Sample records for strong interaction called

  1. Learning and signal copying facilitate communication among bird species

    PubMed Central

    Wheatcroft, David; Price, Trevor D.

    2013-01-01

    Signals relevant to different sets of receivers in different contexts create a conflict for signal design. A classic example is vocal alarm signals, often used both during intraspecific and interspecific interactions. How can signals alert individuals from a variety of other species in some contexts, while also maintaining efficient communication among conspecifics? We studied heterospecific responses to avian alarm signals that drive the formation of anti-predator groups but are also used during intraspecific interactions. In three species-rich communities in the western Himalayas, alarm signals vary drastically across species. We show that, independently of differences in their calls, birds respond strongly to the alarm signals of other species with which they co-occur and much more weakly to those of species with which they do not co-occur. These results suggest that previous exposure and learning maintain heterospecific responses in the face of widespread signal divergence. At an area where only two species regularly interact, one species' calls incorporate the call of the other. We demonstrate experimentally that signal copying allows strong responses even without previous exposure and suggest that such hybrid calls may be especially favoured when pairwise interactions between species are strong. PMID:23446529

  2. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  3. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less

  4. In-person contact begets calling and texting: interpersonal motives for cell phone use, face-to-face interaction, and loneliness.

    PubMed

    Jin, Borae; Park, Namkee

    2010-12-01

    This study examined how cell-phone use is related to interpersonal motives for using cell phones, face-to-face communication, and loneliness. A survey of 232 college students who owned a cell phone revealed that affection and inclusion were relatively strong motivations for using voice calls and text messaging, and that interpersonal motives were positively related to the amount of cell-phone use, including calling and texting. The amount of face-to-face interaction was positively associated with the participants' cell-phone use and their interpersonal motives for using cell phones: the more the participants engaged in face-to-face interaction with other people, the higher their motives were and the more frequent cell-phone use was. Loneliness did not have a direct relation to cell-phone use. Instead, the participants with higher levels of loneliness were less likely to engage in face-to-face social interaction, which led them to use cell phones less and to be less motivated to use cell phones for interpersonal purposes.

  5. Strongly interacting dynamics beyond the standard model on a space-time lattice.

    PubMed

    Lucini, Biagio

    2010-08-13

    Strong theoretical arguments suggest that the Higgs sector of the standard model of electroweak interactions is an effective low-energy theory, with a more fundamental theory expected to emerge at an energy scale of the order of a teraelectronvolt. One possibility is that the more fundamental theory is strongly interacting and the Higgs sector is given by the low-energy dynamics of the underlying theory. I review recent works aimed at determining observable quantities by numerical simulations of strongly interacting theories proposed in the literature to explain the electroweak symmetry-breaking mechanism. These investigations are based on Monte Carlo simulations of the theory formulated on a space-time lattice. I focus on the so-called minimal walking technicolour scenario, an SU(2) gauge theory with two flavours of fermions in the adjoint representation. The emerging picture is that this theory has an infrared fixed point that dominates the large-distance physics. I shall discuss the first numerical determinations of quantities of phenomenological interest for this theory and analyse future directions of quantitative studies of strongly interacting theories beyond the standard model with lattice techniques. In particular, I report on a finite size scaling determination of the chiral condensate anomalous dimension gamma, for which 0.05 < or = gamma < or = 0.25.

  6. The Role of Grunt Calls in the Social Dominance Hierarchy of the White-Lipped Peccary (Mammalia, Tayassuidae).

    PubMed

    Nogueira, Selene S C; Caselli, Christini B; Costa, Thaise S O; Moura, Leiliany N; Nogueira-Filho, Sérgio L G

    2016-01-01

    Grunt-like calls are present in the vocal repertoire of many group-living mammals and seem to facilitate social interactions between lower and higher-ranking members. The white-lipped peccary (Tayassu pecari) lives in stable hierarchical mixed-sex groups and like non-human primates, usually emits grunt-like calls following aggressive interactions, mainly during feeding contexts. We investigated the possible functions of peccaries' grunt-like calls and their relationship to the individuals' social rank, identity, and sexual dimorphism. We observed that low-ranking individuals emitted grunt-like calls more often than high-ranking ones, and that the alpha male never emitted this vocalization. Moreover, the mean minimum frequency of grunt-like calls decreased as the peccary's rank increased. The findings revealed differences among individual grunts, but the low accuracy of cross-validation (16%) suggests that individual recognition in peccaries may be less important than an honest signal of individual social status. In addition, the absence of differences in the acoustic parameters of grunt-like calls between males and females points to the lack of sexual dimorphism in this species. We verified that after hearing grunt calls, dominant opponents were more likely to cease attacking a victim, or at least delay the continuation of conflict, probably decreasing the severity of agonistic interactions. Our findings are particularly important to improve the current understanding of the role of grunt-like calls in herd-living mammals with linear dominant hierarchies, and strongly suggest that they are involved in the maintenance of herd social stability and cohesion.

  7. Phase Transition in Opinion Diffusion in Social Networks

    DTIC Science & Technology

    2012-05-01

    the opinions of social agents diffuse in a network under a so-called hard-interaction model, in which the agents inter- act more strongly with...gent behavior. Index Terms— opinion diffusion , opinion dynamics, social net- works, phase transition, herding. 1. INTRODUCTION The study of the

  8. Recent Developments in Non-Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2018-03-01

    Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.

  9. Various topological Mott insulators and topological bulk charge pumping in strongly-interacting boson system in one-dimensional superlattice

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshihito; Shimizu, Keita; Ichinose, Ikuo

    2017-12-01

    In this paper, we study a one-dimensional boson system in a superlattice potential. This system is experimentally feasible by using ultracold atomic gases, and attracts much attention these days. It is expected that the system has a topological phase called a topological Mott insulator (TMI). We show that in strongly-interacting cases, the competition between the superlattice potential and the on-site interaction leads to various TMIs with a non-vanishing integer Chern number. Compared to the hard-core case, the soft-core boson system exhibits rich phase diagrams including various non-trivial TMIs. By using the exact diagonalization, we obtain detailed bulk-global phase diagrams including the TMIs with high Chern numbers and also various non-topological phases. We also show that in adiabatic experimental setups, the strongly-interacting bosonic TMIs exhibit the topological particle transfer, i.e., the topological charge pumping phenomenon, similarly to weakly-interacting systems. The various TMIs are characterized by topological charge pumping as it is closely related to the Chern number, and therefore the Chern number is to be observed in feasible experiments.

  10. Weather Effects on Mobile Social Interactions: A Case Study of Mobile Phone Users in Lisbon, Portugal

    PubMed Central

    Phithakkitnukoon, Santi; Leong, Tuck W.; Smoreda, Zbigniew; Olivier, Patrick

    2012-01-01

    The effect of weather on social interactions has been explored through the analysis of a large mobile phone use dataset. Time spent on phone calls, numbers of connected social ties, and tie strength were used as proxies for social interactions; while weather conditions were characterized in terms of temperature, relative humidity, air pressure, and wind speed. Our results are based on the analysis of a full calendar year of data for 22,696 mobile phone users (53.2 million call logs) in Lisbon, Portugal. The results suggest that different weather parameters have correlations to the level and character of social interactions. We found that although weather did not show much influence upon people's average call duration, the likelihood of longer calls was found to increase during periods of colder weather. During periods of weather that were generally considered to be uncomfortable (i.e., very cold/warm, very low/high air pressure, and windy), people were found to be more likely to communicate with fewer social ties. Despite this tendency, we found that people are more likely to maintain their connections with those they have strong ties with much more than those of weak ties. This study sheds new light on the influence of weather conditions on social relationships and how mobile phone data can be used to investigate the influence of environmental factors on social dynamics. PMID:23071523

  11. Weather effects on mobile social interactions: a case study of mobile phone users in Lisbon, Portugal.

    PubMed

    Phithakkitnukoon, Santi; Leong, Tuck W; Smoreda, Zbigniew; Olivier, Patrick

    2012-01-01

    The effect of weather on social interactions has been explored through the analysis of a large mobile phone use dataset. Time spent on phone calls, numbers of connected social ties, and tie strength were used as proxies for social interactions; while weather conditions were characterized in terms of temperature, relative humidity, air pressure, and wind speed. Our results are based on the analysis of a full calendar year of data for 22,696 mobile phone users (53.2 million call logs) in Lisbon, Portugal. The results suggest that different weather parameters have correlations to the level and character of social interactions. We found that although weather did not show much influence upon people's average call duration, the likelihood of longer calls was found to increase during periods of colder weather. During periods of weather that were generally considered to be uncomfortable (i.e., very cold/warm, very low/high air pressure, and windy), people were found to be more likely to communicate with fewer social ties. Despite this tendency, we found that people are more likely to maintain their connections with those they have strong ties with much more than those of weak ties. This study sheds new light on the influence of weather conditions on social relationships and how mobile phone data can be used to investigate the influence of environmental factors on social dynamics.

  12. Control of electron-lattice interaction in organic nanoclusters

    NASA Astrophysics Data System (ADS)

    Malyukin, Yu. V.; Gnap, B. A.; Sorokin, A. V.; Yefimova, S. L.

    2012-10-01

    In this study we demonstrate that the electron-lattice interaction (ELI) could be controlled by changing exciton delocalization length in ordered organic nanoclusters called J-aggregates. Particularly it could be done via the J-aggregates solvate shell manipulation using surfactants. The strong correlation between the J-aggregates luminescence quantum yield and the ELI strength has been reviled that allows us to consider the exciton self-trapping as the main mechanism of the J-aggregates luminescence losses.

  13. Second Language Acquisition as Situated Practice: Task Accomplishment in the French Second Language Classroom

    ERIC Educational Resources Information Center

    Mondada, Lorenza; Doehler, Simona Pekarek

    2004-01-01

    This article provides an empirically based perspective on the contribution of conversation analysis (CA) and sociocultural theory to our understanding of learners' second language (L2) practices within what we call a strong socio-interactionist perspective. It explores the interactive (re)configuration of tasks in French second language…

  14. Efficiency of the strong satisfiability checking procedure for reactive system specifications

    NASA Astrophysics Data System (ADS)

    Shimakawa, Masaya; Hagihara, Shigeki; Yonezaki, Naoki

    2018-04-01

    Reactive systems are those that interact with their environment. To develop reactive systems without defects, it is important to describe behavior specifications in a formal language, such as linear temporal logic, and to verify the specification. Specifically, it is important to check whether specifications satisfy the property called realizability. In previous studies, we have proposed the concept of strong satisfiability as a necessary condition for realizability. Although this property of reactive system specifications is a necessary condition, many practical unrealizable specifications are also strongly unsatisfiable. Moreover, we have previously shown the theoretical complexity of the strong satisfiability problem. In the current study, we investigate the practical efficiency of the strong satisfiability checking procedure and demonstrate that strong satisfiability can be checked more efficiently than realizability.

  15. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru; Chelibanov, V. P., E-mail: Chelibanov@gmail.com

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  16. Strong Quantum Coherence between Fermi Liquid Mahan Excitons

    NASA Astrophysics Data System (ADS)

    Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2016-04-01

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  17. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.

    PubMed

    Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D

    2016-04-15

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  18. Strong competition between ΘI I-loop-current order and d -wave charge order along the diagonal direction in a two-dimensional hot spot model

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Kloss, Thomas; Montiel, Xavier; Freire, Hermann; Pépin, Catherine

    2015-08-01

    We study the fate of the so-called ΘI I-loop-current order that breaks both time-reversal and parity symmetries in a two-dimensional hot spot model with antiferromagnetically mediated interactions, using Fermi surfaces relevant to the phenomenology of the cuprate superconductors. We start from a three-band Emery model describing the hopping of holes in the CuO2 plane that includes two hopping parameters tp p and tp d, local onsite Coulomb interactions Ud and Up, and nearest-neighbor Vp d couplings between the fermions in the copper [Cu (3 dx2-y2) ] and oxygen [O (2 px) and O (2 py)] orbitals. By focusing on the lowest-energy band, we proceed to decouple the local interaction Ud of the Cu orbital in the spin channel using a Hubbard-Stratonovich transformation to arrive at the interacting part of the so-called spin-fermion model. We also decouple the nearest-neighbor interaction Vp d to introduce the order parameter of the ΘI I-loop-current order. In this way, we are able to construct a consistent mean-field theory that describes the strong competition between the composite order parameter made of a quadrupole-density wave and d -wave pairing fluctuations proposed in Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] with the ΘI I-loop-current order parameter that is argued to be relevant for explaining important aspects of the physics of the pseudogap phase displayed in the underdoped cuprates.

  19. Identifying and modeling the structural discontinuities of human interactions

    NASA Astrophysics Data System (ADS)

    Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo

    2017-04-01

    The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.

  20. Identifying and modeling the structural discontinuities of human interactions

    PubMed Central

    Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo

    2017-01-01

    The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales. PMID:28443647

  1. Identifying and modeling the structural discontinuities of human interactions.

    PubMed

    Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo

    2017-04-26

    The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.

  2. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: The rise and fall of hot spots

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.

    2017-05-01

    In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.

  3. Search for the standard model Higgs boson in $$l\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dikai

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3) c ⓍSU(2) L Ⓧ U(1) Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of thesemore » three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.« less

  4. Electromagnetic Dissociation and Spacecraft Electronics Damage

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  5. Exciton-plasmon coupling interactions: from principle to applications

    NASA Astrophysics Data System (ADS)

    Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi

    2018-01-01

    The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  6. Toward a Trustworthy Voice: Increasing the Effectiveness of Automated Outreach Calls to Promote Colorectal Cancer Screening among African Americans

    PubMed Central

    Albright, Karen; Richardson, Terri; Kempe, Karin L; Wallace, Kristin

    2014-01-01

    Introduction: Colorectal cancer screening rates are lower among African-American members of Kaiser Permanente Colorado (KPCO) than among members of other races and ethnicities. This study evaluated use of a linguistically congruent voice in interactive voice response outreach calls about colorectal cancer screening as a strategy to increase call completion and response. Methods: After an initial discussion group to assess cultural acceptability of the project, 6 focus groups were conducted with 33 KPCO African-American members. Participants heard and discussed recordings of 5 female voices reading the same segment of the standard-practice colorectal cancer message using interactive voice response. The linguistic palette included the voices of a white woman, a lightly accented Latina, and 3 African-American women. Results: Participants strongly preferred the African-American voices, particularly two voices. Participants considered these voices the most trustworthy and reported that they would be the most effective at increasing motivation to complete an automated call. Participants supported the use of African-American voices when designing outgoing automated calls for African Americans because the sense of familiarity engendered trust among listeners. Participants also indicated that effective automated messages should provide immediate clarity of purpose; explain why the issue is relevant to African Americans; avoid sounding scripted; emphasize that the call is for the listener’s benefit only; sound personable, warm, and positive; and not create fear among listeners. Discussion: Establishing linguistic congruence between African Americans and the voices used in automated calls designed to reach them may increase the effectiveness of outreach efforts. PMID:24867548

  7. Strong quantum coherence between Fermi liquid Mahan excitons

    DOE PAGES

    Paul, J.; Stevens, C. E.; Liu, C.; ...

    2016-04-14

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less

  8. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  9. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    PubMed

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  10. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  11. Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.

    PubMed

    Wirth, Roland; Roth, Robert

    2016-10-28

    We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.

  12. Reprint of : Scattering theory approach to bosonization of non-equilibrium mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Eugene V.

    2016-08-01

    Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.

  13. Scattering theory approach to bosonization of non-equilibrium mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Eugene V.

    2016-03-01

    Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.

  14. A Protein Interaction Map of the Kalimantacin Biosynthesis Assembly Line

    PubMed Central

    Uytterhoeven, Birgit; Lathouwers, Thomas; Voet, Marleen; Michiels, Chris W.; Lavigne, Rob

    2016-01-01

    The antimicrobial secondary metabolite kalimantacin (also called batumin) is produced by a hybrid polyketide/non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein–protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites. This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters. PMID:27853452

  15. Promoting calls to a quitline: quantifying the influence of message theme, strong negative emotions and graphic images in television advertisements.

    PubMed

    Farrelly, Matthew C; Davis, Kevin C; Nonnemaker, James M; Kamyab, Kian; Jackson, Christine

    2011-07-01

    To understand the relative effectiveness of television advertisements that differ in their thematic focus and portrayals of negative emotions and/or graphic images in promoting calls to a smokers' quitline. Regression analysis is used to explain variation in quarterly media market-level per smoker calls to the New York State Smokers' Quitline from 2001 to 2009. The primary independent variable is quarterly market-level delivery of television advertisements measured by target audience rating points (TARPs). Advertisements were characterised by their overall objective--promoting cessation, highlighting the dangers of secondhand smoke (SHS) or other--and by their portrayals of strong negative emotions and graphic images. Per smoker call volume is positively correlated with total TARPs (p<0.001), and cessation advertisements are more effective than SHS advertisements in promoting quitline call volume. Advertisements with graphic images only or neither strong negative emotions nor graphic images are associated with higher call volume with similar effect sizes. Call volume was not significantly associated with the number of TARPs for advertisements with strong negative emotions only (p=0.71) or with both graphic images and strong emotions (p=0.09). Exposure to television advertisements is strongly associated with quitline call volume, and both cessation and SHS advertisements can be effective. The use of strong negative emotions in advertisements may be effective in promoting smoking cessation in the population but does not appear to influence quitline call volume. Further research is needed to understand the role of negative emotions in promoting calls to quitlines and cessation more broadly among the majority of smokers who do not call quitlines.

  16. Hydrodynamic interaction of swimming organisms in an inertial regime

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  17. Towards the Integration of Niche and Network Theories.

    PubMed

    Godoy, Oscar; Bartomeus, Ignasi; Rohr, Rudolf P; Saavedra, Serguei

    2018-04-01

    The quest for understanding how species interactions modulate diversity has progressed by theoretical and empirical advances following niche and network theories. Yet, niche studies have been limited to describe coexistence within tropic levels despite incorporating information about multi-trophic interactions. Network approaches could address this limitation, but they have ignored the structure of species interactions within trophic levels. Here we call for the integration of niche and network theories to reach new frontiers of knowledge exploring how interactions within and across trophic levels promote species coexistence. This integration is possible due to the strong parallelisms in the historical development, ecological concepts, and associated mathematical tools of both theories. We provide a guideline to integrate this framework with observational and experimental studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Current-Current Interactions, Dynamical Symmetry - and Quantum Chromodynamics.

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight Edward, Jr.

    Quantum Chromodynamics with massive gluons (gluon mass (TBOND) xm(,p)) in a contact-interaction limit called CQCD (strong coupling g (--->) (INFIN); x (--->) (INFIN)), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. (1) Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x('2) << 1, then CQCD is not merely a 4-Fermi interaction, but includes 4, 6, 8, ...-Fermi non-Abelian contact interactions. (2) With the possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g('2)/x('2) << 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry -breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  19. Thermally Driven Inhibition of Superconducting Vortex Avalanches

    NASA Astrophysics Data System (ADS)

    Lara, Antonio; Aliev, Farkhad G.; Moshchalkov, Victor V.; Galperin, Yuri M.

    2017-09-01

    Complex systems close to their critical state can exhibit abrupt transitions—avalanches—between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here, we investigate microwave stimulation of avalanches in the so-called vortex matter of type-II superconductors—a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the microwave stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counterintuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the microwave excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.

  20. The effect of the serum corona on interactions between a single nano-object and a living cell

    NASA Astrophysics Data System (ADS)

    Dror, Yael; Sorkin, Raya; Brand, Guy; Boubriak, Olga; Urban, Jill; Klein, Jacob

    2017-04-01

    Nanoparticles (NPs) which enter physiological fluids are rapidly coated by proteins, forming a so-called corona which may strongly modify their interaction with tissues and cells relative to the bare NPs. In this work the interactions between a living cell and a nano-object, and in particular the effect on this of the adsorption of serum proteins, are directly examined by measuring the forces arising as an Atomic Force Microscope tip (diameter 20 nm) - simulating a nano-object - approaches and contacts a cell. We find that the presence of a serum protein corona on the tip strongly modifies the interaction as indicated by pronounced increase in the indentation, hysteresis and work of adhesion compared to a bare tip. Classically one expects an AFM tip interacting with a cell surface to be repelled due to cell elastic distortion, offset by tip-cell adhesion, and indeed such a model fits the bare-tip/cell interaction, in agreement with earlier work. However, the force plots obtained with serum-modified tips are very different, indicating that the cell is much more compliant to the approaching tip. The insights obtained in this work may promote better design of NPs for drug delivery and other nano-medical applications.

  1. The effect of the serum corona on interactions between a single nano-object and a living cell

    PubMed Central

    Dror, Yael; Sorkin, Raya; Brand, Guy; Boubriak, Olga; Urban, Jill; Klein, Jacob

    2017-01-01

    Nanoparticles (NPs) which enter physiological fluids are rapidly coated by proteins, forming a so-called corona which may strongly modify their interaction with tissues and cells relative to the bare NPs. In this work the interactions between a living cell and a nano-object, and in particular the effect on this of the adsorption of serum proteins, are directly examined by measuring the forces arising as an Atomic Force Microscope tip (diameter 20 nm) - simulating a nano-object - approaches and contacts a cell. We find that the presence of a serum protein corona on the tip strongly modifies the interaction as indicated by pronounced increase in the indentation, hysteresis and work of adhesion compared to a bare tip. Classically one expects an AFM tip interacting with a cell surface to be repelled due to cell elastic distortion, offset by tip-cell adhesion, and indeed such a model fits the bare-tip/cell interaction, in agreement with earlier work. However, the force plots obtained with serum-modified tips are very different, indicating that the cell is much more compliant to the approaching tip. The insights obtained in this work may promote better design of NPs for drug delivery and other nano-medical applications. PMID:28383528

  2. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations

    PubMed Central

    Tan, Cheng; Takada, Shoji

    2017-01-01

    While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements. PMID:29194442

  3. Electromagnetic structure of the proton within the CP-violation hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutov, A. F., E-mail: krutov@ssu.samara.ru; Kudinov, M. Yu., E-mail: kudinov@ssu.samara.ru

    2013-11-15

    The so-called non-Rosenbluth behavior of the proton electromagnetic form factors can be explained within the hypothesis of CP violation in electromagnetic processes involving composite systems of strongly interacting particles. It is shown that this hypothesis leads to the appearance of an additional, anapole, form factor of the proton. The proton electromagnetic form factors, including the anapole form factor, are estimated on the basis of experimental data on elastic electron-proton scattering.

  4. Champagne experiences various rhythmical bubbling regimes in a flute.

    PubMed

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  5. Structural Determinants of Sleeping Beauty Transposase Activity

    PubMed Central

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-01-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called “sectors”, which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold. PMID:27401040

  6. Which types of televised anti-tobacco campaigns prompt more quitline calls from disadvantaged groups?

    PubMed

    Durkin, Sarah J; Wakefield, Melanie A; Spittal, Matthew J

    2011-12-01

    To examine the efficacy of different types of mass media ads in driving lower socio-economic smokers (SES) to utilize quitlines. This study collected all 33 719 calls to the Victorian quitline in Australia over a 2-year period. Negative binomial regressions examined the relationship between weekly levels of exposure to different types of anti-smoking ads and quitline calls, after adjusting for covariates. Interaction terms were added to determine whether relationships differed by SES. In total, smokers were exposed 88.39 times to anti-smoking ads over the 2-year period, as estimated by target audience ratings points. Higher emotion narrative ad exposure had the strongest association with quitline calls, increasing call rates by 13% for every additional ad exposure per week (per 100 points, rate ratio = 1.132, P = 0.001). Substantially, greater increases in calls to quitline from lower SES groups were observed when higher emotion narrative ads were on air compared with when other ad types were on air, and this advantage was not as strong among higher SES groups. Airing higher emotion narrative anti-smoking ads may contribute to reducing, but not eliminating, socio-economic disparities in calls to the quitline through maximizing the responses of the lower SES smokers.

  7. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    PubMed

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.

  8. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Di Stefano, O.; Patanè, S.; Savasta, S.; Sanvitto, D.; Gigli, G.

    2014-06-01

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  9. Closed-loop bird-computer interactions: a new method to study the role of bird calls.

    PubMed

    Lerch, Alexandre; Roy, Pierre; Pachet, François; Nagle, Laurent

    2011-03-01

    In the field of songbird research, many studies have shown the role of male songs in territorial defense and courtship. Calling, another important acoustic communication signal, has received much less attention, however, because calls are assumed to contain less information about the emitter than songs do. Birdcall repertoire is diverse, and the role of calls has been found to be significant in the area of social interaction, for example, in pair, family, and group cohesion. However, standard methods for studying calls do not allow precise and systematic study of their role in communication. We propose herein a new method to study bird vocal interaction. A closed-loop computer system interacts with canaries, Serinus canaria, by (1) automatically classifying two basic types of canary vocalization, single versus repeated calls, as they are produced by the subject, and (2) responding with a preprogrammed call type recorded from another bird. This computerized animal-machine interaction requires no human interference. We show first that the birds do engage in sustained interactions with the system, by studying the rate of single and repeated calls for various programmed protocols. We then show that female canaries differentially use single and repeated calls. First, they produce significantly more single than repeated calls, and second, the rate of single calls is associated with the context in which they interact, whereas repeated calls are context independent. This experiment is the first illustration of how closed-loop bird-computer interaction can be used productively to study social relationships. © Springer-Verlag 2010

  10. Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Stano, Peter; Fabian, Jaroslav

    2008-01-01

    The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.

  11. Religion, sense of calling, and the practice of medicine: findings from a national survey of primary care physicians and psychiatrists.

    PubMed

    Yoon, John D; Shin, Jiwon H; Nian, Andy L; Curlin, Farr A

    2015-03-01

    A sense of calling is a concept with religious and theological roots; however, it is unclear whether contemporary physicians in the United States still embrace this concept in their practice of medicine. This study assesses the association between religious characteristics and endorsing a sense of calling among practicing primary care physicians (PCPs) and psychiatrists. In 2009, we surveyed a stratified random sample of 2016 PCPs and psychiatrists in the United States. Physicians were asked whether they agreed with the statement, "For me, the practice of medicine is a calling." Primary predictors included demographic and self-reported religious characteristics, (eg, attendance, affiliation, importance of religion, intrinsic religiosity) and spirituality. Among eligible respondents, the response rate was 63% (896/1427) for PCPs and 64% (312/487) for psychiatrists. A total of 40% of PCPs and 42% of psychiatrists endorsed a strong sense of calling. PCPs and psychiatrists who were more spiritual and/or religious as assessed by all four measures were more likely to report a strong sense of calling in the practice of medicine. Nearly half of Muslim (46%) and Catholic (45%) PCPs and the majority of evangelical Protestant PCPs (60%) report a strong sense of calling in their practice, and PCPs with these affiliations were more likely to endorse a strong sense of calling than those with no affiliation (26%, bivariate P < 0.001). We found similar trends for psychiatrists. In this national study of PCPs and psychiatrists, we found that PCPs who considered themselves religious were more likely to report a strong sense of calling in the practice of medicine. Although this cross-sectional study cannot be used to make definitive causal inferences between religion and developing a strong sense of calling, PCPs who considered themselves religious are more likely to embrace the concept of calling in their practice of medicine.

  12. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then themore » simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.« less

  13. Stability, Higgs boson mass, and new physics.

    PubMed

    Branchina, Vincenzo; Messina, Emanuele

    2013-12-13

    Assuming that the particle with mass ∼126  GeV discovered at LHC is the standard model Higgs boson, we find that the stability of the electroweak (EW) vacuum strongly depends on new physics interaction at the Planck scale MP, despite of the fact that they are higher-dimensional interactions, apparently suppressed by inverse powers of MP. In particular, for the present experimental values of the top and Higgs boson masses, if τ is the lifetime of the EW vacuum, new physics can turn τ from τ≫TU to τ≪TU, where TU is the age of the Universe, thus, weakening the conclusions of the so called metastability scenario.

  14. Association Between Young Australian's Drinking Behaviours and Their Interactions With Alcohol Brands on Facebook: Results of an Online Survey.

    PubMed

    Jones, Sandra C; Robinson, Laura; Barrie, Lance; Francis, Kate; Lee, Jeong Kyu

    2016-07-01

    To examine the association of alcohol-brand social networking pages and Facebook users' drinking attitudes and behaviours. Cross-sectional, self-report data were obtained from a convenience sample of 283 Australian Facebook users aged 16-24 years via an online survey. More than half of the respondents reported using Facebook for more than an hour daily. While only 20% had actively interacted with an alcohol brand on Facebook, we found a significant association between this active interaction and alcohol consumption, and a strong association between engagement with alcohol brands on Facebook and problematic drinking. The findings of this study demonstrate the need for further research into the complex interaction between social networking and alcohol consumption, and add support to calls for effective regulation of alcohol marketing on social network platforms. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  15. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging.

    PubMed

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z

    2008-08-08

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.

  16. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging

    PubMed Central

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z.

    2008-01-01

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent intermolecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a 2-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor. PMID:18514064

  17. TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig

    NASA Astrophysics Data System (ADS)

    Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco

    2018-03-01

    Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.

  18. Towards a natural theory of electroweak interactions

    NASA Astrophysics Data System (ADS)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is transmitted to the superpartners by nonstandard gauge interactions, leading to distinctive predictions for the superpartner masses. Finally, I propose a model that combines a mechanism of dynamical electroweak symmetry breaking with supersymmetry, which explains some features of the quark and lepton mass spectrum.

  19. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  20. Effects of Cutoffs on Galactic Cosmic-Ray Interactions in Solar-System Matter

    NASA Technical Reports Server (NTRS)

    Kim, K. J.; Reedy, R. C.; Masarik, J.

    2005-01-01

    The energetic particles in the galactic cosmic rays (GCR) induce many interactions in a variety of solar-system matter. Cosmogenic nuclides are used to study the histories of meteorites and lunar samples. Gamma rays and neutrons are used to map the compositions of planetary surfaces, such as Mars, the Moon, and asteroids. In almost all of these cases, the spectra of incident GCR particles are fairly similar, with only some modulation by the Sun over an 11-year cycle. Strong magnetic fields can seriously affect the energy spectrum of GCR particles hitting the surface of objects inside the magnetic fields. The Earth s geomagnetic field is strong enough that only GCR particles with magnetic rigidities above approx. 17 GV (a proton energy of approx. 17 GeV) reach the atmosphere over certain regions near the equator. This effect of removing lower-energy GCR particles is called a cutoff. The jovian magnetic fields are so strong that the fluxes of GCR particles hitting the 4 large Galilean satellites are similarly affected. The cutoff at Europa is estimated to be similar to or a little higher than at the Earth s equator.

  1. Quasi-radial wall jets as a new concept in boundary layer flow control

    NASA Astrophysics Data System (ADS)

    Javadi, Khodayar; Hajipour, Majid

    2018-01-01

    This work aims to introduce a novel concept of wall jets wherein the flow is radially injected into a medium through a sector of a cylinder, called quasi-radial (QR) wall jets. The results revealed that fluid dynamics of the QR wall jet flow differs from that of conventional wall jets. Indeed, lateral and normal propagations of a conventional three-dimensional wall jet are via shear stresses. While, lateral propagation of a QR wall jet is due to mean lateral component of the velocity field. Moreover, discharged Arrays of conventional three-dimensional wall jets in quiescent air lead to formation of a combined wall jet at large distant from the nozzles, while QR wall jet immediately spread in lateral direction, meet each other and merge together very quickly in a short distance downstream of the jet nozzles. Furthermore, in discharging the conventional jets into an external flow, there is no strong interaction between them as they are moving parallel. While, in QR wall jets the lateral components of the velocity field strongly interact with boundary layer of the external flow and create strong helical vortices acting as vortex generators.

  2. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    PubMed

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.

  3. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3

    DOE PAGES

    Ni, Weimin; Xu, Shou-Ling; González-Grandío, Eduardo; ...

    2017-05-11

    Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here in this paper we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1–4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro,more » with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.« less

  4. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  5. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  6. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    PubMed

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  7. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    PubMed Central

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-01-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892

  8. Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.

  9. Co-adaptation of Electric Organ Discharges and Chirps in South American Ghost Knifefishes (Apteronotidae)

    PubMed Central

    Petzold, Jacquelyn M.; Marsat, Gary; Smith, G. Troy

    2016-01-01

    Animal communication signals that simultaneously share the same sensory channel are likely to coevolve to maximize the transmission of each signal component. Weakly electric fish continuously produce a weakly electric field that functions in communication. Fish modulate the electric organ discharge (EOD) on short timescales to produce context-specific signals called chirps. EODs and chirps are simultaneously detected by electroreceptors and processed in the electrosensory system. We analyzed these signals, first to explore whether EOD waveform is encoded in the signal received by electroreceptors and then to examine how EODs and chirps interact to influence conspicuousness. Our findings show that gross discrimination of sinusoidal from complex EOD waveforms is feasible for all species, but fine discrimination of waveform may be possible only for species with waveforms of intermediate complexity. The degree of chirp frequency modulation and chirp relative decay strongly influenced chirp conspicuousness, but other chirp parameters were less influential. The frequency difference between the interacting EODs also strongly impacted chirp conspicuousness. Finally, we developed a method for creating hybrid chirp/EOD combinations to independently analyze the impact of chirp species, EOD species, and EOD difference frequency on chirp conspicuousness. All three components and their interactions strongly influenced chirp conspicuousness, which suggests that evolutionary changes in parameters of either chirps or EODs are likely to influence chirp detection. Examining other environmental factors such as noise created by fish movement and species-typical patterns of sociality may enrich our understanding of how interacting EODs affect the detection and discrimination of chirps across species. PMID:27989653

  10. Getting the most out of RNA-seq data analysis.

    PubMed

    Khang, Tsung Fei; Lau, Ching Yee

    2015-01-01

    Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differential gene expression analysis from RNA-seq count data requires an understanding of how numerous sources of variation such as the replicate size, the hypothesized biological effect size, and the specific method for making differential expression calls interact. We believe an explicit demonstration of such interactions in real RNA-seq data sets is of practical interest to biologists. Results. Using two large public RNA-seq data sets-one representing strong, and another mild, biological effect size-we simulated different replicate size scenarios, and tested the performance of several commonly-used methods for calling differentially expressed genes in each of them. We found that, when biological effect size was mild, RNA-seq experiments should focus on experimental validation of differentially expressed gene candidates. Importantly, at least triplicates must be used, and the differentially expressed genes should be called using methods with high positive predictive value (PPV), such as NOISeq or GFOLD. In contrast, when biological effect size was strong, differentially expressed genes mined from unreplicated experiments using NOISeq, ASC and GFOLD had between 30 to 50% mean PPV, an increase of more than 30-fold compared to the cases of mild biological effect size. Among methods with good PPV performance, having triplicates or more substantially improved mean PPV to over 90% for GFOLD, 60% for DESeq2, 50% for NOISeq, and 30% for edgeR. At a replicate size of six, we found DESeq2 and edgeR to be reasonable methods for calling differentially expressed genes at systems level analysis, as their PPV and sensitivity trade-off were superior to the other methods'. Conclusion. When biological effect size is weak, systems level investigation is not possible using RNAseq data, and no meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or GFOLD may yield limited numbers of gene candidates with good validation potential, when triplicates or more are available. When biological effect size is strong, NOISeq and GFOLD are effective tools for detecting differentially expressed genes in unreplicated RNA-seq experiments for qPCR validation. When triplicates or more are available, GFOLD is a sharp tool for identifying high confidence differentially expressed genes for targeted qPCR validation; for downstream systems level analysis, combined results from DESeq2 and edgeR are useful.

  11. Measurements of Interaction Cross Sections for 19-27F Isotopes

    NASA Astrophysics Data System (ADS)

    Homma, Akira; Takechi, Maya; Ohtsubo, Takashi; Nishimura, Daiki; Fukuda, Mitsunori; Suzuki, Takeshi; Yamaguchi, Takayuki; Kuboki, Takamasa; Ozawa, Akira; Suzuki, Sinji; Ooishi, Hiroto; Moriguchi, Tetsuaki; Sumikawa, Takashi; Geissel, H.; Aoi, Nori; Chen, Rui-jiu; Fang, De-Qing; Fukuda, Naoki; Fukuoka, Shota; Furuki, Hisahiro; Inaba, Naruki; Ishibashi, Nobuyuki; Ito, Takeshi; Izumikawa, Takuji; Kameda, Daisuke; Kubo, Toshiyuki; Lantz, M.; Lee, C. S.; Ma, Yu-Gang; Mihara, Mototsugu; Momota, Satao; Nagae, Daisuke; Nishikiori, Ryo; Niwa, Takahiro; Ohnishi, Tetsuya; Okumura, Kimitake; Ogura, Toshiyuki; Nagashima, Masayuki; Sakurai, Hiroyoshi; Sato, Kanae; Shimbara, Yoshiriro; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Tanaka, Kenji; Uenishi, Hideaki; Winkler, M.; Yanagisawa, Yoshiyuki

    Interaction cross sections (σI) and reaction cross sections (σR) are physical quantities which are strongly related to the nuclear size. In our previous study of σI for Ne isotopes, the deformation features of neutron-rich Ne isotopes in the so-called "island of inversion" region have been successfully observed, and also the formation of the deformed halo structure in 31Ne has been indicated. In this study, σI for 19-27F, up to the vicinity of the island of inversion have been measured at around 240A MeV using BigRIPS at RIBF, RIKEN. Our preliminary results are slightly larger than A1/3 systematics and some of the data could be explained by nuclear deformation.

  12. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  13. Economic concepts for the analysis of behavior

    PubMed Central

    Hursh, Steven R.

    1980-01-01

    A review of the relationship between schedule of reinforcement, response rate, and choice suggests that certain unifying concepts from economics can contribute to a more complete science of behavior. Four points are made: 1) a behavioral experiment is an economic system and its characteristics—open or closed—can strongly determine the results; 2) reinforcers can be distinguished by a functional property called elasticity; 3) reinforcers may interact as complements as well as substitutes; 4) no simple choice rule, such as strict matching, can account for all choice behavior. PMID:16812188

  14. Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities

    ERIC Educational Resources Information Center

    White, Jonathan R.

    2017-01-01

    Computer-assisted language learning (CALL) has greatly enhanced the realm of online social interaction and behavior. In language classrooms, it allows the opportunity for students to enhance their learning experiences. "Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities" is an ideal…

  15. Structural stability of interaction networks against negative external fields

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  16. Host Star Evolution for Planet Habitability.

