Nicholas; Delgado-Ruiz, Rafael; Calvo-Guirado, Jose Luis; Javed, Fawad

    2018-06-15

    The aim was to determine the effect of various initiators on the thermal changes that occur during incisions performed in soft tissues using a diode laser. There are no studies that have assessed the effect of various initiators on the thermal changes that occur during incisions performed in soft tissues using a diode laser. Thermal changes were observed during standardized incisions in chicken breast (without skin) via thermoelements over a 10-sec irradiation period. Incisions were created using a 975 nm diode laser with a 320 μ fiber tip diameter. Incisions (10 in each group) were performed with and without an initiator (control group). Red/blue articulating paper, cork, and SureStep ® were used as initiators. The tissue was irradiated in a continuous wave mode at 3 and 6 W in room temperature (21°C). At 3 and 6 W without any initiator, the mean temperature increased by 5.7°C versus 12.4°C, respectively. Cork initiator at 3 and 6 W resulted in temperature increase by 4.88°C versus 6.21°C, respectively. Incisions made using the blue/red articulating paper-initiated tip resulted in temperature increase by 2.9/5.8°C versus 8.2/7.6°C at 3 and 6 W power settings, respectively. Initiation with SureStep resulted in temperature increase by 2.3°C and at 6 W by 4.1°C. No significant differences were recorded between the different groups, but higher temperatures were associated with higher power settings. The power settings of the diode laser and type of initiator used, both effect the degree to which the temperature of the soft tissue increases during incisions and have to be considered for the safety in soft tissue applications.

  19. Holographic photon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-04-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  20. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  1. Localization length and intraband scattering of excitons in linear aggregates

    NASA Astrophysics Data System (ADS)

    Lemaistre, J. P.

    1999-07-01

    A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.

  2. Proceedings of RIKEN BNL Research Center Workshop: The Approach to Equilibrium in Strongly Interacting Matter. Volume 118

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, J.; Venugopalan, R.; Berges, J.

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshopmore » is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.« less

  3. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  4. Controlling thermal emission of phonon by magnetic metasurfaces

    PubMed Central

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-01-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications. PMID:28157206

  5. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  6. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    PubMed

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  7. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less

  8. Binding constants of phenylalanine for the four mononucleotides

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1984-01-01

    Earlier work has shown that several properties of amino acids correlate directly with properties of their anticodonic nucleotides. Furthermore, in precipitation studies with thermal proteinoids and homopolyribonucleotides, an anticodonic preference was displayed between Lys-rich, Pro-rich and Gly-rich thermal proteinoids and their anticodonic polyribonucleotides. However, Phe-rich thermal proteinoid displayed a preference for its codonic nucleotide, poly U. This inconsistency seemed to be explained by a folding in of the hydrophobic residues of Phe causing the proteinoid to appear more hydrophilic. The present work used nuclear magnetic resonance techniques to resolve a limited question: to which of the four nucleotides does Phe bind most strongly? The results show quite clearly that Phe binds most strongly to its anticodonic nucleotide, AMP.

  9. Thermal diffusion in partially ionized gases - The case of unequal temperatures. [in solar chromosphere

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Burgi, A.

    1987-01-01

    Previous calculations of thermal diffusion coefficients in partially ionized gases are extended to the case of unequal neutral and ion temperatures and/or temperature gradients. Formulas are derived for the general case of a major gas as well as for minor atoms and ions. Strong enhancements of minor-ion thermal diffusion coefficients over their values in the fully ionized gas are found when the degree of ionization in the main gas is relatively low. However, compared to the case of equal temperatures, the enhancements are less strong when the neutrals are cooler than the ions. The specific case of the H-H(+) mixture, which is important in the study of solar and stellar atmospheres, is discussed as an application.

  10. Negative thermal expansion and magnetoelastic coupling in the breathing pyrochlore lattice material LiGaCr4S8

    NASA Astrophysics Data System (ADS)

    Pokharel, G.; May, A. F.; Parker, D. S.; Calder, S.; Ehlers, G.; Huq, A.; Kimber, S. A. J.; Arachchige, H. Suriya; Poudel, L.; McGuire, M. A.; Mandrus, D.; Christianson, A. D.

    2018-04-01

    The physical properties of the spinel LiGaCr4S8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. These results indicate strong magnetoelastic coupling in LiGaCr4S8 .

  11. Poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) copolymers: A nonlinear dielectric material for high energy density storage

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Qun Xu, Li; Arabnejad, Saeid; Yao, Kui; Lu, Li; Shim, Victor P. W.; Gee Neoh, Koon; Kang, En-Tang

    2013-12-01

    A nonlinear dielectric poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) [P(VDF-HFP)-g-PDMA] graft copolymer with ultra-high energy density of 33 J/cm3 was obtained by thermally initiated radical graft polymerization. It was observed that the dielectric constant of the graft copolymer films was 63% higher than that of P(VDF-HFP), with a large dielectric breakdown strength (>850 MV/m). Theoretical analyses and experimental measurements showed that the significant improvement in the electric polarization was attributed to the introduction of the highly polarizable hydroxyl groups in the PDMA side chains, and the large breakdown strength arose from the strong adhesion bonding of the catechol-containing graft copolymer to the metal electrode.

  12. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  13. Smart window using a thermally and optically switchable liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon

    2018-02-01

    Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.

  14. Steady-state measurement-induced nonlocality in thermal reservoir

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Xie, Yu-Xia

    2018-06-01

    We examined measurement-induced nonlocality (MIN) of a central system for which every of the constituent qubit is embedded in its respective independent thermal reservoir. By introducing anisotropy to the Heisenberg XY interaction of the qubits, we showed that the strength of the MIN can be enhanced apparently. The anisotropy of the spin interaction can also be employed to generate MIN from the initial zero-MIN states. In the infinite-time limit, the steady-state MIN is independent of the initial states and is determined solely by the anisotropic parameter of the system and the decoherence factor of the thermal reservoir.

  15. Laser initiated spark development in an air gap.

    PubMed

    Lindner, F W; Rudolph, W; Brumme, G; Fischer, H

    1975-09-01

    Spark development is studied by 20-nsec image converter photography. A diffuse and transparent prechannel bridges the gap from the top of the metal vapor jet, which has counterelectrode potential. The prechannel cuts off the development of the cone shaped jet with increasing gap voltage. The final breakdown is initiated by a z-axis, laser induced filament, which expands into the prechannel volume within less, similar10 nsec. This interval represents the final high current thermalization phase of the breakdown. Thermal expansion of the initial spark channel (Braginskii) follows.

  16. Effect of coating thickness on microstructure and low temperature cyclic thermal fatigue behavior of thermal barrier coating (Al2O3)

    NASA Astrophysics Data System (ADS)

    Verma, Vijay; Patel, Sachin; Swarnkar, Vikas; K, Rajput S.

    2018-03-01

    Effect of coating thickness on low temperature cyclic thermal fatigue behaviour of Al2O3 thermal barrier coating (TBC) was concluded through the cyclic furnace thermal fatigue test (CFTF). Detonation gun (Thermal Spray) process was used for bond coating of NiCr and top coating of Al2O3 on Aluminium Alloy 6061 substrate. Top coating was done at two level of thickness to investigate the effect of coating thickness on low temperature cyclic thermal fatigue. The top coat of thickness 100μm-150μm was considered as thin TBC while the top coat of thickness 250μm-300μm was considered as thick TBC. The thickness of bond coat was taken as 120μm constant for both level of Al2O3 top coating. During CFTF test appearance of any crack on coated surface was adapted as main criterion of coating failure. Crack initiation was observed at edges and corner of thin thermal barrier coating after 60 number of thermal fatigue cycles while in case of thick thermal barrier coating these crack initiation was observed after 72 cycles of cyclic thermal fatigue test. During the study, it was observed that thick thermal barrier coating survived for long duration in comparison of thin TBC. Hence it can be concluded that application of thick TBC is more favourable to improve thermal durability of any component.

  17. Functional copolymer/organo-MMT nanoarchitectures. VI. Synthesis and characterization of novel nanocomposites by interlamellar controlled/living radical copolymerization via preintercalated RAFT-agent/organoclay complexes.

    PubMed

    Rzayev, Zakir M O; Söylemez, A Ernur

    2011-04-01

    We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organo-montmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha"-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT ... O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT ... O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure-composition-property relations show that the functional copolymer-organoclay hybrids prepared with reactive RAFT ... ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine of MMT clay in interlamellar copolymerization. This simple and versatile method can be applied to a wide range of functional monomer/comonomer systems and mono- and bifunctional RAFT compounds for preparation new generation of nanomaterials.

  18. Influence of the Sampling Rate and Noise Characteristics on Prediction of the Maximal Safe Laser Exposure in Human Skin Using Pulsed Photothermal Radiometry

    NASA Astrophysics Data System (ADS)

    Vidovič, L.; Milanič, M.; Majaron, B.

    2013-09-01

    Pulsed photothermal radiometry (PPTR) allows for noninvasive determination of the laser-induced temperature depth profile in strongly scattering samples, including human skin. In a recent experimental study, we have demonstrated that such information can be used to derive rather accurate predictions of the maximal safe radiant exposure on an individual patient basis. This has important implications for efficacy and safety of several laser applications in dermatology and aesthetic surgery, which are often compromised by risk of adverse side effects (e.g., scarring, and dyspigmentation) resulting from nonselective absorption of strong laser light in epidermal melanin. In this study, the differences between the individual maximal safe radiant exposure values as predicted from PPTR temperature depth profiling performed using a commercial mid-IR thermal camera (as used to acquire the original patient data) and our customized PPTR setup are analyzed. To this end, the latter has been used to acquire 17 PPTR records from three healthy volunteers, using 1 ms laser irradiation at 532 nm and a signal sampling rate of 20 000 . The laser-induced temperature profiles are reconstructed first from the intact PPTR signals, and then by binning the data to imitate the lower sampling rate of the IR camera (1000 fps). Using either the initial temperature profile in a dedicated numerical model of heat transfer or protein denaturation dynamics, the predicted levels of epidermal thermal damage and the corresponding are compared. A similar analysis is performed also with regard to the differences between noise characteristics of the two PPTR setups.

  19. Promoting Prenatal Health and Positive Birth Outcomes: A Snapshot of State Efforts. OPRE Report 2017-65

    ERIC Educational Resources Information Center

    Sparr, Mariel; Joraanstad, Alexandra; Atukpawu-Tipton, Grace; Miller, Nicole; Leis, Julie; Filene, Jill

    2017-01-01

    To promote prenatal health and improve birth outcomes, the Centers for Medicare and Medicaid Services (CMS) developed the Strong Start for Mothers and Newborns initiative. The Strong Start initiative is assessing several enhanced prenatal care approaches, including home visiting. As part of the Strong Start initiative, CMS, in partnership with the…

  20. Fore- and Back-Arc Structures Along the Hikurangi-Kermadec Subduction Zone

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2009-04-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate is continental in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 degrees South. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper arc mantle are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. Here, arc volcanism is relatively active, with many large volcanoes directly on the ridge. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate, are more similar to MANGO 4. The arc regions appear to be strongly affected by the activity of the arc. The arc crust of the northern MANGO 3 becomes significantly thinner in the backarc region due to extension, and much reduced volcanism behind the ridge. The structures on MANGO 2, on the other hand, cover strong and densely spaced thermal activity from the adjacent arc volcanism, possibly linked to a recent, fluid-rich passage of the Hikurangi Plateau.

  1. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

  2. Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature environment around the arc in the 2.1 to 5 second microgravity time interval, and even with a very high-powered arc, the arc region was cooler than in continuously operated arcs. Despite these difficulties, the miniature arc produced SWNTs in microgravity. However, given the large thermal transient to overcome, no dramatic difference in sample yield or composition was noted between normal gravity and q2-,andL%econd long microgravity runs.

  3. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    PubMed

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  4. Ignition in an Atomistic Model of Hydrogen Oxidation.

    PubMed

    Alaghemandi, Mohammad; Newcomb, Lucas B; Green, Jason R

    2017-03-02

    Hydrogen is a potential substitute for fossil fuels that would reduce the combustive emission of carbon dioxide. However, the low ignition energy needed to initiate oxidation imposes constraints on the efficiency and safety of hydrogen-based technologies. Microscopic details of the combustion processes, ephemeral transient species, and complex reaction networks are necessary to control and optimize the use of hydrogen as a commercial fuel. Here, we report estimates of the ignition time of hydrogen-oxygen mixtures over a wide range of equivalence ratios from extensive reactive molecular dynamics simulations. These data show that the shortest ignition time corresponds to a fuel-lean mixture with an equivalence ratio of 0.5, where the number of hydrogen and oxygen molecules in the initial mixture are identical, in good agreement with a recent chemical kinetic model. We find two signatures in the simulation data precede ignition at pressures above 200 MPa. First, there is a peak in hydrogen peroxide that signals ignition is imminent in about 100 ps. Second, we find a strong anticorrelation between the ignition time and the rate of energy dissipation, suggesting the role of thermal feedback in stimulating ignition.

  5. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers.

    PubMed

    Booth, I J; Archambault, J L; Ventrudo, B F

    1996-03-01

    Photodegradation has been observed in Tm(3+)-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below ~650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C.

  6. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isler, R.C.; Colchin, R.J.; Wade, M.R.