    PubMed

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  17. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    PubMed Central

    Zou, Wei; Zhao, Changqing; Luo, Huibo

    2018-01-01

    Strong flavor baijiu (SFB), also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected. PMID:29686656

  18. A New Theoretical Foundation for Relationship-centered Care

    PubMed Central

    Suchman, Anthony L

    2006-01-01

    Relationship-centered care (RCC) is a clinical philosophy that stresses partnership, careful attention to relational process, shared decision-making, and self-awareness. A new complexity-inspired theory of human interaction called complex responsive processes of relating (CRPR) offers strong theoretical confirmation for the principles and practices of RCC, and thus may be of interest to communications researchers and reflective practitioners. It points out the nonlinear nature of human interaction and accounts for the emergence of self-organizing patterns of meaning (e.g., themes or ideas) and patterns of relating (e.g., power relations). CRPR offers fresh new perspectives on the mind, self, communication, and organizations. For observers of interaction, it focuses attention on the nature of moment-to-moment relational process, the value of difference and diversity, and the importance of authentic and responsive participation, thus closely corresponding to and providing theoretical support for RCC. PMID:16405709

  19. Agreement dynamics on interaction networks with diverse topologies

    NASA Astrophysics Data System (ADS)

    Barrat, Alain; Baronchelli, Andrea; Dall'Asta, Luca; Loreto, Vittorio

    2007-06-01

    We review the behavior of a recently introduced model of agreement dynamics, called the "Naming Game." This model describes the self-organized emergence of linguistic conventions and the establishment of simple communication systems in a population of agents with pairwise local interactions. The mechanisms of convergence towards agreement strongly depend on the network of possible interactions between the agents. In particular, the mean-field case in which all agents communicate with all the others is not efficient, since a large temporary memory is requested for the agents. On the other hand, regular lattice topologies lead to a fast local convergence but to a slow global dynamics similar to coarsening phenomena. The embedding of the agents in a small-world network represents an interesting tradeoff: a local consensus is easily reached, while the long-range links allow to bypass coarsening-like convergence. We also consider alternative adaptive strategies which can lead to faster global convergence.

  20. The Extracellular δ-Domain is Essential for the Formation of CD81 Tetraspanin Webs

    PubMed Central

    Homsi, Yahya; Schloetel, Jan-Gero; Scheffer, Konstanze D.; Schmidt, Thomas H.; Destainville, Nicolas; Florin, Luise; Lang, Thorsten

    2014-01-01

    CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function. PMID:24988345

  1. Simulations of stellar winds and planetary bodies: Magnetized obstacles in a super-Alfvénic flow with southward IMF

    NASA Astrophysics Data System (ADS)

    Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.

    2018-03-01

    This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called "Southward-IMF" configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on "Northward-IMF" configuration.

  2. Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning.

    PubMed

    Guo, Huijuan; Jia, Xueting; Liu, Lue; Cao, Xia; Wang, Ning; Wang, Zhong Lin

    2018-04-24

    Recent development of interactive motion-tracking and positioning technologies is attracting increasing interests in many areas, such as wearable electronics, intelligent electronics, and the internet of things. For example, the so-called somatosensory technology can afford users strong empathy of immersion and realism due to their consistent interaction with the game. Here, we report a noncontact self-powered positioning and motion-tracking system based on a freestanding triboelectric nanogenerator (TENG). The TENG was fabricated by a nanoengineered surface in the contact-separation mode with the use of a free moving human body (hands or feet) as the trigger. The poly(tetrafluoroethylene) (PTFE) arrays based interactive interface can give an output of 222 V from casual human motions. Different from previous works, this device also responses to a small action at certain heights of 0.01-0.11 m from the device with a sensitivity of about 315 V·m -1 , so that the mechanical sensing is possible. Such a distinctive noncontact sensing feature promotes a wide range of potential applications in smart interaction systems.

  3. Hotshots, hotspots, and female preference in the organization of lek mating systems

    USGS Publications Warehouse

    Beehler, B.M.; Foster, M.S.

    1988-01-01

    We critically review the female-preference and hotspot models, the two most widely accepted recent explanations of lek organization. On the basis of what we believe are the inadequacies of these models-too great a reliance on the presumed acuity of female discrimination, the assumption that females have full freedom of choice within the lek, and insufficient recognition of the importance of male-male interactions-we develop an alternative set of hypotheses, which we call the hotshot model, to explain the development and maintenance of lek behavior. Our model attributes strong male mating skew to the interaction between (1) simplified and conservative mating rules of females and (2) social dominance among males. We demonstrate the importance of male-male dominance relationships in lek and non-lek court mating systems. We then argue that a strong mating skew among males forces novice males entering a population to adopt a long-term mating strategy that involves delayed breeding (floating) and subordinate lek behavior. The structure of leks is created by a complex of malemale interactions, with conflict between hotshots (who attempt to control lek mating) and subordinates, who may benefit from disrupting lek activities. Explanations for the number of males in an arena and inter-arena distances are based on modifications of the hotspot and female-preference models. We suggest specific field tests to help distinguish which hypothesis best models the behavioral interactions that produce lek mating.

  4. Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

    NASA Astrophysics Data System (ADS)

    Kerman, Andrew

    2013-03-01

    Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In most cases they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called ``circuit QED'' architecture, it also comes with some important disadvantages. In this talk, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead exert quasi-classical, effective ``forces'' on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum, and that the resulting entangling operations are insensitive both to the state of the resonator and to its quality factor. The methods we describe are applicable to a variety of qubit-resonator systems, including superconducting and semiconducting solid-state qubits, and trapped molecular ions. This work is sponsored by the ASDR&E under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

  5. Pseudogap temperature and effects of a harmonic trap in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521; CREST

    2011-10-15

    We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined T-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of states (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature T{sub c}, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures T{sup *} and T{sup **} at which the pseudogap structures in these quantities completely disappear. Determining T{supmore » *} and T{sup **} over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by the JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal-state properties of this strongly interacting Fermi system.« less

  6. A glimpse of gluons through deeply virtual compton scattering on the proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.

    The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less

  7. A glimpse of gluons through deeply virtual compton scattering on the proton

    DOE PAGES

    Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.; ...

    2017-11-10

    The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less

  8. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    NASA Astrophysics Data System (ADS)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  9. A UV-complete Composite Higgs model for Electroweak Symmetry Breaking: Minimal Conformal Technicolor

    NASA Astrophysics Data System (ADS)

    Tacchi, Ruggero Altair

    The Large Hadron Collider is currently collecting data. One of the main goals of the experiment is to find evidence of the mechanism responsible for the breaking of the electroweak symmetry. There are many different models attempting to explain this breaking and traditionally most of them involve the use of supersymmetry near the scale of the breaking. This work is focused on exploring a viable model that is not based on a weakly coupled low scale supersymmetry sector to explain the electroweak symmetry breaking. We build a model based on a new strong interaction, in the fashion of theories commonly called "technicolor", name that is reminiscent of one of the first attempts of explaining the electroweak symmetry breaking using a strong interaction similar to the one whose charges are called colors. We explicitly study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) → Sp (4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. There is an additional composite pseudoscalar A with mass larger than mh and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. A good fit requires fine tuning at the 10% level. We construct a complete, realistic, and natural UV completion of the model, that explains the origin of quark and lepton masses and mixing angles. We embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino that might give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.

  10. Applying mobile and pervasive computer technology to enhance coordination of work in a surgical ward.

    PubMed

    Hansen, Thomas Riisgaard; Bardram, Jakob E

    2007-01-01

    Collaboration, coordination, and communication are crucial in maintaining an efficient and smooth flow of work in an operating ward. This coordination, however, often comes at a high price in terms of unsuccessfully trying to get hold of people, disturbing telephone calls, looking for people, and unnecessary stress. To accommodate this situation and to increase the quality of work in operating wards, we have designed a set of pervasive computer systems which supports what we call context-mediated communication and awareness. These systems use large interactive displays, video streaming from key locations, tracking systems, and mobile devices to support social awareness and different types of communication modalities relevant to the current context. In this paper we report qualitative data from a one-year deployment of the system in a local hospital. Overall, this study shows that 75% of the participants strongly agreed that these systems had made their work easier.

  11. Patterns of call communication between group-housed zebra finches change during the breeding cycle.

    PubMed

    Gill, Lisa F; Goymann, Wolfgang; Ter Maat, Andries; Gahr, Manfred

    2015-10-06

    Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems.

  12. The Equilibrium State of Colliding Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnock, R

    2003-12-12

    We study a nonlinear integral equation that is a necessary condition on the equilibrium phase space distribution function of stored, colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in one degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, asmore » would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.« less

  13. Visual display aid for orbital maneuvering - Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1993-01-01

    An interactive proximity operations planning system, which allows on-site planning of fuel-efficient, multiburn maneuvers in a potential multispacecraft environment, has been experimentally evaluated. An experiment has been carried out in which nonastronaut operators with brief initial training were required to plan a trajectory to retrieve an object accidentally separated from a dual-keel Space Station, for a variety of different orbital situations. The experiments have shown that these operators were able to plan workable trajectories, satisfying a number of operational constraints. Fuel use and planning time were strongly correlated, both with the angle at which the object was separated and with the existence of spatial constraints. Planning behavior was found to be strongly operator-dependent. This finding calls for the need for standardizing planning strategies through operator training or the use of semiautomated planning schemes.

  14. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction.

    PubMed

    Pu, Wanfen; Jiang, Feng; Chen, Pei; Wei, Bing

    2017-08-30

    A molecularly dispersed nano-material called POSS-NH 2 -AA was synthesized to construct a hybrid hydrogel with a rapid self-healing ability (stress 8 kPa) and excellent mechanical performance (a strain of 4683% and a stress of 37.8 kPa). The hydrogel also exhibits good cohesiveness to materials, such as plastics, glass and iron. The backbone of the POSS makes the hydrogel much stronger than the hydrogel without POSS, which accounts for the improvement in its properties. This process is facile and useful to construct mechanically strong and self-healable materials.

  15. Right-left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats.

    PubMed

    Kanwal, Jagmeet S

    2012-01-01

    In the Doppler-shifted constant frequency processing area in the primary auditory cortex of mustached bats, Pteronotus parnellii, neurons respond to both social calls and to echolocation signals. This multifunctional nature of cortical neurons creates a paradox for simultaneous processing of two behaviorally distinct categories of sound. To test the possibility of a stimulus-specific hemispheric bias, single-unit responses were obtained to both types of sounds, calls and pulse-echo tone pairs, from the right and left auditory cortex. Neurons on the left exhibited only slightly higher peak response magnitudes for their respective best calls, but they showed a significantly higher sensitivity (lower response thresholds) to calls than neurons on the right. On average, call-to-tone response ratios were significantly higher for neurons on the left than for those on the right. Neurons on the right responded significantly more strongly to pulse-echo tone pairs than those on the left. Overall, neurons in males responded to pulse-echo tone pairs with a much higher spike count compared to females, but this difference was less pronounced for calls. Multidimensional scaling of call responses yielded a segregated representation of call types only on the left. These data establish for the first time, a behaviorally directed right-left asymmetry at the level of single cortical neurons. It is proposed that a lateralized cortex emerges from multiparametric integration (e.g. combination-sensitivity) within a neuron and inhibitory interactions between neurons that come into play during the processing of complex sounds. © 2011 The Author. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection

    PubMed Central

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-01-01

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693

  17. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.

    PubMed

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-07-15

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.

  18. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys

    PubMed Central

    2018-01-01

    Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development. PMID:29651461

  19. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys.

    PubMed

    Gultekin, Yasemin B; Hage, Steffen R

    2018-04-01

    Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development.

  20. Recent Developments in Interactive and Communicative CALL: Hypermedia and "Intelligent" Systems.

    ERIC Educational Resources Information Center

    Coughlin, Josette M.

    Two recent developments in computer-assisted language learning (CALL), interactive video systems and "intelligent" games, are discussed. Under the first heading, systems combining the use of a computer and video disc player are described, and Compact Discs Interactive (CDI) and Digital Video Interactive (DVI) are reviewed. The…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav; Perez, Jean Carlos

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracymore » the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the experiment.« less

  2. Patterns of call communication between group-housed zebra finches change during the breeding cycle

    PubMed Central

    Gill, Lisa F; Goymann, Wolfgang; Ter Maat, Andries; Gahr, Manfred

    2015-01-01

    Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems. DOI: http://dx.doi.org/10.7554/eLife.07770.001 PMID:26441403

  3. Biophysical Mechanisms of Endotoxin Neutralization by Cationic Amphiphilic Peptides

    PubMed Central

    Kaconis, Yani; Kowalski, Ina; Howe, Jörg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarán, Iosu; Iñigo-Pestaña, Melania; Garidel, Patrick; Rössle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-01-01

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. PMID:21641310

  4. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.

  5. Quantum Optics with Superconducting Circuits: From Single Photons to Schrodinger Cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoelkopf, Rob

    Over the last decade and a half, superconducting circuits have advanced to the point where we can generate and detect highly-entangled states, and perform universal quantum gates. Meanwhile, the coherence properties of these systems have improved more than 10,000-fold. I will describe recent experiments, such as the latest advance in coherence using a three-dimensional implementation of qubits interacting with microwave cavities, called “3D circuit QED.” The control and strong interactions possible in superconducting circuits make it possible to generate non-classical states of light, including large superpositions known as “Schrodinger cat” states. This field has many interesting prospects both for applicationsmore » in quantum information processing, and fundamental investigations of the boundary between the macroscopic classical world and the microscopic world of the quantum.« less

  6. Modelling malaria control by introduction of larvivorous fish.

    PubMed

    Lou, Yijun; Zhao, Xiao-Qiang

    2011-10-01

    Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.

  7. Catching the PEG-induced attractive interaction between proteins.

    PubMed

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  8. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Forn-Díaz, P.; García-Ripoll, J. J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M. A.; Belyansky, R.; Wilson, C. M.; Lupascu, A.

    2017-01-01

    The study of light-matter interaction has led to important advances in quantum optics and enabled numerous technologies. Over recent decades, progress has been made in increasing the strength of this interaction at the single-photon level. More recently, a major achievement has been the demonstration of the so-called strong coupling regime, a key advancement enabling progress in quantum information science. Here, we demonstrate light-matter interaction over an order of magnitude stronger than previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom exceeds its transition frequency. In this USC regime, the description of atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required. Beyond light-matter interaction itself, the tunability of our system makes it a promising tool to study a number of important physical systems, such as the well-known spin-boson and Kondo models.

  9. The von Neumann model of measurement in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, Pier A.

    2014-01-08

    We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The vonmore » Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.« less

  10. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  11. Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Kagamihara, D.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the shear viscosity η , as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein condensation (BEC) crossover region. We also evaluate η / s, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η is remarkably suppressed near the superfluid phase transition temperature Tc, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η . We also show that η / s decreases with increasing the interaction strength, to become very close to the KSS bound, \\hbar /4π kB, on the BEC side.

  12. Geometric stability of topological lattice phases

    PubMed Central

    Jackson, T. S.; Möller, Gunnar; Roy, Rahul

    2015-01-01

    The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311

  13. Image-Word Pairing-Congruity Effect on Affective Responses

    NASA Astrophysics Data System (ADS)

    Sanabria Z., Jorge C.; Cho, Youngil; Sambai, Ami; Yamanaka, Toshimasa

    The present study explores the effects of familiarity on affective responses (pleasure and arousal) to Japanese ad elements, based on the schema incongruity theory. Print ads showing natural scenes (landscapes) were used to create the stimuli (images and words). An empirical study was conducted to measure subjects' affective responses to image-word combinations that varied in terms of incongruity. The level of incongruity was based on familiarity levels, and was statistically determined by a variable called ‘pairing-congruity status’. The tested hypothesis proposed that even highly familiar image-word combinations, when combined incongruously, would elicit strong affective responses. Subjects assessed the stimuli using bipolar scales. The study was effective in tracing interactions between familiarity, pleasure and arousal, although the incongruous image-word combinations did not elicit the predicted strong effects on pleasure and arousal. The results suggest a need for further research incorporating kansei (i.e., creativity) into the process of stimuli selection.

  14. Designing Templates for Interactive Tasks in CALL Tutorials.

    ERIC Educational Resources Information Center

    Ruhlmann, Felicitas

    The development of templates for computer-assisted language learning (CALL) is discussed, based on experiences with primarily linear multimedia tutorial programs. Design of templates for multiple-choice questions and interactive tasks in a prototype module is described. Possibilities of enhancing interactivity by introducing problem-oriented…

  15. Knowledge as an interactional tool in the management of client empowerment.

    PubMed

    Moore, John

    2016-06-01

    To examine the way speaker and recipient knowledge is managed in interaction by a call taker at a mental-health information line, to achieve the institutional goals of information provision and client empowerment. This study utilizes conversation analysis in the analysis of a single call to the line. Analysis demonstrates the ways in which a call taker produces turns-at-talk that construct a caller as knowing what help they wanted prior to that moment in the interaction, and that invoke 'common' knowledge of sources of such help. Talk that orients to knowledge is used as an interactional resource that allows the call taker to avoid talk that may be considered advice, and to be heard to achieve the goal of client empowerment. The asymmetric identities of help-seeker and help-provider are managed in this process. Client empowerment can be seen as something interactionally achieved and managed in talk-in-interaction, while not necessarily objectively experienced by the client. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Information performances and illative sequences: Sequential organization of explanations of chemical phase equilibrium

    NASA Astrophysics Data System (ADS)

    Brown, Nathaniel James Swanton

    While there is consensus that conceptual change is surprisingly difficult, many competing theories of conceptual change co-exist in the literature. This dissertation argues that this discord is partly the result of an inadequate account of the unwritten rules of human social interaction that underlie the field's preferred methodology---semi-structured interviewing. To better understand the contributions of interaction during explanations, I analyze eight undergraduate general chemistry students as they attempt to explain to various people, for various reasons, why phenomena involving chemical phase equilibrium occur. Using the methods of interaction analysis, I characterize the unwritten, but systematic, rules that these participants follow as they explain. The result is a description of the contributions of interaction to explaining. Each step in each explanation is a jointly performed expression of a subject-predicate relation, an interactive accomplishment I call an information performance (in-form, for short). Unlike clauses, in-forms need not have a coherent grammatical structure. Unlike speaker turns, in-forms have the clear function of expressing information. Unlike both clauses and speaker turns, in-forms are a co-construction, jointly performed by both the primary speaker and the other interlocutor. The other interlocutor strongly affects the form and content of each explanation by giving or withholding feedback at the end of each in-form, moments I call feedback-relevant places. While in-forms are the bricks out of which the explanation is constructed, they are secured by a series of inferential links I call an illative sequence. Illative sequences are forward-searching, starting with a remembered fact or observation and following a chain of inferences in the hope it leads to the target phenomenon. The participants treat an explanation as a success if the illative sequence generates an in-form that describes the phenomenon. If the illative sequence does not, it is partly or entirely scrubbed, a new in-form is introduced as a starting point, and the illative sequence begins anew. Knowledge of these interactional contributions to the production of explanations could allow researchers to better characterize conceptual understanding, be in a stronger position to support particular theories of conceptual change over others, improve assessments of conceptual understanding, and improve interviewing practices.

  17. Sequential programmable self-assembly: Role of cooperative interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan D. Halverson; Tkachenko, Alexei V.

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  18. Sequential programmable self-assembly: Role of cooperative interactions

    DOE PAGES

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  19. Pre-relaxation in weakly interacting models

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  20. Trust and Its Role in the Medical Encounter.

    PubMed

    Holland, Stephen; Stocks, David

    2017-09-01

    This paper addresses two research questions. The first is theoretical: What is trust? In the first half of this paper we present a distinctive tripartite analysis. We describe three attitudes, here called reliance, specific trust and general trust, each of which is characterised and illustrated. We argue that these attitudes are related, but not reducible, to one another. We suggest that the current impasse in the analysis of trust is in part due to the fact that some writers allude to these distinctions, but unclearly so, whilst others elide them altogether. The second research question focuses on doctor-patient interaction. Trust is often said to be central in medical encounters but this strikes us as too vague. The success of doctor-patient relations in part depends on adopting the most appropriate of the three attitudes we delineate. We argue that reliance is the appropriate attitude for most medical encounters. When circumstances do require trust, the distinction between specific trust and general trust is crucial. We describe medical encounters requiring specific trust. General trust is less often required in medicine; but it is appropriate in some cases and, when called for, it is called for strongly.

  1. Collective iteration behavior for online social networks

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Li, Ren-De; Guo, Qiang; Zhang, Yi-Cheng

    2018-06-01

    Understanding the patterns of collective behavior in online social network (OSNs) is critical to expanding the knowledge of human behavior and tie relationship. In this paper, we investigate a specific pattern called social signature in Facebook and Wiki users' online communication behaviors, capturing the distribution of frequency of interactions between different alters over time in the ego network. The empirical results show that there are robust social signatures of interactions no matter how friends change over time, which indicates that a stable commutation pattern exists in online communication. By comparing a random null model, we find the that commutation pattern is heterogeneous between ego and alters. Furthermore, in order to regenerate the pattern of the social signature, we present a preferential interaction model, which assumes that new users intend to look for the old users with strong ties while old users have tendency to interact with new friends. The experimental results show that the presented model can reproduce the heterogeneity of social signature by adjusting 2 parameters, the number of communicating targets m and the max number of interactions n, for Facebook users, m = n = 5, for Wiki users, m = 2 and n = 8. This work helps in deeply understanding the regularity of social signature.

  2. Sterile Neutrino Search with the Double Chooz Experiment

    NASA Astrophysics Data System (ADS)

    Hellwig, D.; Matsubara, T.; Double Chooz Collaboration

    2017-09-01

    Double Chooz is a reactor antineutrino disappearance experiment located in Chooz, France. A far detector at a distance of about 1 km from reactor cores is operating since 2011; a near detector of identical design at a distance of about 400 m is operating since begin 2015. Beyond the precise measurement of θ 13, Double Chooz has a strong sensitivity to so called light sterile neutrinos. Sterile neutrinos are neutrino mass states not taking part in weak interactions, but may mix with known neutrino states. In this paper, we present an analysis method to search for sterile neutrinos and the expected sensitivity with the baselines of our detectors.

  3. Impaired laparoscopic performance of novice surgeons due to phone call distraction: a single-centre, prospective study.

    PubMed

    Yang, Cui; Heinze, Julia; Helmert, Jens; Weitz, Juergen; Reissfelder, Christoph; Mees, Soeren Torge

    2017-12-01

    Distractions such as phone calls during laparoscopic surgery play an important role in many operating rooms. The aim of this single-centre, prospective study was to assess if laparoscopic performance is impaired by intraoperative phone calls in novice surgeons. From October 2015 to June 2016, 30 novice surgeons (medical students) underwent a laparoscopic surgery training curriculum including two validated tasks (peg transfer, precision cutting) until achieving a defined level of proficiency. For testing, participants were required to perform these tasks under three conditions: no distraction (control) and two standardised distractions in terms of phone calls requiring response (mild and strong distraction). Task performance was evaluated by analysing time and accuracy of the tasks and response of the phone call. In peg transfer (easy task), mild distraction did not worsen the performance significantly, while strong distraction was linked to error and inefficiency with significantly deteriorated performance (P < 0.05). Precision cutting (difficult task) was not slowed down by mild distraction, but surgical and cognitive errors were significantly increased when participants were distracted (P < 0.05). Compared to mild distraction, participants reported a more severe subjective disturbance when they were diverted by strong distraction (P < 0.05). Our data reveals that phone call distractions result in impaired laparoscopic performance under certain circumstances. To ensure patient safety, phone calls should be avoided as far as possible in operating rooms.

  4. Best practices for world-class call centers.

    PubMed

    1998-11-01

    Quality, not quantity, counts more in performance measures for best-practice call centers. Spend money on effective upfront training to save later through increased employee and customer loyalty. Give structured feedback and strong internal support to call-center representatives.

  5. Devices That May Interfere with Pacemakers

    MedlinePlus

    ... Devices with risk Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ... the pulse generator Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ...

  6. Listen to Your Heart? Calling and Receptivity to Career Advice

    ERIC Educational Resources Information Center

    Dobrow, Shoshana R.; Tosti-Kharas, Jennifer

    2012-01-01

    This study explores calling in the context of career decision making. Specifically, the authors examine receptivity to advice that discourages individuals from pursuing a professional path in their calling's domain. The authors hypothesize that people with a strong calling will be more likely to ignore negative career advice. In Study 1, a…

  7. Collective opinion formation model under Bayesian updating and confirmation bias

    NASA Astrophysics Data System (ADS)

    Nishi, Ryosuke; Masuda, Naoki

    2013-06-01

    We propose a collective opinion formation model with a so-called confirmation bias. The confirmation bias is a psychological effect with which, in the context of opinion formation, an individual in favor of an opinion is prone to misperceive new incoming information as supporting the current belief of the individual. Our model modifies a Bayesian decision-making model for single individuals [M. Rabin and J. L. Schrag, Q. J. Econ.0033-553310.1162/003355399555945 114, 37 (1999)] for the case of a well-mixed population of interacting individuals in the absence of the external input. We numerically simulate the model to show that all the agents eventually agree on one of the two opinions only when the confirmation bias is weak. Otherwise, the stochastic population dynamics ends up creating a disagreement configuration (also called polarization), particularly for large system sizes. A strong confirmation bias allows various final disagreement configurations with different fractions of the individuals in favor of the opposite opinions.

  8. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  9. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons

    NASA Astrophysics Data System (ADS)

    Angelescu, Andrei; Arcadi, Giorgio

    2017-07-01

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.

  10. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons.

    PubMed

    Angelescu, Andrei; Arcadi, Giorgio

    2017-01-01

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.

  11. Interaction between mean flow and turbulence in two dimensions

    PubMed Central

    2016-01-01

    This short note is written to call attention to an analytic approach to the interaction of developed turbulence with mean flows of simple geometry (jets and vortices). It is instructive to compare cases in two and three dimensions and see why the former are solvable and the latter are not (yet). We present the analytical solutions for two-dimensional mean flows generated by an inverse turbulent cascade on a sphere and in planar domains of different aspect ratios. These solutions are obtained in the limit of small friction when the flow is strong while turbulence can be considered weak and treated perturbatively. I then discuss when these simple solutions can be realized and when more complicated flows may appear instead. The next step of describing turbulence statistics inside a flow and directions of possible future progress are briefly discussed at the end. PMID:27493579

  12. Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid

    NASA Astrophysics Data System (ADS)

    Chomaz, L.; Baier, S.; Petter, D.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.

    2016-10-01

    In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s -wave scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 ×104 atoms . Based on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite scattering length.

  13. An enhanceosome containing the Jun B/Fra-2 heterodimer and the HMG-I(Y) architectural protein controls HPV 18 transcription.

    PubMed

    Bouallaga, I; Massicard, S; Yaniv, M; Thierry, F

    2000-11-01

    Recent studies have reported new mechanisms that mediate the transcriptional synergy of strong tissue-specific enhancers, involving the cooperative assembly of higher-order nucleoprotein complexes called enhanceosomes. Here we show that the HPV18 enhancer, which controls the epithelial-specific transcription of the E6 and E7 transforming genes, exhibits characteristic features of these structures. We used deletion experiments to show that a core enhancer element cooperates, in a specific helical phasing, with distant essential factors binding to the ends of the enhancer. This core sequence, binding a Jun B/Fra-2 heterodimer, cooperatively recruits the architectural protein HMG-I(Y) in a nucleoprotein complex, where they interact with each other. Therefore, in HeLa cells, HPV18 transcription seems to depend upon the assembly of an enhanceosome containing multiple cellular factors recruited by a core sequence interacting with AP1 and HMG-I(Y).

  14. Preliminary Analysis of Vehicle/Soil Interaction for a Mars Sub- Surface Ground Penetrating Mole

    NASA Astrophysics Data System (ADS)

    Reutter, O.; Ellery, A.; Welch, C.; Curley, A.

    2002-01-01

    It is conceived that future robotic Mars missions will have to employ mole penetration of the Martian surface if they are to have any chance of success in detecting possible fossilised biota. At least one European mission of such a nature called Vanguard is being proposed [Ellery et al 2002]. One of the critical technologies from a robotics viewpoint is the deployment of a ground-penetrating mole from a lander or rover. The deployment mechanism must be simple, of low mass, and with low power consumption. These issues place strong constraints on its design. The performance and design of such a mechanism will be determined by the required applied forces to be exerted on the mole during initial penetration into the ground. Presented here is a preliminary analysis of the force/torque characteristics of the mole/soil interaction.

  15. Electronegative Guests in CoSb 3

    DOE PAGES

    Duan, Bo; Yang, Jiong; Salvador, James R.; ...

    2016-04-19

    Introducing guests into a host framework to form a so called inclusion compound can be used to design materials with new and fascinating functionalities. The vast majority of inclusion compounds have electropositive guests with neutral or negatively charged frameworks. Here, we show a series of electronegative guest filled skutterudites with inverse polarity. The strong covalent guest-host interactions observed for the electronegative group VIA guests, i.e., S and Se, feature a unique localized cluster vibration which significantly influences the lattice dynamics, together with the point-defect scattering caused by element substitutions, resulting in very low lattice thermal conductivity values. The findings ofmore » electronegative guests provide a new perspective for guest-filling in skutterudites, and the covalent filler/lattice interactions lead to an unusual lattice dynamics phenomenon which can be used for designing high-efficiency thermoelectric materials and novel functional inclusion compounds with open structures.« less

  16. Social-bond strength influences vocally mediated recruitment to mobbing

    PubMed Central

    2016-01-01

    Strong social bonds form between individuals in many group-living species, and these relationships can have important fitness benefits. When responding to vocalizations produced by groupmates, receivers are expected to adjust their behaviour depending on the nature of the bond they share with the signaller. Here we investigate whether the strength of the signaller–receiver social bond affects response to calls that attract others to help mob a predator. Using field-based playback experiments on a habituated population of wild dwarf mongooses (Helogale parvula), we first demonstrate that a particular vocalization given on detecting predatory snakes does act as a recruitment call; receivers were more likely to look, approach and engage in mobbing behaviour than in response to control close calls. We then show that individuals respond more strongly to these recruitment calls if they are from groupmates with whom they are more strongly bonded (those with whom they preferentially groom and forage). Our study, therefore, provides novel evidence about the anti-predator benefits of close bonds within social groups. PMID:27903776

  17. Mission-based Scenario Research: Experimental Design And Analysis

    DTIC Science & Technology

    2012-01-01

    neurotechnologies called Brain-Computer Interaction Technologies. 15. SUBJECT TERMS neuroimaging, EEG, task loading, neurotechnologies , ground... neurotechnologies called Brain-Computer Interaction Technologies. INTRODUCTION Imagine a system that can identify operator fatigue during a long-term...BCIT), a class of neurotechnologies , that aim to improve task performance by incorporating measures of brain activity to optimize the interactions

  18. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.

    PubMed

    Kaconis, Yani; Kowalski, Ina; Howe, Jörg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarán, Iosu; Iñigo-Pestaña, Melania; Garidel, Patrick; Rössle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-06-08

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Can treefrog phylogeographical clades and species' phylogenetic topologies be recovered by bioacoustical analyses?

    PubMed

    Forti, Lucas Rodriguez; Lingnau, Rodrigo; Encarnação, Lais Carvalho; Bertoluci, Jaime; Toledo, Luís Felipe

    2017-01-01

    Phenotypic traits, such as the frog advertisement call, are generally correlated with interspecific genetic variation, and, as a consequence of strong sexual selection, these behaviors may carry a phylogenetic signal. However, variation in acoustic traits is not always correlated with genetic differences between populations (intraspecific variation); phenotypic plasticity and environmental variables may explain part of such variation. For example, local processes can affect acoustic properties in different lineages due to differences in physical structure, climatic conditions, and biotic interactions, particularly when populations are isolated. However, acoustic traits can be used to test phylogenetic hypotheses. We analyzed the advertisement calls of Dendropsophus elegans males from 18 sites and compared them with those of four closely related congeneric species, in order to test for differences between inter and intraspecific variation. We analyzed 451 calls of 45 males of these five species. Because males from distant sites were grouped together without population congruence, differences found in advertisement calls among individuals were not correlated with phylogeographical clades. Phylogenetic and cluster analyses of the D. elegans clades and those of closely related species grouped all five species into the same topology, as reported by previous molecular and morphological phylogenies. However, the topology of the D. elegans phylogeographical clades did not match the topology previously reported. Acoustic communication in D. elegans seems to be conserved among populations, and the phylogeographical history of the species does not explain the variation among lineages in call properties, despite some congruent phylogenetic signals evident at the species level. Based on molecular clocks retrieved from the literature, it seems that more than 6.5 million years of divergence (late Miocene) are necessary to allow significant changes to occur in the acoustic properties of these treefrog calls, making it possible to recover their phylogenetic history only based on acoustic evidence.

  20. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    PubMed

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. Self-medication for cough and the common cold: information needs of consumers.

    PubMed

    Kloosterboer, Sanne Maartje; McGuire, Treasure; Deckx, Laura; Moses, Geraldine; Verheij, Theo; van Driel, Mieke L

    2015-07-01

    Despite the high use of over-the-counter (OTC) cough and cold medicines, little is known about Australia's cough and cold medicines information needs. The aim of this study was to identify gaps in consumers' perceived knowledge and concerns, to better target consumer medicines information and improve quality use of medicines. We analysed cough-and-cold related enquiries from consumers who contacted an Australian national medicine call centre between September 2002 and June 2010. Of 5503 cough and cold calls, female callers made up 86% of the calls and 33% were related to children. Questions most frequently related to drug-drug interactions (29%). An analysis of narratives over an 18-month period (248 calls) revealed 20% of the calls concerned potentially clinically relevant interactions, particularly those involving psychotropic agents. The potential for interactions with cough and cold medicines purchased OTC is recognised by consumers. Patient information should address their concerns. Doctors should be aware of the common cough and cold interactions and communicate likely clinical symptoms to patients when prescribing medication to prevent potential harm.

  2. Interactions between nattokinase and heparin/GAGs

    PubMed Central

    Zhang, Fuming

    2015-01-01

    Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer’s disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate a diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK’s potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modified heparin showed the 6-O-sulfo as well as the N-sulfo groups but not the 2-O-sulfo groups within heparin, are essential for heparin’s interaction with NK. Other GAGs (including HS, DS, and CSE) displayed modest binding affinity to NK. NK also interfered with other heparin-protein interactions, including heparin’s interaction with antithrombin and fibroblast growth factors. PMID:26412225

  3. Interactions between nattokinase and heparin/GAGs.

    PubMed

    Zhang, Fuming; Zhang, Jianhua; Linhardt, Robert J

    2015-12-01

    Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK's potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modified heparin showed the 6-O-sulfo as well as the N-sulfo groups but not the 2-O-sulfo groups within heparin, are essential for heparin's interaction with NK. Other GAGs (including HS, DS, and CSE) displayed modest binding affinity to NK. NK also interfered with other heparin-protein interactions, including heparin's interaction with antithrombin and fibroblast growth factors.

  4. Beluga whale, Delphinapterus leucas, vocalizations and their relation to behaviour in the Churchill River, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Chmelnitsky, Elly Golda

    The investigation of a species' repertoire and the contexts in which different calls are used is central to understanding vocal communication among animals. Beluga whale, Delphinapterus leucas, calls were classified and described in association with behaviours, from recordings collected in the Churchill River, Manitoba, during the summers of 2006-2008. Calls were subjectively classified based on sound and visual analysis into whistles (64.2% of total calls; 22 call types), pulsed or noisy calls (25.9%; 15 call types), and combined calls (9.9%; seven types). A hierarchical cluster analysis, using six call measurements as variables, separated whistles into 12 groups and results were compared to subjective classification. Beluga calls associated with social interactions, travelling, feeding, and interactions with the boat were described. Call type percentages, relative proportions of different whistle contours (shapes), average frequency, and call duration varied with behaviour. Generally, higher percentages of whistles, more broadband pulsed and noisy calls, and shorter calls (<0.49s) were produced during behaviours associated with higher levels of activity and/or apparent arousal. Information on call types, call characteristics, and behavioural context of calls can be used for automated detection and classification methods and in future studies on call meaning and function.

  5. Dispatch-assisted CPR: where are the hold-ups during calls to emergency dispatchers? A preliminary analysis of caller-dispatcher interactions during out-of-hospital cardiac arrest using a novel call transcription technique.

    PubMed

    Clegg, Gareth R; Lyon, Richard M; James, Scott; Branigan, Holly P; Bard, Ellen G; Egan, Gerry J

    2014-01-01

    Survival from out-of-hospital cardiac arrest (OHCA) is dependent on the chain of survival. Early recognition of cardiac arrest and provision of bystander cardiopulmonary resuscitation (CPR) are key determinants of OHCA survival. Emergency medical dispatchers play a key role in cardiac arrest recognition and giving telephone CPR advice. The interaction between caller and dispatcher can influence the time to bystander CPR and quality of resuscitation. We sought to pilot the use of emergency call transcription to audit and evaluate the holdups in performing dispatch-assisted CPR. A retrospective case selection of 50 consecutive suspected OHCA was performed. Audio recordings of calls were downloaded from the emergency medical dispatch centre computer database. All calls were transcribed using proprietary software and voice dialogue was compared with the corresponding stage on the Medical Priority Dispatch System (MPDS). Time to progress through each stage and number of caller-dispatcher interactions were calculated. Of the 50 downloaded calls, 47 were confirmed cases of OHCA. Call transcription was successfully completed for all OHCA calls. Bystander CPR was performed in 39 (83%) of these. In the remaining cases, the caller decided the patient was beyond help (n = 7) or the caller said that they were physically unable to perform CPR (n = 1). MPDS stages varied substantially in time to completion. Stage 9 (determining if the patient is breathing through airway instructions) took the longest time to complete (median = 59 s, IQR 22-82 s). Stage 11 (giving CPR instructions) also took a relatively longer time to complete compared to the other stages (median = 46 s, IQR 37-75 s). Stage 5 (establishing the patient's age) took the shortest time to complete (median = 5.5s, IQR 3-9s). Transcription of OHCA emergency calls and caller-dispatcher interaction compared to MPDS stage is feasible. Confirming whether a patient is breathing and completing CPR instructions required the longest time and most interactions between caller and dispatcher. Use of call transcription has the potential to identify key factors in caller-dispatcher interaction that could improve time to CPR and further research is warranted in this area. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The competition of hydrogen-like and isotropic interactions on polymer collapse

    NASA Astrophysics Data System (ADS)

    Krawczyk, J.; Owczarek, A. L.; Prellberg, T.

    2007-09-01

    We investigate a lattice model of polymers where the nearest neighbour monomer monomer interaction strengths differ according to whether the local configurations have so-called 'hydrogen-like' formations or not. If the interaction strengths are all the same then the classical θ-point collapse transition occurs on lowering the temperature, and the polymer enters the isotropic liquid drop phase known as the collapsed globule. On the other hand, strongly favouring the hydrogen-like interactions gives rise to an anisotropic folded (solid-like) phase on lowering the temperature. We use Monte Carlo simulations up to a length of 256 to map out the phase diagram in the plane of parameters and determine the order of the associated phase transitions. We discuss the connections to semi-flexible polymers and other polymer models. Importantly, we demonstrate that for a range of energy parameters, two phase transitions occur on lowering the temperature, the second being a transition from the globule state to the crystal state. We argue from our data that this globule-to-crystal transition is continuous in two dimensions in accord with field-theory arguments concerning Hamiltonian walks, but is first order in three dimensions.

  7. Empirical p-n interactions, the synchronized filling of Nilsson orbitals, and emergent collectivity

    NASA Astrophysics Data System (ADS)

    Cakirli, R. B.

    2014-09-01

    The onset of collectivity and deformation, changes to the single particle energies and magic numbers and so on are strongly influenced by, for example, proton (p) and neutron (n) interactions inside atomic nuclei. Experimentally, using binding energies (or masses), one can extract an average p-n interaction between the last two protons and the last two neutrons, called δVpn. We have studied δVpn values using calculations of spatial overlaps between p and n Nilsson orbitals, considering different deformations, for the Z= 50-82, N= 82-126 shells, and comparison of these theoretical results with experimental δVpn values. Our results show that enhanced valence p-n interactions are closely correlated with the development of collectivity, shape changes, and the saturation of deformation in nuclei. We note that the difference of the Nilsson quantum numbers of the last filled Nilsson p and n orbitals, has a special relation, 0[110], in which they differ by only a single quantum in the z-direction, for those nuclei where δVpn is largest for each Z in medium mass and heavy nuclei. The synchronised filling of such orbital pairs correlates with the emergence of collectivity.

  8. The challenge of spin–orbit-tuned ground states in iridates: a key issues review

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Schlottmann, Pedro

    2018-04-01

    Effects of spin–orbit interactions in condensed matter are an important and rapidly evolving topic. Strong competition between spin–orbit, on-site Coulomb and crystalline electric field interactions in iridates drives exotic quantum states that are unique to this group of materials. In particular, the ‘J eff  =  ½’ Mott state served as an early signal that the combined effect of strong spin–orbit and Coulomb interactions in iridates has unique, intriguing consequences. In this Key Issues Review, we survey some current experimental studies of iridates. In essence, these materials tend to defy conventional wisdom: absence of conventional correlations between magnetic and insulating states, avoidance of metallization at high pressures, ‘S-shaped’ I–V characteristic, emergence of an odd-parity hidden order, etc. It is particularly intriguing that there exist conspicuous discrepancies between current experimental results and theoretical proposals that address superconducting, topological and quantum spin liquid phases. This class of materials, in which the lattice degrees of freedom play a critical role seldom seen in other materials, evidently presents some profound intellectual challenges that call for more investigations both experimentally and theoretically. Physical properties unique to these materials may help unlock a world of possibilities for functional materials and devices. We emphasize that, given the rapidly developing nature of this field, this Key Issues Review is by no means an exhaustive report of the current state of experimental studies of iridates.

  9. Nonlocality in Bohmian mechanics

    NASA Astrophysics Data System (ADS)

    Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han

    2018-04-01

    The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.

  10. Generalisation of the identity method for determination of high-order moments of multiplicity distributions with a software implementation

    NASA Astrophysics Data System (ADS)

    Maćkowiak-Pawłowska, Maja; Przybyła, Piotr

    2018-05-01

    The incomplete particle identification limits the experimentally-available phase space region for identified particle analysis. This problem affects ongoing fluctuation and correlation studies including the search for the critical point of strongly interacting matter performed on SPS and RHIC accelerators. In this paper we provide a procedure to obtain nth order moments of the multiplicity distribution using the identity method, generalising previously published solutions for n=2 and n=3. Moreover, we present an open source software implementation of this computation, called Idhim, that allows one to obtain the true moments of identified particle multiplicity distributions from the measured ones provided the response function of the detector is known.

  11. Overdamping by weakly coupled environments

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano; Haake, Fritz

    2005-12-01

    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord with Fermi’s “golden rule.” We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, and quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.

  12. An introductory orientation to clinical pathology core and on-call responsibilities.

    PubMed

    Pappas, A A; Drew, M J; Flick, J; Fink, L; Fuller, G L; Hough, A J

    1994-05-01

    An introductory 4-week orientation for clinical pathology is described. There were 76 hours of lectures, 74 hours of conferences, and 68 hours of laboratories for a total of 221 hours. During the orientation, all calls handled by the residents were evaluated as to resolution, patient outcome, and interaction required. Eighty calls were received during the orientation from 57 technologists (71%), 16 physicians (20%), and seven nurses (9%). The calls originated concerning the following: blood banking, 37 (46%); hematology, 21 (27%); chemistry, 14 (18%); microbiology, five (6%); and administration, three (4%). Sixty percent of the calls were consultative and 40% were supervisory. Ninety-nine percent were handled appropriately by the residents. Patient outcome was moderately or significantly affected in 44% of all calls, divided between 67% of all consultative calls and 9% of all supervisory calls. Significant pathologist interaction was required in 49% of all calls, divided between 71% of the consultative calls and 16% of the supervisory calls. Using this integrated, dynamic system of resident instruction, on-call experience, and evaluation, residents quickly gain confidence in handling call, didactic clinical consultation, and patient management. The orientation and on-call system described provides for a relevant and dynamic system for resident education.

  13. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  14. Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis.

    PubMed

    Bai, Fang; Morcos, Faruck; Cheng, Ryan R; Jiang, Hualiang; Onuchic, José N

    2016-12-13

    Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.

  15. Integration of oceanographic data with fin whale calling presence in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Dasarathy, S.; Berchok, C.; Stabeno, P. J.; Crance, J.

    2016-02-01

    Through the integration of environmental data with passive acoustic monitoring, it is possible to investigate whether fin whale (Balaenoptera physalus) presence is influenced by environmental factors. Fin whale calling activity and concurrent environmental variables were analyzed from May 2012 to September 2013. These data were collected from passive acoustic and oceanographic moorings located in the Bering Sea. Fin whale calling presence was strongly correlated with three of the eight parameters analyzed: ice concentration, chlorophyll (a proxy for primary production), and temperature. Fin whale calling was negatively correlated with ice concentration; as ice concentration increased, fin whale calling decreased. A strong positive correlation was observed between fin whale calling and chlorophyll. A large spike in chlorophyll concentration in July 2013 preceded fin whale calling at the northern location. Fin whale calling also increased concurrently with a mixing of the water column (evidenced in the temperature data) at a depth of 30 to 50m. Peaks in chlorophyll concentration occurred after the mixing of the water column, and followed an increase in fin whale calling. These data illustrate the relationship between fin whale presence and environmental variables in the Bering Sea. These correlations may be used to predict the impact of climate change on fin whale populations in the rapidly changing environment of the Bering Sea.

  16. Group Random Call Can Positively Affect Student In-Class Clicker Discussions

    PubMed Central

    Knight, Jennifer K.; Wise, Sarah B.; Sieke, Scott

    2016-01-01

    Understanding how instructional techniques and classroom norms influence in-class student interactions has the potential to positively impact student learning. Many previous studies have shown that students benefit from discussing their ideas with one another in class. In this study of introductory biology students, we explored how using an in-class accountability system might affect the nature of clicker-question discussions. Clicker-question discussions in which student groups were asked to report their ideas voluntarily (volunteer call) were compared with discussions in which student groups were randomly selected to report their ideas (random call). We hypothesized that the higher-accountability condition (random call) would impress upon students the importance of their discussions and thus positively influence how they interacted. Our results suggest that a higher proportion of discussions in the random call condition contained exchanges of reasoning, some forms of questioning, and both on- and off-topic comments compared with discussion in the volunteer call condition. Although group random call does not impact student performance on clicker questions, the positive impact of this instructional approach on exchanges of reasoning and other features suggests it may encourage some types of student interactions that support learning. PMID:27856544

  17. Spatial location influences vocal interactions in bullfrog choruses

    PubMed Central

    Bates, Mary E.; Cropp, Brett F.; Gonchar, Marina; Knowles, Jeffrey; Simmons, James A.; Simmons, Andrea Megela

    2010-01-01

    A multiple sensor array was employed to identify the spatial locations of all vocalizing male bullfrogs (Rana catesbeiana) in five natural choruses. Patterns of vocal activity collected with this array were compared with computer simulations of chorus activity. Bullfrogs were not randomly spaced within choruses, but tended to cluster into closely spaced groups of two to five vocalizing males. There were nonrandom, differing patterns of vocal interactions within clusters of closely spaced males and between different clusters. Bullfrogs located within the same cluster tended to overlap or alternate call notes with two or more other males in that cluster. These near-simultaneous calling bouts produced advertisement calls with more pronounced amplitude modulation than occurred in nonoverlapping notes or calls. Bullfrogs located in different clusters more often alternated entire calls or overlapped only small segments of their calls. They also tended to respond sequentially to calls of their farther neighbors compared to their nearer neighbors. Results of computational analyses showed that the observed patterns of vocal interactions were significantly different than expected based on random activity. The use of a multiple sensor array provides a richer view of the dynamics of choruses than available based on single microphone techniques. PMID:20370047

  18. Interacting with wildlife tourism increases activity of white sharks.

    PubMed

    Huveneers, Charlie; Watanabe, Yuuki Y; Payne, Nicholas L; Semmens, Jayson M

    2018-01-01

    Anthropogenic activities are dramatically changing marine ecosystems. Wildlife tourism is one of the fastest growing sectors of the tourism industry and has the potential to modify the natural environment and behaviour of the species it targets. Here, we used a novel method to assess the effects of wildlife tourism on the activity of white sharks ( Carcharodon carcharias ). High frequency three-axis acceleration loggers were deployed on ten white sharks for a total of ~9 days. A combination of multivariate and univariate analysis revealed that the increased number of strong accelerations and vertical movements when sharks are interacting with cage-diving operators result in an overall dynamic body acceleration (ODBA) ~61% higher compared with other times when sharks are present in the area where cage-diving occurs. Since ODBA is considered a proxy of metabolic rate, interacting with cage-divers is probably more costly than are normal behaviours of white sharks at the Neptune Islands. However, the overall impact of cage-diving might be small if interactions with individual sharks are infrequent. This study suggests wildlife tourism changes the instantaneous activity levels of white sharks, and calls for an understanding of the frequency of shark-tourism interactions to appreciate the net impact of ecotourism on this species' fitness.

  19. Interacting with wildlife tourism increases activity of white sharks

    PubMed Central

    Watanabe, Yuuki Y; Payne, Nicholas L; Semmens, Jayson M

    2018-01-01

    Abstract Anthropogenic activities are dramatically changing marine ecosystems. Wildlife tourism is one of the fastest growing sectors of the tourism industry and has the potential to modify the natural environment and behaviour of the species it targets. Here, we used a novel method to assess the effects of wildlife tourism on the activity of white sharks (Carcharodon carcharias). High frequency three-axis acceleration loggers were deployed on ten white sharks for a total of ~9 days. A combination of multivariate and univariate analysis revealed that the increased number of strong accelerations and vertical movements when sharks are interacting with cage-diving operators result in an overall dynamic body acceleration (ODBA) ~61% higher compared with other times when sharks are present in the area where cage-diving occurs. Since ODBA is considered a proxy of metabolic rate, interacting with cage-divers is probably more costly than are normal behaviours of white sharks at the Neptune Islands. However, the overall impact of cage-diving might be small if interactions with individual sharks are infrequent. This study suggests wildlife tourism changes the instantaneous activity levels of white sharks, and calls for an understanding of the frequency of shark-tourism interactions to appreciate the net impact of ecotourism on this species’ fitness. PMID:29780593

  20. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less

  1. The linguistic and interactional factors impacting recognition and dispatch in emergency calls for out-of-hospital cardiac arrest: a mixed-method linguistic analysis study protocol

    PubMed Central

    Riou, Marine; Ball, Stephen; Williams, Teresa A; Whiteside, Austin; O’Halloran, Kay L; Bray, Janet; Perkins, Gavin D; Cameron, Peter; Fatovich, Daniel M; Inoue, Madoka; Bailey, Paul; Brink, Deon; Smith, Karen; Della, Phillip; Finn, Judith

    2017-01-01

    Introduction Emergency telephone calls placed by bystanders are crucial to the recognition of out-of-hospital cardiac arrest (OHCA), fast ambulance dispatch and initiation of early basic life support. Clear and efficient communication between caller and call-taker is essential to this time-critical emergency, yet few studies have investigated the impact that linguistic factors may have on the nature of the interaction and the resulting trajectory of the call. This research aims to provide a better understanding of communication factors impacting on the accuracy and timeliness of ambulance dispatch. Methods and analysis A dataset of OHCA calls and their corresponding metadata will be analysed from an interdisciplinary perspective, combining linguistic analysis and health services research. The calls will be transcribed and coded for linguistic and interactional variables and then used to answer a series of research questions about the recognition of OHCA and the delivery of basic life-support instructions to bystanders. Linguistic analysis of calls will provide a deeper understanding of the interactional dynamics between caller and call-taker which may affect recognition and dispatch for OHCA. Findings from this research will translate into recommendations for modifications of the protocols for ambulance dispatch and provide directions for further research. Ethics and dissemination The study has been approved by the Curtin University Human Research Ethics Committee (HR128/2013) and the St John Ambulance Western Australia Research Advisory Group. Findings will be published in peer-reviewed journals and communicated to key audiences, including ambulance dispatch professionals. PMID:28694349

  2. Social-bond strength influences vocally mediated recruitment to mobbing.

    PubMed

    Kern, Julie M; Radford, Andrew N

    2016-11-01

    Strong social bonds form between individuals in many group-living species, and these relationships can have important fitness benefits. When responding to vocalizations produced by groupmates, receivers are expected to adjust their behaviour depending on the nature of the bond they share with the signaller. Here we investigate whether the strength of the signaller-receiver social bond affects response to calls that attract others to help mob a predator. Using field-based playback experiments on a habituated population of wild dwarf mongooses (Helogale parvula), we first demonstrate that a particular vocalization given on detecting predatory snakes does act as a recruitment call; receivers were more likely to look, approach and engage in mobbing behaviour than in response to control close calls. We then show that individuals respond more strongly to these recruitment calls if they are from groupmates with whom they are more strongly bonded (those with whom they preferentially groom and forage). Our study, therefore, provides novel evidence about the anti-predator benefits of close bonds within social groups. © 2016 The Author(s).

  3. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.

    PubMed

    Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón

    2014-06-28

    The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  4. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  5. Nonlinear Magnus-induced dynamics and Shapiro spikes for ac and dc driven skyrmions on periodic quasi-one-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Reichhardt, Cynthia J. Olson

    We numerically examine skyrmions interacting with a periodic quasi-one-dimensional substrate. When we drive the skyrmions perpendicular to the substrate periodicity direction, a rich variety of nonlinear Magnus-induced effects arise, in contrast to an overdamped system that shows only a linear velocity-force curve for this geometry. The skyrmion velocity-force curve is strongly nonlinear and we observe a Magnus-induced speed-up effect when the pinning causes the Magnus velocity response to align with the dissipative response. At higher applied drives these components decouple, resulting in strong negative differential conductivity. For skyrmions under combined ac and dc driving, we find a new class of phase locking phenomena in which the velocity-force curves contain a series of what we call Shapiro spikes, distinct from the Shapiro steps observed in overdamped systems. There are also regimes in which the skyrmion moves in the direction opposite to the applied dc drive to give negative mobility.

  6. Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch horizontal helix

    NASA Astrophysics Data System (ADS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Evans, D. R.

    2018-06-01

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration). Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the parameters of the short-pitch cholesteric LC is studied.

  7. Strongly correlated surface states

    NASA Astrophysics Data System (ADS)

    Alexandrov, Victor A.

    Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo band banding (KBB): a modification of edges and their properties due to interactions. We study (chapter 5) a simplified 1D Kondo model, showing that the topology of its ground state is unstable to KBB. Chapter 6 expands the study to 3D: we argue that not only KBB preserves the topology but it could also explain the experimentally observed anomalously high Fermi velocity at the surface as the case of large KBB effect.

  8. Jamaican Call-In Radio: A Uses and Gratification Analysis.

    ERIC Educational Resources Information Center

    Surlin, Stuart H.

    Noting that radio call-in programs seem to contain the elements for active audience involvement and participation, a study was conducted to examine the hypothesis that information gain and surveillance are the primary gratifications sought through call-in radio programs, especially in a culture that has a strong oral tradition and relatively few…

  9. Investigation of cortical structures at Etna Volcano through the analysis of array and borehole data.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore

    2015-04-01

    A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.

  10. The linguistic and interactional factors impacting recognition and dispatch in emergency calls for out-of-hospital cardiac arrest: a mixed-method linguistic analysis study protocol.

    PubMed

    Riou, Marine; Ball, Stephen; Williams, Teresa A; Whiteside, Austin; O'Halloran, Kay L; Bray, Janet; Perkins, Gavin D; Cameron, Peter; Fatovich, Daniel M; Inoue, Madoka; Bailey, Paul; Brink, Deon; Smith, Karen; Della, Phillip; Finn, Judith

    2017-07-09

    Emergency telephone calls placed by bystanders are crucial to the recognition of out-of-hospital cardiac arrest (OHCA), fast ambulance dispatch and initiation of early basic life support. Clear and efficient communication between caller and call-taker is essential to this time-critical emergency, yet few studies have investigated the impact that linguistic factors may have on the nature of the interaction and the resulting trajectory of the call. This research aims to provide a better understanding of communication factors impacting on the accuracy and timeliness of ambulance dispatch. A dataset of OHCA calls and their corresponding metadata will be analysed from an interdisciplinary perspective, combining linguistic analysis and health services research. The calls will be transcribed and coded for linguistic and interactional variables and then used to answer a series of research questions about the recognition of OHCA and the delivery of basic life-support instructions to bystanders. Linguistic analysis of calls will provide a deeper understanding of the interactional dynamics between caller and call-taker which may affect recognition and dispatch for OHCA. Findings from this research will translate into recommendations for modifications of the protocols for ambulance dispatch and provide directions for further research. The study has been approved by the Curtin University Human Research Ethics Committee (HR128/2013) and the St John Ambulance Western Australia Research Advisory Group. Findings will be published in peer-reviewed journals and communicated to key audiences, including ambulance dispatch professionals. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Mobile Gaming and Student Interactions in a Science Center: The Future of Gaming in Science Education

    ERIC Educational Resources Information Center

    Atwood-Blaine, Dana; Huffman, Douglas

    2017-01-01

    This article explores the impact of an augmented reality iPad-based mobile game, called The Great STEM Caper, on students' interaction at a science center. An open-source, location-based game platform called ARIS (i.e. Augmented Reality and Interactive Storytelling) was used to create an iPad-based mobile game. The game used QR scan codes and a…

  12. Microbial Transformations of Nitrogen, Sulfur, and Iron Dictate Vegetation Composition in Wetlands: A Review

    PubMed Central

    Lamers, Leon P. M.; van Diggelen, Josepha M. H.; Op den Camp, Huub J. M.; Visser, Eric J. W.; Lucassen, Esther C. H. E. T.; Vile, Melanie A.; Jetten, Mike S. M.; Smolders, Alfons J. P.; Roelofs, Jan G. M.

    2012-01-01

    The majority of studies on rhizospheric interactions focus on pathogens, mycorrhizal symbiosis, or carbon transformations. Although the biogeochemical transformations of N, S, and Fe have profound effects on vegetation, these effects have received far less attention. This review, meant for microbiologists, biogeochemists, and plant scientists includes a call for interdisciplinary research by providing a number of challenging topics for future ecosystem research. Firstly, all three elements are plant nutrients, and microbial activity significantly changes their availability. Secondly, microbial oxidation with oxygen supplied by radial oxygen loss from roots in wetlands causes acidification, while reduction using alternative electron acceptors leads to generation of alkalinity, affecting pH in the rhizosphere, and hence plant composition. Thirdly, reduced species of all three elements may become phytotoxic. In addition, Fe cycling is tightly linked to that of S and P. As water level fluctuations are very common in wetlands, rapid changes in the availability of oxygen and alternative terminal electron acceptors will result in strong changes in the prevalent microbial redox reactions, with significant effects on plant growth. Depending on geological and hydrological settings, these interacting microbial transformations change the conditions and resource availability for plants, which are both strong drivers of vegetation development and composition by changing relative competitive strengths. Conversely, microbial composition is strongly driven by vegetation composition. Therefore, the combination of microbiological and plant ecological knowledge is essential to understand the biogeochemical and biological key factors driving heterogeneity and total (i.e., microorganisms and vegetation) community composition at different spatial and temporal scales. PMID:22539932

  13. Analysis of within Subjects Variability in Mouse Ultrasonic Vocalization: Pups Exhibit Inconsistent, State-Like Patterns of Call Production

    PubMed Central

    Rieger, Michael A.; Dougherty, Joseph D.

    2016-01-01

    Mice produce ultrasonic vocalizations (USV) in multiple communicative contexts, including adult social interaction (e.g., male to female courtship), as well as pup calls when separated from the dam. Assessment of pup USV has been widely applied in models of social and communicative disorders, dozens of which have shown alterations to this conserved behavior. However, features such as call production rate can vary substantially even within experimental groups and it is unclear to what extent aspects of USV represent stable trait-like influences or are vulnerable to an animal's state. To address this question, we have employed a mixed modeling approach to describe consistency in USV features across time, leveraging multiple large cohorts recorded from two strains, and across ages/times. We find that most features of pup USV show consistent patterns within a recording session, but inconsistent patterns across postnatal development. This supports the conclusion that pup USV is most strongly influenced by “state”-like variables. In contrast, adult USV call rate and call duration show higher consistency across sessions and may reflect a stable “trait.” However, spectral features of adult song such as the presence of pitch jumps do not show this level of consistency, suggesting that pitch modulation is more susceptible to factors affecting the animal's state at the time of recording. Overall, the utility of this work is three-fold. First, as variability necessarily affects the sensitivity of the assay to detect experimental perturbation, we hope the information provided here will be used to help researchers plan sufficiently powered experiments, as well as prioritize specific ages to study USV behavior and to decide which features to consider most strongly in analysis. Second, via the mouseTube platform, we have provided these hundreds of recordings and associated data to serve as a shared resource for other researchers interested in either benchmark data for these strains or in developing algorithms for studying features of mouse song. Finally, we hope that this work informs both interpretation of USV studies in models of developmental disorder, and helps to further research into understanding the neural processes that contribute to the production and predictability of USV behavior. PMID:27733819

  14. Slowing techniques for loading a magneto-optical trap of CaF molecules

    NASA Astrophysics Data System (ADS)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  15. Cross-modal individual recognition in wild African lions.

    PubMed

    Gilfillan, Geoffrey; Vitale, Jessica; McNutt, John Weldon; McComb, Karen

    2016-08-01

    Individual recognition is considered to have been fundamental in the evolution of complex social systems and is thought to be a widespread ability throughout the animal kingdom. Although robust evidence for individual recognition remains limited, recent experimental paradigms that examine cross-modal processing have demonstrated individual recognition in a range of captive non-human animals. It is now highly relevant to test whether cross-modal individual recognition exists within wild populations and thus examine how it is employed during natural social interactions. We address this question by testing audio-visual cross-modal individual recognition in wild African lions (Panthera leo) using an expectancy-violation paradigm. When presented with a scenario where the playback of a loud-call (roaring) broadcast from behind a visual block is incongruent with the conspecific previously seen there, subjects responded more strongly than during the congruent scenario where the call and individual matched. These findings suggest that lions are capable of audio-visual cross-modal individual recognition and provide a useful method for studying this ability in wild populations. © 2016 The Author(s).

  16. A comparison of acoustic montoring methods for common anurans of the northeastern United States

    USGS Publications Warehouse

    Brauer, Corinne; Donovan, Therese; Mickey, Ruth M.; Katz, Jonathan; Mitchell, Brian R.

    2016-01-01

    Many anuran monitoring programs now include autonomous recording units (ARUs). These devices collect audio data for extended periods of time with little maintenance and at sites where traditional call surveys might be difficult. Additionally, computer software programs have grown increasingly accurate at automatically identifying the calls of species. However, increased automation may cause increased error. We collected 435 min of audio data with 2 types of ARUs at 10 wetland sites in Vermont and New York, USA, from 1 May to 1 July 2010. For each minute, we determined presence or absence of 4 anuran species (Hyla versicolor, Pseudacris crucifer, Anaxyrus americanus, and Lithobates clamitans) using 1) traditional human identification versus 2) computer-mediated identification with software package, Song Scope® (Wildlife Acoustics, Concord, MA). Detections were compared with a data set consisting of verified calls in order to quantify false positive, false negative, true positive, and true negative rates. Multinomial logistic regression analysis revealed a strong (P < 0.001) 3-way interaction between the ARU recorder type, identification method, and focal species, as well as a trend in the main effect of rain (P = 0.059). Overall, human surveyors had the lowest total error rate (<2%) compared with 18–31% total errors with automated methods. Total error rates varied by species, ranging from 4% for A. americanus to 26% for L. clamitans. The presence of rain may reduce false negative rates. For survey minutes where anurans were known to be calling, the odds of a false negative were increased when fewer individuals of the same species were calling.

  17. Using CALL in the Classroom: Analyzing Student Interactions in an Authentic Classroom

    ERIC Educational Resources Information Center

    Hegelheimer, Volker; Tower, Dustin

    2004-01-01

    Recent CALL research has started to go beyond the comparison of CALL versus non-CALL environments to explore what learners do while going through CALL activities. One important strand within that area has focused on the use and utility of providing learners with opportunities to request modified input. While many studies have carried out research…

  18. Are Interactions between cis-Regulatory Variants Evidence for Biological Epistasis or Statistical Artifacts?

    PubMed

    Fish, Alexandra E; Capra, John A; Bush, William S

    2016-10-06

    The importance of epistasis-or statistical interactions between genetic variants-to the development of complex disease in humans has been controversial. Genome-wide association studies of statistical interactions influencing human traits have recently become computationally feasible and have identified many putative interactions. However, statistical models used to detect interactions can be confounded, which makes it difficult to be certain that observed statistical interactions are evidence for true molecular epistasis. In this study, we investigate whether there is evidence for epistatic interactions between genetic variants within the cis-regulatory region that influence gene expression after accounting for technical, statistical, and biological confounding factors. We identified 1,119 (FDR = 5%) interactions that appear to regulate gene expression in human lymphoblastoid cell lines, a tightly controlled, largely genetically determined phenotype. Many of these interactions replicated in an independent dataset (90 of 803 tested, Bonferroni threshold). We then performed an exhaustive analysis of both known and novel confounders, including ceiling/floor effects, missing genotype combinations, haplotype effects, single variants tagged through linkage disequilibrium, and population stratification. Every interaction could be explained by at least one of these confounders, and replication in independent datasets did not protect against some confounders. Assuming that the confounding factors provide a more parsimonious explanation for each interaction, we find it unlikely that cis-regulatory interactions contribute strongly to human gene expression, which calls into question the relevance of cis-regulatory interactions for other human phenotypes. We additionally propose several best practices for epistasis testing to protect future studies from confounding. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Small but wise: Common marmosets (Callithrix jacchus) use acoustic signals as cues to avoid interactions with blonde capuchin monkeys (Sapajus flavius).

    PubMed

    Bastos, Monique; Medeiros, Karolina; Jones, Gareth; Bezerra, Bruna

    2018-03-01

    Vocalizations are often used by animals to communicate and mediate social interactions. Animals may benefit from eavesdropping on calls from other species to avoid predation and thus increase their chances of survival. Here we use both observational and experimental evidence to investigate eavesdropping and how acoustic signals may mediate interactions between two sympatric and endemic primate species (common marmosets and blonde capuchin monkeys) in a fragment of Atlantic Rainforest in Northeastern Brazil. We observed 22 natural vocal encounters between the study species, but no evident visual or physical contact over the study period. These two species seem to use the same area throughout the day, but at different times. We broadcasted alarm and long distance calls to and from both species as well as two control stimuli (i.e., forest background noise and a loud call from an Amazonian primate) in our playback experiments. Common marmosets showed anti-predator behavior (i.e., vigilance and flight) when exposed to blonde capuchin calls both naturally and experimentally. However, blonde capuchin monkeys showed no anti-predator behavior in response to common marmoset calls. Blonde capuchins uttered long distance calls and looked in the direction of the speaker following exposure to their own long distance call, whereas they fled when exposed to their own alarm calls. Both blonde capuchin monkeys and common marmosets showed fear behaviors in response to the loud call from a primate species unknown to them, and showed no apparent response to the forest background noise. Common marmoset responses to blonde capuchin calls suggests that the latter is a potential predator. Furthermore, common marmosets appear to be eavesdropping on calls from blonde capuchin monkeys to avoid potentially costly encounters with them. © 2018 Wiley Periodicals, Inc.

  20. [Evaluation of our psycho-educative program by participating caregivers].

    PubMed

    Bier, J C; Van den Berge, D; de Wouters d'Oplinter, N; Bosman, N; Fery, P

    2010-09-01

    Facing difficulties due to dementia syndromes, systemic care is necessary. Amongst therapies assessed specifically to caregivers, psychoeducative steps seem to be the strongest effective one on neuropsychiatrics symptoms. Psychoeducations tend to teach the caregivers to modify their interactions with patients via a better understanding of illnesses and patients. Our training "Pour mieux vivre avec la maladie d'Alzheimer", applied in groups of eight to twelve persons, consists in twelve sessions of two hours each. To assure the biggest possible availability, we recently incorporated the concomitant coverage of patients into artistic workshops. These sessions of art-therapy realized in parallel to our psychoeducative program will thus be estimated according to the same rigorous methodology. The critical evaluations realized by participants at the end of our program reflect the outcome of our main objective (to teach to modify interactions with the patients) while contributing to the improvement of social contacts and to the learning of calling to existing helps. These preliminary results strongly argue for the pursuit and even extension of this kind of caregiver's management.

  1. Interaction between vitamin B6 metabolism, nitrogen metabolism and autoimmunity.

    PubMed

    Colinas, Maite; Fitzpatrick, Teresa B

    2016-01-01

    The essential micronutrient vitamin B6 is best known in its enzymatic cofactor form, pyridoxal 5'-phosphate (PLP). However, vitamin B6 comprises the amine pyridoxamine 5'-phosphate (PMP) and the alcohol pyridoxine 5'-phosphate (PNP) in addition to PLP, as well as their corresponding non-phosphorylated forms. The different B6 forms (called vitamers) are enzymatically interconverted in a ubiquitous salvage pathway. Recently, we have shown that balancing the ratio of the different B6 vitamers in particular PMP by the PMP/PNP oxidase PDX3 is essential for growth and development in Arabidopsis thaliana. Intriguingly, nitrate to ammonium conversion is impaired in pdx3 mutants, such that the mutants become ammonium-dependent, suggesting an interaction between vitamin B6 and nitrogen metabolism. In addition, we found a strong up-regulation of genes related to plant defense. Here, we further show that pdx3 mutants display a temperature-sensitive phenotype that is typical of autoimmune mutants and is possibly connected to the impaired nitrogen metabolism.

  2. From calls to communities: a model for time-varying social networks

    NASA Astrophysics Data System (ADS)

    Laurent, Guillaume; Saramäki, Jari; Karsai, Márton

    2015-11-01

    Social interactions vary in time and appear to be driven by intrinsic mechanisms that shape the emergent structure of social networks. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and small-world connectedness in social networks. We compare the proposed model with a real-world time-varying network of mobile phone communication, and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, including the role of weak ties.

  3. Interaction strength combinations and the overfishing of a marine food web.

    PubMed

    Bascompte, Jordi; Melián, Carlos J; Sala, Enric

    2005-04-12

    The stability of ecological communities largely depends on the strength of interactions between predators and their prey. Here we show that these interaction strengths are structured nonrandomly in a large Caribbean marine food web. Specifically, the cooccurrence of strong interactions on two consecutive levels of food chains occurs less frequently than expected by chance. Even when they occur, these strongly interacting chains are accompanied by strong omnivory more often than expected by chance. By using a food web model, we show that these interaction strength combinations reduce the likelihood of trophic cascades after the overfishing of top predators. However, fishing selectively removes predators that are overrepresented in strongly interacting chains. Hence, the potential for strong community-wide effects remains a threat.

  4. Interaction strength combinations and the overfishing of a marine food web

    PubMed Central

    Bascompte, Jordi; Melián, Carlos J.; Sala, Enric

    2005-01-01

    The stability of ecological communities largely depends on the strength of interactions between predators and their prey. Here we show that these interaction strengths are structured nonrandomly in a large Caribbean marine food web. Specifically, the cooccurrence of strong interactions on two consecutive levels of food chains occurs less frequently than expected by chance. Even when they occur, these strongly interacting chains are accompanied by strong omnivory more often than expected by chance. By using a food web model, we show that these interaction strength combinations reduce the likelihood of trophic cascades after the overfishing of top predators. However, fishing selectively removes predators that are overrepresented in strongly interacting chains. Hence, the potential for strong community-wide effects remains a threat. PMID:15802468

  5. Vocal communication in a complex multi-level society: constrained acoustic structure and flexible call usage in Guinea baboons.

    PubMed

    Maciej, Peter; Ndao, Ibrahima; Hammerschmidt, Kurt; Fischer, Julia

    2013-09-23

    To understand the evolution of acoustic communication in animals, it is important to distinguish between the structure and the usage of vocal signals, since both aspects are subject to different constraints. In terrestrial mammals, the structure of calls is largely innate, while individuals have a greater ability to actively initiate or withhold calls. In closely related taxa, one would therefore predict a higher flexibility in call usage compared to call structure. In the present study, we investigated the vocal repertoire of free living Guinea baboons (Papio papio) and examined the structure and usage of the animals' vocal signals. Guinea baboons live in a complex multi-level social organization and exhibit a largely tolerant and affiliative social style, contrary to most other baboon taxa. To classify the vocal repertoire of male and female Guinea baboons, cluster analyses were used and focal observations were conducted to assess the usage of vocal signals in the particular contexts. In general, the vocal repertoire of Guinea baboons largely corresponded to the vocal repertoire other baboon taxa. The usage of calls, however, differed considerably from other baboon taxa and corresponded with the specific characteristics of the Guinea baboons' social behaviour. While Guinea baboons showed a diminished usage of contest and display vocalizations (a common pattern observed in chacma baboons), they frequently used vocal signals during affiliative and greeting interactions. Our study shows that the call structure of primates is largely unaffected by the species' social system (including grouping patterns and social interactions), while the usage of calls can be more flexibly adjusted, reflecting the quality of social interactions of the individuals. Our results support the view that the primary function of social signals is to regulate social interactions, and therefore the degree of competition and cooperation may be more important to explain variation in call usage than grouping patterns or group size.

  6. Vocal communication in a complex multi-level society: constrained acoustic structure and flexible call usage in Guinea baboons

    PubMed Central

    2013-01-01

    Background To understand the evolution of acoustic communication in animals, it is important to distinguish between the structure and the usage of vocal signals, since both aspects are subject to different constraints. In terrestrial mammals, the structure of calls is largely innate, while individuals have a greater ability to actively initiate or withhold calls. In closely related taxa, one would therefore predict a higher flexibility in call usage compared to call structure. In the present study, we investigated the vocal repertoire of free living Guinea baboons (Papio papio) and examined the structure and usage of the animals’ vocal signals. Guinea baboons live in a complex multi-level social organization and exhibit a largely tolerant and affiliative social style, contrary to most other baboon taxa. To classify the vocal repertoire of male and female Guinea baboons, cluster analyses were used and focal observations were conducted to assess the usage of vocal signals in the particular contexts. Results In general, the vocal repertoire of Guinea baboons largely corresponded to the vocal repertoire other baboon taxa. The usage of calls, however, differed considerably from other baboon taxa and corresponded with the specific characteristics of the Guinea baboons’ social behaviour. While Guinea baboons showed a diminished usage of contest and display vocalizations (a common pattern observed in chacma baboons), they frequently used vocal signals during affiliative and greeting interactions. Conclusions Our study shows that the call structure of primates is largely unaffected by the species’ social system (including grouping patterns and social interactions), while the usage of calls can be more flexibly adjusted, reflecting the quality of social interactions of the individuals. Our results support the view that the primary function of social signals is to regulate social interactions, and therefore the degree of competition and cooperation may be more important to explain variation in call usage than grouping patterns or group size. PMID:24059742

  7. [Exercise for prevention of osteoporosis and other lifestyle-related diseases].

    PubMed

    Suzuki, Takao

    2011-05-01

    The prevalence of lifestyle-related diseases including hypertension, dyslipidemia (hyperlipidemia) and diabetes increases with aging, and all these conditions are risk factors of arteriosclerotic diseases such as cerebrovascular event (stroke) and myocardial infarction. The term "metabolic domino" has been used to describe the collective concept of the development and progression of these lifestyle-related diseases, the sequence of events, and the progression process of complications. Like the first tile of a domino toppling game, undesirable lifestyle such as overeating and underexercising first triggers obesity, and is followed in succession by onset of an insulin resistance state (underlied by a genetic background indigenous to Japanese) , hypertension, hyperlipidemia, and further postprandial hyperglycemia (the pre-diabetic state) , the so-called metabolic syndrome, at around the same time. On the other hand, apart from the other lifestyle-related diseases, the prevalence of osteoporosis also increases rapidly accompanying aging. Osteoporosis is known to be strongly related to disorders due to the metabolic domino such as arteriosclerosis and vascular calcification, and a new disease category called "osteo-vascular interaction" has attracted attention recently. Regarding "osteo-vascular interaction" , a close relation between bone density loss or osteoporotic changes and vascular lesion-associated lifestyle-related diseases such as hypertension, dyslipidemia and diabetes has been reported. Therefore, as a common preventive factor for bone mass loss or osteoporosis and lifestyle-related diseases including hypertension, dyslipidemia and diabetes (osteo-vascular interaction) , exercise has been recognized anew as an important non-pharmaceutical therapy that should take top priority. This article overviews the evidence of exercise therapy for the prevention of osteoporosis and other lifestyle-related diseases, from the viewpoint of health promotion, especially of the skeletal system (motor system) .