    Collapses of stored energy are typically observed in low-density ({anti n}{sub e} {approx} 10{sup 13} cm{sup {minus}3}) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 {times} 10{sup 13} cm{sup {minus}3}. Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas.more » Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles.« less

  8. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bangquan; Wang, Hailong; Xing, Guozhong

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less

  9. New dust opacity mapping from Viking Infrared Thermal Mapper data

    NASA Technical Reports Server (NTRS)

    Martin, Terry Z.; Richardson, Mark I.

    1993-01-01

    Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.

  10. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves

    NASA Astrophysics Data System (ADS)

    Nelson, Peter L.; Grand, Stephen P.

    2018-04-01

    The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.

  11. Polarimetric Study of Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.; McLean, W.; Wesley, A.; Miles, P.; Masding, P.

    2017-12-01

    Jupiter's atmosphere displays polarization, attributed to changes in the clouds/thermal filed that can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for Jupiter is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project and preliminary results will be discussed. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers.

  12. Particle-hole symmetry, many-body localization, and topological edge modes

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.

    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders. Supported by the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF4307 (ACP), the Quantum Materials Program at LBNL (RV), NSF Grant DMR-1455366 and UCOP Research Catalyst Award No. CA-15-327861 (SAP).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tong; Xue, Li; Zhao, Xiao-Hong

    Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, i.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermallymore » dominant GRB 101219B, whose initial jet launching radius, r {sub 0}, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass M {sub BH} ∼ 5–9 M {sub ⊙}, spin parameter a {sub *} ≳ 0.6, and disk mass 3 M {sub ⊙} ≲ M {sub disk} ≲ 4 M {sub ⊙}. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.« less

  14. Nanostructure-thermal conductivity relationships in protic ionic liquids.

    PubMed

    Murphy, Thomas; Varela, Luis M; Webber, Grant B; Warr, Gregory G; Atkin, Rob

    2014-10-16

    The thermal conductivities of nine protic ionic liquids (ILs) have been investigated between 293 and 340 K. Within this range, the thermal conductivities are between 0.18 and 0.30 W · m(-1) · K(-1). These values are higher than those typically associated with oils and aprotic ILs, but lower than those of strongly hydrogen bonding solvents like water. Weak linear decreases in thermal conductivity with temperature are noted, with the exception of ethanolammonium nitrate (EtAN) where the thermal conductivity increases with temperature. The dependence of thermal conductivity on IL type is analyzed with use of the Bahe-Varela pseudolattice theory. This theory treats the bulk IL as an array of ordered domains with intervening domains of uncorrelated structure which enable and provide barriers to heat propagation (respectively) via allowed vibrational modes. For the protic ILs investigated, thermal conductivity depends strongly on the IL cation alkyl chain length. This is because the cation alkyl chain controls the dimensions of the IL bulk nanostructure, which consists of charged (ordered domains) and uncharged regions (disordered domains). As the cation alkyl chain controls the dimensions of the disordered domains, it thus limits the thermal conductivity. To test the generality of this interpretation, the thermal conductivities of propylammonium nitrate (PAN) and PAN-octanol mixtures were examined; water selectively swells the PAN charged domain, while octanol swells the uncharged regions. Up to a certain concentration, adding water increases thermal conduction and octanol decreases it, as expected. However, at high solute concentrations the IL nanostructure is broken. When additional solvent is added above this concentration the rate of change in thermal conductivity is greatly reduced. This is because, in the absence of nanostructure, the added solvent only serves to dilute the salt solution.

  15. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  16. Model 'zero-age' lunar thermal profiles resulting from electrical induction

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.

  17. Capacitor bonding techniques and reliability. [thermal cycling tests

    NASA Technical Reports Server (NTRS)

    Kinser, D. L.; Graff, S. M.; Allen, R. V.; Caruso, S. V.

    1974-01-01

    The effect of thermal cycling on the mechanical failure of bonded ceramic chip capacitors mounted on alumina substrates is studied. It is shown that differential thermal expansion is responsible for the cumulative effects which lead to delayed failure of the capacitors. Harder or higher melting solders are found to be less susceptible to thermal cycling effects, although they are more likely to fail during initial processing operations.

  18. Dual UV/thermally curable plastisols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.R.

    1983-10-01

    Photoactive, thermally curable plastisol compositions are made by mixing a thermoplastic (preferably poly(vinyl chloride)), a (meth)acrylate, a thermal initiator, a photoinitiator, and a conventional plasticizer. A short exposure of these compositions to UV results in a tack-free skin cure. Heating after UV irradiation gives simultaneous crosslinking and fusion. These dual UV/thermally curable plastisols are useful as adhesives, sealants, encapsulants, and in many other applications.

  19. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  20. Assessment of factors regulating the thermal lens profile and lateral brightness in high power diode lasers

    NASA Astrophysics Data System (ADS)

    Rieprich, J.; Winterfeldt, M.; Tomm, J.; Kernke, R.; Crump, P.

    2017-02-01

    The lateral beam parameter product, BPPlat, and resulting lateral brightness of GaAs-based high-power broad-area diode lasers is strongly influenced by the thermal lens profile. We present latest progress in efforts using FEM simulation to interpret how variation in chip construction influences the thermal lens profile, itself determined experimentally using thermography (thermal camera). Important factors are shown to include the vertical (epitaxial) structure, the properties of the submount and the transition between chip and submount, whose behavior is shown to be consistent with the presence of a significant thermal barrier.

  1. Negative thermal expansion and magnetoelastic coupling in the breathing pyrochlore lattice material LiGaCr 4 S 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokharel, G.; May, A. F.; Parker, D. S.

    In this paper, the physical properties of the spinel LiGaCr 4S 8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. Finally, these results indicate strong magnetoelastic coupling in LiGaCrmore » 4S 8.« less

  2. Negative thermal expansion and magnetoelastic coupling in the breathing pyrochlore lattice material LiGaCr 4 S 8

    DOE PAGES

    Pokharel, G.; May, A. F.; Parker, D. S.; ...

    2018-04-30

    In this paper, the physical properties of the spinel LiGaCr 4S 8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. Finally, these results indicate strong magnetoelastic coupling in LiGaCrmore » 4S 8.« less

  3. Reversible thermal denaturation of a 60-kDa genetically engineered beta-sheet polypeptide.

    PubMed

    Lednev, Igor K; Ermolenkov, Vladimir V; Higashiya, Seiichiro; Popova, Ludmila A; Topilina, Natalya I; Welch, John T

    2006-11-15

    A de novo 687-amino-acid residue polypeptide with a regular 32-amino-acid repeat sequence, (GA)(3)GY(GA)(3)GE(GA)(3)GH(GA)(3)GK, forms large beta-sheet assemblages that exhibit remarkable folding properties and, as well, form fibrillar structures. This construct is an excellent tool to explore the details of beta-sheet formation yielding intimate folding information that is otherwise difficult to obtain and may inform folding studies of naturally occurring materials. The polypeptide assumes a fully folded antiparallel beta-sheet/turn structure at room temperature, and yet is completely and reversibly denatured at 125 degrees C, adopting a predominant polyproline II conformation. Deep ultraviolet Raman spectroscopy indicated that melting/refolding occurred without any spectroscopically distinct intermediates, yet the relaxation kinetics depend on the initial polypeptide state, as would be indicative of a non-two-state process. Thermal denaturation and refolding on cooling appeared to be monoexponential with characteristic times of approximately 1 and approximately 60 min, respectively, indicating no detectable formation of hairpin-type nuclei in the millisecond timescale that could be attributed to nonlocal "nonnative" interactions. The polypeptide folding dynamics agree with a general property of beta-sheet proteins, i.e., initial collapse precedes secondary structure formation. The observed folding is much faster than expected for a protein of this size and could be attributed to a less frustrated free-energy landscape funnel for folding. The polypeptide sequence suggests an important balance between the absence of strong nonnative contacts (salt bridges or hydrophobic collapse) and limited repulsion of charged side chains.

  4. Wave-Particle Interactions Associated with Nongyrotropic Distribution Functions: A Hybrid Simulation Study

    NASA Technical Reports Server (NTRS)

    Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.

    2002-01-01

    Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.

  5. Mapping out the QCD phase transition in multiparticle production

    NASA Astrophysics Data System (ADS)

    Kabana, Sonja; Minkowski, Peter

    2001-04-01

    We analyse multiparticle production in a thermal framework for seven central nucleus + nucleus collisions, e+ + e- annihilation into hadrons on the Z resonance and four hadronic reactions p + p and p + pbar with partial centrality selection), with centre of mass energies ranging from √(s) = 2.6 GeV (per nucleon pair) to 1.8 TeV. Thermodynamic parameters at chemical freeze-out (temperature and baryon and strangeness fugacities) are obtained from appropriate fits, generally improving in quality for reactions subjected to centrality cuts. All systems with non-vanishing fugacities are extrapolated along trajectories of equal energy density, density and entropy density to zero fugacities. The so-obtained temperatures extrapolated to zero fugacities as a function of initial energy density ɛin universally show a strong rise followed by a saturating limit of Tlim = 155 +/- 6 +/- 20 MeV. We interpret this behaviour as mapping out the boundary between quark gluon plasma and hadronic phases. The ratio of strange antiquarks to light ones as a function of the initial energy density ɛin shows the same behaviour as the temperature, saturating at a value of 0.365 +/- 0.033 +/- 0.07. No distinctive feature of `strangeness enhancement' is seen for heavy ion collisions relative to hadronic and leptonic reactions, when compared at the same initial energy density.

  6. Global Passivity in Microscopic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Rahav, Saar

    2018-04-01

    The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.

  7. Initial Results from the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; Leblanc, Spencer; Artis, Darrick; Dubois, Ami; Merlino, Robert; Rosenberg, Marlene

    2014-10-01

    The MDPX device is envisioned as a flexible, multi-user, research instrument that can perform a wide range of studies in fundamental and applied plasma physics. The MDPX device consists of two main components. The first is a four-coil, open bore, superconducting magnet system that is designed to produce uniform magnetic fields of up to 4 Tesla and non-uniform magnetic fields with gradients up to up to 2 T/m configurations. Within the warm bore of the magnet is placed an octagonal vacuum chamber that has a 46 cm outer diameter and is 22 cm tall. The primary missions of the MDPX device are to: (1) investigate the structural, thermal, charging, and collective properties of a plasma as the electrons, ions, and finally charged microparticles become magnetized; (2) study the evolution of a dusty plasma containing magnetic particles (paramagnetic, super-paramagnetic, or ferromagnetic particles) in the presence of uniform and non-uniform magnetic fields; and, (3) explore the fundamental properties of strongly magnetized plasmas (``i.e., dust-free'' plasmas). This presentation will summarize the initial characterization of the magnetic field structure, initial plasma parameter measurements, and the development of in-situ and optical diagnostics. This work is supported by funding from the NSF and the DOE.

  8. Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.

  9. Dye-Assisted Laser Skin Closure with Pulsed Radiation: An In Vitro Study of Weld Strength and Thermal Damage

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T.

    1998-10-01

    Previous laser skin welding studies have used continuous wave delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage. Previously published results indicate that a thermal damage zone in skin greater than 200 micrometers may prevent normal wound healing. We proposed that both strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a series of sufficiently short pulses. Two-cm-long incisions were made in guinea pig skin, in vitro. India ink and egg white (albumin) were applied to the wound edges to enhance radiation absorption and to close the wound, respectively. Continuous wave (cw), 1.06 micrometers , Nd:yttrium-aluminum-garnet laser radiation was scanned over the weld producing approximately 100 ms pulses. The cooling time between scans and the number of scans was varied. The thermal damage zone at the weld edges was measured using a transmission polarizing light microscope. The tensile strength of the welds was measured using a tensiometer. For pulsed welding and long cooling times between pulses (8 s), weld strengths of 2.4 +/- 0.9 kg/cm2 were measured, and lateral thermal damage at the epidermis was limited to 500 +/- 150 micrometers . With cw welding, comparable weld strengths produced 2700 +/- 300 micrometers of lateral thermal damage. The cw weld strengths were only 0.6 +/- 0.3 kg/cm2 for thermal damage zones comparable to pulsed welding.

  10. An investigation on thermal patterns in Iran based on spatial autocorrelation

    NASA Astrophysics Data System (ADS)

    Fallah Ghalhari, Gholamabbas; Dadashi Roudbari, Abbasali

    2018-02-01

    The present study aimed at investigating temporal-spatial patterns and monthly patterns of temperature in Iran using new spatial statistical methods such as cluster and outlier analysis, and hotspot analysis. To do so, climatic parameters, monthly average temperature of 122 synoptic stations, were assessed. Statistical analysis showed that January with 120.75% had the most fluctuation among the studied months. Global Moran's Index revealed that yearly changes of temperature in Iran followed a strong spatially clustered pattern. Findings showed that the biggest thermal cluster pattern in Iran, 0.975388, occurred in May. Cluster and outlier analyses showed that thermal homogeneity in Iran decreases in cold months, while it increases in warm months. This is due to the radiation angle and synoptic systems which strongly influence thermal order in Iran. The elevations, however, have the most notable part proved by Geographically weighted regression model. Iran's thermal analysis through hotspot showed that hot thermal patterns (very hot, hot, and semi-hot) were dominant in the South, covering an area of 33.5% (about 552,145.3 km2). Regions such as mountain foot and low lands lack any significant spatial autocorrelation, 25.2% covering about 415,345.1 km2. The last is the cold thermal area (very cold, cold, and semi-cold) with about 25.2% covering about 552,145.3 km2 of the whole area of Iran.