  8. We must know. We will know

    NASA Astrophysics Data System (ADS)

    Sanchis-Lozano, Miguel-Angel

    2011-05-01

    The after-dinner talk has by now become a tradition of this Conference series on Quark Confinement and the Hadron Spectrum. On this occasion, I have tried to combine a free-style and (hopefully) amusing presentation with deep questions of physics especially connected with the dynamics of strong interaction. To this end some masterpieces of classical music (by Beethoven, Mozart, Dvorak, Stravinsky …) and pop music (by Bob Dylan, Eric Clapton) were employed to illustrate certain aspects of physics. By no means was this presentation (neither this paper) intended as a comprehensive review of the different topics examined during the Conference, but rather as a call for further thinking on the sinergy of different branches of physics and the excitement of foreseen discoveries in a not too distant future.

  9. Complex Dark Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  10. Galaxy properties and the cosmic web in simulations

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda; Crain, Robert A.; Theuns, Tom

    2015-01-01

    We seek to understand the relationship between galaxy properties and their local environment, which calls for a proper formulation of the notion of environment. We analyse the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological hydrodynamical simulations within the framework of the cosmic web as formulated by Hoffman et al., focusing on properties of simulated dark matter haloes and luminous galaxies with respect to voids, sheets, filaments, and knots - the four elements of the cosmic web. We find that the mass functions of haloes depend on environment, which drives other environmental dependence of galaxy formation. The web shapes the halo mass function, and through the strong dependence of the galaxy properties on the mass of their host haloes, it also shapes the galaxy-(web) environment dependence.

  11. Spitzer Sees Water Loud and Clear

    NASA Image and Video Library

    2007-08-29

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B. The data were captured by NASA Spitzer Space Telescope.

  12. Nonequilibrium Quantum Simulation in Circuit QED

    NASA Astrophysics Data System (ADS)

    Raftery, James John

    Superconducting circuits have become a leading architecture for quantum computing and quantum simulation. In particular, the circuit QED framework leverages high coherence qubits and microwave resonators to construct systems realizing quantum optics models with exquisite precision. For example, the Jaynes-Cummings model has been the focus of significant theoretical interest as a means of generating photon-photon interactions. Lattices of such strongly correlated photons are an exciting new test bed for exploring non-equilibrium condensed matter physics such as dissipative phase transitions of light. This thesis covers a series of experiments which establish circuit QED as a powerful tool for exploring condensed matter physics with photons. The first experiment explores the use of ultra high speed arbitrary waveform generators for the direct digital synthesis of complex microwave waveforms. This new technique dramatically simplifies the classical control chain for quantum experiments and enables high bandwidth driving schemes expected to be essential for generating interesting steady-states and dynamical behavior. The last two experiments explore the rich physics of interacting photons, with an emphasis on small systems where a high degree of control is possible. The first experiment realizes a two-site system called the Jaynes-Cummings dimer, which undergoes a self-trapping transition where the strong photon-photon interactions block photon hopping between sites. The observation of this dynamical phase transition and the related dissipation-induced transition are key results of this thesis. The final experiment augments the Jaynes-Cummings dimer by redesigning the circuit to include in-situ control over photon hopping between sites using a tunable coupler. This enables the study of the dimer's localization transition in the steady-state regime.

  13. Collaborative Educational Leadership: The Emergence of Human Interactional Sense-Making Process as a Complex System

    ERIC Educational Resources Information Center

    Jäppinen, Aini-Kristiina

    2014-01-01

    The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…

  14. Analyzing Conceptual Gains in Introductory Calculus with Interactively-Engaged Teaching Styles

    ERIC Educational Resources Information Center

    Thomas, Matthew

    2013-01-01

    This dissertation examines the relationship between an instructional style called Interactive-Engagement (IE) and gains on a measure of conceptual knowledge called the Calculus Concept Inventory (CCI). The data comes from two semesters of introductory calculus courses (Fall 2010 and Spring 2011), consisting of a total of 482 students from the…

  15. An Interactional Model of the Call for Survey Participation

    PubMed Central

    Schaeffer, Nora Cate; Garbarski, Dana; Freese, Jeremy; Maynard, Douglas W.

    2013-01-01

    Previous research has proposed that the actions of sample members may provide encouraging, discouraging, or ambiguous interactional environments for interviewers soliciting participation in surveys. In our interactional model of the recruitment call that brings together the actions of interviewers and sample members, we examine features of actions that may contribute to an encouraging or discouraging environment in the opening moments of the call. Using audio recordings from the 2004 wave of the Wisconsin Longitudinal Study and an innovative design that controls for sample members’ estimated propensity to participate in the survey, we analyze an extensive set of interviewers’ and sample members’ actions, the characteristics of those actions, and their sequential location in the interaction. We also analyze whether a sample member’s subsequent actions (e.g., a question about the length of the interview or a “wh-type” question) constitute an encouraging, discouraging, or ambiguous environment within which the interviewer must produce her next action. Our case-control design allows us to analyze the consequences of actions for the outcome of the call. PMID:24976648

  16. Interplay between telecommunications and face-to-face interactions: a study using mobile phone data.

    PubMed

    Calabrese, Francesco; Smoreda, Zbigniew; Blondel, Vincent D; Ratti, Carlo

    2011-01-01

    In this study we analyze one year of anonymized telecommunications data for over one million customers from a large European cellphone operator, and we investigate the relationship between people's calls and their physical location. We discover that more than 90% of users who have called each other have also shared the same space (cell tower), even if they live far apart. Moreover, we find that close to 70% of users who call each other frequently (at least once per month on average) have shared the same space at the same time--an instance that we call co-location. Co-locations appear indicative of coordination calls, which occur just before face-to-face meetings. Their number is highly predictable based on the amount of calls between two users and the distance between their home locations--suggesting a new way to quantify the interplay between telecommunications and face-to-face interactions.

  17. Interplay between Telecommunications and Face-to-Face Interactions: A Study Using Mobile Phone Data

    PubMed Central

    Calabrese, Francesco; Smoreda, Zbigniew; Blondel, Vincent D.; Ratti, Carlo

    2011-01-01

    In this study we analyze one year of anonymized telecommunications data for over one million customers from a large European cellphone operator, and we investigate the relationship between people's calls and their physical location. We discover that more than 90% of users who have called each other have also shared the same space (cell tower), even if they live far apart. Moreover, we find that close to 70% of users who call each other frequently (at least once per month on average) have shared the same space at the same time - an instance that we call co-location. Co-locations appear indicative of coordination calls, which occur just before face-to-face meetings. Their number is highly predictable based on the amount of calls between two users and the distance between their home locations - suggesting a new way to quantify the interplay between telecommunications and face-to-face interactions. PMID:21765888

  18. Direct Measurements of Energy Transfer between Hot Protons and He+ via EMIC Waves Observed by MMS in the Outer Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D. J.; Vinas, A. F.; Giles, B. L.; Moore, T. E.; Paterson, W.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Fuselier, S. A.; Burch, J. L.

    2017-12-01

    Wave-particle interactions have been suggested to play a crucial role in energy transfer in collisionless space plasmas in which the motion of charged particles is controlled by electromagnetic fields. Using an electromagnetic ion cyclotron (EMIC) wave event observed by MMS, we investigate energy transfer between ions and EMIC waves via cyclotron type interactions. To directly detect energy exchange between ions and EMIC waves, we apply the Wave-Particle Interaction Analyzer (WPIA) method that is to calculate the dot product between the wave electric field (Ewave) and ion current perpendicular to the background magnetic field (j). In the cases of resonance, this current is called the resonant current. Near the beginning of the wave event, 15-second averages of j • Ewave reached -0.3 pW/m3 for ions with energies of 14-30 keV and pitch angles of 33.25°-78.75°. The negative value in this pitch angle range indicates that the perpendicular energy of ions was being transferred to the EMIC waves propagating toward Southern higher latitudes at the MMS location by cyclotron resonance. Ion data show non-gyrotropic distributions around the resonance velocity, and that is consistent with the nonlinear trapping of protons by the wave and formation of an electromagnetic proton hole. Near the beginning of the same wave event, strongly phase bunched He+ up to 2 keV with pitch angles slightly larger than 90° were also detected. A positive j • Ewave for the phase bunched He+ indicates that the He+ was being accelerated by the electric field of the EMIC waves. The observed feature of He+ ions is consistent with non-resonant interaction with the wave but is inconsistent with cyclotron resonance. Significantly non-gyrotropic distributions observed in this event demonstrate that different particle populations can strongly couple through wave-particle interactions in the collisionless plasma.

  19. Perceived Synchrony of Frog Multimodal Signal Components Is Influenced by Content and Order.

    PubMed

    Taylor, Ryan C; Page, Rachel A; Klein, Barrett A; Ryan, Michael J; Hunter, Kimberly L

    2017-10-01

    Multimodal signaling is common in communication systems. Depending on the species, individual signal components may be produced synchronously as a result of physiological constraint (fixed) or each component may be produced independently (fluid) in time. For animals that rely on fixed signals, a basic prediction is that asynchrony between the components should degrade the perception of signal salience, reducing receiver response. Male túngara frogs, Physalaemus pustulosus, produce a fixed multisensory courtship signal by vocalizing with two call components (whines and chucks) and inflating a vocal sac (visual component). Using a robotic frog, we tested female responses to variation in the temporal arrangement between acoustic and visual components. When the visual component lagged a complex call (whine + chuck), females largely rejected this asynchronous multisensory signal in favor of the complex call absent the visual cue. When the chuck component was removed from one call, but the robofrog inflation lagged the complex call, females responded strongly to the asynchronous multimodal signal. When the chuck component was removed from both calls, females reversed preference and responded positively to the asynchronous multisensory signal. When the visual component preceded the call, females responded as often to the multimodal signal as to the call alone. These data show that asynchrony of a normally fixed signal does reduce receiver responsiveness. The magnitude and overall response, however, depend on specific temporal interactions between the acoustic and visual components. The sensitivity of túngara frogs to lagging visual cues, but not leading ones, and the influence of acoustic signal content on the perception of visual asynchrony is similar to those reported in human psychophysics literature. Virtually all acoustically communicating animals must conduct auditory scene analyses and identify the source of signals. Our data suggest that some basic audiovisual neural integration processes may be at work in the vertebrate brain. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.

  20. Perspectives of Nurses on Patients With Limited English Proficiency and Their Call Light Use.

    PubMed

    Galinato, Jose; Montie, Mary; Shuman, Clayton; Patak, Lance; Titler, Marita

    2016-08-12

    Patients use call light systems to initiate communication with their health care team. Little is known how this process is affected when language barriers exist between an English-speaking nurse and a patient with limited English proficiency (LEP). The aims of this study are to describe (a) the perceptions of nurses regarding their communication with patients with LEP, (b) how call lights affect their communication with patients with LEP, and (c) the perceptions of nurses on the impact of advancement in call light technology on patients with LEP. Using focus groups, nurses were asked about their interactions with patients with LEP. The following themes emerged: barriers to communication, formal tools for communication, gestures and charades, reliance on family, creating a better call light system, and acceptability of Eloquence™. This results show that call lights affect the interaction of nurses with patients with LEP and complex issues arise in the subsequent communication that is initiated by the call light.

  1. Perspectives of Nurses on Patients With Limited English Proficiency and Their Call Light Use

    PubMed Central

    Galinato, Jose; Montie, Mary; Shuman, Clayton; Patak, Lance; Titler, Marita

    2016-01-01

    Patients use call light systems to initiate communication with their health care team. Little is known how this process is affected when language barriers exist between an English-speaking nurse and a patient with limited English proficiency (LEP). The aims of this study are to describe (a) the perceptions of nurses regarding their communication with patients with LEP, (b) how call lights affect their communication with patients with LEP, and (c) the perceptions of nurses on the impact of advancement in call light technology on patients with LEP. Using focus groups, nurses were asked about their interactions with patients with LEP. The following themes emerged: barriers to communication, formal tools for communication, gestures and charades, reliance on family, creating a better call light system, and acceptability of Eloquence™. This results show that call lights affect the interaction of nurses with patients with LEP and complex issues arise in the subsequent communication that is initiated by the call light. PMID:28393085

  2. Studies in High Energy Heavy Ion Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Gerald W.; Markert, Christina

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STARmore » at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or "decay" into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled conditions of the collisions provides another test of theory. Our results provide unambiguous evidence that the briefly existing hot, dense matter has strong effects on the measurements and indicate that the matter is best described in terms of the fundamental quarks and gluons, that its internal interactions are surprisingly strong, and that new and never before seen strong interaction processes are occurring which remain to be explained theoretically. To enable these studies our group has also made substantial contributions to the detection capabilities of the STAR experiment. These contributions were to the electronics required to "read out" the weak electrical signals from the detectors and transfer the raw data to offline computers for processing. Although this experimental program is now concluded, the resonance and correlation results we have extracted from the raw collision data will continue to challenge and perhaps guide theoretical developments of the strong nuclear force for many years to come.« less

  3. Spin-orbit qubit in a semiconductor nanowire.

    PubMed

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  4. Hox Proteins Display a Common and Ancestral Ability to Diversify Their Interaction Mode with the PBC Class Cofactors

    PubMed Central

    Hudry, Bruno; Remacle, Sophie; Delfini, Marie-Claire; Rezsohazy, René; Graba, Yacine; Merabet, Samir

    2012-01-01

    Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX). This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC) assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes. PMID:22745600

  5. Strangeon and Strangeon Star

    NASA Astrophysics Data System (ADS)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  6. Exploring relationship between face-to-face interaction and team performance using wearable sensor badges.

    PubMed

    Watanabe, Jun-ichiro; Ishibashi, Nozomu; Yano, Kazuo

    2014-01-01

    Quantitative analyses of human-generated data collected in various fields have uncovered many patterns of complex human behaviors. However, thus far the quantitative evaluation of the relationship between the physical behaviors of employees and their performance has been inadequate. Here, we present findings demonstrating the significant relationship between the physical behaviors of employees and their performance via experiments we conducted in inbound call centers while the employees wore sensor badges. There were two main findings. First, we found that face-to-face interaction among telecommunicators and the frequency of their bodily movements caused by the face-to-face interaction had a significant correlation with the entire call center performance, which we measured as "Calls per Hour." Second, our trial to activate face-to-face interaction on the basis of data collected by the wearable sensor badges the employees wore significantly increased their performance. These results demonstrate quantitatively that human-human interaction in the physical world plays an important role in team performance.

  7. Exploring Relationship between Face-to-Face Interaction and Team Performance Using Wearable Sensor Badges

    PubMed Central

    Watanabe, Jun-ichiro; Ishibashi, Nozomu; Yano, Kazuo

    2014-01-01

    Quantitative analyses of human-generated data collected in various fields have uncovered many patterns of complex human behaviors. However, thus far the quantitative evaluation of the relationship between the physical behaviors of employees and their performance has been inadequate. Here, we present findings demonstrating the significant relationship between the physical behaviors of employees and their performance via experiments we conducted in inbound call centers while the employees wore sensor badges. There were two main findings. First, we found that face-to-face interaction among telecommunicators and the frequency of their bodily movements caused by the face-to-face interaction had a significant correlation with the entire call center performance, which we measured as “Calls per Hour.” Second, our trial to activate face-to-face interaction on the basis of data collected by the wearable sensor badges the employees wore significantly increased their performance. These results demonstrate quantitatively that human-human interaction in the physical world plays an important role in team performance. PMID:25501748

  8. Can treefrog phylogeographical clades and species’ phylogenetic topologies be recovered by bioacoustical analyses?

    PubMed Central

    Forti, Lucas Rodriguez; Lingnau, Rodrigo; Encarnação, Lais Carvalho; Bertoluci, Jaime; Toledo, Luís Felipe

    2017-01-01

    Phenotypic traits, such as the frog advertisement call, are generally correlated with interspecific genetic variation, and, as a consequence of strong sexual selection, these behaviors may carry a phylogenetic signal. However, variation in acoustic traits is not always correlated with genetic differences between populations (intraspecific variation); phenotypic plasticity and environmental variables may explain part of such variation. For example, local processes can affect acoustic properties in different lineages due to differences in physical structure, climatic conditions, and biotic interactions, particularly when populations are isolated. However, acoustic traits can be used to test phylogenetic hypotheses. We analyzed the advertisement calls of Dendropsophus elegans males from 18 sites and compared them with those of four closely related congeneric species, in order to test for differences between inter and intraspecific variation. We analyzed 451 calls of 45 males of these five species. Because males from distant sites were grouped together without population congruence, differences found in advertisement calls among individuals were not correlated with phylogeographical clades. Phylogenetic and cluster analyses of the D. elegans clades and those of closely related species grouped all five species into the same topology, as reported by previous molecular and morphological phylogenies. However, the topology of the D. elegans phylogeographical clades did not match the topology previously reported. Acoustic communication in D. elegans seems to be conserved among populations, and the phylogeographical history of the species does not explain the variation among lineages in call properties, despite some congruent phylogenetic signals evident at the species level. Based on molecular clocks retrieved from the literature, it seems that more than 6.5 million years of divergence (late Miocene) are necessary to allow significant changes to occur in the acoustic properties of these treefrog calls, making it possible to recover their phylogenetic history only based on acoustic evidence. PMID:28235089

  9. Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles; Braun, Douglas

    2017-06-01

    The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called "p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.

  10. Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting.

    PubMed

    Lindsey, Charles; Braun, Douglas

    2017-06-01

    The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called " p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.

  11. Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  12. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  13. Engaging technology-resistant elderly people: Empirical evidence from an ICT-enabled social environment.

    PubMed

    Papa, Filomena; Cornacchia, Michele; Sapio, Bartolomeo; Nicolò, Enrico

    2017-01-01

    This paper presents a qualitative investigation on user reactions, opinions, and sentiments about a TV-based technological solution developed within the EasyReach Project of the EU Ambient Assisted Living Joint Program to promote social interaction of less educated elderly people, that is, those individuals who, because of poor scholarization, low income, and, possibly, linguistic barriers, still find it difficult to use computers in order to improve their socialization. Experimental data were collected by extensive trials involving 40 real-end users. A methodology called "scenario engagement" was applied to get participants engaged in a live demonstration with the mediation of a facilitator who assisted elderly people to interact with the system. Results point out that the system can be effectively employed to foster social interaction, particularly when it is introduced in a collective use environment (e.g., Senior Center). Although the focus of the investigation was on information and communication technology-enabled social environments, the end users themselves strongly suggested to include in future system releases extra functions considered as essential opportunities for their potential digital lives: that is, medical or health services and bridges toward public administration.

  14. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    PubMed Central

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  15. EEG Correlates of Song Prosody: A New Look at the Relationship between Linguistic and Musical Rhythm

    PubMed Central

    Gordon, Reyna L.; Magne, Cyrille L.; Large, Edward W.

    2011-01-01

    Song composers incorporate linguistic prosody into their music when setting words to melody, a process called “textsetting.” Composers tend to align the expected stress of the lyrics with strong metrical positions in the music. The present study was designed to explore the idea that temporal alignment helps listeners to better understand song lyrics by directing listeners’ attention to instances where strong syllables occur on strong beats. Three types of textsettings were created by aligning metronome clicks with all, some or none of the strong syllables in sung sentences. Electroencephalographic recordings were taken while participants listened to the sung sentences (primes) and performed a lexical decision task on subsequent words and pseudowords (targets, presented visually). Comparison of misaligned and well-aligned sentences showed that temporal alignment between strong/weak syllables and strong/weak musical beats were associated with modulations of induced beta and evoked gamma power, which have been shown to fluctuate with rhythmic expectancies. Furthermore, targets that followed well-aligned primes elicited greater induced alpha and beta activity, and better lexical decision task performance, compared with targets that followed misaligned and varied sentences. Overall, these findings suggest that alignment of linguistic stress and musical meter in song enhances musical beat tracking and comprehension of lyrics by synchronizing neural activity with strong syllables. This approach may begin to explain the mechanisms underlying the relationship between linguistic and musical rhythm in songs, and how rhythmic attending facilitates learning and recall of song lyrics. Moreover, the observations reported here coincide with a growing number of studies reporting interactions between the linguistic and musical dimensions of song, which likely stem from shared neural resources for processing music and speech. PMID:22144972

  16. Implications of Research on Human Memory for CALL Design.

    ERIC Educational Resources Information Center

    Forester, Lee

    2002-01-01

    Offers a brief overview of what is generally accepted about how human memory works as it applied to computer assisted language learning (CALL). Discusses a number of interactions from various CALL products in light of the research summarized. (Author/VWL)

  17. State of the Lab Address

    ScienceCinema

    King, Alex

    2018-05-07

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  18. State of the Lab Address

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  19. Sexual selection drives speciation in an Amazonian frog

    USGS Publications Warehouse

    Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.

    2007-01-01

    One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.

  20. Universal charge relaxation resistance and electrochemical capacitance suppression in an interacting coherent capacitor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Guo, Huazhong; He, Jianhong; Gao, Jie

    2018-05-01

    We have measured the dynamic admittance of an interacting coherent capacitor in the quantum Hall regime. Our experiments demonstrate that, in the fully coherent regime, the charge relaxation resistance is universal and independent of the transmission even in the presence of strong charge interactions. Conversely, we observe strong suppression of the electrochemical capacitance, which is related to the density of states of the charge excitations due to strong interactions. Our experiments form the building blocks for the realization of electron quantum optics experiments with strong charge interactions, and they should prove useful for quantum bits in interacting ballistic conductors.

  1. Improving Refill Adherence in Medicare Patients With Tailored and Interactive Mobile Text Messaging: Pilot Study

    PubMed Central

    Jeong, Erwin W; Feger, Erin; Noble, Harmony K; Kmiec, Magdalen; Prayaga, Ram S

    2018-01-01

    Background Nonadherence is a major concern in the management of chronic conditions such as hypertension, cardiovascular disease, and diabetes where patients may discontinue or interrupt their medication for a variety of reasons. Text message reminders have been used to improve adherence. However, few programs or studies have explored the benefits of text messaging with older populations and at scale. In this paper, we present a program design using tailored and interactive text messaging to improve refill rates of partially adherent or nonadherent Medicare members of a large integrated health plan. Objective The aim of this 3-month program was to gain an understanding of whether tailored interactive text message dialogues could be used to improve medication refills in Medicare patients with one or more chronic diseases. Methods We used the mPulse Mobile interactive text messaging solution with partially adherent and nonadherent Medicare patients (ie, over age 65 years or younger with disabilities) of Kaiser Permanente Southern California (KP), a large integrated health plan, and compared refill rates of the text messaging group (n=12,272) to a group of partially adherent or nonadherent Medicare patients at KP who did not receive text messages (nontext messaging group, n=76,068). Both groups were exposed to other forms of refill and adherence outreach including phone calls, secure emails, and robo-calls from December 2016 to February 2017. Results The text messaging group and nontext messaging group were compared using an independent samples t test to test difference in group average of refill rates. There was a significant difference in medication refill rates between the 2 groups, with a 14.07 percentage points higher refill rate in the text messaging group (P<.001). Conclusions The results showed a strong benefit of using this text messaging solution to improve medication refill rates among Medicare patients. These findings also support using interactive text messaging as a cost-effective, convenient, and user-friendly solution for patient engagement. Program outcomes and insights can be used to enhance the design of future text-based solutions to improve health outcomes and promote adherence and long-term behavior change. PMID:29382623

  2. GASP. III. JO36: A Case of Multiple Environmental Effects at Play?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Jacopo; Bruzual, Gustavo; Cervantes Sodi, Bernardo

    The so-called jellyfish galaxies are objects exhibiting disturbed morphology, mostly in the form of tails of gas stripped from the main body of the galaxy. Several works have strongly suggested ram pressure stripping to be the mechanism driving this phenomenon. Here, we focus on one of these objects, drawn from a sample of optically selected jellyfish galaxies, and use it to validate sinopsis, the spectral fitting code that will be used for the analysis of the GASP (GAs Stripping Phenomena in galaxies with MUSE) survey, and study the spatial distribution and physical properties of the gas and stellar populations inmore » this galaxy. We compare the model spectra to those obtained with gandalf, a code with similar features widely used to interpret the kinematics of stars and gas in galaxies from IFU data. We find that sinopsis can reproduce the pixel-by-pixel spectra of this galaxy at least as well as gandalf does, providing reliable estimates of the underlying stellar absorption to properly correct the nebular gas emission. Using these results, we find strong evidences of a double effect of ram pressure exerted by the intracluster medium onto the gas of the galaxy. A moderate burst of star formation, dating between 20 and 500 Myr ago and involving the outer parts of the galaxy more strongly than the inner regions, was likely induced by a first interaction of the galaxy with the intracluster medium. Stripping by ram pressure, plus probable gas depletion due to star formation, contributed to create a truncated ionized gas disk. The presence of an extended stellar tail on only one side of the disk points instead to another kind of process, likely gravitational interaction by a fly-by or a close encounter with another galaxy in the cluster.« less

  3. GASP. III. JO36: A Case of Multiple Environmental Effects at Play?

    NASA Astrophysics Data System (ADS)

    Fritz, Jacopo; Moretti, Alessia; Gullieuszik, Marco; Poggianti, Bianca; Bruzual, Gustavo; Vulcani, Benedetta; Nicastro, Fabrizio; Jaffé, Yara; Cervantes Sodi, Bernardo; Bettoni, Daniela; Biviano, Andrea; Fasano, Giovanni; Charlot, Stéphane; Bellhouse, Callum; Hau, George

    2017-10-01

    The so-called jellyfish galaxies are objects exhibiting disturbed morphology, mostly in the form of tails of gas stripped from the main body of the galaxy. Several works have strongly suggested ram pressure stripping to be the mechanism driving this phenomenon. Here, we focus on one of these objects, drawn from a sample of optically selected jellyfish galaxies, and use it to validate sinopsis, the spectral fitting code that will be used for the analysis of the GASP (GAs Stripping Phenomena in galaxies with MUSE) survey, and study the spatial distribution and physical properties of the gas and stellar populations in this galaxy. We compare the model spectra to those obtained with gandalf, a code with similar features widely used to interpret the kinematics of stars and gas in galaxies from IFU data. We find that sinopsis can reproduce the pixel-by-pixel spectra of this galaxy at least as well as gandalf does, providing reliable estimates of the underlying stellar absorption to properly correct the nebular gas emission. Using these results, we find strong evidences of a double effect of ram pressure exerted by the intracluster medium onto the gas of the galaxy. A moderate burst of star formation, dating between 20 and 500 Myr ago and involving the outer parts of the galaxy more strongly than the inner regions, was likely induced by a first interaction of the galaxy with the intracluster medium. Stripping by ram pressure, plus probable gas depletion due to star formation, contributed to create a truncated ionized gas disk. The presence of an extended stellar tail on only one side of the disk points instead to another kind of process, likely gravitational interaction by a fly-by or a close encounter with another galaxy in the cluster.

  4. On the Strong Direct Summand Conjecture

    ERIC Educational Resources Information Center

    McCullough, Jason

    2009-01-01

    In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in…

  5. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  6. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods.

    PubMed

    Fišer, Žiga; Novak, Luka; Luštrik, Roman; Fišer, Cene

    2016-02-01

    Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.

  7. Vocalizations of eight species of Atelopus (Anura: Bufonidae) with comments on communication in the genus

    USGS Publications Warehouse

    Cocroft, R.B.; McDiarmid, R.W.; Jaslow, A.P.; Ruiz-Carranza, P.M.

    1990-01-01

    Vocalizations of frogs of the genus Atelopus include three discrete types of signals: pulsed calls, pure tone calls, and short calls. Repertoire composition is conservative across species. Repertoires of most species whose calls have been recorded contain two or three of these identifiable call types. Within a call type, details of call structure are very similar across species. This apparent lack of divergence in calls may be related to the rarity of sympatry among species of Atelopus and to the relative importance of visual communication in their social interactions.

  8. Individual calling to the feeding station can reduce agonistic interactions and lesions in group housed sows.

    PubMed

    Kirchner, J; Manteuffel, G; Schrader, L

    2012-12-01

    In this study we used a new call feeding station, which enabled sows to learn that they have access to feed only after an individual acoustic signal was given. We tested whether this call feeding station is able to reduce agonistic interactions between sows and whether effects of call feeding can further be improved by enrichment. A total of 85 gestating sows were kept in a dynamic group in a large waiting area (207 m²) equipped with littered laying areas and an outside area. During a control treatment sows were fed in a normal electronic feeding station once a day (NF1-). Before testing the call feeding station sows had been conditioned for an acoustic signal (a trisyllabic "name") and learned that they were allowed to enter the feeding station only after their name was called. In the call feeding station sows were fed either once (CF1-) or twice a day (CF2-). In addition, we tested for effects of further enrichment such as straw in the activity area (CF2+). Agonistic behaviors and number of sows were observed by video in continuous recording from 0600 to 1800 h in an area (4 by 3.25 m) in front of the feeding station in periods of 4 d (NF1- = 7 periods, CF1- = 5 periods, CF2- = 3 periods, and CF2+ = 4 periods) and analyzed using mixed models. During each observation period sows were scored for wounds and body lesions at different body parts. From 0600 to 1100 h the proportion of agonistic interactions was much greater in the feeding mode NF1- compared with CF1- (feeding mode × time of day: P < 0.001) and in CF1- agonistic interactions were on a low level throughout the whole feeding cycle. The feeding frequency and the additional presence of straw in the activity area did not affect the proportion of agonistic interactions (all P > 0.05). The results on the number of sows in front of the feeding station mirrored the findings for agonistic interactions. In NF1- more sows were involved in agonistic interactions compared with CF1- (83.1 ± 12.9% vs. 61.5 ± 19.6%; P = 0.005) but there was no difference between the call feeding station (CF) treatments. The number of severe lesions was greater at the head (P = 0.014) and the flank (P = 0.006) but not at the shoulders (P = 0.057) and the hindquarter (P = 0.426) in NF1- compared with CF1-. The results suggest that signaling the feeding time individually increases the predictability for access to the feeding station and consequently reduces competition between sows.

  9. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.

  10. The Oncoprotein Tax Binds the SRC-1-Interacting Domain of CBP/p300 To Mediate Transcriptional Activation

    PubMed Central

    Scoggin, Kirsten E. S.; Ulloa, Aida; Nyborg, Jennifer K.

    2001-01-01

    Oncogenesis associated with human T-cell leukemia virus (HTLV) infection is directly linked to the virally encoded transcription factor Tax. To activate HTLV-1 transcription Tax interacts with the cellular protein CREB and the pleiotropic coactivators CBP and p300. While extensively studied, the molecular mechanisms of Tax transcription function and coactivator utilization are not fully understood. Previous studies have focused on Tax binding to the KIX domain of CBP, as this was believed to be the key step in recruiting the coactivator to the HTLV-1 promoter. In this study, we identify a carboxy-terminal region of CBP (and p300) that strongly interacts with Tax and mediates Tax transcription function. Through deletion mutagenesis, we identify amino acids 2003 to 2212 of CBP, which we call carboxy-terminal region 2 (CR2), as the minimal region for Tax interaction. Interestingly, this domain corresponds to the steroid receptor coactivator 1 (SRC-1)-interacting domain of CBP. We show that a double point mutant targeted to one of the putative α-helical motifs in this domain significantly compromises the interaction with Tax. We also characterize the region of Tax responsible for interaction with CR2 and show that the previously identified transactivation domain of Tax (amino acids 312 to 319) participates in CR2 binding. This region of Tax corresponds to a consensus amphipathic helix, and single point mutations targeted to amino acids on the face of this helix abolish interaction with CR2 and dramatically reduce Tax transcription function. Finally, we demonstrate that Tax and SRC-1 bind to CR2 in a mutually exclusive fashion. Together, these studies identify a novel Tax-interacting site on CBP/p300 and extend our understanding of the molecular mechanism of Tax transactivation. PMID:11463834

  11. A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain.

    PubMed

    Williams, Jeremie; Venkatesan, Karthikeya; Ayariga, Joseph Atia; Jackson, Doba; Wu, Hongzhuan; Villafane, Robert

    2018-06-01

    P22 bacteriophage has been studied extensively and has served as a model for many important processes such as in vivo protein folding, protein aggregation and protein-protein interactions. The trimeric tailspike protein (TSP) serves as the receptor-binding protein for the P22 bacteriophage to the bacterial host. The homotrimeric P22 tail consists of three chains of 666aa in which the first 108aa form a trimeric dome-like structure which is called the N-terminal domain (NTD) and is responsible for attachment of the tailspike protein to the rest of the phage particle structure in the phage assembly pathway. Knowledge of this interaction requires information on what amino acids are interacting in the interface and how the NTD structure is maintained. The first 23aa form the "stem peptide" which originates at the dome top and terminates at the dome bottom. It contains a hydrophobic valine patch (V8-V9-V10) located within the dome structure. It is hypothesized that the interaction between the hydrophobic valine patch located on stem peptide and the adjacent polypeptide is critical for the interchain interaction which should be important for the stability of the P22 TSP NTD itself. To test this hypothesis, each amino acid in the valine residues is substituted by an acid, a basic, and a hydrophobic amino acid. The results of such substitutions are presented as well as associated studies. The data strongly suggest that the valine patch is of critical importance in the hydrophobic interaction between stem peptide valine patch and an adjacent chain.

  12. Advertisement-call modification, male competition and female preference in the bird-voiced treefrog Hyla avivoca

    PubMed Central

    Martínez-Rivera, Carlos César; Gerhardt, H. Carl

    2009-01-01

    Senders and receivers influence dynamic characteristics of the signals used for mate attraction over different time scales. On a moment-to-moment basis, interactions among senders competing for a mate influence dynamic characteristics, whereas the preferences of receivers of the opposite gender exert an influence over evolutionary time. We observed and recorded the calling patterns of the bird-voiced treefrog Hyla avivoca, to assess how the dynamic characters of calls vary during interactions among groups of males in a chorus. This question was also addressed using playback experiments with males. Playback experiments with females showed how changes in dynamic call properties are likely to affect male mating success. Frogs calling in pairs, groups, or in response to playbacks produced longer calls than did isolated males. During call overlap, males often increased the duration of the silent interval (gaps) between the pulses of their calls so that the pulses of the calls of two neighbors interdigitated. This change resulted in increased variability of pulse rate, a traditionally static acoustic property; however, males also produced high proportions of non-overlapped calls in which variability in pulse rate was low and had species-typical values. Females preferred long calls to short and average-duration calls, and non-overlapped calls to overlapped calls. Given a choice between pairs of overlapped calls, females preferred pairs in which the proportion of overlap was low and pairs in which the pulses of such calls interdigitated completely. The observed patterns of vocal competition thus reflect the preferences of conspecific females, which have influenced the evolution of the calling behavior of H. avivoca. PMID:19789730

  13. The importance of teacher interpersonal behaviour for student attitudes in Brunei primary science classes

    NASA Astrophysics Data System (ADS)

    den Brok, Perry; Fisher, Darrell; Scott, Rowena

    2005-07-01

    This study investigated relationships between students' perceptions of their teachers' interpersonal behaviour and their subject-related attitude in primary science classes in Brunei. Teacher student interpersonal behaviour was mapped with the Questionnaire on Teacher Interaction (QTI) and reported in terms of two independent dimensions called Influence (teacher dominance vs submission) and Proximity (teacher cooperation vs opposition). While prior research using the QTI mainly focused on secondary education, the present study was one of the first in Brunei and in primary education and one of few studies to use multilevel analysis. Data from 1305 students from 64 classes were used in this study. Results indicated strong and positive effects of Influence and Proximity on students' enjoyment of their science class and supported findings of earlier work with the QTI.

  14. Dark Forces at KLOE/KLOE-2

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2014-05-01

    Searches for dark matter particles in the GeV mass range and for dark forces are strongly motivated by the numerous striking astrophysical observations recently reported by many experiments. Flavor factories, like the Frascati Φ-factory DAΦNE, are particularly suited to search for the light gauge vector boson, called U boson, which is thought to mediate an unknown interaction between hypothetical dark matter particles. By using the KLOE detector, limits on U boson coupling factor ɛ2 of the order of 10-5 ÷ 10-7 have been set through the study of the ϕ Dalitz decay, the Higgsstrahlung process and Uγ events. New experiments with the upgraded KLOE detector and the increased luminosity of DAΦNE are expected to improve the already set upper limits by a factor of two or better.

  15. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  16. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet

    PubMed Central

    Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu

    2017-01-01

    Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204

  17. Galilean-invariant scalar fields can strengthen gravitational lensing.

    PubMed

    Wyman, Mark

    2011-05-20

    The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.

  18. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  19. We must know. We will know

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchis-Lozano, Miguel-Angel

    2011-05-23

    The after-dinner talk has by now become a tradition of this Conference series on Quark Confinement and the Hadron Spectrum. On this occasion, I have tried to combine a free-style and (hopefully) amusing presentation with deep questions of physics especially connected with the dynamics of strong interaction. To this end some masterpieces of classical music (by Beethoven, Mozart, Dvorak, Stravinsky ...) and pop music (by Bob Dylan, Eric Clapton) were employed to illustrate certain aspects of physics. By no means was this presentation (neither this paper) intended as a comprehensive review of the different topics examined during the Conference, butmore » rather as a call for further thinking on the sinergy of different branches of physics and the excitement of foreseen discoveries in a not too distant future.« less

  20. A Bonner Sphere Spectrometer for pulsed fields

    PubMed Central

    Aza, E.; Dinar, N.; Manessi, G. P.; Silari, M.

    2016-01-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828

  1. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.

    PubMed

    Llusia, Diego; Márquez, Rafael; Beltrán, Juan F; Benítez, Maribel; do Amaral, José P

    2013-09-01

    Calling behaviour is strongly temperature-dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio-trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8-22 °C below the specific upper critical thermal limits (CTmax ) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population-specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our findings imply that global warming would not directly inhibit calling behaviour in the study species, although might affect other temperature-dependent features of their acoustic communication system. © 2013 John Wiley & Sons Ltd.

  2. The Effect of Perceiving a Calling on Pakistani Nurses' Organizational Commitment, Organizational Citizenship Behavior, and Job Stress.

    PubMed

    Afsar, Bilal; Shahjehan, Asad; Cheema, Sadia; Javed, Farheen

    2018-03-01

    People differ considerably in the way in which they express and experience their nursing careers. The positive effects associated with having a calling may differ substantially based on individuals' abilities to live out their callings. In a working world where many individuals have little to no choice in their type of employment and thus are unable to live out a calling even if they have one, the current study examined how perceiving a calling and living a calling interacted to predict organizational commitment, organizational citizenship behavior, and job stress with career commitment mediating the effect of the interactions on the three outcome variables. The purpose of the study is to investigate the mediating effect of career commitment between the relationships of calling and (a) nurses' attitudes (organizational commitment), (b) behaviors (organizational citizenship behavior), and (c) subjective experiences regarding work (job stress). Using a descriptive exploratory design, data were collected from 332 registered nurses working in Pakistani hospitals. Descriptive analysis and hierarchical regression analysis were used for data analysis. Living a calling moderated the effect of calling on career commitment, organizational citizenship behavior, and job stress, and career commitment fully mediated the effect of calling on organizational commitment, organizational citizenship behavior, and job stress. Increasing the understanding of calling, living a calling, and career commitment may increase nurses' organizational commitment and organizational citizenship behavior and decrease job stress. The study provided evidence to help nursing managers and health policy makers integrate knowledge and skills related to calling into career interventions and help nurses discover their calling.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verigin, M.I.; Gringauz, K.I.; Gombosi, T.

    Preliminary results of ion and electron plasma measurements near Venus are presented and discussed. The data were obtained with wide-angle plasma analyzers carried on the Venera 9 and 10 spacecraft. On the basis of 33 bow shock crossings the position of the shock is quite stable and agrees well with theoretical predictions of Spreiter et al. with H/r/sub 0/=0.01 and a stagnation point altitude of approx.500 km. This observation lends strong support to the assumption that the solar wind interacts with the upper ionosphere of Venus and not with a planetary magnetic field. These spacecraft are the first to exploremore » the optical umbra of Venus. Close to the planet a stable population of electrons and an ill-defined population of positive ions were found; this region is called the corpuscular umbra. The corpuscular umbra and the transition region are separated by a zone which contains both positive ions and electrons and is characterized by a flow velocity reduced in comparison with that of the transition region. This zone is called the corpuscular penumbra. The distribution of plasma density behind the bow shock (including the optical umbra of the planet) is given, and the existence of a Venusian plasma magnetic til is revealed.« less

  4. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2017-11-01

    Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 {GeV}^{-1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the `bag constant' of the MIT bag model, B ˜eq 2 × 10^{14} {g} {cm}^{-3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity `particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ _f, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed.

  5. Formation and relaxation of quasistationary states in particle systems with power-law interactions

    NASA Astrophysics Data System (ADS)

    Marcos, B.; Gabrielli, A.; Joyce, M.

    2017-09-01

    We explore the formation and relaxation of the so-called quasistationary states (QSS) for particle distributions in three dimensions interacting via an attractive radial pair potential V (r →∞ ) ˜1 /rγ with γ >0 , and either a soft core or hard core regularization at small r . In the first part of the paper, we generalize, for any spatial dimension d ≥2 , Chandrasekhar's approach for the case of gravity to obtain analytic estimates of the rate of collisional relaxation due to two-body collisions. The resultant relaxation rates indicate an essential qualitative difference depending on the integrability of the pair force at large distances: for γ >d -1 , the rate diverges in the large particle number N (mean-field) limit, unless a sufficiently large soft core is present; for γ

  6. 77 FR 75171 - Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Title: Mother and Infant Home Visiting Program Evaluation--Strong Start: Data collection. Description.... Department of Health and Human Services (HHS) launched an evaluation called the Mother and Infant Home... Strong Start for Mothers and Newborns initiative, which is informing the federal government about the...

  7. Response of round gobies, Neogobius melanostomus, to conspecific sounds

    NASA Astrophysics Data System (ADS)

    Isabella-Valenzi, Lisa

    A useful model group to examine reproductive plasticity in acoustic responsiveness is the family Gobiidae. Male round gobies Neogobius melanostomus emit calls and females respond to these calls with high specificity. The current study investigates differential attraction between reproductive morphologies of the goby to conspecific calls and explores the use of calls to develop a bioacoustic trap. Behavioural responsiveness to conspecific calls was tested using playback experiments in the lab and field. Females showed a strong attraction to the grunt call in both the lab and field, while nonreproductive and sneaker males preferred the drum call in the lab, but favoured the grunt call in the field. By determining the relationship between reproductive state and auditory responsiveness to conspecific calls, I am further elucidating the function of acoustic communication in the round goby and may be essential when creating control strategies to prevent the spread of the invasive species.

  8. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE PAGES

    Zha, W.; Klein, S. R.; Ma, R.; ...

    2018-04-19

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  10. Coherent J /ψ photoproduction in hadronic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.

    2018-04-01

    Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.

  11. A femtoscopic correlation analysis tool using the Schrödinger equation (CATS)

    NASA Astrophysics Data System (ADS)

    Mihaylov, D. L.; Mantovani Sarti, V.; Arnold, O. W.; Fabbietti, L.; Hohlweger, B.; Mathis, A. M.

    2018-05-01

    We present a new analysis framework called "Correlation Analysis Tool using the Schrödinger equation" (CATS) which computes the two-particle femtoscopy correlation function C( k), with k being the relative momentum for the particle pair. Any local interaction potential and emission source function can be used as an input and the wave function is evaluated exactly. In this paper we present a study on the sensitivity of C( k) to the interaction potential for different particle pairs: p-p, p-Λ, K^-p, K^+-p, p-Ξ ^- and Λ- Λ. For the p-p Argonne v_{18} and Reid Soft-Core potentials have been tested. For the other pair systems we present results based on strong potentials obtained from effective Lagrangians such as χ EFT for p-Λ, Jülich models for K(\\bar{K})-N and Nijmegen models for Λ-Λ. For the p-Ξ^- pairs we employ the latest lattice results from the HAL QCD collaboration. Our detailed study of different interacting particle pairs as a function of the source size and different potentials shows that femtoscopic measurements can be exploited in order to constrain the final state interactions among hadrons. In particular, small collision systems of the order of 1 fm, as produced in pp collisions at the LHC, seem to provide a suitable environment for quantitative studies of this kind.

  12. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, W.; Klein, S. R.; Ma, R.

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  13. Inclusive Education National Research Advocacy Agenda: A Call to Action

    ERIC Educational Resources Information Center

    Morningstar, Mary E.; Allcock, Heather C.; White, Julia M.; Taub, Deborah; Kurth, Jennifer A.; Gonsier-Gerdin, Jean; Ryndak, Diane L.; Sauer, Janet; Jorgensen, Cheryl M.

    2016-01-01

    The TASH Inclusive Education National Committee responded to Horner and Dunlap's call to ensure that future research integrates inclusive values with strong science by developing an inclusive education national research advocacy agenda. Qualitative methods were implemented to answer three questions: (a) "What is the state of inclusive…

  14. An evaluation of neonicotinoids' potential to inhibit human cholinesterases: Protein-ligand docking and interaction profiling studies.

    PubMed

    Teralı, Kerem

    2018-06-16

    Many so-called neuroactive insecticides target invertebrate neurotransmitter systems, including the cholinergic system. With their relatively low toxicity to vertebrates, neonicotinoids represent a new class of neuroactive insecticides that bind to nicotinic receptors for acetylcholine in the insect central nervous system and result in paralysis and eventual death due to receptor overstimulation. On the understanding that, today, cholinesterase inhibitors are used to obtain the symptomatic relief of Alzheimer disease (AD), the aforementioned direct cholinomimetic action of neonicotinoids could, perhaps, confer anti-AD drug-like attributes to these compounds. It is shown here, using protein-ligand docking and interaction profiling, that neonicotinoids penetrate deep into the active-site gorge of both acetylcholinesterase and butyrylcholinesterase and that they form relatively strong noncovalent bonds with multiple critical residues that normally bind/hydrolyze choline esters. With their gorge-spanning shape and dual-binding specificity, neonicotinoids (first-generation compounds in particular) represent promising leads for the development of reversible, mixed-type cholinesterase inhibitors in the fight against AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    PubMed Central

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  16. Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer's disease.

    PubMed

    Grégoire, C; Marco, S; Thimonier, J; Duplan, L; Laurine, E; Chauvin, J P; Michel, B; Peyrot, V; Verdier, J M

    2001-07-02

    Neurodegenerative diseases are characterized by the presence of filamentous aggregates of proteins. We previously established that lithostathine is a protein overexpressed in the pre-clinical stages of Alzheimer's disease. Furthermore, it is present in the pathognomonic lesions associated with Alzheimer's disease. After self-proteolysis, the N-terminally truncated form of lithostathine leads to the formation of fibrillar aggregates. Here we observed using atomic force microscopy that these aggregates consisted of a network of protofibrils, each of which had a twisted appearance. Electron microscopy and image analysis showed that this twisted protofibril has a quadruple helical structure. Three-dimensional X-ray structural data and the results of biochemical experiments showed that when forming a protofibril, lithostathine was first assembled via lateral hydrophobic interactions into a tetramer. Each tetramer then linked up with another tetramer as the result of longitudinal electrostatic interactions. All these results were used to build a structural model for the lithostathine protofibril called the quadruple-helical filament (QHF-litho). In conclusion, lithostathine strongly resembles the prion protein in its dramatic proteolysis and amyloid proteins in its ability to form fibrils.

  17. Dynamic Electrorheological Effects of Rotating Particles:

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Gu, G. Q.; Huang, J. P.; Xiao, J. J.

    Particle rotation leads to a steady-state which is different from the equilibrium state in the absence of rotational motion. The change of the polarization of the particle due to the rotational motion is called the dynamic electrorheological effect (DER). There are three cases to be considered: rotating particles in a dc field, particle rotation due to a rotating field and spontaneous rotation of particle in dc field (Quincke rotation). In the DER of rotating particles, the particle rotational motion generally reduces the interparticle force between the particles. The effect becomes pronounced when the frequency is on the order of the relaxation rate of the surface charges. In the electrorotation of particles, the mutual interaction between approaching particles will change the electrorotation spectrum significantly. The electrorotation spectrum depends strongly on the medium conductivity as well as the conductivity contrast between the particle and the medium. In the collective behaviors of Quincke rotors, the mutual interactions between the individual rotors lead to the assembly of chain-like structures which make an angle with the applied field. This has an implication of a new class of material.

  18. Organized All the Way Down

    NASA Astrophysics Data System (ADS)

    Sylvan, David

    At least since Adam Smith's The Wealth of Nations, it has been understood that social systems can be considered as having emergent properties not reducible to the actions of individuals. The appeal of this idea is obvious, no different now than in Smith's time: that aggregates of persons can be ordered without such order being intended or enforced by any particular person or persons. A search for such an "invisible hand" is what brings many of us to the study of complexity and the construction of various types of computational models aimed at capturing it. However, in proceeding along these lines, we have tended to focus on particular types of social systems — what I will in this paper call "thin" systems, such as markets and populations — and ignored other types, such as groups, whose base interactions are "thick," i.e., constructed as one of many possibilities, by the participants, at the moment in which they take place. These latter systems are not only ubiquitous but pose particular modeling problems for students of complexity: the local interactions are themselves complex and the systems display no strongly emergent features.

  19. Structural power and the evolution of collective fairness in social networks.

    PubMed

    Santos, Fernando P; Pacheco, Jorge M; Paiva, Ana; Santos, Francisco C

    2017-01-01

    From work contracts and group buying platforms to political coalitions and international climate and economical summits, often individuals assemble in groups that must collectively reach decisions that may favor each part unequally. Here we quantify to which extent our network ties promote the evolution of collective fairness in group interactions, modeled by means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of social networks-which we call structural power-has a profound impact on the tendency of individuals to take decisions that favor each part equally. Increased fair outcomes are attained whenever structural power is high, such that the networks that tie individuals allow them to meet the same partners in different groups, thus providing the opportunity to strongly influence each other. On the other hand, the absence of such close peer-influence relationships dismisses any positive effect created by the network. Interestingly, we show that increasing the structural power of a network leads to the appearance of well-defined modules-as found in human social networks that often exhibit community structure-providing an interaction environment that maximizes collective fairness.

  20. Structure-driven turbulence in ``No man's Land''

    NASA Astrophysics Data System (ADS)

    Kosuga, Yusuke; Diamond, Patrick

    2012-10-01

    Structures are often observed in many physical systems. In tokamaks, for example, such structures are observed as density blobs and holes. Such density blobs and holes are generated at the tokamak edge, where strong gradient perturbations generate an outgoing blob and an incoming hole. Since density holes can propagate from the edge to the core, such structures may play an important role in understanding the phenomenology of the edge-core coupling region, so-called ``No Man's Land.'' In this work, we discuss the dynamics of such structures in real space. In particular, we consider the dynamics of density blobs and holes in the Hasegawa-Wakatani system. Specific questions addressed here include: i) how these structures extract free energy and enhance transport? how different is the relaxation driven by such structures from that driven by linear drift waves? ii) how these structures interact with shear flows? In particular, how these structures interact with a shear layer, which can absorb structures resonantly? iii) how can we calculate the coupled evolution of structures and shear flows? Implications for edge-core coupling problem are discussed as well.

  1. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids.

    PubMed

    Wang, Shiyan; Ardekani, Arezoo M

    2015-12-02

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called "squirmer". The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001-0.04) when the swimming Reynolds number is in the range of O(0.1-100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence.

  2. Plant Size and Competitive Dynamics along Nutrient Gradients.

    PubMed

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  3. Lightning Channel Corona Formation Treated as a Large System of Streamers

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Lehtinen, N. G.; Kochkin, P.

    2017-12-01

    Transfer of charge along a lightning channel leads to strong electric fields that drive such charge outward. This charge flow is nonuniform, breaking up into millimeter-scale discharge structures called streamers. The motion of such streamers can carry charge many meters outward from the channel, but each individual streamer only carries a small amount of charge. Transfer of macroscopic charge outward thus requires a large population of streamers that are expected to interact and exhibit interesting collective behaviors. We attempt to simulate such collective behaviors by approximating the behavior of each streamer but retaining streamer interactions and overall electrodynamic effects and apply this simulation to a few key scenarios. For the case of flow of charge off a lightning channel, we simulate a continually growing population of streamers injected near a charged conducting channel. Further, motivated by lightning initiation, we simulate the growth of a population of streamers from a single seed streamer as might initiate from a hydrometeor. For all cases considered, we characterize the charges and currents involved, compare to observations where possible, and characterize the collective effects including spatial and temporal non-uniformity.

  4. Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils

    PubMed Central

    Latz, Ellen; Eisenhauer, Nico; Rall, Björn Christian; Scheu, Stefan; Jousset, Alexandre

    2016-01-01

    Plant diseases cause dramatic yield losses worldwide. Current disease control practices can be deleterious for the environment and human health, calling for alternative and sustainable management regimes. Soils harbour microorganisms that can efficiently suppress pathogens. Uncovering mediators driving their functioning in the field still remains challenging, but represents an essential step in order to develop strategies for increased soil health. We set up plant communities of varying richness to experimentally test the potential of soils differing in plant community history to suppress the pathogen Rhizoctonia solani. The results indicate that plant communities shape soil-disease suppression via changes in abiotic soil properties and the abundance of bacterial groups including species of the genera Actinomyces, Bacillus and Pseudomonas. Further, the results suggest that pairwise interactions between specific plant species strongly affect soil suppressiveness. Using structural equation modelling, we provide a pathway orientated framework showing how the complex interactions between plants, soil and microorganisms jointly shape soil suppressiveness. Our results stress the importance of plant community composition as a determinant of soil functioning, such as the disease suppressive potential of soils. PMID:27021053

  5. Interaction of excitable waves emitted from two defects by pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Zhang, Han; Qiao, Li-Yan; Liang, Hong; Sun, Wei-Gang

    2018-01-01

    In response to a pulsed electric field, spatial distributed heterogeneities in excitable media can serve as nucleation sites for the generation of intramural electrical waves, a phenomenon called as ;wave emission from heterogeneities; (WEH effect). Heterogeneities in cardiac tissue strongly influence each other in the WEH effect. We study the WEH effect in a medium possessing two defects. The role of two defects and their interaction by pulsed DC electric fields (DEF) and rotating electric fields (REF) are investigated. The direction of the applied electric field plays a major role not only in the minimum electrical field necessary to originate wave propagation, but also in the degree of influences of nearby defects. The distance between two defects, i.e. the density of defects, also play an important role in the WEH effect. Generally, the REF is better than the DEF when pulsed electric fields are applied. These results may contribute to the improved application of WEH, especially in older patients with fibrosis and scarring, which are accompanied by a higher incidence of conductivity discontinuities.

  6. Vocal repertoire of the social giant otter.

    PubMed

    Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme

    2014-11-01

    According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis.

  7. Regional Wave Climates along Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  8. Measurement of parity-violating asymmetry in deep inelastic scattering at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochao

    2015-04-01

    Symmetry permeates nature and is fundamental to all laws of physics. One example is mirror symmetry, also called ``parity symmetry''. It implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering played a key role in establishing, and now testing, the Standard Model of particle physics. One particular set of the quantities accessible through measurements of parity-violating electron scattering are the vector-electron axial-vector-quark weak couplings, called C2 q's, measured directly only once in the past 40 years. We report here on a new measurement of the parity-violating asymmetry in electron-quark scattering, that has yielded a specific combination 2C2 u -C2 d five times more precise than the earlier result. (Here u and d stand respectively for the up and the down quarks.) These results are the first evidence, at more than the 95% confidence level, that the C2 q's are non-zero as predicted by the electroweak theory. They lead to constraints on new interactions beyond the Standard Model, particularly on those whose laws change when the quark chirality is flipped between left and right. In today's particle physics research that is focused on colliders such as the LHC, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. In addition to deep inelastic scattering, we will report on measurement of the asymmetry in the nucleon resonance region. These data exhibit for the first time that the quark-hadron duality may work for electroweak observables at the (10--15)% level throughout the whole resonance region. At the end I will give a brief outlook on the future PVDIS program using the Jefferson Lab 12 GeV beam, which will not only provide more precise measurement of C2 q, but also for sin2 θW and for studying unique features of the nucleon structure and that of the strong interaction. for the Jefferson Lab PVDIS Collaboration.

  9. SACA: Software Assisted Call Analysis--an interactive tool supporting content exploration, online guidance and quality improvement of counseling dialogues.

    PubMed

    Trinkaus, Hans L; Gaisser, Andrea E

    2010-09-01

    Nearly 30,000 individual inquiries are answered annually by the telephone cancer information service (CIS, KID) of the German Cancer Research Center (DKFZ). The aim was to develop a tool for evaluating these calls, and to support the complete counseling process interactively. A novel software tool is introduced, based on a structure similar to a music score. Treating the interaction as a "duet", guided by the CIS counselor, the essential contents of the dialogue are extracted automatically. For this, "trained speech recognition" is applied to the (known) counselor's part, and "keyword spotting" is used on the (unknown) client's part to pick out specific items from the "word streams". The outcomes fill an abstract score representing the dialogue. Pilot tests performed on a prototype of SACA (Software Assisted Call Analysis) resulted in a basic proof of concept: Demographic data as well as information regarding the situation of the caller could be identified. The study encourages following up on the vision of an integrated SACA tool for supporting calls online and performing statistics on its knowledge database offline. Further research perspectives are to check SACA's potential in comparison with established interaction analysis systems like RIAS. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Spin-dependent constraints on blind spots for thermal singlino-higgsino dark matter with(out) light singlets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł

    The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. Here, we investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly tomore » $$t\\bar{t}$$. Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.« less

  11. Control of single-spin magnetic anisotropy by exchange coupling

    NASA Astrophysics Data System (ADS)

    Oberg, Jenny C.; Calvo, M. Reyes; Delgado, Fernando; Moro-Lagares, María; Serrate, David; Jacob, David; Fernández-Rossier, Joaquín; Hirjibehedin, Cyrus F.

    2014-01-01

    The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.

  12. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    PubMed

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Spin-dependent constraints on blind spots for thermal singlino-higgsino dark matter with(out) light singlets

    DOE PAGES

    Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł

    2017-07-11

    The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. Here, we investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly tomore » $$t\\bar{t}$$. Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.« less

  14. Group Random Call Can Positively Affect Student In-Class Clicker Discussions.

    PubMed

    Knight, Jennifer K; Wise, Sarah B; Sieke, Scott

    2016-01-01

    Understanding how instructional techniques and classroom norms influence in-class student interactions has the potential to positively impact student learning. Many previous studies have shown that students benefit from discussing their ideas with one another in class. In this study of introductory biology students, we explored how using an in-class accountability system might affect the nature of clicker-question discussions. Clicker-question discussions in which student groups were asked to report their ideas voluntarily (volunteer call) were compared with discussions in which student groups were randomly selected to report their ideas (random call). We hypothesized that the higher-accountability condition (random call) would impress upon students the importance of their discussions and thus positively influence how they interacted. Our results suggest that a higher proportion of discussions in the random call condition contained exchanges of reasoning, some forms of questioning, and both on- and off-topic comments compared with discussion in the volunteer call condition. Although group random call does not impact student performance on clicker questions, the positive impact of this instructional approach on exchanges of reasoning and other features suggests it may encourage some types of student interactions that support learning. © 2016 J. K. Knight et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Ricochet pollination in Senna (Fabaceae) - petals deflect pollen jets and promote division of labour among flower structures.

    PubMed

    Amorim, T; Marazzi, B; Soares, A A; Forni-Martins, E R; Muniz, C R; Westerkamp, C

    2017-11-01

    Naturalists Fritz and Hermann Müller hypothesised that heteranthery often leads to a division of labour into 'feeding' and 'pollinating' stamens; the latter often being as long as the pistil so as to promote successful pollination on the bees' back. In many buzz-pollinated species of Senna, however, the so-called pollinating stamens are short and not level with the stigma, raising the question of how pollen is shed on the bees' back. Here we explore a mechanism called 'ricochet pollination'. We test whether division of labour is achieved through the interaction between short lower stamens and strongly concave 'deflector petals'. We studied the arrangement and morphology of the floral organs involved in the ricochet pollination, functioning of the flowers through artificial sonication and observed the interactions between bees and flowers in the field. The middle stamens are adapted to eject pollen downwards, which can be readily collected on the bee mid legs. Most of the pollen is ejected towards the deflector petal(s). Pollen from this set of stamens is more likely to contribute to pollination. The pollen grains seem to ricochet multiple times against the deflector petals to eventually reach the bee's back. The pollen ricochet mechanism promotes a division of labour by involving additional floral organs, such as petals, reinforcing the Müllers' division-of-labour hypothesis. However, alternative, non-multiexclusive hypotheses could be explored in genus Senna and other angiosperm species. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  16. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  17. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  18. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  19. Design of a 3D Navigation Technique Supporting VR Interaction

    NASA Astrophysics Data System (ADS)

    Boudoin, Pierre; Otmane, Samir; Mallem, Malik

    2008-06-01

    Multimodality is a powerful paradigm to increase the realness and the easiness of the interaction in Virtual Environments (VEs). In particular, the search for new metaphors and techniques for 3D interaction adapted to the navigation task is an important stage for the realization of future 3D interaction systems that support multimodality, in order to increase efficiency and usability. In this paper we propose a new multimodal 3D interaction model called Fly Over. This model is especially devoted to the navigation task. We present a qualitative comparison between Fly Over and a classical navigation technique called gaze-directed steering. The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient navigation technique.

  20. The role of nickel in radiation damage of ferritic alloys

    DOE PAGES

    Osetsky, Y.; Anento, Napoleon; Serra, Anna; ...

    2014-11-26

    According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this study, we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe–Ni alloys. We have foundmore » that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1 nm (37SIAs) cluster is practically immobile at T < 500 K in the Fe–0.8 at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. Finally, this effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe–Ni ferritic alloys.« less

  1. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  2. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  3. Geographic Variation in Advertisement Calls in a Tree Frog Species: Gene Flow and Selection Hypotheses

    PubMed Central

    Jang, Yikweon; Hahm, Eun Hye; Lee, Hyun-Jung; Park, Soyeon; Won, Yong-Jin; Choe, Jae C.

    2011-01-01

    Background In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation. Methodology We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length. Results The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters. Conclusions Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene flow. PMID:21858061

  4. What Is a Simple Liquid?

    NASA Astrophysics Data System (ADS)

    Ingebrigtsen, Trond S.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2012-01-01

    This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s understanding of the term. Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlations between virial and potential-energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a direct property of the intermolecular potential because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law systems (r-n pair potentials with n=18,6,4), Lennard-Jones (LJ) models (the standard LJ model, two generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the single-point charge water model. The final part of the paper summarizes properties of strongly correlating liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be characterized in three quite different ways: (1) chemically by the fact that the liquid’s properties are fully determined by interactions from the molecules within the FCS, (2) physically by the fact that there are isomorphs in the phase diagram, i.e., curves along which several properties like excess entropy, structure, and dynamics, are invariant in reduced units, and (3) mathematically by the fact that throughout the phase diagram the reduced-coordinate constant-potential-energy hypersurfaces define a one-parameter family of compact Riemannian manifolds. No proof is given that the chemical characterization follows from the strong correlation property, but we show that this FCS characterization is consistent with the existence of isomorphs in strongly correlating liquids’ phase diagram. Finally, we note that the FCS characterization of simple liquids calls into question the physical basis of standard perturbation theory, according to which the repulsive and attractive forces play fundamentally different roles for the physics of liquids.

  5. Exploring Graduate Students' Understanding of Research: Links between Identity and Research Conceptions

    ERIC Educational Resources Information Center

    Ross, Karen; Dennis, Barbara; Zhao, Pengfei; Li, Peiwei

    2017-01-01

    We are in an era that calls for increasing "training" in educational research methodologies. When the National Research Council (2004) calls for training in educational research that is "rigorous" and "relevant," the focus strongly emphasizes WHAT should be taught instead of WHO is being engaged in the learning.…

  6. Engineering Veterinary Education.

    ERIC Educational Resources Information Center

    Eyre, Peter

    2002-01-01

    Calls for a new model for veterinary education, drawn from engineering education, which imparts a strong core of fundamental biomedical knowledge and multi-species clinical experience to all students than allows a genuine opportunity for differentiation into strongly focused subject areas that provide in-depth education and training appropriate to…

  7. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra.

    PubMed

    Micheletta, Jérôme; Waller, Bridget M; Panggur, Maria R; Neumann, Christof; Duboscq, Julie; Agil, Muhammad; Engelhardt, Antje

    2012-10-07

    Enduring positive social bonds between individuals are crucial for humans' health and well being. Similar bonds can be found in a wide range of taxa, revealing the evolutionary origins of humans' social bonds. Evidence suggests that these strong social bonds can function to buffer the negative effects of living in groups, but it is not known whether they also function to minimize predation risk. Here, we show that crested macaques (Macaca nigra) react more strongly to playbacks of recruitment alarm calls (i.e. calls signalling the presence of a predator and eliciting cooperative mobbing behaviour) if they were produced by an individual with whom they share a strong social bond. Dominance relationships between caller and listener had no effect on the reaction of the listener. Thus, strong social bonds may improve the coordination and efficiency of cooperative defence against predators, and therefore increase chances of survival. This result broadens our understanding of the evolution and function of social bonds by highlighting their importance in the anti-predator context.

  8. Exciton fission in monolayer transition metal dichalcogenide semiconductors.

    PubMed

    Steinhoff, A; Florian, M; Rösner, M; Schönhoff, G; Wehling, T O; Jahnke, F

    2017-10-27

    When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory, we show that the thermodynamic fission-fusion balance of excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as well as charge carrier doping. We propose the observation of these effects by studying exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-state counterparts of high-energy collider experiments on the induced fission of composite particles.

  9. Rogue events in the group velocity horizon.

    PubMed

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.

  10. NADPH oxidases in the arbuscular mycorrhizal symbiosis.

    PubMed

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-01-01

    Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules.

  11. IUE observations of long period eclipsing binaries - A study of accretion onto non-degenerate stars

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1980-01-01

    IUE observations made in 1978-1979 recorded a whole class of interacting long-period binaries similar to beta Lyrae, which includes RX Cas, SX Cas, V 367 Cyg, W Cru, beta Lyr, and W Ser, called the W Serpentis stars. These mass-transferring binaries with relatively high mass transfer rate show two prominent features in the far ultraviolet: a continuum with a color temperature higher than the one observed in the optical region (about 12,000 K), and a strong emission line spectrum with the N V doublet at 1240 A, C IV doublet at 1550 A and lines of Si II, Si III, Si IV, C II, Fe III, AI III, etc. These phenomena are discussed on the assumption that they are due to accretion onto non-degenerate stars.

  12. Tripartite community structure in social bookmarking data

    NASA Astrophysics Data System (ADS)

    Neubauer, Nicolas; Obermayer, Klaus

    2011-12-01

    Community detection is a branch of network analysis concerned with identifying strongly connected subnetworks. Social bookmarking sites aggregate datasets of often hundreds of millions of triples (document, user, and tag), which, when interpreted as edges of a graph, give rise to special networks called 3-partite, 3-uniform hypergraphs. We identify challenges and opportunities of generalizing community detection and in particular modularity optimization to these structures. Two methods for community detection are introduced that preserve the hypergraph's special structure to different degrees. Their performance is compared on synthetic datasets, showing the benefits of structure preservation. Furthermore, a tool for interactive exploration of the community detection results is introduced and applied to examples from real datasets. We find additional evidence for the importance of structure preservation and, more generally, demonstrate how tripartite community detection can help understand the structure of social bookmarking data.

  13. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli

    PubMed Central

    Laganenka, Leanid; Colin, Remy; Sourjik, Victor

    2016-01-01

    Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation. PMID:27687245

  14. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.

  15. Previous administration of naltrexone did not change synergism between paracetamol and tramadol in mice.

    PubMed

    Miranda, Hugo F; Noriega, Viviana; Prieto, Juan Carlos

    2012-07-01

    In the treatment of acute and chronic pain the most frequently used drugs are nonsteroidal anti-inflammatory drugs (NSAIDs), e.g., paracetamol; opioids, e.g., tramadol, and a group of drugs called coanalgesics or adjuvants (e.g., antidepressants, anticonvulsants). The aim of this work was to determine the nature of the interaction induced by intraperitoneal or intrathecal coadministration of paracetamol and tramadol. The type of interaction was evaluated by means of isobolographic analysis, using the acetic acid writhing test as an algesiometer in mice. In addition, the involvement of opioid receptors in the interaction was studied using naltrexone, a non-selective opioid receptor antagonist. The administration of paracetamol or tramadol induced a dose-dependent antinociceptive activity in the assay. The dose-response curves were characterized by equal efficacy but different potencies, being i.t. paracetamol 11.84 times more potent than i.p. paracetamol, and i.t. tramadol 3.54 times more potent than the i.p. tramadol. The isobolographic analysis indicates a synergistic interaction between the coadministration of i.p. or i.t. paracetamol with tramadol. The interaction index values were similar for the i.p. and i.t. coadministration with values of 0.414 and 0.364, respectively. The different mechanisms of action of paracetamol and tramadol strongly explain the analgesic synergism between them, in agreement with the general theory of drug interaction. This synergic interaction was not modified by the non selective opioid antagonist, naltrexone. This association could be of clinical significance in the treatment of pain with a reduction of doses and adverse effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The evolution of contact calls in isolated and overlapping populations of two white-eye congeners in East Africa (Aves, Zosterops).

    PubMed

    Husemann, Martin; Ulrich, Werner; Habel, Jan Christian

    2014-06-02

    Closely related species often occur in geographic isolation, yet sometimes form contact zones with the potential to hybridize. Pre-zygotic barriers may prevent cross breeding in such contact zones. In East Africa, White-eye birds have evolved into various species, inhabiting different habitat types. Zosterops poliogaster is found in cool and moist cloud forests at higher elevations, whereas Z. abyssinicus is distributed across the dry and hot lowland savannahs. In most areas, these two species occur allopatrically, but in the contact zone where the mountain meets the savannah, the distributions of these species sometimes overlap (parapatry), and in a few areas the two taxa occur sympatrically. Acoustic communication is thought to be an important species recognition mechanism in birds and an effective prezygotic barrier for hybridisation. We recorded contact calls of both the lowland and highland species in (i) distinct populations (allopatry), (ii) along contact zones (parapatry), and (iii) in overlapping populations (sympatry) to test for species and population differentiation. We found significant differences in call characteristics between the highland and lowland species, in addition to call differentiation within species. The highland Z. poliogaster shows a strong call differentiation among local populations, accompanied by comparatively low variability in their contact calls within populations (i.e. a small acoustic space). In contrast, calls of the lowland Z. abyssinicus are not differentiated among local sites but show relatively high variability in calls within single populations. Call patterns in both species show geographic clines in relation to latitude and longitude. Calls from parapatric populations from both species showed greater similarity to the other taxon in comparison to heterospecific populations found in allopatry. However, where the two species occur sympatrically, contact calls of both species are more distinct from each other than in either allopatric or parapatric populations. The contrasting patterns reflect divergent spatial distributions: the highland Z. poliogaster populations are highly disjunct, while Z. abyssinicus lowland populations are interconnected. Higher similarity in contact calls of heterospecific populations might be due to intermixing. In contrast, sympatric populations show reproductive character displacement which leads to strongly divergent call patterns.

  17. Communicating and Interacting: An Exploration of the Changing Roles of Media in CALL/CMC

    ERIC Educational Resources Information Center

    Hoven, Debra

    2006-01-01

    The sites of learning and teaching using CALL are shifting from CD-based, LAN-based, or stand-alone programs to the Internet. As this change occurs, pedagogical approaches to using CALL are also shifting to forms which better exploit the communication, collaboration, and negotiation aspects of the Internet. Numerous teachers and designers have…

  18. Usability Tests in CALL Development: Pilot Studies in the Context of the Dire autrement and Francotoile Projects

    ERIC Educational Resources Information Center

    Hamel, Marie-Josee; Caws, Catherine

    2010-01-01

    This article discusses CALL development from both educational and ergonomic perspectives. It focuses on the learner-task-tool interaction, in particular on the aspects contributing to its overall quality, herein called "usability." Two pilot studies are described that were carried out with intermediate to advanced learners of French in two…

  19. The myth of macho dominance in decision making within Mexican and Chicano families.

    PubMed

    Cromwell, R E; Ruiz, R A

    1979-10-01

    The myth concerning Hispanic family life which prevails in the social science literature can best be summarized by abbreviated quotations attributed to Alvirez and Bean. The Mexican or Chicano husband is a macho autocrat who rules as "absolute head of the family with full authority over the wife and children" where "all major decisions are his responsibility." Domination by husbands in marriage is logically consistent with their wives' submissivesness accompanied by passive acceptance of the future, strong religious beliefs, and a tendency to reside in the temporal present. The myth is also deeply imbedded in the social pathology model: differences between Hispanics and Anglos are assumed to reflect negatively on Hispanics. The myth, it should be noted, is seldom subjected to the scrutiny of empirical inquiry. The review of 4 studies on both Mexican and Chicano samples fails to support the notion of male dominance in marital desision making. Refutation of the hypothesis of masculine dominance in marital decision making calls other components of the myth into question. Research among Hispanics on alledged female submissiveness, fatalism, eligiosity, and temporal perspective are called for. More sophisicated designs involving experimental manipulations are needed. Experimental studies on the process of decision making, actual behaviors involved in economic or budgetary negotiations, and parental interaction around childrearing would also be of interest. While the data reviewed may suggest that Hispanic males may behave differently from nonHispanic males in their family and marital lives, the behavior is not in the inappropriate fashion suggested by the myth with its strong connotations of social deviance. Additional research is recommended among Hispanics on sex role behavior among both men and women, with special emphasis on how it influences family life and marriage.

  20. Applying Leadership Principles for the Common Good

    ERIC Educational Resources Information Center

    Schuchardt, Jane

    2006-01-01

    Regardless of the specific family and consumer sciences (FCS) responsibilities, the job announcement always calls for strong leadership skills. The staff waits in anticipation of the new leader's arrival, expecting that person to bring rapid, positive change. Yet, to contribute to progress in building strong communities, increasing family…

  1. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation.

    PubMed

    Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P

    2010-10-01

    • Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  2. Miming the cancer-immune system competition by kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Lemarchand, Annie

    2016-10-01

    In order to mimic the interactions between cancer and the immune system at cell scale, we propose a minimal model of cell interactions that is similar to a chemical mechanism including autocatalytic steps. The cells are supposed to bear a quantity called activity that may increase during the interactions. The fluctuations of cell activity are controlled by a so-called thermostat. We develop a kinetic Monte Carlo algorithm to simulate the cell interactions and thermalization of cell activity. The model is able to reproduce the well-known behavior of tumors treated by immunotherapy: the first apparent elimination of the tumor by the immune system is followed by a long equilibrium period and the final escape of cancer from immunosurveillance.

  3. Surgeon distress as calibrated by hours worked and nights on call.

    PubMed

    Balch, Charles M; Shanafelt, Tait D; Dyrbye, Lotte; Sloan, Jeffrey A; Russell, Thomas R; Bechamps, Gerald J; Freischlag, Julie A

    2010-11-01

    The relationships of working hours and nights on call per week with various parameters of distress among practicing surgeons have not been previously examined in detail. More than 7,900 members of the American College of Surgeons responded to an anonymous, cross-sectional survey. The survey included self-assessment of their practice setting, a validated depression screening tool, and standardized assessments of burnout and quality of life. There was a clear gradient between hours and burnout, with the prevalence of burnout ranging from 30% for surgeons working <60 hours/week, 44% for 60 to 80 hours/week, and 50% for those working >80 hours/week (p < 0.001). When correlated with number of nights on call, burnout exhibited a threshold effect at ≥2 nights on call/week (≤1 nights on call/week, 30%; ≥2 nights on call/week, 44% to 46%; p < 0.0001). Screening positive for depression rate also correlated strongly with hours and nights on call (both p < 0.0001). Those who worked >80 hours/week reported a higher rate of medical errors compared with those who worked <60 hours/week (10.7% versus 6.9%; p < 0.001), and were twice as likely to attribute the error to burnout (20.1% versus 8.9%; p = 0.001). Not surprisingly, work and home conflicts were higher among surgeons who worked longer hours or had ≥2 nights on call. A significantly higher proportion of surgeons who worked >80 hours/week or had >2 nights on call/week would not become a surgeon again (p < 0.0001). Number of hours worked and nights on call per week appear to have a substantial impact on surgeons, both professionally and personally. These factors are strongly related to burnout, depression, career satisfaction, and work and home conflicts. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Developing a medical emergency team running sheet to improve clinical handoff and documentation.