  11. Large quasiparticle thermal Hall conductivity in the superconductor Ba1-xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Checkelsky, Joseph; Li, Lu; Chen, G. F.; Luo, J. L.; Wang, N. L.; Ong, N. P.

    2009-03-01

    We have measured the thermal conductivity κxx and thermal Hall conductivity κxy in single-crystal Ba1-xKxFe2As2. Below the superconducting transition temperature Tc (˜ 30 K), we observe a large peak in the weak-field κxy . A corresponding peak in the zero-field thermal conductivity κxx is also observed. Together, these imply the existence of a large population of hole-like quasiparticles below Tc . In magnetic fields H approaching 35 T, the peaks in κxx are strongly suppressed. A fit of the κxx vs. H curves shows that the data are consistent with the scattering of long-lived quasiparticles by vortices. Using these fits, we have extracted estimates of the quasiparticle mean-free-path, and separated the zero-field electronic and phononic terms κe and κph, respectively. We discuss the origin of the large quasiparticle population in terms a strongly anisotropic gap parameter or a gap with nodes.

  12. Thermal adaptation of net ecosystem exchange

    DOE PAGES

    Yuan, W.; Luo, Y.; Liang, S.; ...

    2011-06-06

    Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less

  13. Thermal adaptation of net ecosystem exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, W.; Luo, Y.; Liang, S.

    Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less

  14. Transverse crack initiation under combined thermal and mechanical loading of Fibre Metal Laminates and Glass Fibre Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    van de Camp, W.; Dhallé, M. M. J.; Warnet, L.; Wessel, W. A. J.; Vos, G. S.; Akkerman, R.; ter Brake, H. J. M.

    2017-02-01

    The paper describes a temperature-dependent extension of the classical laminate theory (CLT) that may be used to predict the mechanical behaviour of Fibre Metal Laminates (FML) at cryogenic conditions, including crack initiation. FML are considered as a possible alternative class of structural materials for the transport and storage of liquified gasses such as LNG. Combining different constituents in a laminate opens up the possibility to enhance its functionality, e.g. offering lower specific weight and increased damage tolerance. To explore this possibility, a test programme is underway at the University of Twente to study transverse crack initiation in different material combinations under combined thermal and mechanical loading. Specifically, the samples are tested in a three-point bending experiment at temperatures ranging from 77 to 293 K. These tests will serve as a validation of the model presented in this paper which, by incorporating temperature-dependent mechanical properties and differential thermal expansion, will allow to select optimal material combinations and laminate layouts. By combining the temperature-dependent mechanical properties and the differential thermal contraction explicitly, the model allows for a more accurate estimate of the resulting thermal stresses which can then be compared to the strength of the constituent materials.

  15. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter

    PubMed Central

    Angrisani, Leopoldo; Simone, Domenico De

    2018-01-01

    This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input. PMID:29735956

  16. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter.

    PubMed

    Fontanella, Rita; Accardo, Domenico; Moriello, Rosario Schiano Lo; Angrisani, Leopoldo; Simone, Domenico De

    2018-05-07

    This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input.

  17. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy.

    PubMed

    Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A

    2014-09-10

    In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.

  18. Comparison of thermal modeling, microstructural analysis, and Ti-in-quartz thermobarometry to constrain the thermal history of a cooling pluton during deformation in the Mount Abbot Quadrangle, CA

    NASA Astrophysics Data System (ADS)

    Nevitt, Johanna M.; Warren, Jessica M.; Kidder, Steven; Pollard, David D.

    2017-03-01

    Granitic plutons commonly preserve evidence for jointing, faulting, and ductile fabric development during cooling. Constraining the spatial variation and temporal evolution of temperature during this deformation could facilitate an integrated analysis of heterogeneous deformation over multiple length-scales through time. Here, we constrain the evolving temperature of the Lake Edison granodiorite within the Mount Abbot Quadrangle (central Sierra Nevada, CA) during late Cretaceous deformation by combining microstructural analysis, titanium-in-quartz thermobarometry (TitaniQ), and thermal modeling. Microstructural and TitaniQ analyses were applied to 12 samples collected throughout the pluton, representative of either the penetrative "regional" fabric or the locally strong "fault-related" fabric. Overprinting textures and mineral assemblages indicate the temperature decreased from 400-500°C to <350°C during faulting. TitaniQ reveals consistently lower Ti concentrations for partially reset fault-related fabrics (average: 12 ± 4 ppm) than for regional fabrics (average: 31 ± 12 ppm), suggesting fault-related fabrics developed later, following a period of pluton cooling. Uncertainties, particularly in TiO2 activity, significantly limit further quantitative thermal estimates using TitaniQ. In addition, we present a 1-D heat conduction model that suggests average pluton temperature decreased from 585°C at 85 Ma to 332°C at 79 Ma, consistent with radiometric age data for the field. Integrated with the model results, microstructural temperature constraints suggest faulting initiated by ˜83 Ma, when the temperature was nearly uniform across the pluton. Thus, spatially heterogeneous deformation cannot be attributed to a persistent temperature gradient, but may be related to regional structures that develop in cooling plutons.

  19. Thermal Evolution of Charon and the Major Satellites of Uranus: Constraints on Early Differentiation

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Multhaup, K.

    2007-12-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and the satellites of Uranus Ariel, Umbriel, Titania, Oberon and Miranda. The model assumes homogeneously accreted satellites. To calculate the initial temperature profile we assume that infalling planetesimals deposit a fraction h of their kinetic energy as heat at the instantaneous surface of the growing satellites. The parameter h is varied between models. The model continuously checks for convectively unstable shells in the interior by updating the temperature profile and calculating the Rayleigh number and the temperature-dependent viscosity. The viscosity parameter values are taken as those of ice I although the satellites under consideration likely contain admixtures of lighter constituents. Their effects and those of rock on the viscosity are discussed. Convective heat transport is calculated assuming the stagnant lid model for strongly temperature dependent viscosity. In convectively stable regions heat transfer is by conduction with a temperature dependent thermal conductivity. Thermal evolution calculations considering radiogenic heating by the long-lived radiogenic isotopes of U, Th, and K suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. With short-lived isotopes -- if present in sizeable concentrations -- this time will move earlier. Results for Miranda -- the smallest satellite of Uranus -- indicate that it never convected or differentiated if heated by the said long-lived isotopes only. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as the decay of short-lived isotopes or early tidal heating.

  20. Thermal phonon transport in Si thin film with dog-leg shaped asymmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Kage, Yuta; Hagino, Harutoshi; Yanagisawa, Ryoto; Maire, Jeremie; Miyazaki, Koji; Nomura, Masahiro

    2016-08-01

    Thermal phonon transport in single-crystalline Si thin films with dog-leg shaped nanostructures was investigated. Thermal conductivities for the forward and backward directions were measured and compared at 5 and 295 K by micro thermoreflectance. The Si thin film with dog-leg shaped nanostructures showed lower thermal conductivities than those of nanowires and two-dimensional phononic crystals with circular holes at the same surface-to-volume ratio. However, asymmetric thermal conductivity was not observed at small temperature gradient condition in spite of the highly asymmetric shape though the size of the pattern is within thermal phonon mean free path range. We conclude that strong temperature dependent thermal conductivity is required to observe the asymmetric thermal phonon conduction in monolithic materials with asymmetric nanostructures.

  1. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.; Brown, N.W.; Vasil`ev, A.D.

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flowmore » situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.« less

  2. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  3. Development of thermal energy storage units for spacecraft cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.; Mahefkey, E. T.

    1980-01-01

    Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.

  4. On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.

    2017-12-01

    One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.

  5. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature

    PubMed Central

    Boutet, Isabelle; Jollivet, Didier; Shillito, Bruce; Moraga, Dario; Tanguy, Arnaud

    2009-01-01

    Background Hydrothermal vents and cold seeps represent oases of life in the deep-sea environment, but are also characterized by challenging physical and chemical conditions. The effect of temperature fluctuations on vent organisms in their habitat has not been well explored, in particular at a molecular level, most gene expression studies being conducted on coastal marine species. In order to better understand the response of hydrothermal organisms to different temperature regimes, differentially expressed genes (obtained by a subtractive suppression hybridization approach) were identified in the mussel Bathymodiolus thermophilus and the annelid Paralvinella pandorae irlandei to characterize the physiological processes involved when animals are subjected to long term exposure (2 days) at two contrasting temperatures (10° versus 20°C), while maintained at in situ pressures. To avoid a potential effect of pressure, the experimental animals were initially thermally acclimated for 24 hours in a pressurized vessel. Results For each species, we produced two subtractive cDNA libraries (forward and reverse) from sets of deep-sea mussels and annelids exposed together to a thermal challenge under pressure. RNA extracted from the gills, adductor muscle, mantle and foot tissue were used for B. thermophilus. For the annelid model, whole animals (small individuals) were used. For each of the four libraries, we sequenced 200 clones, resulting in 78 and 83 unique sequences in mussels and annelids (about 20% of the sequencing effort), respectively, with only half of them corresponding to known genes. Real-time PCR was used to validate differentially expressed genes identified in the corresponding libraries. Strong expression variations have been observed for some specific genes such as the intracellular hemoglobin, the nidogen protein, and Rab7 in P. pandorae, and the SPARC protein, cyclophilin, foot protein and adhesive plaque protein in B. thermophilus. Conclusion Our results indicate that mussels and worms are not responding in the same way to temperature variations. While the results obtained for the mussel B. thermophilus seem to indicate a metabolic depression (strong decrease in the level of mRNA expression of numerous genes) when temperature increased, the annelid P. pandorae mainly displayed a strong regulation of the mRNA encoding subunits and linkers of respiratory pigments and some proteins involved in membrane structure. In both cases, these regulations seem to be partly due to a possible cellular oxidative stress induced by the simulated thermal environment (10°C to 20°C). This work will serve as a starting point for studying the transcriptomic response of hydrothermal mussels and annelids in future experiments in response to thermal stress at various conditions of duration and temperature challenge. PMID:19439073

  6. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  7. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE PAGES

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-08-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  8. Skin welding using pulsed laser radiation and a dye

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T., Jr.

    1998-07-01

    Previous skin welding studies have used continuous wave (CW) delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage to surrounding tissue. This damage may prevent normal wound healing. Strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a pulsed mode. Two-cm-long, full-thickness incisions were made in guinea pig skin. India ink was used as an absorber, and egg white albumin was used as an adhesive. A 5-mm-diameter spot of CW, 1.06-micrometer Nd:YAG laser radiation was scanned over the weld site, producing 100 millisecond pulses. The cooling time between scans and number of scans was varied. Thermal damage zones were measured using a transmission polarizing microscope to identify birefringence changes in tissue. Tensile strengths were measured using a tensiometer. For pulsed welding and long cooling times, weld strengths of 2.4 kg/cm2 were measured, and thermal damage to the epidermis was limited to approximately 500 micrometers. With CW welding, comparable weld strengths resulted in approximately 2700 micrometer of thermal damage. CW laser radiation weld strengths were only 0.6 kg/cm2 when thermal damage in the epidermis was limited to approximately 500 micrometers.

  9. Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes.

    PubMed

    Row, Jeffrey R; Blouin-Demers, Gabriel

    2006-05-01

    We investigated the link between thermal quality and the effectiveness of thermoregulation in milk snakes in a thermally challenging environment. We defined thermoregulatory effectiveness as the extent to which an individual maintains its body temperature (Tb) closer to the preferred range (Tset) than allowed by the thermal quality of its environment. We defined thermal quality as the magnitude of the difference between operative environmental temperatures (Te) and Tset. Because ectotherms regulate body temperatures through choice of habitat and behavioural adjustments, we also examined the link between thermoregulation, habitat use and behaviour. During 2003-2004, we located 25 individuals 890 times, and recorded their Tb. Thermal quality was lower in the spring and fall than in the summer, and was lower in forests than in open habitats. Milk snakes thermoregulated more effectively in the spring than in the summer and fall, and more effectively in the forest than in open habitats. Milk snakes had a strong preference for open habitats in all seasons, which was likely to facilitate behavioural thermoregulation. The preference for open habitats was equally strong in all seasons and, therefore, the higher effectiveness of thermoregulation was not a result of altered habitat use. Instead, milk snakes modified their behaviour and were seen basking more and moved less in the spring than in the summer.

  10. Modeling of dough mixing profile under thermal and non thermal constraint for evalution of breadmaking quality of Hard Spring Wheat flour

    USDA-ARS?s Scientific Manuscript database

    This research was initiated to investigate the association between flour breadmaking traits and mixing characteristics and empirical dough rheological property under thermal stress. Flour samples from 30 hard spring wheat were analyzed by a mixolab standard procedure at optimum water absorptions. Mi...

  11. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  12. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.

    We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited for measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of solar system objects. Using a NEATM thermal model fitting routine, we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributionsmore » of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size, and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE data set and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.« less

  14. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  15. A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders

    NASA Astrophysics Data System (ADS)

    Stamatis, D.; Ermoline, A.; Dreizin, E. L.

    2012-12-01

    A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.

  16. Reliability of Next Generation Power Electronics Packaging Under Concurrent Vibration, Thermal and High Power Loads

    DTIC Science & Technology

    2008-02-01

    combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal

  17. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  18. Thermal fatigue behaviour for a 316 L type steel

    NASA Astrophysics Data System (ADS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  19. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  20. Tunable thermal expansion in framework materials through redox intercalation

    PubMed Central

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-01-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576

  1. Tunable thermal expansion in framework materials through redox intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-02-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

  2. Lithospheric structure and deformation of the North American continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Cloetingh, Sierd; Mooney, Walter

    2013-04-01

    We estimate the integrated strength and elastic thickness (Te) of the North American lithosphere based on thermal, density and structural (seismic) models of the crust and upper mantle. The temperature distribution in the lithosphere is estimated considering for the first time the effect of composition as a result of the integrative approach based on a joint analysis of seismic and gravity data. We do this via an iterative adjustment of the model. The upper mantle temperatures are initially estimated from the NA07 tomography model of Bedle and Van der Lee (2009) using mineral physics equations. This thermal model, obtained for a uniform composition, is used to estimate the gravity effect and to remove it from the total mantle gravity anomalies, which are controlled by both temperature and compositional variations. Therefore, we can predict compositional variations from the residual gravity anomalies and use them to correct the initial thermal model. The corrected thermal model is employed again in the gravity calculations. The loop is repeated until convergence is reached. The results demonstrate that the lithospheric mantle is characterized by strong compositional heterogeneity, which is consistent with xenolith data. Seismic data from the USGS database allow to define P-wave velocity and thickness of each crustal layer of the North American geological provinces. The use of these seismic data and of the new compositional and thermal models gives us the chance to estimate lateral variation of rheology of the main lithospheric layers and to evaluate coupling-decoupling conditions at the layers' boundaries. In the North American Cordillera the strength is mainly localized in the crust, which is decoupled from the mantle lithosphere. In the cratons the strength is chiefly controlled by the mantle lithosphere and all the layers are generally coupled. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" models for the lithosphere structure. Intraplate earthquakes (USGS database) occur mainly in the weak regions, such as the Appalachians, and in the transition zones from low to high strength surrounding the craton. The obtained 3D strength model is used to compute Te of the North American lithosphere. This parameter is derived from the thermo-rheological model using new equations that consider variations of the Young's Modulus in the lithosphere. It shows large variability within the cratons, ranging from 70 km to >100km, while it drops to <30 km in the young Phanerozoic regions. The new crustal model is also used to compute the lateral pressure gradient (LPG) that can initiate horizontal ductile flow in the crust. In general, the crustal flow is directed away from the orogens towards adjacent weaker areas. The results show that the effects of the channel flow superimposed with the regional tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension.

  3. The plasma physics of thermal conduction in the intracluster medium of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii << particle mean free path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat-flux will drive a powerful whistler-wave instability and, provided we treat the problem in more than 1D so that oblique modes are captured, these waves efficiently scatter electrons thereby shutting down the heat-flux. Our proposed work builds on these findings with the goal of characterizing the macroscopic effective thermal conduction in a form that can be included in fluid (magnetohydrodynamic; MHD) models of the ICM. We will, 1) Conduct an extended linear analysis of the heat-flux whistler instability, exploring the interaction of the heat flux and the pressure anisotropies that would result from bulk motions of the ICM. We will map the stable/unstable regions as a function of heat-flux, pressure anisotropy, and plasma-beta. 2) Perform particle-in-cell (PIC) simulations to explore the non-linear saturation of the heat-flux whistler instability as a function of the plasma-beta and heat-flux, extending the current work (i.e. very strong fluxes) down to the modest heat-fluxes found in the real ICM. Key is whether overlapping wave-particle resonances that are so efficient at killing the conduction with strong heat-fluxes still operate when the driving heat-flux is weak. 3) Develop a new computational/PIC model that, in contrast to current work, sustains a temperature gradient across the domain thereby allowing us to directly measure the relationship between temperature gradient and heat flux. 4) Build a new thermal conduction model, allowing the heat flux to have a non-linear dependence on temperature gradient, and plasma-beta. We will develop thermal conduction algorithms that can be used in public MHD e.g., PLUTO or FLASH. This work will provide the crucial bridge between the global/MHD models of ICM atmospheres and the microphysics that dictates the transport processes. It will inform the next generation of cluster models used to interpret data from NASA's fleet of X-ray observatories.

  4. Characterization of a Hall Effect Thruster Using Thermal Imaging

    DTIC Science & Technology

    2007-03-01

    to physically attach the thermocouples to the object, which is destructive to the item being monitored if a strong adhesive or welding is used...by detecting incident thermal radiation and converting it to a temperature. A thermistor bolometer, for example, consists of a material, usually

  5. Fine characterization rock thermal damage by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Kong, Biao; Li, Zenghua; Wang, Enyuan

    2018-02-01

    This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.

  6. Numerical and experimental analysis of inhomogeneities in SMA wires induced by thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Furst, Stephen J.; Crews, John H.; Seelecke, Stefan

    2012-11-01

    Published data on NiTi wire tensile tests display a surprising variety of results even though the same material has been studied. Hysteresis shapes can be observed that range from box- to cigar-like. In some cases, the variation may be the result of different post-fabrication treatment, such as annealing or cold working procedures. However, oftentimes local data are generated from average stress/strain concepts on the basis of global force and end displacement measurements. It is well known among experimentalists that this has a smoothening effect on data, but there is an additional, less well-known mechanism at work as well. This effect is due to thermomechanical coupling and the thermal boundary condition at the ends of the wires, and it manifests itself in a strong data dependence on the length of the employed specimen. This paper illustrates the effects of a thermal boundary layer in a 1D wire by means of an experimental study combined with a simulation based on the fully coupled momentum and energy balance equations. The system is modeled using COMSOL FEA software to simulate the distribution of strain, temperature, resistivity, and phase fractions. The local behavior is then integrated over the length of the wire to predict the expected behavior of the bulk wire as observed at its endpoints. Then, simulations are compared with results from a tensile test of a 100 mum diameter Dynalloy Flexinol wire between two large, steel clamps. Each step of the tensile test experiment is carefully controlled and then simulated via the boundary and initial conditions of the model. The simulated and experimental results show how the thermal boundary layer affects different length SMA wires and how the inhomogeneity prevents transition to austenite at the wire endpoints. Accordingly, shorter wires tend to be softer (more martensitic) than longer wires and exhibit a large reduction in recoverable strain because a larger percentage of their total length is impacted by the thermal boundary.

  7. Numerical analysis of hybrid adaptive optics system for correcting beacon anisoplanatism and thermal blooming

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail S.; Rye, Vincent; Runyeon, Hope

    2007-09-01

    A concept of a Hybrid Wavefront-based Stochastic Parallel Gradient Decent (WSPGD) Adaptive Optics (AO) system for correcting the combined effects of Beacon Anisoplanatism and Thermal Blooming is introduced. This system integrates a conventional phase conjugate (PC) AO system with a WSPGD AO system. It uses on-axis wavefront measurements of a laser return from an extended beacon to generate initial deformable mirror (DM) commands. Since high frequency phase components are removed from the wavefront of a laser return by a low-pass filter effect of an extended beacon, the system also uses off-axis wavefront measurements to provide feedback for a multi-dithering beam control algorithm in order to generate additional DM commands that account for those missing high frequency phase components. Performance of the Hybrid WSPGD AO system was evaluated in simulation using a wave optics code. Numerical analysis was performed for two tactical scenarios that included ranges of L = 2 km and L = 20 km, ratio of aperture diameter to Fried parameter, D/r 0, of up to 15, ratio of beam spot size at the target to isoplanatic angle, θ B/θ 0, of up to 40, and general distortion number characterizing the strength of Thermal Blooming, N d = 50, 75, and 100. A line-of-sight in the corrected beam was stabilized using a target-plane tracker. The simulation results reveal that the Hybrid WSPGD AO system can efficiently correct the effects of Beacon Anisoplanatism and Thermal Blooming, providing improved compensation of Thermal Blooming in the presence of strong turbulence. Simulation results also indicate that the Hybrid WSPGD AO system outperforms a conventional PC AO system, increasing the Strehl ratio by up to 300% in less than 50 iterations. A follow-on laboratory demonstration performed under a separate program confirmed our theoretical predictions.

  8. Thermal inertias in the upper millimeters of the Martian surace derived using Phobus' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobus '88 Termoskan instrument. The best observed shadow occurence was on the flanks of Arsia Mons. For this occurence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/Sq m/S(exp 0.5)K (0.9 to 1.4 10(exp -3)Cal/Sq m/S(exp 0.5)/K), corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a currrent area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurence. We also analyzed a shadow occurence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobus' shadow, and suggest that they will be most useful if they improve upon Termoskan's geographic and temporal coverage and its accuracy.

  9. Thermal inertias in the upper millimeters of the Martian surface derived using Phobos' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobos'88 Termoskan instrument. The best observed shadow occurrence was on the flanks of Arsia Mons. For this occurrence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/(sq m s(exp 1/2) K), (0.9 to 1.4 x 10(exp -3) cal/(sq cm s(exp 1/2) K)) corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a current area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurrence. We also analyzed a shadow occurrence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobos' shadow, and suggest that they will be most useful if they improve upon Terinoskan's geographic and temporal coverage and its accuracy.

  10. Shock Initiation of Thermally Expanded TATB

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2011-06-01

    The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.

  11. Thermally stable, highly efficient, ultraflexible organic photovoltaics

    PubMed Central

    Xu, Xiaomin; Fukuda, Kenjiro; Karki, Akchheta; Park, Sungjun; Kimura, Hiroki; Jinno, Hiroaki; Watanabe, Nobuhiro; Yamamoto, Shuhei; Shimomura, Satoru; Kitazawa, Daisuke; Yokota, Tomoyuki; Umezu, Shinjiro; Nguyen, Thuc-Quyen; Someya, Takao

    2018-01-01

    Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation. PMID:29666257

  12. Photon-induced selenium migration in TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.

    2017-02-20

    TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less

  13. Current-limited electron beam injection

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1977-01-01

    The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.

  14. The mechanisms of delayed fluorescence in charge-transfer crystal of tetracyanobenzene-hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1989-08-01

    Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.

  15. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    PubMed

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Similarity Theory for Unsaturated Downdrafts within Clouds.

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry A.

    1981-08-01

    Recent observations of cumulus clouds strongly support the hypothesis of Squires (1958) that much of the mixing within such clouds is associated with downward propagating currents initiated near their tops. A similarity theory is here proposed to describe the properties of such currents; the use of similarity is defended on the basis of the observed and predicted scale of the downdrafts. The theory suggests that downward-propagating unsaturated thermals are pervasive throughout all but the largest convective clouds and that quasi-steady unsaturated downdraft plumes may exist in the lower portions of cumulonimbi. In addition to providing a reasonable explanation for the microstructure of and liquid water distribution within cumulus clouds, the theory appears to account for certain severe convective phenomena, including down-bursts. A new but related cloud instability is proposed to account for the occurrence of mamma.

  17. Energy technologies at Sandia National Laboratories: Past, Present, Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fallmore » of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.« less

  18. Growth Mechanism of Lipid-Based Nanodiscs -- a Model Membrane for Studying Kinetics of Particle Coalescence

    NASA Astrophysics Data System (ADS)

    Nieh, Mu-Ping; Dizon, Anthony; Li, Ming; Hu, Andrew; Fan, Tai-Hsi

    2012-02-01

    Lipid-based nanodiscs composed of long- and short- chain lipids [namely, dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG) and dihexanoyl phosphatidylcholine (DHPC)] constantly form at high lipid concentrations and at low temperatures (i.e., below the melting transition temperature of DMPC, TM). The initial size of these nanodiscs (at high total lipid concentration, CL> 20 wt.%) is relatively uniform and of similar dimension (according to dynamic light scattering and small angle neutron scattering experiments), seemingly independent of thermal history. Upon dilution, the nanodiscs slowly coalesce and grow in size with time irreversibly. Our preliminary result shows that the growth rate strongly depends on several parameters such as charge density, CL and temperature. We have also found that the nanodisc coalescence is a reaction limit instead of diffusion limit process through a time-resolved study.

  19. Electronic thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Zlatić, V.; Shvaika, A. M.

    2007-01-01

    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.

  20. Coatings influencing thermal stress in photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  1. Oceanic response to Typhoon Nari (2007) in the East China Sea

    NASA Astrophysics Data System (ADS)

    Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min

    2017-06-01

    The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.

  2. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerousmore » defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic characterization are compared to the initial design.« less

  3. A simple way for targeted delivery of an antibiotic: In vitro evaluation of a nanoclay-based composite

    PubMed Central

    Pérez, Irela; de Ménorval, Louis Charles; Altshuler, Ernesto; Fossum, Jon Otto

    2017-01-01

    The sodium-modified form of fluorohectorite nanoclay (NaFh) is introduced as a potential drug carrier, demonstrating its ability for the controlled release of the broad-spectrum antibiotic Ciprofloxacin through in vitro tests. The new clay-drug composite is designed to target the local infections in the large intestine, where it delivers most of the incorporated drug thanks to its pH-sensitive behavior. The composite has been conceived to avoid the use of coating technology and to decrease the side-effects commonly associated to the burst-release of the ciprofloxacin at the stomach level. NaFh was obtained from lithium-fluorohectorite by ion exchange, and its lack of toxicity was demonstrated by in vivo studies. Ciprofloxacin hydrochloride (Cipro) was encapsulated into the clay at different values of the pH, drug initial concentration, temperature and time. Systematic studies by X-ray diffraction (XRD), infrared and visible spectrophotometry (FT-IR and UV-vis), and thermal analysis (TGA) indicated that the NaFh host exhibits a high encapsulation efficiency for Cipro, which reaches a 90% of the initial Cipro in solution at 65 oC, with initial concentration of drug in solution of 1.36 x 10−2 mol L-1 at acid pH. XRD revealed that a true intercalation of Cipro takes place between clay layers. TG showed an increased thermal stability of the drug when intercalated into the clay, as compared to the “free” Cipro. IR suggested a strong clay-Cipro interaction via ketone group, as well as the establishment of hydrogen bonds between the two materials. In vitro drug release tests revealed that NaFh is a potentially efficient carrier to deliver Cipro in the large intestine, where the release process is mediated by more than just one mechanism. PMID:29149176

  4. Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide

    NASA Astrophysics Data System (ADS)

    Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine

    2018-03-01

    Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.