    PubMed

    Mardegan, Karen; Heland, Melodie; Whitelock, Tifany; Millar, Robert; Jones, Daryl

    2013-12-01

    During medical emergency team (MET) and cardiac arrest calls, a scribe usually records events on a running sheet. There is more agreement on what data should be recorded in cardiac arrest calls than for MET calls. In addition, handoff (handover) from ward staff to the arriving MET may be variable. In a quality improvement project, a novel MET running sheet was developed to document events and therapies administered during MET calls. Key characteristics of the form were improved form layout, increased space for event documentation, and prompts to assist handoff to the arriving MET using the Identity Situation, Background, Assessment, Request (ISBAR) format. Ward nurses commonly involved in MET activation were surveyed to assess their perceptions of the new MET running sheet. Files of 100 consecutive MET calls were reviewed to assess compliance. Of 109 nurses invited to complete the survey, 103 did so (94.5% response rate). Overall, 87 (84.5%) of the 103 respondents agreed or strongly agreed that the new MET running sheet was better than the previous form for documenting MET management, and 58 (57.4%) of 101 respondents agreed or strongly agreed that it assisted handoff. The form was completed in 91 of a sample of 100 consecutive MET calls. Areas of less complete documentation included aspects of the ISBAR handover to the arriving MET and notification of the next of kin and usual clinicians at the completion of the call. The MET running sheet, tailored to the clinical events that occur during episodes of MET review, may assist handoff from ward nurses to the arriving MET and event documentation.

  5. Everyday bat vocalizations contain information about emitter, addressee, context, and behavior

    PubMed Central

    Prat, Yosef; Taub, Mor; Yovel, Yossi

    2016-01-01

    Animal vocal communication is often diverse and structured. Yet, the information concealed in animal vocalizations remains elusive. Several studies have shown that animal calls convey information about their emitter and the context. Often, these studies focus on specific types of calls, as it is rarely possible to probe an entire vocal repertoire at once. In this study, we continuously monitored Egyptian fruit bats for months, recording audio and video around-the-clock. We analyzed almost 15,000 vocalizations, which accompanied the everyday interactions of the bats, and were all directed toward specific individuals, rather than broadcast. We found that bat vocalizations carry ample information about the identity of the emitter, the context of the call, the behavioral response to the call, and even the call’s addressee. Our results underline the importance of studying the mundane, pairwise, directed, vocal interactions of animals. PMID:28005079

  6. Recent results from the strong interactions program of NA61/SHINE

    NASA Astrophysics Data System (ADS)

    Pulawski, Szymon

    2017-12-01

    The NA61/SHINE experiment studies hadron production in hadron+hadron, hadron+nucleus and nucleus+nucleus collisions. The strong interactions program has two main purposes: study the properties of the onset of deconfinement and search for the signatures of the critical point of strongly interacting matter. This aim is pursued by performing a two-dimensional scan of the phase diagram by varying the energy/momentum (13A-158A GeV/c) and the system size (p+p, Be+Be, Ar+Sc, Xe+La) of the collisions. This publication reviews recent results from p+p, Be+Be and Ar+Sc interactions. Measured particle spectra are discussed and compared to NA49 results from Pb+Pb collisions. The results illustrate the progress towards scanning the phase diagram of strongly interacting matter.

  7. Strongly-Interacting Fermi Gases in Reduced Dimensions

    DTIC Science & Technology

    2009-05-29

    effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark -gluon plasmas (elliptic flow), and most...strong interactions: Superconductors, neutron stars and quark -gluon plasmas on a desktop," Seminar on Modern Optics and Spectroscopy, M. I. T...interface of quark -gluon plasma physics and cold-atom physics," (Trento, Italy, March 19-23, 2007). Talk given by Andrey Turlapov. 17) J. E. Thomas

  8. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.

  9. Algorithms in Modern Mathematics and Computer Science.

    DTIC Science & Technology

    1980-01-01

    importance, since we will go on doing what we are doing no matter what it is called; after all, other disciplines like Mathematics and Chemistry are no...longer related very strongly to the etymology of their names. However, if I had a chance to vote for the name of my own discipline, I would choose to call

  10. Corporal Punishment and the Pain Provoked by the Community of Enquiry Pedagogy in the University Classroom

    ERIC Educational Resources Information Center

    Murris, Karin

    2014-01-01

    Education for transformation and social justice calls for critical, reflective, imaginative and independent thinkers with enquiring minds and a strong sense of curiosity--the ends and means of what Jonathan Jansen calls a "pedagogy to disrupt" and Gert Biesta a "pedagogy of interruption". For this reason, I introduced an…

  11. The R. J. Reynolds'"Smokeless Cigarette": Pancea or New Public Health Menace?

    ERIC Educational Resources Information Center

    Slade, John

    The R. J. Reynolds Tobacco Company is planning to introduce a so-called "smokeless cigarette". This product called Premier is an aluminum cylinder filled with porous alumina beads, corked with charcoal. The company has strongly hinted that the cigarette will provide the user with a dose of nicotine adequate to sustain nicotine dependence…

  12. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  13. Random Visitor: Defense against Identity Attacks in P2P Networks

    NASA Astrophysics Data System (ADS)

    Gu, Jabeom; Nah, Jaehoon; Kwon, Hyeokchan; Jang, Jonsoo; Park, Sehyun

    Various advantages of cooperative peer-to-peer networks are strongly counterbalanced by the open nature of a distributed, serverless network. In such networks, it is relatively easy for an attacker to launch various attacks such as misrouting, corrupting, or dropping messages as a result of a successful identifier forgery. The impact of an identifier forgery is particularly severe because the whole network can be compromised by attacks such as Sybil or Eclipse. In this paper, we present an identifier authentication mechanism called random visitor, which uses one or more randomly selected peers as delegates of identity proof. Our scheme uses identity-based cryptography and identity ownership proof mechanisms collectively to create multiple, cryptographically protected indirect bindings between two peers, instantly when needed, through the delegates. Because of these bindings, an attacker cannot achieve an identifier forgery related attack against interacting peers without breaking the bindings. Therefore, our mechanism limits the possibility of identifier forgery attacks efficiently by disabling an attacker's ability to break the binding. The design rationale and framework details are presented. A security analysis shows that our scheme is strong enough against identifier related attacks and that the strength increases if there are many peers (more than several thousand) in the network.

  14. Biconditional Prominence Correlation

    ERIC Educational Resources Information Center

    Teeple, David Allan

    2009-01-01

    This dissertation presents one solution to a problem in phonological typology, which is to explain the apparent cross-linguistic absence of a pattern I call "Strong-Position Neutralization" (or SPN): neutralization of a contrast in a strong position while the same contrast is maintained in the corresponding weak position. This is predicted in a…

  15. Threats to the Sustainability of the Outsourced Call Center Industry in the Philippines: Implications for Language Policy

    ERIC Educational Resources Information Center

    Friginal, Eric

    2009-01-01

    This study overviews current threats to the sustainability of the outsourced call center industry in the Philippines and discusses implications for macro and micro language policies given the use of English in this cross-cultural interactional context. This study also summarizes the present state of outsourced call centers in the Philippines, and…

  16. A test of multiple hypotheses for the function of call sharing in female budgerigars, Melopsittacus undulatus

    PubMed Central

    Young, Anna M.; Cordier, Breanne; Mundry, Roger; Wright, Timothy F.

    2014-01-01

    In many social species group, members share acoustically similar calls. Functional hypotheses have been proposed for call sharing, but previous studies have been limited by an inability to distinguish among these hypotheses. We examined the function of vocal sharing in female budgerigars with a two-part experimental design that allowed us to distinguish between two functional hypotheses. The social association hypothesis proposes that shared calls help animals mediate affiliative and aggressive interactions, while the password hypothesis proposes that shared calls allow animals to distinguish group identity and exclude nonmembers. We also tested the labeling hypothesis, a mechanistic explanation which proposes that shared calls are used to address specific individuals within the sender–receiver relationship. We tested the social association hypothesis by creating four–member flocks of unfamiliar female budgerigars (Melopsittacus undulatus) and then monitoring the birds’ calls, social behaviors, and stress levels via fecal glucocorticoid metabolites. We tested the password hypothesis by moving immigrants into established social groups. To test the labeling hypothesis, we conducted additional recording sessions in which individuals were paired with different group members. The social association hypothesis was supported by the development of multiple shared call types in each cage and a correlation between the number of shared call types and the number of aggressive interactions between pairs of birds. We also found support for calls serving as a labeling mechanism using discriminant function analysis with a permutation procedure. Our results did not support the password hypothesis, as there was no difference in stress or directed behaviors between immigrant and control birds. PMID:24860236

  17. Improving Refill Adherence in Medicare Patients With Tailored and Interactive Mobile Text Messaging: Pilot Study.

    PubMed

    Brar Prayaga, Rena; Jeong, Erwin W; Feger, Erin; Noble, Harmony K; Kmiec, Magdalen; Prayaga, Ram S

    2018-01-30

    Nonadherence is a major concern in the management of chronic conditions such as hypertension, cardiovascular disease, and diabetes where patients may discontinue or interrupt their medication for a variety of reasons. Text message reminders have been used to improve adherence. However, few programs or studies have explored the benefits of text messaging with older populations and at scale. In this paper, we present a program design using tailored and interactive text messaging to improve refill rates of partially adherent or nonadherent Medicare members of a large integrated health plan. The aim of this 3-month program was to gain an understanding of whether tailored interactive text message dialogues could be used to improve medication refills in Medicare patients with one or more chronic diseases. We used the mPulse Mobile interactive text messaging solution with partially adherent and nonadherent Medicare patients (ie, over age 65 years or younger with disabilities) of Kaiser Permanente Southern California (KP), a large integrated health plan, and compared refill rates of the text messaging group (n=12,272) to a group of partially adherent or nonadherent Medicare patients at KP who did not receive text messages (nontext messaging group, n=76,068). Both groups were exposed to other forms of refill and adherence outreach including phone calls, secure emails, and robo-calls from December 2016 to February 2017. The text messaging group and nontext messaging group were compared using an independent samples t test to test difference in group average of refill rates. There was a significant difference in medication refill rates between the 2 groups, with a 14.07 percentage points higher refill rate in the text messaging group (P<.001). The results showed a strong benefit of using this text messaging solution to improve medication refill rates among Medicare patients. These findings also support using interactive text messaging as a cost-effective, convenient, and user-friendly solution for patient engagement. Program outcomes and insights can be used to enhance the design of future text-based solutions to improve health outcomes and promote adherence and long-term behavior change. ©Rena Brar Prayaga, Erwin W Jeong, Erin Feger, Harmony K Noble, Magdalen Kmiec, Ram S Prayaga. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 30.01.2018.

  18. Homophobic Name-Calling Among Secondary School Students and Its Implications for Mental Health

    PubMed Central

    Bos, Henny M. W.; Sandfort, Theo G. M.

    2012-01-01

    Although homophobic verbal victimization has been associated with negative mental health outcomes, little actually is known about its general prevalence and relationship to mental health among adolescents. In addition, the relationship of homophobic name-calling to mental health in gender non-conforming adolescents is not well understood. This study examined the relationship between homophobic verbal victimization and mental health in adolescents, accounting for their sexual orientation and level of gender non-conformity. Survey data was collected from 513 adolescents (ages 11–17) who attended eight schools in and around Amsterdam, the Netherlands; 56.7 % of the participating adolescents were female and 11.1 % reported same-sex attractions. As hypothesized, male adolescents and those with same-sex attractions were more likely to report victimization from homophobic name-calling than were their female and non-same-sex attracted peers. Contrary to expectations, homophobic name-calling was not independently associated with psychological distress after controlling for gender, sexual attractions, gender non-conformity, and other negative treatment by peers. The hypothesis that homophobic name-calling would be more strongly associated with psychological distress in male, same-sex attracted, and gender non-conforming adolescents was also not supported. The results suggest that same-sex attracted and gender non-conforming youth are particularly vulnerable to homophobic name-calling, in the Netherlands as in other contexts, but also that other forms of peer victimization may be more strongly related to mental health. PMID:23001719

  19. Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB.

    PubMed

    Defeu Soufo, Hervé Joël; Graumann, Peter L

    2006-12-01

    Bacterial actin-like proteins play a key role in cell morphology and in chromosome segregation. Many bacteria, like Bacillus subtilis, contain three genes encoding actin-like proteins, called mreB, mbl and mreBH in B. subtilis. We show that MreB and Mbl colocalize extensively within live cells, and that all three B. subtilis actin paralogues interact with each other underneath the cell membrane. A mutation in the phosphate 2 motif of MreB had a dominant negative effect on cell morphology and on chromosome segregation. Expression of this mutant allele of MreB interfered with the dynamic localization of Mbl. These experiments show that the interaction between MreB and Mbl has physiological significance. An mreB deletion strain can grow under special media conditions, however, depletion of Mbl in this mutant background abolished growth, indicating that actin paralogues can partially complement each other. The membrane protein MreC was found to interact with Mbl, but not with MreB, revealing a clear distinction between the function of the two paralogues. The phosphate 2 mutant MreB protein allowed for filament formation of mutant or wild-type MreB, but abolished the dynamic reorganization of the filaments. The latter mutation led to a strong reduction, but not complete loss, of function of MreB, both in terms of chromosome segregation and of cell morphology. Our work shows that that the dynamic localization of MreB is essential for the proper activity of the actin-like protein and that the interactions between MreB paralogues have important physiological significance.

  20. Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.

  1. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase.

    PubMed

    Nachon, Florian; Carletti, Eugénie; Ronco, Cyril; Trovaslet, Marie; Nicolet, Yvain; Jean, Ludovic; Renard, Pierre-Yves

    2013-08-01

    The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.

  2. Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team

    2016-10-01

    At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.

  3. Rita Roars Through a Warm Gulf September 22, 2005

    NASA Image and Video Library

    2005-09-22

    This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over warm ocean currents and eddies. Eddies are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the warm waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a warm-water eddy called the Eddy Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427

  4. Strong Inter-channel Effects in Dipole Photoionization of d-subshells of Xe, Cs, and Ba Atoms

    NASA Astrophysics Data System (ADS)

    Manson, S.; Amusia, M.; Baltenkov, A.; Chernysheva, L.; Felfli, Z.; Msezane, A.

    2003-05-01

    In the framework of a specially modified Random Phase Approximation with Exchange approach (SPRPAE) developed for half-filled atomic subshells the dipole angular anisotropy parameters β(ω) for the 3d-photoionization of Xe, Cs and Ba atoms have been calculated. The main point of this approach is that we consider the 3d electrons of these atoms as belonging to two semi-filled atomic levels that contain two different sorts of electrons, namely that six electrons form the 3d_5/2 subshell (called "up"), while the other four electrons form the 3d_3/2 subshell (called "down"). This permits to apply straightforwardly the RPAE for these semi-filled subshells. We show that the interaction between "up" and "down" electrons results in a qualitative alteration of the frequency (ω) dependence of β_5/2(ω) and β_3/2(ω) that define the photoelectron angular distribution from the 3d_5/2 and 3d_3/2 levels. In all these atoms the effect of 3d_3/2 upon 3d_5/2 leads to the creation of an additional maximum near the photoionization thresholds, while the effect for 3d_3/2 is rather weak. Work supported by CRDF (No ZP1- 2449-TA-02), ISTC grant 1358 and NSF

  5. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.

    PubMed

    Roux, F; Bergelson, J

    2016-01-01

    In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. © 2016 Elsevier Inc. All rights reserved.

  6. A quantum dot close to Stoner instability: The role of the Berry phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Arijit, E-mail: arijitsahahri@gmail.com; Gefen, Yuval; Burmistrov, Igor

    2012-10-15

    The physics of a quantum dot with electron-electron interactions is well captured by the so called 'Universal Hamiltonian' if the dimensionless conductance of the dot is much higher than unity. Within this scheme interactions are represented by three spatially independent terms which describe the charging energy, the spin-exchange and the interaction in the Cooper channel. In this paper we concentrate on the exchange interaction and generalize the functional bosonization formalism developed earlier for the charging energy. This turned out to be challenging as the effective bosonic action is formulated in terms of a vector field and is non-abelian due tomore » the non-commutativity of the spin operators. Here we develop a geometric approach which is particularly useful in the mesoscopic Stoner regime, i.e., when the strong exchange interaction renders the system close to the Stoner instability. We show that it is sufficient to sum over the adiabatic paths of the bosonic vector field and, for these paths, the crucial role is played by the Berry phase. Using these results we were able to calculate the magnetic susceptibility of the dot. The latter, in close vicinity of the Stoner instability point, matches very well with the exact solution [I.S. Burmistrov, Y. Gefen, M.N. Kiselev, JETP Lett. 92 (2010) 179]. - Highlights: Black-Right-Pointing-Pointer We consider a conducting QD whose dynamics is governed by exchange interaction. Black-Right-Pointing-Pointer We study the model within the 'Universal Hamiltonian' framework. Black-Right-Pointing-Pointer The ensuing bosonic action is non-abelian (hence non-trivial). Black-Right-Pointing-Pointer We find that the low energy dynamics is governed by a fluctuating Berry phase term. Black-Right-Pointing-Pointer We calculate the partition function and the zero frequency magnetic susceptibility.« less

  7. An Integrative-Interactive Conceptual Model for Curriculum Development.

    ERIC Educational Resources Information Center

    Al-Ibrahim, Abdul Rahman H.

    1982-01-01

    The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)

  8. Developmental plasticity of mating calls enables acoustic communication in diverse environments

    PubMed Central

    Beckers, Oliver M; Schul, Johannes

    2008-01-01

    Male calls of the katydid Neoconocephalus triops exhibit substantial developmental plasticity in two parameters: (i) calls of winter males are continuous and lack the verse structure of summer calls and (ii) at equal temperatures, summer males produce calls with a substantially higher pulse rate than winter males. We raised female N. triops under conditions that reliably induced either summer or winter phenotype and tested their preferences for the call parameters that differ between summer and winter males. Neither generation was selective for the presence of verses, but females had strong preferences for pulse rates: only a narrow range of pulse rates was attractive. The attractive ranges did not differ between summer and winter females. Both male pulse rate and female preference for pulse rate changed with ambient temperature, but female preference changed more than the male calls. As a result, the summer call was attractive only at 25°C, whereas the slower winter call was attractive only at 20°C. Thus, developmental plasticity of male calls compensates for differences in temperature dependency between calls and preferences and enables the communication system to function in heterogeneous environments. The potential role of call plasticity during the invasion of new habitats is discussed. PMID:18302998

  9. Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans.

    PubMed

    Spinola, Stanley M; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Zwickl, Beth; Katz, Barry P; Munson, Robert S

    2012-02-01

    Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.

  10. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    PubMed

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  11. Analysis of a large-scale weighted network of one-to-one human communication

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János

    2007-06-01

    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.

  12. The PUF binding landscape in metazoan germ cells

    PubMed Central

    Prasad, Aman; Porter, Douglas F.; Kroll-Conner, Peggy L.; Mohanty, Ipsita; Ryan, Anne R.; Crittenden, Sarah L.; Wickens, Marvin; Kimble, Judith

    2016-01-01

    PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their “binding landscape”). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF–RNA interactions. FBF-1 and FBF-2 can bind sites in the 5′UTR, coding region, or 3′UTR, but have a strong bias for the 3′ end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2. PMID:27165521

  13. Authentic Oral Language Production and Interaction in CALL: An Evolving Conceptual Framework for the Use of Learning Analytics within the SpeakApps Project

    ERIC Educational Resources Information Center

    Nic Giolla Mhichíl, Mairéad; van Engen, Jeroen; Ó Ciardúbháin, Colm; Ó Cléircín, Gearóid; Appel, Christine

    2014-01-01

    This paper sets out to construct and present the evolving conceptual framework of the SpeakApps projects to consider the application of learning analytics to facilitate synchronous and asynchronous oral language skills within this CALL context. Drawing from both the CALL and wider theoretical and empirical literature of learner analytics, the…

  14. The Strength of Strong Ties for Older Rural Adults: Regional Distinctions in the Relationship between Social Interaction and Subjective Well-Being

    ERIC Educational Resources Information Center

    Mair, Christine A.; Thivierge-Rikard, R. V.

    2010-01-01

    Classic and contemporary sociological theories suggest that social interaction differs in rural and urban areas. Intimate, informal interactions (strong ties) are theorized to characterize rural areas while urban areas may possess more formal and rationalized interactions (weak ties). Aging and social support literature stresses social interaction…

  15. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra

    PubMed Central

    Micheletta, Jérôme; Waller, Bridget M.; Panggur, Maria R.; Neumann, Christof; Duboscq, Julie; Agil, Muhammad; Engelhardt, Antje

    2012-01-01

    Enduring positive social bonds between individuals are crucial for humans' health and well being. Similar bonds can be found in a wide range of taxa, revealing the evolutionary origins of humans' social bonds. Evidence suggests that these strong social bonds can function to buffer the negative effects of living in groups, but it is not known whether they also function to minimize predation risk. Here, we show that crested macaques (Macaca nigra) react more strongly to playbacks of recruitment alarm calls (i.e. calls signalling the presence of a predator and eliciting cooperative mobbing behaviour) if they were produced by an individual with whom they share a strong social bond. Dominance relationships between caller and listener had no effect on the reaction of the listener. Thus, strong social bonds may improve the coordination and efficiency of cooperative defence against predators, and therefore increase chances of survival. This result broadens our understanding of the evolution and function of social bonds by highlighting their importance in the anti-predator context. PMID:22859593

  16. The trading rectangle strategy within book models

    NASA Astrophysics Data System (ADS)

    Matassini, Lorenzo

    2001-12-01

    We introduce a model of trading where traders interact through the insertion of orders in the book. This matching mechanism is a collection of the activity of agents: They can trade at the market price or place a limit order. The latter is valid until cancelled by the trader; to this end we introduce a threshold in time after which the probability of the order to be removed is strongly increased. There is essentially no source of randomness and all the traders share a common strategy, what we call trading rectangle. Since there are no fundamentalist rules, it is not so important to identify the right moment to enter in the market. Much more effort is required to decide when to sell. The model is able to reproduce many of the complex phenomena manifested in real stock markets, including the positive correlation between bid/ask spreads and volatility.

  17. NADPH oxidases in the arbuscular mycorrhizal symbiosis

    PubMed Central

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-01-01

    ABSTRACT Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  18. Rogue events in the group velocity horizon

    PubMed Central

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems. PMID:23152941

  19. Shaping Learning Cultures: A Strategic Challenge for Universities

    NASA Astrophysics Data System (ADS)

    Euler, Dieter

    While there are strong stakeholders at universities arguing for increasing efforts to improve the research record, innovative actions for a corresponding commitment on teaching and learning are less frequent. In many cases, this issue is left to the discretion of individual teachers. In order to improve teaching and learning at universities, this approach does not seem to be appropriate. Rather, actions on different dimensions have to be organized, ranging from the individual, interactional, and institutional level of a university. The different perspectives on analysis and action are assembled in a construct called "learning cultures." This term covers the various dimensions impacting on student learning. The article provides a definition of "learning cultures," which will then be explained. Based on the explicated notion, a conceptual frame is put forward covering the key features of "learning cultures." Finally, some ideas are given providing some preliminary answers on how to shape learning cultures at the strategic level at universities.

  20. Orbital angular momentum mode division filtering for photon-phonon coupling

    PubMed Central

    Zhu, Zhi-Han; Sheng, Li-Wen; Lv, Zhi-Wei; He, Wei-Ming; Gao, Wei

    2017-01-01

    Stimulated Brillouin scattering (SBS), a fundamental nonlinear interaction between light and acoustic waves occurring in any transparency material, has been broadly studied for several decades and gained rapid progress in integrated photonics recently. However, the SBS noise arising from the unwanted coupling between photons and spontaneous non-coherent phonons in media is inevitable. Here, we propose and experimentally demonstrate this obstacle can be overcome via a method called orbital angular momentum mode division filtering. Owing to the introduction of a new distinguishable degree-of-freedom, even extremely weak signals can be discriminated and separated from a strong noise produced in SBS processes. The mechanism demonstrated in this proof-of-principle work provides a practical way for quasi-noise-free photonic-phononic operation, which is still valid in waveguides supporting multi-orthogonal spatial modes, permits more flexibility and robustness for future SBS devices. PMID:28071736

  1. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.

    PubMed

    Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine

    2007-01-01

    The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.

  2. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process

    NASA Astrophysics Data System (ADS)

    Lopes, D. H. J.; Smirnovas, V.; Winter, R.

    2008-07-01

    Type II Diabetes Mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet β-cell mass and the deposition of amyloid in the extracellular matrix of β-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR, CD, ThT fluorescence spectroscopic and AFM studies were carried out to reveal information on the aggregation pathway as well as the aggregate structure of IAPP. Our data indicate that IAPP pre-formed fibrils exhibit a strong polymorphism with heterogeneous structures very sensitive to high hydrostatic pressure, indicating a high percentage of ionic and hydrophobic interactions being responsible for the stability the IAPP fibrils.

  3. Directional detection of dark matter in universal bound states

    DOE PAGES

    Laha, Ranjan

    2015-10-06

    It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less

  4. Assessing Hypervalency in Iodanes.

    PubMed

    Stirling, András

    2018-02-01

    The so-called hypervalent iodane compounds are very useful and versatile reactants and oxidizing agents in modern organic chemistry. The hypercoordinated central iodine in these compounds hints at a hypervalent state, which is often stressed to justify their reactivity. In this study a theoretical analysis of the electronic structure of a large, representative set of hypercoordinated iodane compounds has been carried out. We observed that the iodonium is not hypervalent in these compounds. In contrast, the analysis reveals a variation of the iodine valence state from a normal octet state to hypovalent depending on the ligands, but irrespective of the coordination number. On the basis of the calculations the reactivity of these compounds can be ascribed to the strong unquenched charge separation present in these molecules which represents a compromise between Coulomb interaction and the resistance of iodonium toward hypervalency. In extreme cases this leads to hypovalency and enhanced reactivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Silicene Catalyzed Reduction of Nitrobenzene to Aniline: a Computational Study

    NASA Astrophysics Data System (ADS)

    Morrissey, Christopher; He, Haiying

    The reduction of nitrobenzene to aniline has a broad range of applications in the production of rubbers, dyes, agrochemicals, and pharmaceuticals. Currently, use of metal catalysts is the most popular method of performing this reaction on a large scale. These metal catalysts usually require high-temperature and/or high-pressure reaction conditions, and produce hazardous chemicals. This has led to a call for more environmentally friendly nonmetal catalysts. Recent studies suggest that silicene, the recently discovered silicon counterpart of graphene, could potentially work as a nonmetal catalyst due to its unique electronic property and strong interactions with molecules containing nitrogen and oxygen. In this computational study, we have investigated the plausibility of using silicene as a catalyst for the reduction of nitrobenzene. Possible reaction mechanisms will be discussed with a highlight of the difference between silicene and metal catalysts. . All calculations were performed in the framework of density functional theory.

  6. Antibunching and unconventional photon blockade with Gaussian squeezed states

    NASA Astrophysics Data System (ADS)

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2014-12-01

    Photon antibunching is a quantum phenomenon typically observed in strongly nonlinear systems where photon blockade suppresses the probability of detecting two photons at the same time. Antibunching has also been reported with Gaussian states, where optimized amplitude squeezing yields classically forbidden values of the intensity correlation, g(2 )(0 ) <1 . As a consequence, observation of antibunching is not necessarily a signature of photon-photon interactions. To clarify the significance of the intensity correlations, we derive a sufficient condition for deducing whether a field is non-Gaussian based on a g(2 )(0 ) measurement. We then show that the Gaussian antibunching obtained with a degenerate parametric amplifier is close to the ideal case reached using dissipative squeezing protocols. We finally shed light on the so-called unconventional photon blockade effect predicted in a driven two-cavity setup with surprisingly weak Kerr nonlinearities, stressing that it is a particular realization of optimized Gaussian amplitude squeezing.

  7. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    PubMed

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  8. Resummation of high order corrections in Higgs boson plus jet production at the LHC

    DOE PAGES

    Sun, Peng; Isaacson, Joshua; Yuan, C. -P.; ...

    2017-02-22

    We study the effect of multiple parton radiation to Higgs boson plus jet production at the LHC. The large logarithms arising from the small imbalance in the transverse momentum of the Higgs boson plus jet final state system are resummed to all orders in the expansion of the strong interaction coupling at the accuracy of Next-to-Leading Logarithm (NLL), by applying the transverse momentum dependent (TMD) factorization formalism. We show that the appropriate resummation scale should be the jet transverse momentum, rather than the partonic center of mass energy which has been normally used in the TMD resummation formalism. Furthermore, themore » transverse momentum distribution of the Higgs boson, particularly near the lower cut-off applied on the jet transverse momentum, can only be reliably predicted by the resummation calculation which is free of the so-called Sudakov-shoulder singularity problem, present in fixed-order calculations.« less

  9. The hybrid lattice of K(x)Fe(2-y)Se2: where superconductivity and magnetism coexist.

    PubMed

    Louca, Despina; Park, Keeseong; Li, Bing; Neuefeind, Joerg; Yan, Jiaqiang

    2013-01-01

    Much remains unknown of the microscopic origin of superconductivity in atomically disordered systems of amorphous alloys or in crystals riddled with defects. A manifestation of this conundrum is envisaged in the highly defective superconductor of K(x)Fe(2-y)Se2. How can superconductivity survive under such crude conditions that call for strong electron localization? Here, we show that the Fe sublattice is locally distorted and accommodates two kinds of Fe valence environments giving rise to a bimodal bond-distribution, with short and long Fe bonds. The bimodal bonds are present even as the system becomes superconducting in the presence of antiferromagnetism, with the weight continuously shifting from the short to the long with increasing K content. Such a hybrid state is most likely found in cuprates as well while our results point to the importance of the local atomic symmetry by which exchange interactions between local moments materialize.

  10. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  11. Resummation of high order corrections in Higgs boson plus jet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Peng; Isaacson, Joshua; Yuan, C. -P.

    We study the effect of multiple parton radiation to Higgs boson plus jet production at the LHC. The large logarithms arising from the small imbalance in the transverse momentum of the Higgs boson plus jet final state system are resummed to all orders in the expansion of the strong interaction coupling at the accuracy of Next-to-Leading Logarithm (NLL), by applying the transverse momentum dependent (TMD) factorization formalism. We show that the appropriate resummation scale should be the jet transverse momentum, rather than the partonic center of mass energy which has been normally used in the TMD resummation formalism. Furthermore, themore » transverse momentum distribution of the Higgs boson, particularly near the lower cut-off applied on the jet transverse momentum, can only be reliably predicted by the resummation calculation which is free of the so-called Sudakov-shoulder singularity problem, present in fixed-order calculations.« less

  12. Antennal proteome comparison of sexually mature drone and forager honeybees.

    PubMed

    Feng, Mao; Song, Feifei; Aleku, Dereje Woltedji; Han, Bin; Fang, Yu; Li, Jianke

    2011-07-01

    Honeybees have evolved an intricate system of chemical communication to regulate their complex social interactions. Specific proteins involved in odorant detection most likely supported this chemical communication. Odorant reception takes place mainly in the antennae within hairlike structures called olfactory sensilla. Antennal proteomes of sexually mature drone and forager worker bees (an age group of bees assigned to perform field tasks) were compared using two-dimensional electrophoresis, mass spectrometry, quantitative real-time polymerase chain reaction, and bioinformatics. Sixty-one differentially expressed proteins were identified in which 67% were highly upregulated in the drones' antennae whereas only 33% upregulated in the worker bees' antennae. The antennae of the worker bees strongly expressed carbohydrate and energy metabolism and molecular transporters signifying a strong demand for metabolic energy and odorant binding proteins for their foraging activities and other olfactory responses, while proteins related to fatty acid metabolism, antioxidation, and protein folding were strongly upregulated in the drones' antennae as an indication of the importance for the detection and degradation of sex pheromones during queen identification for mating. On the basis of both groups of altered antenna proteins, carbohydrate metabolism and energy production and molecular transporters comprised more than 80% of the functional enrichment analysis and 45% of the constructed biological interaction networks (BIN), respectively. This suggests these two protein families play crucial roles in the antennal olfactory function of sexually mature drone and forager worker bees. Several key node proteins in the BIN were validated at the transcript level. This first global proteomic comparative analysis of antennae reveals sex-biased protein expression in both bees, indicating that odorant response mechanisms are sex-specific because of natural selection for different olfactory functions. To the best of our knowledge, this result further provides extensive insight into the expression of the proteins in the antennae of drone and worker honeybees and adds vital information to the previous findings. It also provides a new angle for future detailed functional analysis of the antennae of the honeybee castes.

  13. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  14. Avoiding escalation from play to aggression in adult male rats: The role of ultrasonic calls.

    PubMed

    Burke, Candace J; Kisko, Theresa M; Pellis, Sergio M; Euston, David R

    2017-11-01

    Play fighting is most commonly associated with juvenile animals, but in some species, including rats, it can continue into adulthood. Post-pubertal engagement in play fighting is often rougher and has an increased chance of escalation to aggression, making the use of play signals to regulate the encounter more critical. During play, both juvenile and adult rats emit many 50-kHz calls and some of these may function as play facilitating signals. In the present study, unfamiliar adult male rats were introduced in a neutral enclosure and their social interactions were recorded. While all pairs escalated their playful encounters to become rougher, only the pairs in which one member was devocalized escalated to serious biting. A Monte Carlo shuffling technique was used for the analysis of the correlations between the overt playful and aggressive actions performed and the types and frequencies of various 50-kHz calls that were emitted. The analysis revealed that lower frequency (20-30kHz) calls with a flat component maybe particularly critical for de-escalating encounters and so allowing play to continue. Moreover, coordinating calls reciprocally, with either the same call mimicked in close, temporal association or with complementary calls emitted by participants as they engage in complementary actions (e.g., attacking the nape, being attacked on the nape), appeared to be ways with which calls could be potentially used to avoid escalation to aggression and so sustain playful interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. CallWall: tracking resident calls to improve clinical utilization of pathology laboratories.

    PubMed

    Buck, Thomas P; Connor, Ian M; Horowitz, Gary L; Arnaout, Ramy A

    2011-07-01

    Clinical pathology (CP) laboratories are used for millions of tests each year. These lead to thousands of calls to CP residents. However, although laboratory utilization is a frequent topic of study, clinical utilization--the content of the interactions between clinicians and CP residents--is not. Because it reflects questions about laboratory utilization, clinical utilization could suggest ways to improve both training and care by reducing diagnostic error. To build and implement a secure, scalable Web-based system to allow CP residents at any hospital to track the calls they receive, the interaction's context, and the action taken as a result, with evidence where applicable, and to use this system to report on clinical utilization at a major academic hospital. Entries were analyzed from a nearly year-long period to describe the clinical utilization of CP at a large academic teaching hospital. Sixteen residents logged 847 calls during 10 months, roughly evenly distributed among transfusion medicine, chemistry, microbiology, and hematopathology. Calls covered 94 different analytes in chemistry and 71 different organisms or tests in microbiology. Analysis revealed areas where CP can improve clinical care through educating the clinical services, for example, about ordering Rh immune globulin, testosterone testing, and diagnosis of tick-borne diseases. Documenting calls also highlighted patterns among residents. Clinical utilization is a potentially rich knowledge base for improving patient care and resident training. Our resident call-tracking system is a useful way for measuring clinical utilization and mining it for actionable information.

  16. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM content increase and be less than that. Sorption interactions of herbicides with soils demonstrate a strong hysteresis (which is not expected to be related to a biodegradation). The data suggests that the OMWW - soil interaction seems to change the shape of the apparent sorption isotherms of organic sorbates, and, possibly, their sorption mechanisms: from a Langmuir-like sorption isotherm (describing the adsorptive interactions with a saturation of sorption sites) in the native soils to the sigmoidal or linear isotherms (expected for a partitioning into the bulk OM phases and their swelling) in the OMWW-amended soils. These results may have a significant impact on multiple agricultural and hydrological aspects, e.g., such as the application rate of herbicides in the field, and their possible release and the long term effect on groundwater. The authors acknowledge the support from the OLIVEOIL project (SCHA849/13) funded by DFG.

  17. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  18. Burst Firing is a Neural Code in an Insect Auditory System

    PubMed Central

    Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés

    2008-01-01

    Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533

  19. Historical trauma: politics of a conceptual framework.

    PubMed

    Prussing, Erica

    2014-06-01

    The concept of historical trauma (HT) is compelling: Colonialism has set forth cumulative cycles of adversity that promote morbidity and mortality at personal and collective levels, with especially strong mental health impacts. Yet as ongoing community-based as well as scholarly discussions attest, lingering questions continue to surround HT as a framework for understanding the relationships between colonialism and indigenous mental health. Through an overview of 30 recent peer-reviewed publications that aim to clarify, define, measure, and interpret how HT impacts American Indian and Alaska Native (AIAN) mental health, this paper examines how the conceptual framework of HT has circulated in ways shaped by interactions among three prominent research approaches: evidence-based, culturally relevant, and decolonizing. All define current approaches to AIAN mental health research, but each sets forth different conceptualizations of the connections between colonialism and psychological distress. The unfolding trajectory of research about HT reflects persistent tensions in how these frameworks interact, but also possibilities for better integrating them. These considerations aim to advance conversations about the politics of producing knowledge about AIAN mental health, and support ongoing calls for greater political pluralism in mental health research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer’s disease

    PubMed Central

    Grégoire, Catherine; Marco, Sergio; Thimonier, Jean; Duplan, Laure; Laurine, Emmanuelle; Chauvin, Jean-Paul; Michel, Bernard; Peyrot, Vincent; Verdier, Jean-Michel

    2001-01-01

    Neurodegenerative diseases are characterized by the presence of filamentous aggregates of proteins. We previously established that lithostathine is a protein overexpressed in the pre-clinical stages of Alzheimer’s disease. Furthermore, it is present in the pathognomonic lesions associated with Alzheimer’s disease. After self-proteolysis, the N-terminally truncated form of lithostathine leads to the formation of fibrillar aggregates. Here we observed using atomic force microscopy that these aggregates consisted of a network of protofibrils, each of which had a twisted appearance. Electron microscopy and image analysis showed that this twisted protofibril has a quadruple helical structure. Three-dimensional X-ray structural data and the results of biochemical experiments showed that when forming a protofibril, lithostathine was first assembled via lateral hydrophobic interactions into a tetramer. Each tetramer then linked up with another tetramer as the result of longitudinal electrostatic interactions. All these results were used to build a structural model for the lithostathine protofibril called the quadruple-helical filament (QHF-litho). In conclusion, lithostathine strongly resembles the prion protein in its dramatic proteolysis and amyloid proteins in its ability to form fibrils. PMID:11432819

  1. Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation.