  5. Learning to soar in turbulent environments

    PubMed Central

    Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J.; Vergassola, Massimo

    2016-01-01

    Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments. PMID:27482099

  6. Learning to soar in turbulent environments.

    PubMed

    Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo

    2016-08-16

    Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.

  7. Theoretical Analysis of Thermal Transport in Graphene Supported on Hexagonal Boron Nitride: The Importance of Strong Adhesion Due to π -Bond Polarization

    NASA Astrophysics Data System (ADS)

    Pak, Alexander J.; Hwang, Gyeong S.

    2016-09-01

    One important attribute of graphene that makes it attractive for high-performance electronics is its inherently large thermal conductivity (κ ) for the purposes of thermal management. Using a combined density-functional theory and classical molecular-dynamics approach, we predict that the κ of graphene supported on hexagonal boron nitride (h -BN) can be as large as 90% of the κ of suspended graphene, in contrast to the significant suppression of κ (more than 70% reduction) on amorphous silica. Interestingly, we find that this enhanced thermal transport is largely attributed to increased lifetimes of the in-plane acoustic phonon modes, which is a notable contrast from the dominant contribution of out-of-plane acoustic modes in suspended graphene. This behavior is possible due to the charge polarization throughout graphene that induces strong interlayer adhesion between graphene and h -BN. These findings highlight the potential benefit of layered dielectric substrates such as h -BN for graphene-based thermal management, in addition to their electronic advantages. Furthermore, our study brings attention to the importance of understanding the interlayer interactions of graphene with layered dielectric materials which may offer an alternative technological platform for substrates in electronics.

  8. Chip-scale thermal management of high-brightness LED packages

    NASA Astrophysics Data System (ADS)

    Arik, Mehmet; Weaver, Stanton

    2004-10-01

    The efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. Light emitting diodes, LEDs, are a strong candidate for the next generation, general illumination applications. LEDs are making great strides in terms of lumen performance and reliability, however the barrier to widespread use in general illumination still remains the cost or $/Lumen. LED packaging designers are pushing the LED performance to its limits. This is resulting in increased drive currents, and thus the need for lower thermal resistance packaging designs. As the power density continues to rise, the integrity of the package electrical and thermal interconnect becomes extremely important. Experimental results with high brightness LED packages show that chip attachment defects can cause significant thermal gradients across the LED chips leading to premature failures. A numerical study was also carried out with parametric models to understand the chip active layer temperature profile variation due to the bump defects. Finite element techniques were utilized to evaluate the effects of localized hot spots at the chip active layer. The importance of "zero defects" in one of the more popular interconnect schemes; the "epi down" soldered flip chip configuration is investigated and demonstrated.

  9. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Thermally induced stresses in stripe GaAs/GaAlAs laser diodes

    NASA Astrophysics Data System (ADS)

    Rimpler, R.; Both, W.

    1988-11-01

    Heating of the active region of stripe GaAlAs/GaAs double-heterostructure laser diodes by an injection current has a strong influence on the stresses in this region. An increase in the temperature of the region by 10 K can alter a shear stress by 5-10 MPa. In the case of lasers with a large thermal resistance the strong heating of the active region can induce mechanical stresses exceeding technological stresses (10 MPa) or even critical shear stresses for dislocation motion (20 MPa).

  10. Measuring the human body's microclimate using a thermal manikin.

    PubMed

    Voelker, C; Maempel, S; Kornadt, O

    2014-12-01

    The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. The findings of this study generate a better understanding of the human body’s microclimate, which is important in fields such as thermal comfort, HVAC, or indoor air quality. Additionally, the measurements can be used by CFD users for the validation of their simulations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-08-20

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to themore » thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.« less

  12. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  13. Dynamical thermalization in isolated quantum dots and black holes

    NASA Astrophysics Data System (ADS)

    Kolovsky, Andrey R.; Shepelyansky, Dima L.

    2017-01-01

    We study numerically a model of quantum dot with interacting fermions. At strong interactions with small conductance the model is reduced to the Sachdev-Ye-Kitaev black-hole model while at weak interactions and large conductance it describes a Landau-Fermi liquid in a regime of quantum chaos. We show that above the Åberg threshold for interactions there is an onset of dynamical themalization with the Fermi-Dirac distribution describing the eigenstates of an isolated dot. At strong interactions in the isolated black-hole regime there is also the onset of dynamical thermalization with the entropy described by the quantum Gibbs distribution. This dynamical thermalization takes place in an isolated system without any contact with a thermostat. We discuss the possible realization of these regimes with quantum dots of 2D electrons and cold ions in optical lattices.

  14. Compensation of strong thermal lensing in high-optical-power cavities.

    PubMed

    Zhao, C; Degallaix, J; Ju, L; Fan, Y; Blair, D G; Slagmolen, B J J; Gray, M B; Lowry, C M Mow; McClelland, D E; Hosken, D J; Mudge, D; Brooks, A; Munch, J; Veitch, P J; Barton, M A; Billingsley, G

    2006-06-16

    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.

  15. A Study on Variation of Thermal Characteristics of Insulation Materials for Buildings According to Actual Long-Term Annual Aging Variation

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Kang, Jae-Sik; Huh, Jung-Ho

    2018-01-01

    Insulation materials used for buildings are broadly classified as organic insulation materials or inorganic insulation materials. Foam gas is used for producing organic insulation materials. The thermal conductivity of foam gas is generally lower than that of air. As a result, foam gas is discharged over time and replaced by outside air that has relatively less thermal resistance. The gas composition ratio in air bubbles inside the insulation materials changes rapidly, causing the performance degradation of insulation materials. Such performance degradation can be classified into different stages. Stage 1 appears to have a duration of 5 years, and Stage 2 takes a period of over 10 years. In this study, two insulation materials that are most frequently used in South Korea were analyzed, focusing on the changes thermal resistance for the period of over 5000 days. The measurement result indicated that the thermal resistance of expanded polystyrene fell below the KS performance standards after about 80-150 days from its production date. After about 5000 days, its thermal resistance decreased by 25.7 % to 42.7 % in comparison with the initial thermal resistance. In the case of rigid polyurethane, a pattern of rapid performance degradation appeared about 100 days post-production, and the thermal resistance fell below the KS performance standards after about 1000 days. The thermal resistance decreased by 22.5 % to 27.4 % in comparison with the initial thermal resistance after about 5000 days.

  16. An analysis of influential factors on outdoor thermal comfort in summer.

    PubMed

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships between thermal perception and amount of exercise, thermal experience, mood, clothing, illness and microclimate, etc., are established. Our findings also shed light on how to resist or adapt to outdoor hyperthermic conditions during summer in subtropical monsoon climate areas.

  17. An analysis of influential factors on outdoor thermal comfort in summer

    NASA Astrophysics Data System (ADS)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships between thermal perception and amount of exercise, thermal experience, mood, clothing, illness and microclimate, etc., are established. Our findings also shed light on how to resist or adapt to outdoor hyperthermic conditions during summer in subtropical monsoon climate areas.

  18. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    NASA Astrophysics Data System (ADS)

    Stuhr, U.; Roessli, B.; Gvasaliya, S.; Rønnow, H. M.; Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.,; Keller, P.; Mühlebach, T.

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  19. Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mariano, Fabrizio; Listorti, Andrea; Rizzo, Aurora; Colella, Silvia; Gigli, Giuseppe; Mazzeo, Marco

    2017-10-01

    Thermal evaporation of green-light emitting perovskite (MaPbBr3) films is reported. Morphological studies show that a soft thermal treatment is needed to induce an outstanding crystal growth and film organization. Hetero-structured light-emitting diodes, embedding as-deposited and annealed MAPbBr3 films as active layers, are fabricated and their performances are compared, highlighting that the perovskite evolution is strongly dependent on the growing substrate, too.

  20. Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions

    DTIC Science & Technology

    2014-06-09

    Voltage-controlled switching and thermal effects in VO2 nano-gap junctions Arash Joushaghani,1 Junho Jeong,1 Suzanne Paradis,2 David Alain,2 J...2014) Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of...indicate that the VO2 phase transition was likely initiated electroni- cally, which was sometimes followed by a secondary thermally-induced transition

  1. Flow reversal and thermal limit in a heated rectangular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.; Yang, B.W.

    The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less

  2. Characterization of thermoplastic polyimide NEW-TPI

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Reddy, R. M.

    1991-01-01

    Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI, were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the meltings of the initial crystallite structures, the sample can be recrystallized by various thermal treatments. A bimodal or single-modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior satisfactorily under conditions of prolonged thermal annealing.

  3. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulationmore » research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, the building electrical cost can be reduced by using less mechanical cooling. (3) Larger base chiller and active thermal storage capacities have the potential of shifting more cooling loads to off-peak hours and thus higher savings can be achieved. (4) Optimal combined thermal storage control with a thermal comfort penalty included in the objective function can improve the thermal comfort levels of building occupants when compared to the non-optimized base case. Lab testing conducted in the Larson HVAC Laboratory during Phase 2 showed that the EnergyPlus-based simulation was a surprisingly accurate prediction of the experiment. Therefore, actual savings of building energy costs can be expected by applying optimal controls from simulation results.« less

  4. Magnetic neutron star cooling and microphysics

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Chabrier, G.

    2018-01-01

    Aims: We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their crusts. Methods: We use a finite-difference code for simulation of neutron-star thermal evolution on timescales from hours to megayears with an updated microphysics input. The consideration of short timescales (≲1 yr) is made possible by a treatment of the heat-blanketing envelope without the quasistationary approximation inherent to its treatment in traditional neutron-star cooling codes. For the strongly magnetized neutron stars, we take into account the effects of Landau quantization on thermodynamic functions and thermal conductivities. We simulate cooling of ordinary neutron stars and magnetars with non-accreted and accreted crusts and compare the results with observations. Results: Suppression of radiative and conductive opacities in strongly quantizing magnetic fields and formation of a condensed radiating surface substantially enhance the photon luminosity at early ages, making the life of magnetars brighter but shorter. These effects together with the effect of strong proton superfluidity, which slows down the cooling of kiloyear-aged neutron stars, can explain thermal luminosities of about a half of magnetars without invoking heating mechanisms. Observed thermal luminosities of other magnetars are still higher than theoretical predictions, which implies heating, but the effects of quantizing magnetic fields and baryon superfluidity help to reduce the discrepancy.

  5. Coherent control of strong-field two-pulse ionization of Rydberg atoms.

    PubMed

    Fedorov, M; Poluektov, N

    2000-02-28

    Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.

  6. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  7. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  8. The influence of the Great Lakes on MCS formation and development in the warm season

    NASA Astrophysics Data System (ADS)

    Srock, Alan F.

    This study focuses on how near-surface thermal boundaries that form near the Great Lakes during the warm season can contribute to the formation of mesoscale convective systems (MCSs). Differential heating across land-water interfaces can create a cold dome of air over the lake; convection may develop when the relatively-cold dome of air becomes deep enough to enable air parcels that intersect these boundaries to reach their level of free convection. A radar-based climatology of MCS events surrounding the Great Lakes for 2002-2005 showed that MCSs frequently form in the vicinity of the Great Lakes. Composites of MCS events over the Great Lakes and in sub-regions defined by proximity to a Great Lake showed that the most important synoptic-scale precursor for MCS initiation is the presence of a low-level moisture plume, which is often (but not always) provided by a low-level jet (LLJ). Case studies of two MCSs that formed along the eastern shore of Lake Michigan showed how differential heating across the land-lake interface enabled the development of a near-surface mesoscale thermal boundary along which forced ascent was able to trigger convection. A third case study of an MCS that formed along the southern shore of Lake Superior showed that a strong land-lake thermal boundary provided a focus for long-lived MCS development beneath a plume of warm, moist air along the LLJ. High-resolution WRF-modeling studies were used to test the effect of the presence of a Great Lake on land-lake thermal boundary development and MCS generation. In one pair of simulations, differential heating in the control run created an over-lake cold dome that grew stronger and deeper during the day. Removing the lake removed the differential heating, so the no-lake run became comparatively warmer and moister in the lowest 1000 m over the "lake". Convection focused and organized along the near-lake mesoscale boundary in the control run, but was less organized and forced by larger-scale processes in the no-lake simulation. A second set of simulations failed to develop the near-lake MCS because the model did not properly resolve near-surface mesoscale boundaries in a weakly-forced synoptic environment in the initialization.

  9. Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model

    NASA Astrophysics Data System (ADS)

    Alaoui, Meriem; Holman, Gordon D.