    PubMed

    Wen, Xiao-Yong; Yan, Zhenya

    2015-12-01

    We study higher-order rogue wave (RW) solutions of the coupled integrable dispersive AB system (also called Pedlosky system), which describes the evolution of wave-packets in a marginally stable or unstable baroclinic shear flow in geophysical fluids. We propose its continuous-wave (CW) solutions and existent conditions for their modulation instability to form the rogue waves. A new generalized N-fold Darboux transformation (DT) is proposed in terms of the Taylor series expansion for the spectral parameter in the Darboux matrix and its limit procedure and applied to the CW solutions to generate multi-rogue wave solutions of the coupled AB system, which satisfy the general compatibility condition. The dynamical behaviors of these higher-order rogue wave solutions demonstrate both strong and weak interactions by modulating parameters, in which some weak interactions can generate the abundant triangle, pentagon structures, etc. Particularly, the trajectories of motion of peaks and depressions of profiles of the first-order RWs are explicitly analyzed. The generalized DT method used in this paper can be extended to other nonlinear integrable systems. These results may be useful for understanding the corresponding rogue-wave phenomena in fluid mechanics and related fields.

  2. BCS: the Scientific "Love of my Life"

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    After short comments on my early addenda to BCS — gauge invariance and the Anderson-Higgs mechanism, the dirty superconductor "theorem," and the spinor representation — I focus on the interaction mechanisms which cause electron-electron pairing. These bifurcate into two almost non-overlapping classes. In order to cause electrons to pair in spite of the strong, repulsive, instantaneous Coulomb vertex, the electrons can evade each others' propinquity on the same site at the same time either dynamically, by retaining D° (s-wave) relative symmetry, but avoiding each other in time — called "dynamic screening" — or by assuming a non-symmetric relative wave function, avoiding each other in space. All simple metals and alloys, including all the (so far) technically useful superconductors, follow the former scheme. But starting with the first discovery of "heavy-electron" super-conductors in 1979, and continuing with the "organics" and the magnetic transition metal compounds such as the cuprates and the iron pnictides, it appears that the second class may turn out to be numerically superior and theoretically more fascinating. The basic interaction in many of these cases appears to be the "kinetic exchange" or superexchange characteristic of magnetic insulators.

  3. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  4. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    PubMed Central

    Granqvist, Niko; Hanning, Anders; Eng, Lars; Tuppurainen, Jussi; Viitala, Tapani

    2013-01-01

    Surface plasmon resonance (SPR) is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations. PMID:24217357

  5. Solving multi-objective optimization problems in conservation with the reference point method

    PubMed Central

    Dujardin, Yann; Chadès, Iadine

    2018-01-01

    Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650

  6. Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites Cu3Bi (SeO3)2 O2X (X = Br , Cl )

    NASA Astrophysics Data System (ADS)

    Rousochatzakis, Ioannis; Richter, Johannes; Zinke, Ronald; Tsirlin, Alexander A.

    2015-01-01

    We investigate the antiferromagnetic canting instability of the spin-1/2 kagome ferromagnet, as realized in the layered cuprates Cu3Bi (SeO3)2 O2X (X = Br , Cl ). While the local canting can be explained in terms of competing exchange interactions, the direction of the ferrimagnetic order parameter fluctuates strongly even at short distances on account of frustration which gives rise to an infinite ground state degeneracy at the classical level. In analogy with the kagome antiferromagnet, the accidental degeneracy is fully lifted only by nonlinear 1 /S corrections, rendering the selected uniform canted phase very fragile even for spins-1/2, as shown explicitly by coupled-cluster calculations. To account for the observed ordering, we show that the minimal description of these systems must include the microscopic Dzyaloshinsky-Moriya interactions, which we obtain from density-functional band-structure calculations. The model explains all qualitative properties of the kagome francisites, including the detailed nature of the ground state and the anisotropic response under a magnetic field. The predicted magnon excitation spectrum and quantitative features of the magnetization process call for further experimental investigations of these compounds.

  7. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    PubMed

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  8. From Cell Differentiation to Cell Collectives: Bacillus subtilis Uses Division of Labor to Migrate

    PubMed Central

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The organization of cells, emerging from cell–cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called “van Gogh bundles”) of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity. PMID:25894589

  9. Soil Moisture Dynamics Under Corn, Soybean, and Perennial Kura Clover

    USDA-ARS?s Scientific Manuscript database

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting th...

  10. Multi-Modal Use of a Socially Directed Call in Bonobos

    PubMed Central

    Genty, Emilie; Clay, Zanna; Hobaiter, Catherine; Zuberbühler, Klaus

    2014-01-01

    ‘Contest hoots’ are acoustically complex vocalisations produced by adult and subadult male bonobos (Pan paniscus). These calls are often directed at specific individuals and regularly combined with gestures and other body signals. The aim of our study was to describe the multi-modal use of this call type and to clarify its communicative and social function. To this end, we observed two large groups of bonobos, which generated a sample of 585 communicative interactions initiated by 10 different males. We found that contest hooting, with or without other associated signals, was produced to challenge and provoke a social reaction in the targeted individual, usually agonistic chase. Interestingly, ‘contest hoots’ were sometimes also used during friendly play. In both contexts, males were highly selective in whom they targeted by preferentially choosing individuals of equal or higher social rank, suggesting that the calls functioned to assert social status. Multi-modal sequences were not more successful in eliciting reactions than contest hoots given alone, but we found a significant difference in the choice of associated gestures between playful and agonistic contexts. During friendly play, contest hoots were significantly more often combined with soft than rough gestures compared to agonistic challenges, while the calls' acoustic structure remained the same. We conclude that contest hoots indicate the signaller's intention to interact socially with important group members, while the gestures provide additional cues concerning the nature of the desired interaction. PMID:24454745

  11. Climatology of Global Swell-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2016-04-01

    At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.

  12. Strong field QED in lepton colliders and electron/laser interactions

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.

  13. Ecological photodynamic therapy: new trend to disrupt the intricate networks within tumor ecosystem.

    PubMed

    Rumie Vittar, N Belén; Lamberti, María Julia; Pansa, María Florencia; Vera, Renzo E; Rodriguez, M Exequiel; Cogno, I Sol; Milla Sanabria, Laura N; Rivarola, Viviana A

    2013-01-01

    As with natural ecosystems, species within the tumor microenvironment are connected by pairwise interactions (e.g. mutualism, predation) leading to a strong interdependence of different populations on each other. In this review we have identified the ecological roles played by each non-neoplastic population (macrophages, endothelial cells, fibroblasts) and other abiotic components (oxygen, extracellular matrix) directly involved with neoplastic development. A way to alter an ecosystem is to affect other species within the environment that are supporting the growth and survival of the species of interest, here the tumor cells; thus, some features of ecological systems could be exploited for cancer therapy. We propose a well-known antitumor therapy called photodynamic therapy (PDT) as a novel modulator of ecological interactions. We refer to this as "ecological photodynamic therapy." The main goal of this new strategy is the improvement of therapeutic efficiency through the disruption of ecological networks with the aim of destroying the tumor ecosystem. It is therefore necessary to identify those interactions from which tumor cells get benefit and those by which it is impaired, and then design multitargeted combined photodynamic regimes in order to orchestrate non-neoplastic populations against their neoplastic counterpart. Thus, conceiving the tumor as an ecological system opens avenues for novel approaches on treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A model for the repeating FRB 121102 in the AGN scenario

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Bosch-Ramon, V.; Marcote, B.; del Valle, M. V.

    2017-06-01

    Context. Fast radio bursts (FRBs) are transient sources of unknown origin. Recent radio and optical observations have provided strong evidence for an extragalactic origin of the phenomenon and the precise localization of the repeating FRB 121102. Observations using the Karl G. Jansky Very Large Array (VLA) and very-long-baseline interferometry (VLBI) have revealed the existence of a continuum non-thermal radio source consistent with the location of the bursts in a dwarf galaxy. All these new data rule out several models that were previously proposed, and impose stringent constraints to new models. Aims: We aim to model FRB 121102 in light of the new observational results in the active galactic nucleus (AGN) scenario. Methods: We propose a model for repeating FRBs in which a non-steady relativistic e±-beam, accelerated by an impulsive magnetohydrodynamic driven mechanism, interacts with a cloud at the centre of a star-forming dwarf galaxy. The interaction generates regions of high electrostatic field called cavitons in the plasma cloud. Turbulence is also produced in the beam. These processes, plus particle isotropization, the interaction scale, and light retardation effects, provide the necessary ingredients for short-lived, bright coherent radiation bursts. Results: The mechanism studied in this work explains the general properties of FRB 121102, and may also be applied to other repetitive FRBs. Conclusions: Coherent emission from electrons and positrons accelerated in cavitons provides a plausible explanation of FRBs.

  15. Multifidelity, multidisciplinary optimization of turbomachines with shock interaction

    NASA Astrophysics Data System (ADS)

    Joly, Michael Marie

    Research on high-speed air-breathing propulsion aims at developing aircraft with antipodal range and space access. Before reaching high speed at high altitude, the flight vehicle needs to accelerate from takeoff to scramjet takeover. Air turbo rocket engines combine turbojet and rocket engine cycles to provide the necessary thrust in the so-called low-speed regime. Challenges related to turbomachinery components are multidisciplinary, since both the high compression ratio compressor and the powering high-pressure turbine operate in the transonic regime in compact environments with strong shock interactions. Besides, lightweight is vital to avoid hindering the scramjet operation. Recent progress in evolutionary computing provides aerospace engineers with robust and efficient optimization algorithms to address concurrent objectives. The present work investigates Multidisciplinary Design Optimization (MDO) of innovative transonic turbomachinery components. Inter-stage aerodynamic shock interaction in turbomachines are known to generate high-cycle fatigue on the rotor blades compromising their structural integrity. A soft-computing strategy is proposed to mitigate the vane downstream distortion, and shown to successfully attenuate the unsteady forcing on the rotor of a high-pressure turbine. Counter-rotation offers promising prospects to reduce the weight of the machine, with fewer stages and increased load per row. An integrated approach based on increasing level of fidelity and aero-structural coupling is then presented and allows achieving a highly loaded compact counter-rotating compressor.

  16. New Materials for Supramolecular Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Jurow, Matthew

    The projects reported here seek to employ the very small---molecules, nanoparticles, films of materials far thinner than a human hair---to create diverse useful systems. We have focused our attention of a class of molecules which strongly absorb light and can be induced to interact with other materials to create devices which can harvest the energy in sunlight, change the way they respond to external stimulus based on the way they are being illuminated, and hopefully in the future make electronic devices more efficient, sustainable, smaller and broadly better. The majority of our most advanced current technologies are made by "top down" fabrication. Large portions of materials which do not demonstrate any of the strange properties which emerge when physical dimensions are severely limited, called bulk materials, are whittled down and painstakingly arranged sometimes one molecule at a time to make microchips and the screens in our cell phones. Another driving force of the research described here is to advance the idea of "self assembly" by which molecules can be designed to interact with each other in such a way that they arrange into a precise manner without needing to be moved one at a time. By advancing our knowledge of self assembled systems, especially those which interact with light, we have strived to make real progress towards new highly applicable functional technologies across many disciplines.

  17. Investigating Learning with an Interactive Tutorial: A Mixed-Methods Strategy

    ERIC Educational Resources Information Center

    de Villiers, M. R.; Becker, Daphne

    2017-01-01

    From the perspective of parallel mixed-methods research, this paper describes interactivity research that employed usability-testing technology to analyse cognitive learning processes; personal learning styles and times; and errors-and-recovery of learners using an interactive e-learning tutorial called "Relations." "Relations"…

  18. QCD and strongly coupled gauge theories: challenges and perspectives.

    PubMed

    Brambilla, N; Eidelman, S; Foka, P; Gardner, S; Kronfeld, A S; Alford, M G; Alkofer, R; Butenschoen, M; Cohen, T D; Erdmenger, J; Fabbietti, L; Faber, M; Goity, J L; Ketzer, B; Lin, H W; Llanes-Estrada, F J; Meyer, H B; Pakhlov, P; Pallante, E; Polikarpov, M I; Sazdjian, H; Schmitt, A; Snow, W M; Vairo, A; Vogt, R; Vuorinen, A; Wittig, H; Arnold, P; Christakoglou, P; Di Nezza, P; Fodor, Z; Garcia I Tormo, X; Höllwieser, R; Janik, M A; Kalweit, A; Keane, D; Kiritsis, E; Mischke, A; Mizuk, R; Odyniec, G; Papadodimas, K; Pich, A; Pittau, R; Qiu, J-W; Ricciardi, G; Salgado, C A; Schwenzer, K; Stefanis, N G; von Hippel, G M; Zakharov, V I

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  19. Design Requirements for Communication-Intensive Interactive Applications

    NASA Astrophysics Data System (ADS)

    Bolchini, Davide; Garzotto, Franca; Paolini, Paolo

    Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.

  20. Species-specific calls evoke asymmetric activity in the monkey's temporal poles.

    PubMed

    Poremba, Amy; Malloy, Megan; Saunders, Richard C; Carson, Richard E; Herscovitch, Peter; Mishkin, Mortimer

    2004-01-29

    It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.

  1. Social learning: medical student perceptions of geriatric house calls.

    PubMed

    Abbey, Linda; Willett, Rita; Selby-Penczak, Rachel; McKnight, Roberta

    2010-01-01

    Bandura's social learning theory provides a useful conceptual framework to understand medical students' perceptions of a house calls experience at Virginia Commonwealth University School of Medicine. Social learning and role modeling reflect Liaison Committee on Medical Education guidelines for "Medical schools (to) ensure that the learning environment for medical students promotes the development of explicit and appropriate professional attributes (attitudes, behaviors, and identity) in their medical students." This qualitative study reports findings from open-ended survey questions from 123 medical students who observed a preceptor during house calls to elderly homebound patients. Their comments included reflections on the medical treatment as well as interactions with family and professional care providers. Student insights about the social learning process they experienced during house calls to geriatric patients characterized physician role models as dedicated, compassionate, and communicative. They also described patient care in the home environment as comprehensive, personalized, more relaxed, and comfortable. Student perceptions reflect an appreciation of the richness and complexity of details learned from home visits and social interaction with patients, families, and caregivers.

  2. Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, H

    2014-01-30

    The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Is There a Typology of Teacher and Leader Responders to Call and Do They Cluster in Different Types of Schools? A Two-Level Latent Class Analysis of Call Survey Data

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Blitz, Mark; Modeste, Marsha; Salisbury, Jason; Halverson, Richard R.

    2017-01-01

    Background: Across the recent research on school leadership, leadership for learning has emerged as a strong framework for integrating current theories, such as instructional, transformational, and distributed leadership as well as effective human resource practices, instructional evaluation, and resource allocation. Yet, questions remain as to…

  4. Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    2000-01-01

    The investigators upgraded a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the more effective use of the technologies in automated reasoning and interactive classification systems. The overall goals of the project were: 1) the enhancement of the representation language SL to accommodate a wider range of meaning; 2) the development of a default inference scheme to operate over SL notation as it is encoded; and 3) the development of an interpreter for SL that would handle representations of some basic cognitive acts and perspectives.

  5. Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy

    PubMed Central

    Cheng, Qiong; Kazemian, Majid; Pham, Hannah; Blatti, Charles; Celniker, Susan E.; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called “STAP,” to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed (“primary”) TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA. PMID:23935523

  6. Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus

    PubMed Central

    Drayton, Jean M.; Hall, Matthew D.; Hunt, John; Jennions, Michael D.

    2012-01-01

    The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. commodus produce both advertisement and courtship calls prior to mating. We measured fine-scale structural parameters of both call types and also recorded nightly advertisement calling effort. We then measured two standard indices of immune function: lysozyme-like activity of the haemolymph and haemocyte counts. We found a weak, positive relationship between advertisement calling effort and lysozyme-like activity. There was, however, little evidence that individual structural call components or the net multivariate attractiveness of either call type signalled immune function. The relationships between immunity and sexual signaling did not differ between inbred and outbred males. Our data suggest that it is unlikely that females assess overall male immune function using male calls. PMID:22808047

  7. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss the "elevated heat pump" hypothesis, involving atmospheric heating by absorbing aerosols (dust and black carbon) over the southern slopes of the Himalayas, and feedback with the deep convection, in modifying monsoon water cycle over South and East Asia. The role of aerosol forcing relative to those due to sea surface temperature and land surface processes, as well as observation requirements to verify such a hypothesis will also be discussed.

  8. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called direct effect , aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called indirect effects, whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss the elevated heat pump hypothesis, involving atmospheric heating by absorbing aerosols (dust and black carbon) over the southern slopes of the Himalayas, and feedback with the deep convection, in modifying monsoon water cycle over South .and East Asia. The role of aerosol forcing relative to those due to sea surface temperature and land surface processes, as well as observation requirements to verify such a hypothesis will also be discussed.

  9. Open Educational Resources for Call Teacher Education: The iTILT Interactive Whiteboard Project

    ERIC Educational Resources Information Center

    Whyte, Shona; Schmid, Euline Cutrim; van Hazebrouck Thompson, Sanderin; Oberhofer, Margret

    2014-01-01

    This paper discusses challenges and opportunities arising during the development of open educational resources (OERs) to support communicative language teaching (CLT) with interactive whiteboards (IWBs). iTILT (interactive Technologies in Language Teaching), a European Lifelong Learning Project, has two main aims: (a) to promote "best…

  10. Multi-Party, Whole-Body Interactions in Mathematical Activity

    ERIC Educational Resources Information Center

    Ma, Jasmine Y.

    2017-01-01

    This study interrogates the contributions of multi-party, whole-body interactions to students' collaboration and negotiation of mathematics ideas in a task setting called walking scale geometry, where bodies in interaction became complex resources for students' emerging goals in problem solving. Whole bodies took up overlapping roles representing…

  11. Interactive Learning System "VisMis" for Scientific Visualization Course

    ERIC Educational Resources Information Center

    Zhu, Xiaoming; Sun, Bo; Luo, Yanlin

    2018-01-01

    Now visualization courses have been taught at universities around the world. Keeping students motivated and actively engaged in this course can be a challenging task. In this paper we introduce our developed interactive learning system called VisMis (Visualization and Multi-modal Interaction System) for postgraduate scientific visualization course…

  12. The Influence of Judgment Calls on Meta-Analytic Findings.

    PubMed

    Tarrahi, Farid; Eisend, Martin

    2016-01-01

    Previous research has suggested that judgment calls (i.e., methodological choices made in the process of conducting a meta-analysis) have a strong influence on meta-analytic findings and question their robustness. However, prior research applies case study comparison or reanalysis of a few meta-analyses with a focus on a few selected judgment calls. These studies neglect the fact that different judgment calls are related to each other and simultaneously influence the outcomes of a meta-analysis, and that meta-analytic findings can vary due to non-judgment call differences between meta-analyses (e.g., variations of effects over time). The current study analyzes the influence of 13 judgment calls in 176 meta-analyses in marketing research by applying a multivariate, multilevel meta-meta-analysis. The analysis considers simultaneous influences from different judgment calls on meta-analytic effect sizes and controls for alternative explanations based on non-judgment call differences between meta-analyses. The findings suggest that judgment calls have only a minor influence on meta-analytic findings, whereas non-judgment call differences between meta-analyses are more likely to explain differences in meta-analytic findings. The findings support the robustness of meta-analytic results and conclusions.

  13. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  14. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy

    PubMed Central

    Emera, Deena; Wagner, Günter P.

    2012-01-01

    Transposable elements (TEs) are known to provide DNA for host regulatory functions, but the mechanisms underlying the transformation of TEs into cis-regulatory elements are unclear. In humans two TEs—MER20 and MER39—contribute the enhancer/promoter for decidual prolactin (dPRL), which is dramatically induced during pregnancy. We show that evolution of the strong human dPRL promoter was a multistep process that took millions of years. First, MER39 inserted near MER20 in the primate/rodent ancestor, and then there were two phases of activity enhancement in primates. Through the mapping of causal nucleotide substitutions, we demonstrate that strong promoter activity in apes involves epistasis between transcription factor binding sites (TFBSs) ancestral to MER39 and derived sites. We propose a mode of molecular evolution that describes the process by which MER20/MER39 was transformed into a strong promoter, called “epistatic capture.” Epistatic capture is the stabilization of a TFBS that is ancestral but variable in outgroup lineages, and is fixed in the ingroup because of epistatic interactions with derived TFBSs. Finally, we note that evolution of human promoter activity coincides with the emergence of a unique reproductive character in apes, highly invasive placentation. Because prolactin communicates with immune cells during pregnancy, which regulate fetal invasion into maternal tissues, we speculate that ape dPRL promoter activity evolved in response to increased invasiveness of ape fetal tissue. PMID:22733751

  15. Spatio-Temporal Dynamics of Field Cricket Calling Behaviour: Implications for Female Mate Search and Mate Choice.

    PubMed

    Nandi, Diptarup; Balakrishnan, Rohini

    2016-01-01

    Amount of calling activity (calling effort) is a strong determinant of male mating success in species such as orthopterans and anurans that use acoustic communication in the context of mating behaviour. While many studies in crickets have investigated the determinants of calling effort, patterns of variability in male calling effort in natural choruses remain largely unexplored. Within-individual variability in calling activity across multiple nights of calling can influence female mate search and mate choice strategies. Moreover, calling site fidelity across multiple nights of calling can also affect the female mate sampling strategy. We therefore investigated the spatio-temporal dynamics of acoustic signaling behaviour in a wild population of the field cricket species Plebeiogryllus guttiventris. We first studied the consistency of calling activity by quantifying variation in male calling effort across multiple nights of calling using repeatability analysis. Callers were inconsistent in their calling effort across nights and did not optimize nightly calling effort to increase their total number of nights spent calling. We also estimated calling site fidelity of males across multiple nights by quantifying movement of callers. Callers frequently changed their calling sites across calling nights with substantial displacement but without any significant directionality. Finally, we investigated trade-offs between within-night calling effort and energetically expensive calling song features such as call intensity and chirp rate. Calling effort was not correlated with any of the calling song features, suggesting that energetically expensive song features do not constrain male calling effort. The two key features of signaling behaviour, calling effort and call intensity, which determine the duration and spatial coverage of the sexual signal, are therefore uncorrelated and function independently.

  16. Tunability of the fractional quantum Hall states in buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Apalkov, Vadym M.; Chakraborty, Tapash

    2014-12-01

    We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.

  17. Criteria for Evaluating a Game-Based CALL Platform

    ERIC Educational Resources Information Center

    Ní Chiaráin, Neasa; Ní Chasaide, Ailbhe

    2017-01-01

    Game-based Computer-Assisted Language Learning (CALL) is an area that currently warrants attention, as task-based, interactive, multimodal games increasingly show promise for language learning. This area is inherently multidisciplinary--theories from second language acquisition, games, and psychology must be explored and relevant concepts from…

  18. Developing Multimedia Courseware for the Internet's Java versus Shockwave.

    ERIC Educational Resources Information Center

    Majchrzak, Tina L.

    1996-01-01

    Describes and compares two methods for developing multimedia courseware for use on the Internet: an authoring tool called Shockwave, and an object-oriented language called Java. Topics include vector graphics, browsers, interaction with network protocols, data security, multithreading, and computer languages versus development environments. (LRW)

  19. Neural correlates of frog calling: production by two semi-independent generators.

    PubMed

    Schmidt, R S

    1992-09-28

    The anterior preoptic nuclei of the isolated brainstem of male, Northern leopard frogs (Rana p. pipiens) were stimulated electrically and neural correlates of mating calling recorded from the rhombencephalic mating calling pattern generator. Lesions of discrete areas of the brainstem showed that the mating calling generator is separable into two generators, the pretrigeminal nucleus and the classical pulmonary respiration generator (which is approximately co-extensive with the motor nuclei IX-X). Each of these still can produce pulses when isolated from the other. Their interaction changes the expiratory phase of breathing into the vocal phase of calling. All stages of intermediates between these phases could be seen. An updated and simplified model of call production and evolution is presented.

  20. PRISM software—Processing and review interface for strong-motion data

    USGS Publications Warehouse

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-11-28

    Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.

  1. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    NASA Astrophysics Data System (ADS)

    Bruun, Jesper; Brewe, Eric

    2013-12-01

    The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.

  2. Temporal separation of two fin whale call types across the eastern North Pacific.

    PubMed

    Sirović, Ana; Williams, Lauren N; Kerosky, Sara M; Wiggins, Sean M; Hildebrand, John A

    2013-01-01

    Fin whales ( Balaenoptera physalus ) produce a variety of low-frequency, short-duration, frequency-modulated calls. The differences in temporal patterns between two fin whale call types are described from long-term passive acoustic data collected intermittently between 2005 and 2011 at three locations across the eastern North Pacific: the Bering Sea, off Southern California, and in Canal de Ballenas in the northern Gulf of California. Fin whale calls were detected at all sites year-round, during all periods with recordings. At all three locations, 40-Hz calls peaked in June, preceding a peak in 20-Hz calls by 3-5 months. Monitoring both call types may provide a more accurate insight into the seasonal presence of fin whales across the eastern North Pacific than can be obtained from a single call type. The 40-Hz call may be associated with a foraging function, and temporal separation between 40- and 20-Hz calls may indicate the separation between predominately feeding behavior and other social interactions.

  3. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates

    PubMed Central

    Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur

    2013-01-01

    We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360

  4. Broken Scale Invariance and Anomalous Dimensions

    DOE R&D Accomplishments Database

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  5. Omega-Omega interaction on the Lattice

    NASA Astrophysics Data System (ADS)

    Yamada, Masanori; Halqcd Collaboration

    2014-09-01

    We report our results of central potential between two Omega baryons from 2+1 flavor full Lattice QCD simulation. In the past studies, there is a possibility that some decouplet baryons have a bound state. However, almost all decuplet baryons are unstable due to decays via the strong interaction. An exception is the Omega decuplte baryon, which is stable against the strong decays, so its interaction is suitable to be investigated. It is, however, still difficult to investigate the Omega-Omega interaction experimentally due to its short-life time via weak decays. Therefore, the lattice QCD study for the Omega-Omega interaction is necessary and important. We present results obtained by the extension of the HAL QCD method to the system of two decuplet baryons. Our numerical results are obtained from 2+1 flavor full QCD gauge configurations at L ~ 2 . 9 fm mπ ~ 701 MeV and mΩ ~ 1966 MeV, generated by the PACS-CS Collaboration. We find that the Omega-Omega interaction is strong attractive, but it's not strong enough to make a bound state at out simulation set up.

  6. Topological invariant and cotranslational symmetry in strongly interacting multi-magnon systems

    NASA Astrophysics Data System (ADS)

    Qin, Xizhou; Mei, Feng; Ke, Yongguan; Zhang, Li; Lee, Chaohong

    2018-01-01

    It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-particle quantum system, we systematically develop a method to define a Chern invariant, which is a generalization of the well-known Thouless-Kohmoto-Nightingale-den Nijs invariant, for identifying strongly interacting topological states. As an example, we study the topological multi-magnon states in a generalized Heisenberg XXZ model, which can be realized by the currently available experiment techniques of cold atoms (Aidelsburger et al 2013 Phys. Rev. Lett. 111, 185301; Miyake et al 2013 Phys. Rev. Lett. 111, 185302). Through calculating the two-magnon excitation spectrum and the defined Chern number, we explore the emergence of topological edge bound states and give their topological phase diagram. We also analytically derive an effective single-particle Hofstadter superlattice model for a better understanding of the topological bound states. Our results not only provide a new approach to defining a topological invariant for interacting multi-particle systems, but also give insights into the characterization and understanding of strongly interacting topological states.

  7. What types of social interactions reduce the risk of psychological distress? Fixed effects longitudinal analysis of a cohort of 30,271 middle-to-older aged Australians.

    PubMed

    Feng, Xiaoqi; Astell-Burt, Thomas

    2016-11-01

    Research on the impact of social interactions on psychological distress tends to be limited to particular forms of support, cross-sectional designs and by the spectre of omitted variables bias. A baseline sample with 3.4±0.95 years follow-up time was extracted from the 45 and Up Study. Change in the risk of psychological distress (Kessler Psychological Distress Scale) was assessed using fixed effects logistic regressions in relation to the number of times in the past week a participant: i) spent time with friends or family they did not live with; ii) talked to friends, relatives or others on the telephone; iii) attended meetings at social clubs or religious groups; and the count of people outside their home, but within one hour travel-time, participants felt close to. Separate models were fitted for men and women, adjusting for age, income, economic and couple status. An increase in the number of social interactions was associated with a reduction in the risk of psychological distress, with some gender differences. Interactions with friends or family were important for women (adjusted OR 0.85, 95%CI 0.74, 0.98, p=0.024), whereas telephone calls were effective among men (adjusted OR 0.83, 95%CI 0.72, 0.96, p=0.011). Strong effects for the number of people that can be relied on were observed for men and women, but attendance at clubs and groups was not. No age-specific effects were observed. No indicator of positive mental health. Policies targeting greater social interactions in middle-to-older age may help protect mental health. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Stability, diffusion and interactions of nonlinear excitations in a many body system

    NASA Astrophysics Data System (ADS)

    Coste, Christophe; Jean, Michel Saint; Dessup, Tommy

    2017-04-01

    When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.

  9. Are 50-khz calls used as play signals in the playful interactions of rats? III. The effects of devocalization on play with unfamiliar partners as juveniles and as adults.

    PubMed

    Kisko, Theresa M; Euston, David R; Pellis, Sergio M

    2015-04-01

    When playing, rats emit 50-kHz calls which may function as play signals. A previous study using devocalized rats provides support for the hypothesis that 50-kHz function to promote and maintain playful interactions (Kisko et al., 2015). However, in that study, all pairs were cage mates and familiar with each other's playful tendencies that could have attenuated the role of play signals. The present study uses unfamiliar pairs to eliminate any chance for such attenuation. Four hypotheses about how 50-kHz calls could act as play signals were tested, that (1) they maintain the playful mood of the partner, (2) they are used to locate partners, (3) they attract play partners and (4) they reduce the risk of playful encounters from escalating to serious fights. Predictions arising from the first three hypotheses, tested in juveniles, were not supported, suggesting that, for juveniles, 50-kHz calls are not facilitating playful interactions as play signals. The fourth hypothesis, however, was supported in adults, but not in juveniles, in that unfamiliar adult males were more likely to escalate playful encounters into serious fights when one partner was devocalized. These findings suggest that vocalizations at most have a minor role in juvenile play but serve a more central role in modulating adult interactions between strangers, allowing for the tactical mitigation of the risk of aggression. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The Charm and Beauty of Strong Interactions

    NASA Astrophysics Data System (ADS)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  11. A test of the acoustic adaptation hypothesis in four species of marmots.

    PubMed

    Daniel; Blumstein

    1998-12-01

    Acoustic signals must be transmitted from a signaller to a receiver during which time they become modified. The acoustic adaptation hypothesis suggests that selection should shape the structure of long-distance signals to maximize transmission through different habitats. A specific prediction of the acoustic adaptation hypothesis is that long-distance signals of animals in their native habitat are expected to change less during transmission than non-native signals within that habitat. This prediction was tested using the alarm calls of four species of marmots that live in acoustically different habitats and produce species-specific, long-distance alarm vocalizations: yellow-bellied marmot, Marmota flaviventris; Olympic marmot, M. olympus; hoary marmot, M. caligata; and woodchuck, M. monax. By doing so, we evaluated the relative importance the acoustic environment plays on selecting for divergent marmot alarm calls. Representative alarm calls of the four species were broadcast and rerecorded in each species' habitat at four distances from a source. Rerecorded, and therefore degraded alarm calls, were compared to undegraded calls using spectrogram correlation. If each species' alarm call was transmitted with less overall degradation in its own environment, a significant interaction between species' habitat and species' call type would be expected. Transmission fidelity at each of four distances was treated as a multivariate response and differences among habitat and call type were tested in a two-way MANOVA. Although significant overall differences in the transmission properties of the habitats were found, and significant overall differences in the transmission properties of the call types were found, there was no significant interaction between habitat and call type. Thus, the evidence did not support the acoustic adaptation hypothesis for these marmot species. Factors other than maximizing long-distance transmission through the environment may be important in the evolution of species-specific marmot alarm calls. (c) 1998 The Association for the Study of Animal Behaviour.

  12. The use of an automated interactive voice response system to manage medication identification calls to a poison center.

    PubMed

    Krenzelok, Edward P; Mrvos, Rita

    2009-05-01

    In 2007, medication identification requests (MIRs) accounted for 26.2% of all calls to U.S. poison centers. MIRs are documented with minimal information, but they still require an inordinate amount of work by specialists in poison information (SPI). An analysis was undertaken to identify options to reduce the impact of MIRs on both human and financial resources. All MIRs (2003-2007) to a certified regional poison information center were analyzed to determine call patterns and staffing. The data were used to justify an efficient and cost-effective solution. MIRs represented 42.3% of the 2007 call volume. Optimal staffing would require hiring an additional four full-time equivalent SPI. An interactive voice response (IVR) system was developed to respond to the MIRs. The IVR was used to develop the Medication Identification System that allowed the diversion of up to 50% of the MIRs, enhancing surge capacity and allowing specialists to address the more emergent poison exposure calls. This technology is an entirely voice-activated response call management system that collects zip code, age, gender and drug data and stores all responses as .csv files for reporting purposes. The query bank includes the 200 most common MIRs, and the system features text-to-voice synthesis that allows easy modification of the drug identification menu. Callers always have the option of engaging a SPI at any time during the IVR call flow. The IVR is an efficient and effective alternative that creates better staff utilization.

  13. L. V. Keldysh’s “Ionization in the Field of a Strong Electromagnetic Wave” and modern physics of atomic interaction with a strong laser field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, M. V., E-mail: fedorov@gmail.com

    2016-03-15

    Basic premises, approximations, and results of L.V. Keldysh’s 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic–molecular systems with a strong laser field.

  14. Eyetracking Methodology in SCMC: A Tool for Empowering Learning and Teaching

    ERIC Educational Resources Information Center

    Stickler, Ursula; Shi, Lijing

    2017-01-01

    Computer-assisted language learning, or CALL, is an interdisciplinary area of research, positioned between science and social science, computing and education, linguistics and applied linguistics. This paper argues that by appropriating methods originating in some areas of CALL-related research, for example human-computer interaction (HCI) or…

  15. Conceptualizing Skill within a Participatory Ecological Approach to Outdoor Adventure

    ERIC Educational Resources Information Center

    Mullins, Philip M.

    2014-01-01

    To answer calls for an ecological approach to outdoor adventure that can respond to the crisis of sustainability, this paper suggests greater theoretical and empirical attention to skill and skill development as shaping participant interactions with and experiences of environments, landscapes, places, and inhabitants. The paper reviews calls for…

  16. Pelvic Floor Disorders

    MedlinePlus

    ... called urinary incontinence , can occur in women or men when the bladder falls from its proper place. Other symptoms include a sudden, strong urge to urinate. Bowel control problems. The leaking ...

  17. Thiothixene

    MedlinePlus

    ... disturbed or unusual thinking, loss of interest in life, and strong or inappropriate emotions). Thiothixene is in a group of medications called conventional antipsychotics. It works by decreasing abnormal excitement in the brain.

  18. Loxapine

    MedlinePlus

    ... disturbed or unusual thinking, loss of interest in life, and strong or inappropriate emotions). Loxapine is in a group of medications called conventional antipsychotics. It works by decreasing abnormal excitement in the brain.

  19. NMR Characterization of Self-Association Domains Promoted by Interactions with LC8 Hub Protein

    PubMed Central

    Barbar, Elisar; Nyarko, Afua

    2014-01-01

    Most proteins in interaction networks have a small number of partners, while a few, called hubs, participate in a large number of interactions and play a central role in cell homeostasis. One highly conserved hub is a protein called LC8 that was originally identified as an essential component of the multi-subunit complex dynein but later shown to be also critical in multiple protein complexes in diverse systems. What is intriguing about this hub protein is that it does not passively bind its various partners but emerging evidence suggests that LC8 acts as a dimerization engine that promotes self-association and/or higher order organization of its primarily disordered monomeric partners. This structural organization process does not require ATP but is triggered by long-range allosteric regulation initiated by LC8 binding a pair of disordered chains forming a bivalent or polybivalent scaffold. This review focuses on the role of LC8 in promoting self-association of two of its binding partners, a dynein intermediate chain and a non dynein protein called Swallow. PMID:24757501

  20. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1990-01-01

    Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.

  1. The role of the cell wall in fungal pathogenesis

    PubMed Central

    Arana, David M.; Prieto, Daniel; Román, Elvira; Nombela, César; Alonso‐Monge, Rebeca; Pla, Jesús

    2009-01-01

    Summary Fungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections. PMID:21261926

  2. Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes.

    PubMed

    Ziegler, Lucía; Arim, Matías; Narins, Peter M

    2011-05-01

    The structure of the environment surrounding signal emission produces different patterns of degradation and attenuation. The expected adjustment of calls to ensure signal transmission in an environment was formalized in the acoustic adaptation hypothesis. Within this framework, most studies considered anuran calls as fixed attributes determined by local adaptations. However, variability in vocalizations as a product of phenotypic expression has also been reported. Empirical evidence supporting the association between environment and call structure has been inconsistent, particularly in anurans. Here, we identify a plausible causal structure connecting environment, individual attributes, and temporal and spectral adjustments as direct or indirect determinants of the observed variation in call attributes of the frog Hypsiboas pulchellus. For that purpose, we recorded the calls of 40 males in the field, together with vegetation density and other environmental descriptors of the calling site. Path analysis revealed a strong effect of habitat structure on the temporal parameters of the call, and an effect of site temperature conditioning the size of organisms calling at each site and thus indirectly affecting the dominant frequency of the call. Experimental habitat modification with a styrofoam enclosure yielded results consistent with field observations, highlighting the potential role of call flexibility on detected call patterns. Both, experimental and correlative results indicate the need to incorporate the so far poorly considered role of phenotypic plasticity in the complex connection between environmental structure and individual call attributes.

  3. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes.

    PubMed

    Herbst, Dominik A; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz

    2013-01-18

    The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.