    2017-12-01

    Hard X-ray (HXR) spectral breaks are explained in terms of a one-dimensional model with a cospatial return current. We study 19 flares observed by the Ramaty High Energy Solar Spectroscopic Imager with strong spectral breaks at energies around a few deka-keV, which cannot be explained by isotropic albedo or non-uniform ionization alone. We identify these breaks at the HXR peak time, but we obtain 8 s cadence spectra of the entire impulsive phase. Electrons with an initially power-law distribution and a sharp low-energy cutoff lose energy through return-current losses until they reach the thick target, where they lose their remaining energy through collisions. Our main results are as follows. (1) The return-current collisional thick-target model provides acceptable fits for spectra with strong breaks. (2) Limits on the plasma resistivity are derived from the fitted potential drop and deduced electron-beam flux density, assuming the return current is a drift current in the ambient plasma. These resistivities are typically 2–3 orders of magnitude higher than the Spitzer resistivity at the fitted temperature, and provide a test for the adequacy of classical resistivity and the stability of the return current. (3) Using the upper limit of the low-energy cutoff, the return current is always stable to the generation of ion-acoustic and electrostatic ion-cyclotron instabilities when the electron temperature is nine times lower than the ion temperature. (4) In most cases, the return current is most likely primarily carried by runaway electrons from the tail of the thermal distribution rather than by the bulk drifting thermal electrons. For these cases, anomalous resistivity is not required.

  10. Elastomeric Thermal Insulation Design Considerations in Long, Aluminized Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2017-01-01

    An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.

  11. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status.

    PubMed

    Giloh, M; Shinder, D; Yahav, S

    2012-01-01

    Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.

  12. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    PubMed

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  13. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    NASA Astrophysics Data System (ADS)

    Siegert, K. S.; Lange, F. R. L.; Sittner, E. R.; Volker, H.; Schlockermann, C.; Siegrist, T.; Wuttig, M.

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  14. Lattice thermal conductivity of silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  15. Ultrahigh thermal conductivity of isotopically enriched silicon

    NASA Astrophysics Data System (ADS)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  16. Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyeon; Park, Doo-Hwan; Lee, Chi-Seung; Park, Kwang-Jun; Lee, Jae-Myung

    2015-12-01

    The main objective of the present study is to investigate the performance degradation of the plywood used in a liquefied natural gas (LNG) cargo containment system (CCS). A plywood sheet features an odd number of thinly layered wooden plies bonded perpendicularly to the previous layer to give it a very strong and durable structure. Owing to this strong point, plywood is applied to a variety of interior and exterior applications. Above all, it is widely adopted as insulation panels in an LNG CCS owing to a high stiffness with low density and its superior mechanical capabilities. As an insulation material of an LNG CCS, plywood is constantly exposed to repeated wave-induced thermal variations caused by the loading (-163 °C) and unloading (20 °C) of LNG during general operating periods of 25 years on average. Therefore, the effects of cryogenic-level thermal loads on the material characteristics of plywood must be analyzed with respect to the design and safety aspects of LNG CCSs. In the present study, the influences of the estimated thermal load, testing temperature, and grain orientation on plywood adopted in an LNG CCS are investigated. In terms of safety and design, the repeated thermal loads in a LNG CCS must be considered because the modulus of elasticity (MOE), tensile strength (TS), and modulus of rupture (MOR) are degraded by thermal treatments, such as cyclic thermal-shock and cryogenic immersion.

  17. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  18. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    NASA Astrophysics Data System (ADS)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial core temperature. It also strongly suppresses thermal convection in the core, which results in no convective motion in inner core and possibly thermally stratified layer in the outer core.

  19. Thermal Cycling of Thin and Thick Ply Composites

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Shen, James Y.; Lavoie, Andre J.

    1994-01-01

    An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion (CTE). After a few thermal cycles, laminates with thick-plies cracked, resulting in large changes in CTE. CTE's of the thin-ply laminates were unaffected by microcracking during the first 500 thermal cycles, whereas, the CTE's of the thick-ply laminates changed significantly. After about 1500 cycles, microdamage had also reduced the CTE of the thin-ply laminates to a value of about half of their initial value.

  20. Thermal analyses for initial operations of the soft x-ray spectrometer onboard the Hitomi satellite

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Mitsuda, Kazuhisa; Okamoto, Atsushi; Ezoe, Yuichiro; Ishikawa, Kumi; Fujimoto, Ryuichi; Yamasaki, Noriko; Takei, Yoh; Ohashi, Takaya; Ishisaki, Yoshitaka; Mitsuishi, Ikuyuki; Yoshida, Seiji; DiPirro, Michel; Shirron, Peter

    2018-01-01

    The soft x-ray spectrometer (SXS) onboard the Hitomi satellite achieved a high-energy resolution of ˜4.9 eV at 6 keV with an x-ray microcalorimeter array cooled to 50 mK. The cooling system utilizes liquid helium, confined in zero gravity by means of a porous plug (PP) phase separator. For the PP to function, the helium temperature must be kept lower than the λ point of 2.17 K in orbit. To determine the maximum allowable helium temperature at launch, taking into account the uncertainties in both the final ground operations and initial operation in orbit, we constructed a thermal mathematical model of the SXS dewar and PP vent and carried out time-series thermal simulations. Based on the results, the maximum allowable helium temperature at launch was set at 1.7 K. We also conducted a transient thermal calculation using the actual temperatures at launch as initial conditions to determine flow and cooling rates in orbit. From this, the equilibrium helium mass flow rate was estimated to be ˜34 to 42 μg/s, and the lifetime of the helium mode was predicted to be ˜3.9 to 4.7 years. This paper describes the thermal model and presents simulation results and comparisons with temperatures measured in the orbit.

  1. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    NASA Astrophysics Data System (ADS)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  2. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  3. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finegan, Donal P.; Darcy, Eric; Keyser, Matthew

    Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. Furthermore, the cause ofmore » unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed.« less

  4. Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng

    2018-03-01

    The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.

  5. A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1988-01-01

    High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.

  6. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits

    DOE PAGES

    Finegan, Donal P.; Darcy, Eric; Keyser, Matthew; ...

    2017-03-29

    Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. Furthermore, the cause ofmore » unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed.« less

  7. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  8. Thermoplastic polyimide NEW-TPI (trademark)

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Reddy, Rakasi M.

    1990-01-01

    Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI (trademark), were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the melting of the initial crystallite structure, the sample can be recrystallized by various thermal treatments. A bimodal or single modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior rather satisfactory under the conditions of prolonged thermal annealing. Rheological measurements made in the linear viscoelastic range support the evidence observed in the thermal analysis. Furthermore, the measurements sustain the manufacturer's recommended processing window of 400 to 420 C for this material.

  9. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.

    PubMed

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-03

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  10. The thermal stability of the nanograin structure in a weak solute segregation system.

    PubMed

    Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren

    2017-02-08

    A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.

  11. Initiation of combustion in the thermally choked ram accelerator

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Burnham, E. A.; Knowlen, C.; Hertzberg, A.; Bogdanoff, D. W.

    1992-01-01

    The methodology for initiating stable combustion in a ram accelerator operating in the thermally choked mode is presented in this paper. The ram accelerator is a high velocity ramjet-in-tube projectile launcher whose principle of operation is similar to that of an airbreathing ramjet. The subcaliber projectile travels supersonically through a stationary tube filled with a premixed combustible gas mixture. In the thermally choked propulsion mode subsonic combustion takes place behind the base of the projectile and leads to thermal choking, which stabilizes a normal shock system on the projectile, thus producing forward thrust. Projectiles with masses in the 45-90 g range have been accelerated to velocities up to 2650 m/sec in a 38 mm bore, 16 m long accelerator tube. Operation of the ram accelerator is started by injecting the projectile into the accelerator tube at velocities in the 700 - 1300 m/sec range by means of a conventional gas gun. A specially designed obturator, which seals the bore of the gun during this initial acceleration, enters the ram accelerator together with the projectile. The interaction of the obturator with the propellant gas ignites the gas mixture and establishes stable combustion behind the projectile.

  12. Turbulence Spectra in the Surface Layer with a Steady Surface Thermal Inversion

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Hu, F.; Ma, X.; Liu, S.

    2007-12-01

    the EBEX-2000 (International Energy Balance Experiment, 2000, EBEX-2000) was carried out over a flood- irrigated cotton field with very strong evaporation and transpiration. And thus the latent heat flux took most part of the solar radiation and the sensible heat flux, which would directly heat the atmosphere, was very small and even became negative in mid-afternoon. Therefore, the thermal turbulence was suppressed and there always existed a surface thermal inversion during the observation. The temperatures measured at 8.7 m were always higher than that at 2.7 m, which further restrained the development of the turbulence in the lower part of the surface layer, and the turbulence exchanges for the momentum, energy and other were restrained too. Owing to strong action of the underlying surface, there is distinct wind shear, and the nearer the distance to the ground, the stronger the wind shear. Moreover, the surface thermal inversion makes the wind shear sustainable and stable. On the other hand, due to the strong blocking and friction action of the underlying surface, eddies would be strongly impacted when they came close to the ground, in particular for small eddies. That is to say, the nearer the distance to the ground, the stronger the influence of the ground on small eddies and the larger the range of eddy-size that can be directly influenced by the ground. Both the above factors contribute to the differences between the spectra at intermediate frequencies at the two heights: the horizontal power spectrum at 8.7 m does not obey -1 power law at intermediate frequencies, but it does at 2.7 m. The vertical power spectra at 8.7 m are somewhat flatter and broader at the spectral peak, while they are sharper and narrower at 2.7 m.

  13. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  15. Control of dynamical self-assembly of strongly Brownian nanoparticles through convective forces induced by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz

    We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.

  16. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2.

    PubMed

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-06-01

    In exotic superconductors, including high- T c copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu 2 Si 2 , which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu 2 Si 2 , demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

  17. Strong-coupling jet energy loss from AdS/CFT

    NASA Astrophysics Data System (ADS)

    Morad, R.; Horowitz, W. A.

    2014-11-01

    We propose a novel definition of a holographic light hadron jet and consider the phenomenological consequences, including the very first fully self-consistent, completely strong-coupling calculation of the jet nuclear modification factor R AA, which we find compares surprisingly well with recent preliminary data from LHC. We show that the thermalization distance for light parton jets is an extremely sensitive function of the a priori unspecified string initial conditions and that worldsheets corresponding to non-asymptotic energy jets are not well approximated by a collection of null geodesics. Our new string jet prescription, which is defined by a separation of scales from plasma to jet, leads to the re-emergence of the late-time Bragg peak in the instantaneous jet energy loss rate; unlike heavy quarks, the energy loss rate is unusually sensitive to the very definition of the string theory object itself. A straightforward application of the new jet definition leads to significant jet quenching, even in the absence of plasma. By renormalizing the in-medium suppression by that in the vacuum we find qualitative agreement with preliminary CMS RAAjet >( p T) data in our simple plasma brick model. We close with comments on our results and an outlook on future work.

  18. A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Jin, Xu; Wang, Moran

    2018-07-01

    Thermally induced damage often occurs in rocks in geophysical systems. Discrete element method (DEM) is a useful tool to model this thermo-mechanical coupled process owing to its explicit representation of fracture initiation and propagation. However, the previous DEM models for this are mostly based on spherical discrete elements, which are not able to capture all consequences (e.g. high ratio of compressive to tensile strength) of real rocks (e.g. granite) composed of complex-geometry grains. In order to overcome this intrinsic limitation, we present a new model allowing to mimick thermally induced damage of brittle rock with non-spherical grains. After validations, the new model is used to study thermal gradient cracking with a special emphasis on the effects from rock heterogeneity. The obtained fracture initiation and propagation are consistent with experimental observations, which demonstrates the ability of current model to reproduce the thermally induced damage of rocks. Meanwhile, the results show that rock heterogeneity influences thermal gradient cracking significantly, and more micro cracks uniformly scattering around the borehole are induced in the heterogeneous sample, which is not good for applications such as nuclear waste disposal. The present model provides a promising approach at micro-scale to explore mechanisms of thermally induced damage of rocks in geological engineering.

  19. Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant. Quasi-Static and Dynamic Penetration Testing

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.

    2017-10-01

    The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.

  20. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.

    PubMed

    Llusia, Diego; Márquez, Rafael; Beltrán, Juan F; Benítez, Maribel; do Amaral, José P

    2013-09-01

    Calling behaviour is strongly temperature-dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio-trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8-22 °C below the specific upper critical thermal limits (CTmax ) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population-specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our findings imply that global warming would not directly inhibit calling behaviour in the study species, although might affect other temperature-dependent features of their acoustic communication system. © 2013 John Wiley & Sons Ltd.

  1. Thermal emitter comprising near-zero permittivity materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.

    A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  2. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V.

    2016-07-15

    It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.

  3. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity

    PubMed Central

    2017-01-01

    Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes. PMID:28446698

  4. Transport coefficients in high-temperature ionized air flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  5. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  6. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  7. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  8. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  9. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  10. Contribution of thermal energy to initial ion production in matrix-assisted laser desorption/ionization observed with 2,4,6-trihydroxyacetophenone.

    PubMed

    Lai, Yin-Hung; Chen, Bo-Gaun; Lee, Yuan Tseh; Wang, Yi-Sheng; Lin, Sheng Hsien

    2014-08-15

    Although several reaction models have been proposed in the literature to explain matrix-assisted laser desorption/ionization (MALDI), further study is still necessary to explore the important ionization pathways that occur under the high-temperature environment of MALDI. 2,4,6-Trihydroxyacetophenone (THAP) is an ideal compound for evaluating the contribution of thermal energy to an initial reaction with minimum side reactions. Desorbed neutral THAP and ions were measured using a crossed-molecular beam machine and commercial MALDI-TOF instrument, respectively. A quantitative model incorporating an Arrhenius-type desorption rate derived from transition state theory was proposed. Reaction enthalpy was calculated using GAUSSIAN 03 software with dielectric effect. Additional evidence of thermal-induced proton disproportionation was given by the indirect ionization of THAP embedded in excess fullerene molecules excited by a 450 nm laser. The quantitative model predicted that proton disproportionation of THAP would be achieved by thermal energy converted from a commonly used single UV laser photon. The dielectric effect reduced the reaction Gibbs free energy considerably even when the dielectric constant was reduced under high-temperature MALDI conditions. With minimum fitting parameters, observations of pure THAP and THAP mixed with fullerene both agreed with predictions. Proton disproportionation of solid THAP was energetically favorable with a single UV laser photon. The quantitative model revealed an important initial ionization pathway induced by the abrupt heating of matrix crystals. In the matrix crystals, the dielectric effect reduced reaction Gibbs free energy under typical MALDI conditions. The result suggested that thermal energy plays an important role in the initial ionization reaction of THAP. Copyright © 2014 John Wiley & Sons, Ltd.

  11. The initial cooling of pahoehoe flow lobes

    USGS Publications Warehouse

    Keszthelyi, L.; Denlinger, R.

    1996-01-01

    In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows.

  12. Transport in a disordered ν = 2 / 3 fractional quantum Hall junction

    NASA Astrophysics Data System (ADS)

    Protopopov, I. V.; Gefen, Yuval; Mirlin, A. D.

    2017-10-01

    Electric and thermal transport properties of a ν = 2 / 3 fractional quantum Hall junction are analyzed. We investigate the evolution of the electric and thermal two-terminal conductances, G and GQ, with system size L and temperature T. This is done both for the case of strong interaction between the 1 and 1/ 3 modes (when the low-temperature physics of the interacting segment of the device is controlled by the vicinity of the strong-disorder Kane-Fisher-Polchinski fixed point) and for relatively weak interaction, for which the disorder is irrelevant at T = 0 in the renormalization-group sense. The transport properties in both cases are similar in several respects. In particular, G(L) is close to 4/3 (in units of e2 / h) and GQ to 2 (in units of πT / 6 ħ) for small L, independently of the interaction strength. For large L the system is in an incoherent regime, with G given by 2/3 and GQ showing the Ohmic scaling, GQ ∝ 1 / L, again for any interaction strength. The hallmark of the strong-disorder fixed point is the emergence of an intermediate range of L, in which the electric conductance shows strong mesoscopic fluctuations and the thermal conductance is GQ = 1. The analysis is extended also to a device with floating 1/3 mode, as studied in a recent experiment (Grivnin et al. 2014).

  13. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  14. Aerogel Insulation Systems for Space Launch Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2005-01-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  15. Solar Sail Topology Variations Due to On-Orbit Thermal Effects

    NASA Technical Reports Server (NTRS)

    Banik, Jeremy A.; Lively, Peter S.; Taleghani, Barmac K.; Jenkins, Chrostopher H.

    2006-01-01

    The objective of this research was to predict the influence of non-uniform temperature distribution on solar sail topology and the effect of such topology variations on sail performance (thrust, torque). Specifically considered were the thermal effects due to on orbit attitude control maneuvers. Such maneuvers are expected to advance the sail to a position off-normal to the sun by as much as 35 degrees; a solar sail initially deformed by typical pre-tension and solar pressure loads may suffer significant thermally induced strains due to the non-uniform heating caused by these maneuvers. This on-orbit scenario was investigated through development of an automated analytical shape model that iterates many times between sail shape and sail temperature distribution before converging on a final coupled thermal structural affected sail topology. This model utilizes a validated geometrically non-linear finite element model and a thermal radiation subroutine. It was discovered that temperature gradients were deterministic for the off-normal solar angle cases as were thermally induced strains. Performance effects were found to be moderately significant but not as large as initially suspected. A roll torque was detected, and the sail center of pressure shifted by a distance that may influence on-orbit sail control stability.

  16. Crew and Thermal Systems Division Strategic Communications Initiatives in Support of NASA's Strategic Goals: Fiscal Year 2012 Summary and Initial Fiscal Year 2013 Metrics

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2013-01-01

    The NASA strategic plan includes overarching strategies to inspire students through interactions with NASA people and projects, and to expand partnerships with industry and academia around the world. The NASA Johnson Space Center Crew and Thermal Systems Division (CTSD) actively supports these NASA initiatives. At the end of fiscal year 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to internal NASA and external technical audiences for collaborative and business development initiatives, and to students, educators, and the general public for education and public outreach efforts. The strategic communications initiatives implemented in fiscal year 2012 resulted in 707 in-reach, outreach, and commercialization events with 39,731 participant interactions. This paper summarizes the CTSD Strategic Communications metrics for fiscal year 2012 and provides metrics for the first nine months of fiscal year 2013.

  17. Effect of thermal pressurization on dynamic rupture propagation under depth-dependent stress

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Kuge, K.; Kase, Y.

    2009-12-01

    Fluid and pore pressure evolution can affect dynamic propagation of earthquake ruptures owing to thermal pressurization (e.g., Mase and Smith, 1985). We investigate dynamic rupture propagation with thermal pressurization on a fault subjected to depth-dependent stress, on the basis of 3-D numerical simulations for spontaneous dynamic ruptures. We put a vertical strike-slip rectangular fault in a semi-infinite, homogenous, and elastic medium. The length and width of the fault are 8 and 3 km, respectively. We assume a depth-dependent stress estimated by Yamashita et al. (2004). The numerical algorithm is based on the finite-difference method by Kase and Kuge (2001). A rupture is initiated by increasing shear stress in a small patch at the bottom of the fault, and then proceeds spontaneously, governed by a slip-weakening law with the Coulomb failure criteria. Coefficients of friction and Dc are homogeneous on the fault. On a fault with thermal pressurization, we allow effective normal stress to vary with pore pressure change due to frictional heating by the formulation of Bizzarri and Cocco (2006). When thermal pressurization does not work, tractions drop in the same way everywhere and rupture velocity is subshear except near the free surface. Due to thermal pressurization, dynamic friction on the fault decreases and is heterogeneous not only vertically but horizontally, slip increases, and rupture velocity along the strike direction becomes supershear. As a result, plural peaks of final slip appear, as observed in the case of undrained dip-slip fault by Urata et al. (2008). We found in this study that the early stage of rupture growth under the depth-dependent stress is affected by the location of an initial crack. When a rupture is initiated at the center of the fault without thermal pressurization, the rupture cannot propagate and terminates. Thermal pressurization can help such a powerless rupture to keep propagating.

  18. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  19. Phase diagram and thermal properties of strong-interaction matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Chen, Jing; Liu, Yu-Xin

    2016-05-20

    We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.

  20. Infrasonic ray tracing applied to small-scale atmospheric structures: thermal plumes and updrafts/downdrafts.

    PubMed

    Jones, R Michael; Bedard, Alfred J

    2015-02-01

    A ray-tracing program is used to estimate the refraction of infrasound by the vertical structure of the atmosphere in thermal plumes, showing only weak effects, as well as in updrafts and downdrafts, which can act as vertical wave guides. Thermal plumes are ubiquitous features of the daytime atmospheric boundary layer. The effects of thermal plumes on lower frequency sound propagation are minor with the exception of major events, such as volcanoes, forest fires, or industrial explosions where quite strong temperature gradients are involved. On the other hand, when strong, organized vertical flows occur (e.g., in mature thunderstorms and microbursts), there are significant effects. For example, a downdraft surrounded by an updraft focuses sound as it travels upward, and defocuses sound as it travels downward. Such propagation asymmetry may help explain observations that balloonists can hear people on the ground; but conversely, people on the ground cannot hear balloonists aloft. These results are pertinent for those making surface measurements from acoustic sources aloft, as well as for measurements of surface sound sources using elevated receivers.

  1. ELECTRON THERMAL CONDUCTION AS A POSSIBLE PHYSICAL MECHANISM TO MAKE THE INNER HELIOSHEATH THINNER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izmodenov, V. V.; Alexashov, D. B.; Ruderman, M. S., E-mail: izmod@ipmnet.ru

    2014-11-01

    We show that electron thermal conductivity may strongly affect the heliosheath plasma flow and the global pattern of the solar wind's interaction with the local interstellar medium. In particular, it leads to strong reduction of the inner heliosheath thickness, which makes it possible to explain (qualitatively) why Voyager 1 (V1) has crossed the heliopause at an unexpectedly small heliocentric distance of 122 AU. To estimate the effect of thermal conductivity, we consider a limiting case when thermal conduction is very effective. To do that, we assume the plasma flow in the entire heliosphere is nearly isothermal. Due to this effect,more » the heliospheric distance of the termination shock has increased by about 15 AU in the V1 direction compared with the adiabatic case with γ = 5/3. The heliospheric distance of the heliopause has decreased by about 27 AU. As a result, the thickness of the inner heliosheath in the model has decreased by about 42 AU and has become equal to 32 AU.« less

  2. Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems

    NASA Astrophysics Data System (ADS)

    Chopdekar, R. V.; Li, B.; Wynn, T. A.; Lee, M. S.; Jia, Y.; Liu, Z. Q.; Biegalski, M. D.; Retterer, S. T.; Young, A. T.; Scholl, A.; Takamura, Y.

    2017-07-01

    We have used soft x-ray photoemission electron microscopy to image the magnetization of single-domain L a0.7S r0.3Mn O3 nanoislands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nanoislands with strong interisland magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (TC=338 K ) allows for a much greater probability of achieving low-energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nanoislands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nanoislands at temperatures modestly above room temperature.

  3. Effect of thermal diffusion on the stability of strongly tilted mantle plume tails

    NASA Astrophysics Data System (ADS)

    Kerr, R. C.; MéRiaux, C.; Lister, J. R.

    2008-09-01

    The effect of thermal diffusion on the stability of strongly tilted mantle plume tails is explored by investigating experimentally and numerically the gravitational instability of a rising horizontal cylindrical region of buoyant viscous fluid. At large viscosity ratios, we find that the instability is unaffected by diffusion when the Rayleigh number Ra is greater than about 300. When Ra is less than 300, diffusion significantly increases the time for instability, as the rising fluid region needs to grow substantially by entrainment before it becomes unstable. When Ra is less than about 140 and the rise height available H is less than about 40 times the cylinder radius, the rising region of fluid is unable to grow sufficiently and instability is prevented. When our results are applied to the Earth, we predict that thermal diffusion will stabilize plume tails in both the upper and lower mantle. We also predict that some of the buoyancy flux in mantle plumes is lost during ascent to form downstream thermal wakes in any larger-scale mantle flow.

  4. Metallographic techniques for evaluation of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  5. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jie; Ding, M. D.; Carlsson, Mats, E-mail: dmd@nju.edu.cn

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This differencemore » in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.« less

  6. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  7. Dynamical effects on the core-mantle boundary from depth-dependent thermodynamical properties of the lower mantle

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1988-01-01

    A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.

  8. A potential thermal dynamo and its astrophysical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu; Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544; Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu

    2016-05-15

    It is shown that thermal turbulence, not unlike the standard kinetic and magnetic turbulence, can be an effective driver of a mean-field dynamo. In simple models, such as hydrodynamics and magnetohydrodynamics, both vorticity and induction equations can have strong thermal drives that resemble the α and γ effects in conventional dynamo theories; the thermal drives are likely to be dominant in systems that are endowed with subsonic, low-β turbulence. A pure thermal dynamo is quite different from the conventional dynamo in which the same kinetic/magnetic mix in the ambient turbulence can yield a different ratio of macroscopic magnetic/vortical fields. Themore » possible implications of the similarities and differences between the thermal and non-thermal dynamos are discussed. The thermal dynamo is shown to be highly important in the stellar and planetary context, and yields results broadly consistent with other theoretical and experimental approaches.« less

  9. A radar-echo model for Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.

  10. Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part

    NASA Technical Reports Server (NTRS)

    Sadhal, S. S.; Trinh, Eugene H.

    1997-01-01

    The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.

  11. Theoretical basis for design of thermal-stress-free fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Mcwithey, R. R.

    1983-01-01

    A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.

  12. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  13. Structure and Deformation of the Hikurangi-Kermadec Subduction Zone - Transitions Revealed by Seismic Wide-angle Data

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2008-12-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate of continental character in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 deg S. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper mantle of both plates are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate, are more similar to MANGO 4. The arc regions appear to be strongly affected by the activity of the arc. The arc crust of the northern MANGO 3 becomes significantly thinner in the backarc region due to extension, whereas the data from MANGO 2 likely show thermal activity from the adjacent arc volcanism.

  14. Tunable thermal expansion in framework materials through redox intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Gao, Qilong; Sanson, Andrea

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  15. Tunable thermal expansion in framework materials through redox intercalation

    DOE PAGES

    Chen, Jun; Gao, Qilong; Sanson, Andrea; ...

    2017-02-09

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  16. Long-Range Pre-Thermal Time Crystals

    NASA Astrophysics Data System (ADS)

    Machado, Francisco; Else, Dominic V.; Nayak, Chetan; Yao, Norman

    Driven quantum systems have recently enabled the realization of a discrete time crystal - an intrinsically out-of-equilibrium phase of matter that spontaneously breaks time translation symmetry. One strategy to prevent the drive-induced, runaway heating of the time crystal phase is the presence of strong disorder leading to many-body localization. A simpler disorder-less approach is to work in the pre-thermal regime where time crystalline order can persist to long times, before ultimately being destroyed by thermalization. In this talk, we will consider the interplay between long-range interactions, dimensionality, and pre-thermal time-translation symmetry breaking. As an example, we will consider the phase diagram of a 1D long-range pre-thermal time crystal.

  17. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.

    PubMed

    Song, Fan; Meng, Songhe; Xu, Xianghong; Shao, Yingfeng

    2010-03-26

    We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10,000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.

  18. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOEpatents

    Kramer, Daniel P.

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  19. Thermal conductivity of disordered two-dimensional binary alloys.

    PubMed

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2016-10-20

    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.

  20. NICER Detection of Strong Photospheric Expansion during a Thermonuclear X-Ray Burst from 4U 1820–30

    NASA Astrophysics Data System (ADS)

    Keek, L.; Arzoumanian, Z.; Chakrabarty, D.; Chenevez, J.; Gendreau, K. C.; Guillot, S.; Güver, T.; Homan, J.; Jaisawal, G. K.; LaMarr, B.; Lamb, F. K.; Mahmoodifar, S.; Markwardt, C. B.; Okajima, T.; Strohmayer, T. E.; in ’t Zand, J. J. M.

    2018-04-01

    The Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS) observed strong photospheric expansion of the neutron star in 4U 1820–30 during a Type I X-ray burst. A thermonuclear helium flash in the star’s envelope powered a burst that reached the Eddington limit. Radiation pressure pushed the photosphere out to ∼200 km, while the blackbody temperature dropped to 0.45 keV. Previous observations of similar bursts were performed with instruments that are sensitive only above 3 keV, and the burst signal was weak at low temperatures. NICER's 0.2–12 keV passband enables the first complete detailed observation of strong expansion bursts. The strong expansion lasted only 0.6 s, and was followed by moderate expansion with a 20 km apparent radius, before the photosphere finally settled back down at 3 s after the burst onset. In addition to thermal emission from the neutron star, the NICER spectra reveal a second component that is well fit by optically thick Comptonization. During the strong expansion, this component is six times brighter than prior to the burst, and it accounts for 71% of the flux. In the moderate expansion phase, the Comptonization flux drops, while the thermal component brightens, and the total flux remains constant at the Eddington limit. We speculate that the thermal emission is reprocessed in the accretion environment to form the Comptonization component, and that changes in the covering fraction of the star explain the evolution of the relative contributions to the total flux.

  1. Current Technology for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Compiler)

    1992-01-01

    Interest in thermal protection systems for high-speed vehicles is increasing because of the stringent requirements of such new projects as the Space Exploration Initiative, the National Aero-Space Plane, and the High-Speed Civil Transport, as well as the needs for improved capabilities in existing thermal protection systems in the Space Shuttle and in turbojet engines. This selection of 13 papers from NASA and industry summarizes the history and operational experience of thermal protection systems utilized in the national space program to date, and also covers recent development efforts in thermal insulation, refractory materials and coatings, actively cooled structures, and two-phase thermal control systems.

  2. Thermal Performance Data Services (TPDS)

    NASA Technical Reports Server (NTRS)

    French, Richard T.; Wright, Michael J.

    2013-01-01

    Initiated as a NASA Engineering and Safety Center (NESC) assessment in 2009, the Thermal Performance Database (TPDB) was a response to the need for a centralized thermal performance data archive. The assessment was renamed Thermal Performance Data Services (TPDS) in 2012; the undertaking has had two fronts of activity: the development of a repository software application and the collection of historical thermal performance data sets from dispersed sources within the thermal performance community. This assessment has delivered a foundational tool on which additional features should be built to increase efficiency, expand the protection of critical Agency investments, and provide new discipline-advancing work opportunities. This report contains the information from the assessment.

  3. Thermal wake/vessel detection technique

    DOEpatents

    Roskovensky, John K [Albuquerque, NM; Nandy, Prabal [Albuquerque, NM; Post, Brian N [Albuquerque, NM

    2012-01-10

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  4. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.

  5. The impact of splay faults on fluid flow, solute transport, and pore pressure distribution in subduction zones: A case study offshore the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lauer, Rachel M.; Saffer, Demian M.

    2015-04-01

    Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.

  6. Roof-harvested rainwater for potable purposes: application of solar disinfection (SODIS) and limitations.

    PubMed

    Amin, Muhammad Tahir; Han, Mooyoung

    2009-01-01

    Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.

  7. Tuning jammed frictionless disk packings from isostatic to hyperstatic.

    PubMed

    Schreck, Carl F; O'Hern, Corey S; Silbert, Leonardo E

    2011-07-01

    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.

  8. Kinetic model of excess activated sludge thermohydrolysis.

    PubMed

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Prediction of thermal characteristics of turbulent spot using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Pichitpreecha, Warakorn; Mingbunjerdsuk, Jirachai; Chaiworapuek, Weerachai

    2018-01-01

    This research presents the prediction of thermal behavior of a turbulent spot on a flat plate having a constant heat flux of 1893 W/m2 using Large Eddy Simulation (LES) with 7.1 million grid points. In this study, the water is used as a working fluid. The mainstream flow on the heating plate having the width of 0.2 m x the length of 0.4 m, corresponding to the local Reynolds number between 42,200 and 98,400. A laminar boundary layer on the test plate was transformed into Bypass transition by injecting the water to initiate the turbulent spot in upward direction and perpendicular to the mainstream flow with the velocity of 26.31 m/s and the period of 0.01 seconds through a 1 mm diameter hole. The results are presented as the contours of Nusselt number and temperature of the spot in the top and elevation views, respectively. They show that the heated near wall water is accumulated by the spot and cause the increase of the temperature inside the spot body in the higher layer flow. The near wall water is replaced by the water from the upper layer and makes the decrease of the surface temperature underneath the spot. Consequently, this leads to the increase of the Nusselt number within the spot bound above the laminar state. The yielded convective coefficient, spot celerities, and half spreading angle from the LES agree well with experimental results reported by other researchers. Thus, this obtained information is a strong evidence to confirm that the LES can provide an accurate prediction of the characteristics of the artificially initiated turbulent spot.

  10. Compton scattering of self-absorbed synchrotron emission

    NASA Astrophysics Data System (ADS)

    Gao, He; Lei, Wei-Hua; Wu, Xue-Feng; Zhang, Bing

    2013-11-01

    Synchrotron self-Compton (SSC) scattering is an important emission mechanism in many astronomical sources, such as gamma-ray bursts (GRBs) and active galactic nuclei. We give a complete presentation of the analytical approximations for the Compton scattering of synchrotron emission with both weak and strong synchrotron self-absorption. All possible orders of the characteristic synchrotron spectral breaks (νa, νm and νc) are studied. In the weak self-absorption regime, i.e. νa < νc, the electron energy distribution is not modified by the self-absorption process. The shape of the SSC component broadly resembles that of synchrotron, but with the following features: The SSC flux increases linearly with frequency up to the SSC break frequency corresponding to the self-absorption frequency νa; and the presence of a logarithmic term in the high-frequency range of the SSC spectra makes it harder than the power-law approximation. In the strong absorption regime, i.e. νa > νc, heating of low-energy electrons due to synchrotron absorption leads to pile-up of electrons, and form a thermal component besides the broken power-law component. This leads to two-component (thermal + non-thermal) spectra for both the synchrotron and SSC spectral components. For νc < νa < νm, the spectrum is thermal (non-thermal) dominated if ν _a > √{ν _m ν _c} (ν _a < √{ν _m ν _c}). Similar to the weak-absorption regime, the SSC spectral component is broader than the simple broken power-law approximation. We derive the critical condition for strong absorption (electron pile-up), and discuss a case of GRB reverse shock emission in a wind medium, which invokes νa > max(νm, νc).

  11. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    USGS Publications Warehouse

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  12. Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias C.

    Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basismore » of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.« less

  13. The channel radius and energy of cloud-to-ground lightning discharge plasma with multiple return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuejuan; Yuan, Ping; Cen, Jianyong

    2014-03-15

    Using the spectra of a cloud-to-ground (CG) lightning flash with multiple return strokes and combining with the synchronous radiated electrical field information, the linear charge density, the channel radius, the energy per unit length, the thermal energy, and the energy of dissociation and ionization in discharge channel are calculated with the aid of an electrodynamic model of lightning. The conclusion that the initial radius of discharge channel is determined by the duration of the discharge current is confirmed. Moreover, the correlativity of several parameters has been analyzed first. The results indicate that the total intensity of spectra is positive correlatedmore » to the channel initial radius. The ionization and thermal energies have a linear relationship, and the dissociation energy is correlated positively to the ionization and thermal energies, the energy per unit length is in direct proportion to the square of initial radius in different strokes of one CG lightning.« less

  14. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    PubMed

    English, Niall J; Clarke, Elaine T

    2013-09-07

    Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.

  15. Optimizing Pt/TiO2 templates for textured PZT growth and MEMS devices

    NASA Astrophysics Data System (ADS)

    Potrepka, Daniel; Fox, Glenn; Sanchez, Luz; Polcawich, Ronald

    2013-03-01

    Crystallographic texture of lead zirconate titanate (PZT) thin films strongly influences piezoelectric properties used in MEMS applications. Textured growth can be achieved by relying on crystal growth habit and can also be initiated by the use of a seed-layer heteroepitaxial template. Template choice and the process used to form it determine structural quality, ultimately influencing performance and reliability of MEMS PZT devices such as switches, filters, and actuators. This study focuses on how 111-textured PZT is generated by a combination of crystal habit and templating mechanisms that occur in the PZT/bottom-electrode stack. The sequence begins with 0001-textured Ti deposited on thermally grown SiO2 on a Si wafer. The Ti is converted to 100-textured TiO2 (rutile) through thermal oxidation. Then 111-textured Pt can be grown to act as a template for 111-textured PZT. Ti and Pt are deposited by DC magnetron sputtering. TiO2 and Pt film textures and structure were optimized by variation of sputtering deposition times, temperatures and power levels, and post-deposition anneal conditions. The relationship between Ti, TiO2, and Pt texture and their impact on PZT growth will be presented. Also affiliated with U.S. Army Research Lab, Adelphi, MD 20783, USA

  16. Mesoscale simulations of hydrodynamic squirmer interactions.

    PubMed

    Götze, Ingo O; Gompper, Gerhard

    2010-10-01

    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  17. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?

    DOE PAGES

    Zhao, Jingjing; Zheng, Xiaopeng; Deng, Yehao; ...

    2016-10-28

    One grand challenge for long-lived perovskite solar cells is that the common electrode materials in solar cells, such as silver and aluminum or even gold, strongly react with hybrid perovskites. Here we report the evaluation of the potential of copper (Cu) as the electrode material in perovskite solar cells for long-term stability. In encapsulated devices which limit exposure to oxygen and moisture, Cu in direct contact with CH 3NH 3PbI 3 showed no reaction at laboratory time scales, and is predicted to be stable for almost 170 years at room temperature and over 22 years at the nominal operating cellmore » temperature of 40 °C. No diffusion of Cu into CH 3NH 3PbI 3 has been observed after thermal annealing for over 100 hours at 80 °C, nor does Cu cause charge trap states in direct contact with CH 3NH 3PbI 3 after long-term thermal annealing or illumination. High performance devices with efficiency above 20% with Cu electrode retains 98% of the initial efficiency after 816 hours storage in ambient environment without encapsulation. Finally, the results indicate Cu is a promising low-cost electrode material for perovskite solar cells for long-term operation.« less

  18. Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone).

    PubMed

    Parisi, Ortensia Ilaria; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Cirillo, Giuseppe; Spizzirri, Umile Gianfranco; Picci, Nevio

    2013-01-01

    Flavonoids preservation and release. Synthesis of a polymeric material able to prevent thermal and photo degradation of a flavonoid model compound, such as (+)-catechin, and suitable for a controlled/sustained delivery of this molecule in gastro-intestinal simulating fluids. Methacrylic acid (MAA) was grafted onto poly(N-vinyl-pyrrolidone) (PVP) by a free radical grafting procedure involving a single-step reaction at room temperature. For this purpose, hydrogen peroxide/ascorbic acid redox pair was employed as water-soluble and biocompatible initiator system. FT-IR spectra confirmed the insertion of MAA onto the polymeric chain. Stability studies, performed under various conditions, such as freeze-thaw cycles, exposure to strong light, thermal stability studies under constant humidity and with light protection at different temperatures, showed the preservative properties of the polymeric material towards flavonoids. Furthermore, the biocompatibility was highlighted by Hen's Egg Test-Chorioallantoic Membrane assay and in vitro release studies demonstrated the possibility to employ PVP-MAA copolymer as a device for gastro-intestinal release of flavonoids. The coupling of good preservative properties together with biocompatibility and the usefulness as carrier in controlled release make this kind of material very interesting from an industrial point of view for different applications in food, pharmaceutical, and cosmetic fields.

  19. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less

  20. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

Top