  4. The genetic architecture of susceptibility to parasites.

    PubMed

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  5. Young Pianists Exploring Improvisation Using Interactive Music Technology

    ERIC Educational Resources Information Center

    Rowe, Victoria; Triantafyllaki, Angeliki; Anagnostopoulou, Xristina

    2015-01-01

    The use of music technology in the enhancement of young pianists' musical improvisations has been scarcely explored in instrumental music teaching and learning research. In the present study, 19 piano pupils aged 6-10 from the UK and Greece used an interactive improvisation system called Musical Interaction Relying On Reflexion (MIROR)-Impro for…

  6. Task-Induced Development of Hinting Behaviors in Online Task-Oriented L2 Interaction

    ERIC Educational Resources Information Center

    Balaman, Ufuk

    2018-01-01

    Technology-mediated task settings are rich interactional domains in which second language (L2) learners manage a multitude of interactional resources for task accomplishment. The affordances of these settings have been repeatedly addressed in computer-assisted language learning (CALL) literature mainly based on theory-informed task design…

  7. The role of socioeconomic status in interactions with police among a national sample of women experiencing intimate partner violence.

    PubMed

    Cattaneo, Lauren Bennett

    2010-06-01

    Using a national dataset of 820 women who had called the police for an incident of intimate partner violence, this study explored the relationship between several components of socioeconomic status (education, income, and employment), race, and the nature of interactions with police. Over and above the effects of control variables (the presence of an advocate on the scene, the severity of violence in the relationship, and prior calls to police), victims with higher education reported less positive interactions, less control during the interactions, and lower effectiveness of police. Race did not moderate these relationships, and the other components of socioeconomic status were not significantly related to any of the outcomes. Exploratory tests of mediation found that the relationship between education and the quality of interactions with police was explained by the fact that more educated victims felt they had less control in these incidents and were less likely to see the offender arrested. Results also provide evidence for the positive impact of advocates on interactions with police. Implications for research and policy are discussed.

  8. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  9. Revealing Additional Dimensions of Globalisation and Cultural Hegemony: A Response to Roland S. Persson's Call for Cultural Sensitivity in Gifted Studies

    ERIC Educational Resources Information Center

    Ambrose, Don

    2012-01-01

    In this commentary, the author finds the interdisciplinary approach of Roland S. Persson's (2012a) target article refreshing. Persson's (2012a) additional emphases on ethnocentricity, cultural bias and strong threads of influence from the global economy also are helpful. They shed light on some strong contextual influences that shape the…

  10. Synthesis and characterization of an Fe(i) cage complex with high stability towards strong H-acids.

    PubMed

    Voloshin, Yan Z; Novikov, Valentin V; Nelyubina, Yulia V; Belov, Alexander S; Roitershtein, Dmitrii M; Savitsky, Anton; Mokhir, Andriy; Sutter, Jörg; Miehlich, Matthias E; Meyer, Karsten

    2018-04-03

    The first synthesized and X-ray structurally characterized "classical" iron(i) dioximate showed an unrivaled stability towards strong acids, thus calling for a reassessment of the origins of the electrocatalytic activity of similar low-valent cobalt and iron cage complexes with electron-withdrawing ribbed substituents, shown previously to be effective electrocatalysts of the HER.

  11. Surface-enhanced Raman spectroscopic study of p-aminothiophenol.

    PubMed

    Huang, Yi-Fan; Wu, De-Yin; Zhu, Hong-Ping; Zhao, Liu-Bin; Liu, Guo-Kun; Ren, Bin; Tian, Zhong-Qun

    2012-06-28

    p-aminothiophenol (PATP) is an important molecule for surface-enhanced Raman spectroscopy (SERS). It can strongly interact with metallic SERS substrates and produce very strong SERS signals. It is a molecule that has often been used for mechanistic studies of the SERS mechanism as the photon-driven charge transfer (CT) mechanism is believed to be present for this molecule. Recently, a hot debate over the SERS behavior of PATP was triggered by our finding that PATP can be oxidatively transformed into 4,4'-dimercaptoazobenzene (DMAB), which gives a SERS spectra of so-called "b2 modes". In this perspective, we will give a general overview of the SERS mechanism and the current status of SERS studies on PATP. We will then demonstrate with our experimental and theoretical evidence that it is DMAB which contributes to the characteristic SERS behavior in the SERS spectra of PATP and analyze some important experimental phenomena in the framework of the surface reaction instead of the contribution "b2 modes". We will then point out the existing challenges of the present system. A clear understanding of the reaction mechanism for nitrobenzene or aromatic benzene will be important to not only understand the SERS mechanism but to also provide an economic way of producing azo dyes with a very high selectivity and conversion rate.

  12. High throughput atmospheric pressure plasma-induced graft polymerization for identifying protein-resistant surfaces.

    PubMed

    Gu, Minghao; Kilduff, James E; Belfort, Georges

    2012-02-01

    Three critical aspects of searching for and understanding how to find highly resistant surfaces to protein adhesion are addressed here with specific application to synthetic membrane filtration. They include the (i) discovery of a series of previously unreported monomers from a large library of monomers with high protein resistance and subsequent low fouling characteristics for membrane ultrafiltration of protein-containing fluids, (ii) development of a new approach to investigate protein-resistant mechanisms from structure-property relationships, and (iii) adaptation of a new surface modification method, called atmospheric pressure plasma-induced graft polymerization (APP), together with a high throughput platform (HTP), for low cost vacuum-free synthesis of anti-fouling membranes. Several new high-performing chemistries comprising two polyethylene glycol (PEG), two amines and one zwitterionic monomers were identified from a library (44 commercial monomers) of five different classes of monomers as strong protein-resistant monomers. Combining our analysis here, using the Hansen solubility parameters (HSP) approach, and data from the literature, we conclude that strong interactions with water (hydrogen bonding) and surface flexibility are necessary for producing the highest protein resistance. Superior protein-resistant surfaces and subsequent anti-fouling performance was obtained with the HTP-APP as compared with our earlier HTP-photo graft-induced polymerization (PGP). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Economic Profits Enhance Trust, Perceived Integrity and Memory of Fairness in Interpersonal Judgment

    PubMed Central

    Eto, Keisuke; Watanabe, Shigeru; Kawabata, Hideaki

    2012-01-01

    Does money lead to trust in personality and intention of others? Humans have a strong tendency to judge the intention of others from their sequent behaviors. In general, people trust others who behave fairly, but not always. Here we show that judgments of both intentional aspects and memory of intentional behavior are automatically influenced by unintentional benefits from the behaviors of others. We conducted a reward-manipulated and repeated trust game by using real participants interacting with moving image partners on a computer screen. The participants assessed likability, trustworthiness, and perceived integrity of the partners in pre- and post-game questionnaires. The results of judgments of all three dimensions and the memory of frequency of each partner's fair behavior (sharing) were strongly influenced by profitability in the trust game, even though all partners shared 75% of the profit and participants were told that profitability was randomly assigned to each partner. Furthermore, these effects were moderated by the gender of the participants: males were more sensitive to monetary profits than were females. The results reveal that humans automatically trust, approve the integrity of, and recall well the fair behavior of others who provide affectively positive outcomes such as monetary profits. We call this phenomenon the “affect ripple effect”. PMID:23251552

  14. Orientation of cosmic web filaments with respect to the underlying velocity field

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Libeskind, N. I.; Hoffman, Y.; Liivamägi, L. J.; Tamm, A.

    2014-01-01

    The large-scale structure of the Universe is characterized by a web-like structure made of voids, sheets, filaments and knots. The structure of this so-called cosmic web is dictated by the local velocity shear tensor. In particular, the local direction of a filament should be strongly aligned with hat{e}_3, the eigenvector associated with the smallest eigenvalue of the tensor. That conjecture is tested here on the basis of a cosmological simulation. The cosmic web delineated by the halo distribution is probed by a marked point process with interactions (the Bisous model), detecting filaments directly from the halo distribution (P-web). The detected P-web filaments are found to be strongly aligned with the local hat{e}_3: the alignment is within 30° for ˜80 per cent of the elements. This indicates that large-scale filaments defined purely from the distribution of haloes carry more than just morphological information, although the Bisous model does not make any prior assumption on the underlying shear tensor. The P-web filaments are also compared to the structure revealed from the velocity shear tensor itself (V-web). In the densest regions, the P- and V-web filaments overlap well (90 per cent), whereas in lower density regions, the P-web filaments preferentially mark sheets in the V-web.

  15. Spin–orbit coupling, minimal model and potential Cooper-pairing from repulsion in BiS2-superconductors

    NASA Astrophysics Data System (ADS)

    Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya

    2018-04-01

    We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.

  16. Mixtures of Strongly Interacting Bosons in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.

    2008-06-20

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of {sup 41}K induces a significant loss of coherence in {sup 87}Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.

  17. Molindone

    MedlinePlus

    ... disturbed or unusual thinking, loss of interest in life, and strong or inappropriate emotions). Molindone is in a class of medications called conventional (typical) antipsychotics. It works by decreasing abnormal excitement in the brain.

  18. Giant K-doubling and in-plane/out-of-plane mixing in the asymmetric methyl-bending bands of CH3SH

    NASA Astrophysics Data System (ADS)

    Guislain, B. G.; Reid, E. M.; Lees, R. M.; Xu, Li-Hong; Twagirayezu, S.; Perry, D. S.; Thapaliya, B. P.; Dawadi, M. B.; Billinghurst, B. E.

    2017-05-01

    In analyzing high-resolution spectra of the methyl-deformation bands of methyl mercaptan recorded at the Canadian Light Source synchrotron, we have encountered interesting interactions between certain levels of the ν4 in-plane asymmetric CH3-bending mode and its ν10 out-of-plane bending partner below. The origin of the K = 0A ν4 substate is just 0.2 cm-1 higher than that of the K = 2A ν10 substate, while the K = 0E ν4 origin is only 0.035 cm-1 below the K = 2E ν10 origin. These very close accidental near-degeneracies lead to substantial perturbations in the spectrum. For the former, the A+/A- asymmetry K-doublet coupling rules are such that the A- component of the 2A ν10 doublet interacts and mixes strongly with the 0A+ ν4 levels whereas the 2A+ component is unaffected. The 2A- levels are pushed rapidly downwards by the coupling creating an extremely large apparent K = 2A asymmetry splitting. We call this "giant K-doubling" by analogy with a comparable phenomenon seen for methanol. The 0A+ ν4 state, in turn, is perturbed upward and passes through the descending K = 1A+ ν4 state between J = 22 and 23, leading to distinct local perturbations near the level-crossing. The 0E ν4 and 2E ν10 coupling produces a correspondingly strong repulsion and mixing between those two substates, and gives rise to a forbidden K = 0 ← 3E intermode sub-band in the spectrum via intensity borrowing.

  19. A basic mathematical model of the immune response

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  20. Giant K-doubling and in-plane/out-of-plane mixing in the asymmetric methyl-bending bands of CH 3SH

    DOE PAGES

    Guislain, B. G.; Reid, E. M.; Lees, R. M.; ...

    2017-03-02

    In analyzing high-resolution spectra of the methyl-deformation bands of methyl mercaptan recorded at the Canadian Light Source synchrotron, we have encountered interesting interactions between certain levels of the ν 4 in-plane asymmetric CH 3-bending mode and its ν 10 out-of-plane bending partner below. The origin of the K = 0A ν 4 substate is just 0.2 cm -1 higher than that of the K = 2A ν 10 substate, while the K = 0E ν 4 origin is only 0.035 cm -1 below the K = 2E ν 10 origin. These very close accidental near-degeneracies lead to substantial perturbations inmore » the spectrum. For the former, the A +/A - asymmetry K-doublet coupling rules are such that the A - component of the 2A ν 10 doublet interacts and mixes strongly with the 0A + ν 4 levels whereas the 2A + component is unaffected. The 2A - levels are pushed rapidly downwards by the coupling creating an extremely large apparent K = 2A asymmetry splitting. We call this “giant K-doubling” by analogy with a comparable phenomenon seen for methanol. The 0A + ν 4 state, in turn, is perturbed upward and passes through the descending K = 1A + ν 4 state between J = 22 and 23, leading to distinct local perturbations near the level-crossing. The 0E ν 4 and 2E ν 10 coupling produces a correspondingly strong repulsion and mixing between those two substates, and gives rise to a forbidden K = 0 ← 3E intermode sub-band in the spectrum via intensity borrowing.« less

  1. Giant K-doubling and in-plane/out-of-plane mixing in the asymmetric methyl-bending bands of CH 3SH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guislain, B. G.; Reid, E. M.; Lees, R. M.

    In analyzing high-resolution spectra of the methyl-deformation bands of methyl mercaptan recorded at the Canadian Light Source synchrotron, we have encountered interesting interactions between certain levels of the ν 4 in-plane asymmetric CH 3-bending mode and its ν 10 out-of-plane bending partner below. The origin of the K = 0A ν 4 substate is just 0.2 cm -1 higher than that of the K = 2A ν 10 substate, while the K = 0E ν 4 origin is only 0.035 cm -1 below the K = 2E ν 10 origin. These very close accidental near-degeneracies lead to substantial perturbations inmore » the spectrum. For the former, the A +/A - asymmetry K-doublet coupling rules are such that the A - component of the 2A ν 10 doublet interacts and mixes strongly with the 0A + ν 4 levels whereas the 2A + component is unaffected. The 2A - levels are pushed rapidly downwards by the coupling creating an extremely large apparent K = 2A asymmetry splitting. We call this “giant K-doubling” by analogy with a comparable phenomenon seen for methanol. The 0A + ν 4 state, in turn, is perturbed upward and passes through the descending K = 1A + ν 4 state between J = 22 and 23, leading to distinct local perturbations near the level-crossing. The 0E ν 4 and 2E ν 10 coupling produces a correspondingly strong repulsion and mixing between those two substates, and gives rise to a forbidden K = 0 ← 3E intermode sub-band in the spectrum via intensity borrowing.« less

  2. Self-administered hearing loss screening using an interactive, tablet play audiometer with ear bud headphones.

    PubMed

    Yeung, Jeffrey C; Heley, Sophie; Beauregard, Yves; Champagne, Sandra; Bromwich, Matthew A

    2015-08-01

    The timely diagnosis and treatment of acquired hearing loss in the pediatric population has significant implications for a child's development. Audiological assessment in children, however, carries both technological and logistical challenges. Typically, specialized methods (such as play audiometry) are required to maintain the child's attention and can be resource intensive. These challenges were previously addressed by a novel, calibrated, interactive play audiometer for Apple(®) iOS(®) called "ShoeBOX Audiometry". This device has potential applications for deployment in environments where traditional clinical audiometry is either unavailable or impractical. The objective of this study was to assess the screening capability of the tablet audiometer in an uncontrolled environment using consumer ear-bud headphones. Consecutive patients presenting to the Audiology Clinic at the Children's Hospital of Eastern Ontario (ages 4 and older) were recruited. Participants' hearing was evaluted using the tablet audiometer calibrated to Apple(®) In-Ear headphones. The warble tone thresholds obtained were compared to gold standard measurements taken with a traditional clinical audiometer inside a soundbooth. 80 patients were enrolled. The majority of participants were capable of completing an audiologic assessment using the tablet computer. Due to ambient noise levels outside a soundbooth, thresholds obtained at 500Hz were not consistent with traditional audiometry. Excluding 500Hz threholds, the tablet audiometer demonstrated strong negative predictive value (89.7%) as well as strong sensitivity (91.2%) for hearing loss. Thresholds obtained in an uncontrolled setting are not reflective of diagnostic thresholds due to the uncalibrated nature of the headphones and variability of the setting without a booth. Nevertheless, the tablet audiometer proved to be both a valid and sensitive instrument for unsupervised screening of warble-tone thresholds in children. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Evidence That Calls-Based and Mobility Networks Are Isomorphic

    PubMed Central

    Coscia, Michele; Hausmann, Ricardo

    2015-01-01

    Social relations involve both face-to-face interaction as well as telecommunications. We can observe the geography of phone calls and of the mobility of cell phones in space. These two phenomena can be described as networks of connections between different points in space. We use a dataset that includes billions of phone calls made in Colombia during a six-month period. We draw the two networks and find that the call-based network resembles a higher order aggregation of the mobility network and that both are isomorphic except for a higher spatial decay coefficient of the mobility network relative to the call-based network: when we discount distance effects on the call connections with the same decay observed for mobility connections, the two networks are virtually indistinguishable. PMID:26713730

  4. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    NASA Astrophysics Data System (ADS)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  5. Theoretical study on the photoabsorption in the Herzberg I band system of the O 2 molecule

    NASA Astrophysics Data System (ADS)

    Takegami, Ryuta; Yabushita, Satoshi

    2005-01-01

    The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its absorption strength has been explained by intensity borrowing models which include the spin-orbit (SO) and L-uncoupling (RO) interactions as perturbations. We employed three different levels of theoretical models to evaluate these two interactions, and obtained the rotational and vibronic absorption strengths using the ab initio method. The first model calculates the transition moments induced by the SO interaction variationally with the SO configuration interaction method (SOCI), and uses the first-order perturbation theory for the RO interaction, and is called SOCI. The second is based on the first-order perturbation theory for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of Pert(Full), in that the first-order perturbation wavefunction for the initial and final state is represented by only one dominant basis, namely the 1 3Π g and B3Σu- state, respectively, as originally used by England et al. [Can. J. Phys. 74 (1996) 185], and is called Pert(England). The vibronic oscillator strengths calculated by these three models were in good agreement with the experimental values. As for the integrated rotational linestrengths, the SOCI and Pert(Full) models reproduced the experimental results very well, however the Pert(England) model did not give satisfactory results. Since the Pert(England) model takes only the 1 3Π g and B3Σu- states into consideration, it cannot contain the complicated configuration interactions with highly excited states induced by the SO and RO interaction, which plays an important role for calculating the delicate integrated rotational linestrength. This result suggests that the configuration interaction with highly excited states due to some perturbations cannot be neglected in the case of very weak absorption band systems.

  6. Giant exchange interaction in mixed lanthanides

    PubMed Central

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  7. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Data Explorer

    Myers, Clayton E. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000345398406); Yamada, Maasaki [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349961649); Ji, Hantao [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China] (ORCID:0000000196009963); Yoo, Jongsoo [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000338811995); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000016289858X); Jara-Almonte, Jonathan [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000307606198); Savcheva, Antonia [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:000000025598046X); DeLuca, Edward E. [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:0000000174162895)

    2015-12-11

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  8. Photon upconversion towards applications in energy conversion and bioimaging

    NASA Astrophysics Data System (ADS)

    Sun, Qi-C.; Ding, Yuchen C.; Sagar, Dodderi M.; Nagpal, Prashant

    2017-12-01

    The field of plasmonics can play an important role in developing novel devices for application in energy and healthcare. In this review article, we consider the progress made in design and fabrication of upconverting nanoparticles and metal nanostructures for precisely manipulating light photons, with a wavelength of several hundred nanometers, at nanometer length scales, and describe how to tailor their interactions with molecules and surfaces so that two or more lower energy photons can be used to generate a single higher energy photon in a process called photon upconversion. This review begins by introducing the current state-of-the-art in upconverting nanoparticle synthesis and achievements in color tuning and upconversion enhancement. Through understanding and tailoring physical processes, color tuning and strong upconversion enhancement have been demonstrated by coupling with surface plasmon polariton waves, especially for low intensity or diffuse infrared radiation. Since more than 30% of incident sunlight is not utilized in most photovoltaic cells, this photon upconversion is one of the promising approaches to break the so-called Shockley-Queisser thermodynamic limit for a single junction solar cell. Furthermore, since the low energy photons typically cover the biological window of optical transparency, this approach can also be particularly beneficial for novel biosensing and bioimaging techniques. Taken together, the recent research boosts the applications of photon upconversion using designed metal nanostructures and nanoparticles for green energy, bioimaging, and therapy.

  9. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

    PubMed Central

    Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endophytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabilized in the presence of Albugo infection, whereas they otherwise varied between plants. Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere bacteria. The identification of microbial “hubs” and their importance in phyllosphere microbiome structuring has crucial implications for plant–pathogen and microbe–microbe research and opens new entry points for ecosystem management and future targeted biocontrol. The revelation that effects can cascade through communities via “hub” microbes is important to understand community structure perturbations in parallel fields including human microbiomes and bioprocesses. In particular, parallels to human microbiome “keystone” pathogens and microbes open new avenues of interdisciplinary research that promise to better our understanding of functions of host-associated microbiomes. PMID:26788878

  10. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  11. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons

    PubMed Central

    Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.

    2016-01-01

    We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894

  12. Multimodal Research: Addressing the Complexity of Multimodal Environments and the Challenges for CALL

    ERIC Educational Resources Information Center

    Tan, Sabine; O'Halloran, Kay L.; Wignell, Peter

    2016-01-01

    Multimodality, the study of the interaction of language with other semiotic resources such as images and sound resources, has significant implications for computer assisted language learning (CALL) with regards to understanding the impact of digital environments on language teaching and learning. In this paper, we explore recent manifestations of…

  13. Teaching Business Management to Engineers: The Impact of Interactive Lectures

    ERIC Educational Resources Information Center

    Rambocas, Meena; Sastry, Musti K. S.

    2017-01-01

    Some education specialists are challenging the use of traditional strategies in classrooms and are calling for the use of contemporary teaching and learning techniques. In response to these calls, many field experiments that compare different teaching and learning strategies have been conducted. However, to date, little is known on the outcomes of…

  14. On the Telephone Again! Differences in Telephone Behaviour: England versus Greece.

    ERIC Educational Resources Information Center

    Sifianou, Maria

    1989-01-01

    Investigation and comparison of telephone behavior, and the attitudes and values attached to telephone usage in England and Greece, from the perspective of an interaction model. Results revealed cultural differences in responses to making telephone calls, verifying numbers and speakers, and apologies for wrong numbers or disturbing calls.…

  15. Android: Call C Functions with the Native Development Kit (NDK)

    DTIC Science & Technology

    2016-09-01

    guide is intended to assist programmers with how to attach an NDK plugin to an Android Integrated Development Environment and how to call C functions...written in Java to interact with native C/C++. This guide is intended to take programmers through adding an NDK package into an Android Studio

  16. The Relationship between Software Design and Children's Engagement

    ERIC Educational Resources Information Center

    Buckleitner, Warren

    2006-01-01

    This study was an attempt to measure the effects of praise and reinforcement on children in a computer learning setting. A sorting game was designed to simulate 2 interaction styles. One style, called high computer control, provided frequent praise and coaching. The other, called high child control, had narration and praise toggled off. A…

  17. High Ringxiety: Attachment Anxiety Predicts Experiences of Phantom Cell Phone Ringing.

    PubMed

    Kruger, Daniel J; Djerf, Jaikob M

    2016-01-01

    Mobile cell phone users have reported experiencing ringing and/or vibrations associated with incoming calls and messages, only to find that no call or message had actually registered. We believe this phenomenon can be understood as a human signal detection issue, with potentially important influences from psychological attributes. We hypothesized that individuals higher in attachment anxiety would report more frequent phantom cell phone experiences, whereas individuals higher in attachment avoidance would report less frequent experiences. If these experiences are primarily psychologically related to attributes of interpersonal relationships, associations with attachment style should be stronger than for general sensation seeking. We also predicted that certain contexts would interact with attachment style to increase or decrease the likelihood of experiencing phantom cell phone calls and messages. Attachment anxiety directly predicted the frequency of phantom ringing and notification experiences, whereas attachment avoidance and sensation seeking did not directly predict frequency. Attachment anxiety and attachment avoidance interacted with contextual factors (expectations for a call or message and concerned about an issue that one may be contacted about) in the expected directions for predicting phantom cell phone experiences.

  18. Survey of pediatricians' opinions on donation after cardiac death: are the donors dead?

    PubMed

    Joffe, Ari R; Anton, Natalie R; deCaen, Allan R

    2008-11-01

    There has been debate in the ethics literature as to whether the donation-after-cardiac-death donor is dead after 5 minutes of absent circulation. We set out to determine whether pediatricians consider the donation-after-cardiac-death donor as dead. A survey was mailed to all 147 pediatricians who are affiliated with the university teaching children's hospital. The survey had 4 pediatric patient scenarios in which a decision was made to donate organs after 5 minutes of absent circulation. Background information described the organ shortage, and the debate about the term "irreversibility" applied to death in donation after cardiac death. Descriptive statistics were used, with responses between groups compared by using the chi(2) statistic. The response rate was 54% (80 of 147). In each scenario, when given a patient described as dead with absent circulation for 5 minutes,

  19. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae)?

    PubMed

    Heyer, W Ronald; Reid, Yana R

    2003-03-01

    The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  20. Fourier transform infrared spectroscopic study of the interactions of a strongly antimicrobial but weakly hemolytic analogue of gramicidin S with lipid micelles and lipid bilayer membranes.

    PubMed

    Lewis, Ruthven N A H; Kiricsi, Monika; Prenner, Elmar J; Hodges, Robert S; McElhaney, Ronald N

    2003-01-21

    Cyclo[VKLdKVdYPLKVKLdYP] (GS14dK(4)), a synthetic tetradecameric ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S (GS), retains the strong antimicrobial activity of GS but is 15-20 times less hemolytic. To characterize its interaction with lipid membranes and to understand the molecular basis of its capacity to lyse bacterial cells, in preference to erythrocytes, we have investigated the interactions of GS14dK(4) with detergent micelles and with lipid bilayer model membranes by Fourier transform infrared spectroscopy and compared our results with those of a similar study of GS [Lewis, R. N. A. H., et al. (1999) Biochemistry 38, 15193-15203]. In both aqueous and organic solvent solutions, GS14dK(4) adopts a beta-sheet conformation that is somewhat distorted and more sensitive to the polarity of its environment than GS. Like GS, GS14dK(4) is completely or partially excluded from gel-state lipid bilayers but interacts strongly with liquid-crystalline lipid bilayers and detergent micelle, and interacts more strongly with more fluid liquid-crystalline lipid systems. However, its interactions are more strongly influenced by membrane lipid order and fluidity, and unlike GS, it is essentially excluded from cholesterol-containing phospholipid bilayers. Also, GS14dK(4) is excluded from cationic lipid bilayers, but partitions more strongly and/or penetrates more deeply into anionic lipid bilayers than into those composed of either zwitterionic or nonionic lipids. Anionic lipids also facilitate GS14dK(4) interactions with multicomponent lipid bilayers which are predominantly zwitterionic or nonionic. Although GS14dK(4) generally penetrates and/or partitions into zwitterionic or uncharged lipid bilayers less strongly than does GS, its greater size and altered distribution of positive charges make it intrinsically more perturbing with regard to membrane organization once associated with lipid bilayers. This fact, combined with its relatively strong interactions with anionic phospholipids, may explain why GS14dK(4) retains relatively high antimicrobial activity. However, its low hemolytic activity is probably largely attributable to its low propensity to penetrate and/or partition into cholesterol-containing zwitterionic lipid membranes.

  1. Topics in Theoretical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel

    This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws ofmore » nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of these below. Relativity is founded on a symmetry property of nature called "Lorentz Invariance". Like all symmetry properties, it is essential to determine precisely how symmetric nature actually is; that is, do the laws of nature fully respect the symmetry or is there room for tiny symmetry violating effects? An important consequence of Lorentz invariance is the existence of a universal limiting velocity for all physical particles. Light travels at this limiting velocity so it is frequently referred to as simply "the speed of light", but relativity requires that ALL particles travel more slowly than this speed. Once the Higgs particle was discovered in 2012 a natural question was whether or not this particle's speed was consistent with relativity. Although the speed of the Higgs particle is not measurable directly, Cohen has shown that, if the maximal speed of the Higgs particle was not precisely the same as the speed of light, then the Higgs would have some unusual properties. In some cases the Higgs would be unstable to some unusual decay modes; in other cases the interactions of the Higgs with other particles would change the properties of these other particles in ways that could be observed in so-called cosmic rays, very energetic particles (such as photons, protons and other atomic nuclei) coming from space. Once these particles hit the upper atmosphere they produce a "shower" of particles that can be seen by ground-based instruments. If the Higgs has a maximal speed that differs even a tiny bit from the speed of light these showers would look quite different from what is observed. In this way Cohen was able to establish that the Higgs travels with a maximal speed that cannot differ from the speed of light by more than one part in a thousand-trillion. This is by far the most precisely determined property of the Higgs particle. Cohen and Schmaltz reviewed evidence from the Large Hadron Collider (LHC), a particle physics experiment operating at the CERN laboratory near Geneva, for a new particle sometimes called a W'. This evidence included certain unexpected by-products in collisions of protons at very high energy. While the evidence was not significant enough to claim a discovery, it was sufficiently intriguing that many particle theorists worked to construct explanations for this signal. Cohen and Schmaltz were able to determine that such explanations are highly constrained by previous experiments involving collisions of very energetic particles. Nevertheless they were able to construct a theory that adequately explains the LHC data and remain consistent with prior experiments. Their explanation predicts the existence of yet another new particle, called a Z', with a mass slightly greater than that of the W'. This additional particle, if it exists, should be seen as more data is collected from the LHC. Amusingly, there is one collision by-product that has already been seen by the CMS experiment at the LHC that supports the existence of this new particle; however, it is not unlikely that this single event is a so-called "background" event, that is a somewhat atypical by-product of a conventional Standard Model process. This theory for the anomalous LHC data will either be confirmed or excluded with further data-taking at the LHC. The ratio of the number of electrons produced in bottom quark decays over the number of muons produced has been measured at the LHC. This ratio is interesting because it can be predicted very precisely from a basic property of the Standard Model: lepton universality. If lepton universality is correct, the ratio of electrons to muons is predicted to be equal to 1. The first measurements of this ratio find a value different from 1 with a statistical significance of about 3 standard deviations. Schmaltz and collaborator proposed a new extension of the Standard Model which can explain the new data. In addition, Schmaltz and collaborators proposed several new measurements of ratios of decay rates which can confirm or rule out the surprising results from the earlier LHC data. The most recent and precise measurements of the cosmic microwave background from the Planck satellite, from a combination of measurements of the dark matter distribution in the universe, and from a measurement of the expansion rate of the universe today show some disagreement when interpreted in terms of the so-called LambdaCDM model. Schmaltz and collaborators proposed an alternative model to LambdaCDM in which the usual cold dark matter is replaced by a new ``dark sector". This sector consists of a cold dark matter particle which interacts with a newly postulated dark radiation component of the universe. The dark radiation can help explain the discrepancy in measurements of the expansion rate, and the dark matter interactions subtly modify the clumping of dark matter at large scales, thus potentially explaining both kinds of tensions in the data. In two publications Schmaltz described the new model and then performed a precision comparison of the predictions of the model with all currently available cosmological data. The results favor the new model at the level of three standard deviations with current data. Quantum Field Theory (QFT) is the language we use to describe quantum systems which are consistent with Einstein’s theory of Special Relativity. In particular, the requirement of Einstein’s theory that signals not travel faster than the speed of light constrains the types of interactions which particles can engage in. One consequence of relativity is that these interactions cannot preserve particle number. The stronger the interactions, the more severe the particle number violation in a given Relativistic QFT. When particle number violation is strong, it becomes very difficult to adequately parameterize the quantum wave function (which characterizes the state of a quantum system). For example, though we can formulate the QFT which describes the strong force as a set of interactions between quark and gluon particles, we have no clear idea how to express the proton state in terms of these quarks and gluons. This is because the proton, though a bound state of quarks and gluons, is not a state of a fixed number of particles due to strong interactions. Yet, understanding the proton state is very important in order to theoretically predict the reaction rates observed at the LHC in Geneva, which is a proton-proton collider. Katz has formulated a new approach to QFT, which among other things offers a way to adequately approximate the quantum wave function of a bound state at strong coupling. The approximation scheme is related to the fact that any sensible QFT (including that of the strong interactions) is at short distances approximately self-similar upon rescaling of space and time. It turns out that keeping track of the response upon this rescaling is important in efficiently parameterizing the state. Katz and collaborators have used this observation to approximate the state of the proton in toy versions of the strong force. In the late 60s Sheldon Glashow, Abdus Salam and Steven Weinberg (1979 Nobel Prize awardees) proposed a theory unifying weak and electromagnetic interaction which assumed the existence of new particles, the W and Z bosons. The W and Z bosons were eventually detected in high-energy collision in a particle accelerator at CERN, and the recent discovery of the Higgs meson at the Large Hadron Collider (LHC), always at CERN, completed the picture. However, deep theoretical considerations indicate that the theory by Glashow, Weinberg and Salam, often referred to as "the standard model" cannot be the whole story: the existence of new particles and new interactions at yet higher energies is widely anticipated. The experiments at the LHC are looking for these, while theorists, like Brower, Rebbi and collaborators, are investigating models for these new interactions. Working in a large national collaboration with access to the most powerful DOE computers Brower, Rebbi and colleagues have been using calculational techniques, similar to those successfully employed for many years to investigate the interactions among quarks in nucleons, to study theories that can describe the expected "beyond the standard model" (BSM) interactions. Their results, which include also a model for dark matter, have been published in several refereed papers in prestigious journals. Various ideas in topologically interesting field theories predict hypothetical objects such as fractional charges and Majorana excitations. However, such fascinating objects have not been seen in particle physics. Nevertheless, these objects demonstrate possible phenomena that quantum field theory can support. Pi used condensed matter physics as a laboratory to study possible realizations and observable effects of these objects predicted by quantum field theory. In recent times there has developed considerable interest among condensed matter field theorists in precisely the same geometrical and topological structures, which were first discovered in particle physics field theories. From particle physicists' point of view, this is an interesting development, since condensed matter provides an arena in which one can concretely realize particle physics ideas. Moreover, particle physicists can learn new ideas from condensed matter physics. Higgs phenomenon is precisely an important particle physics realization of condensed matter ideas. In contrast to the small distance characterizing condensed matter systems, field theory also describes large distance physics characterizing cosmology. Pi worked on various geometrical effects in the standard theory of cosmology, viz general relativity.« less

  2. EPR paradox, quantum nonlocality and physical reality

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced in irreducible random way.

  3. QCD and strongly coupled gauge theories: Challenges and perspectives

    DOE PAGES

    Brambilla, N.; Eidelman, S.; Foka, P.; ...

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many researchmore » streams which flow into and out of QCD, as well as a vision for future developments.« less

  4. Enhancing Human-Computer Interaction Design Education: Teaching Affordance Design for Emerging Mobile Devices

    ERIC Educational Resources Information Center

    Faiola, Anthony; Matei, Sorin Adam

    2010-01-01

    The evolution of human-computer interaction design (HCID) over the last 20 years suggests that there is a growing need for educational scholars to consider new and more applicable theoretical models of interactive product design. The authors suggest that such paradigms would call for an approach that would equip HCID students with a better…

  5. On the Relationality of Centers, Peripheries and Interactional Regimes: Translanguaging in a Community Interpreting Event

    ERIC Educational Resources Information Center

    Baynham, Mike; Hanušová, Jolana

    2017-01-01

    In this paper we discuss a multilingual interactional event that involves both interpreting and literacy work, part of a large scale study on translanguaging in superdiverse urban settings. In the first part of the interaction, the center/periphery dynamic is played out in what might be called "contested translanguaging" between Standard…

  6. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  7. Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations

    NASA Astrophysics Data System (ADS)

    Yang, Li; Pu, Han

    2016-09-01

    We show that the wave function in one spatial sector x1

  8. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1983-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  9. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1982-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  10. Obama Reiterates Strong Support for Science at Two Recent Appearances

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    President Barack Obama expressed his continued strong support for science and technology in remarks at the U.S. National Academy of Sciences (NAS) on 29 April. His call for continued funding, for scientific integrity, and for an "all-hands-on-deck" approach to science, technology, engineering, and mathematics (STEM) followed remarks he made a week earlier at the White House Science Fair.

  11. Preparing Kids for Self-Care. Strong Families: Competent Kids. Family Workshop Leader's Guide.

    ERIC Educational Resources Information Center

    Prince William Cooperative Extension Service, Manassas, VA.

    A program called Strong Families: Competent Kids was developed in response to the growing number of latchkey kids. The goals of the program are to help parents determine when their children are ready for self-care and to provide children with skills to manage self-care safely and confidently. It does not advocate that children should be left in…

  12. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions

    PubMed Central

    Arjunan, Selvam; Sastri, Narayan P.; Chandra, Nagasuma

    2016-01-01

    Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue–human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue–human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/). PMID:27618709

  13. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions.

    PubMed

    Karyala, Prashanthi; Metri, Rahul; Bathula, Christopher; Yelamanchi, Syam K; Sahoo, Lipika; Arjunan, Selvam; Sastri, Narayan P; Chandra, Nagasuma

    2016-09-01

    Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue-human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue-human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/).

  14. The alarm call system of two species of black-and-white colobus monkeys (Colobus polykomos and Colobus guereza).

    PubMed

    Schel, Anne Marijke; Tranquilli, Sandra; Zuberbühler, Klaus

    2009-05-01

    Vervet monkey alarm calling has long been the paradigmatic example of how primates use vocalizations in response to predators. In vervets, there is a close and direct relationship between the production of distinct alarm vocalizations and the presence of distinct predator types. Recent fieldwork has however revealed the use of several additional alarm calling systems in primates. Here, the authors describe playback studies on the alarm call system of two colobine species, the King colobus (Colobus polykomos) of Taï Forest, Ivory Coast, and the Guereza colobus (C. guereza) of Budongo Forest, Uganda. Both species produce two basic alarm call types, snorts and acoustically variable roaring phrases, when confronted with leopards or crowned eagles. Neither call type is given exclusively to one predator, but the authors found strong regularities in call sequencing. Leopards typically elicited sequences consisting of a snort followed by few phrases, while eagles typically elicited sequences with no snorts and many phrases. The authors discuss how these call sequences have the potential to encode information at different levels, such as predator type, response-urgency, or the caller's imminent behavior. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  15. Opioid Abuse and Addiction

    MedlinePlus

    Opioids, sometimes called narcotics, are a type of drug. They include strong prescription pain relievers, such as ... tramadol. The illegal drug heroin is also an opioid. Some opioids are made from the opium plant, ...

  16. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  17. Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes

    PubMed Central

    Arim, Matías; Narins, Peter M.

    2011-01-01

    The structure of the environment surrounding signal emission produces different patterns of degradation and attenuation. The expected adjustment of calls to ensure signal transmission in an environment was formalized in the acoustic adaptation hypothesis. Within this framework, most studies considered anuran calls as fixed attributes determined by local adaptations. However, variability in vocalizations as a product of phenotypic expression has also been reported. Empirical evidence supporting the association between environment and call structure has been inconsistent, particularly in anurans. Here, we identify a plausible causal structure connecting environment, individual attributes, and temporal and spectral adjustments as direct or indirect determinants of the observed variation in call attributes of the frog Hypsiboas pulchellus. For that purpose, we recorded the calls of 40 males in the field, together with vegetation density and other environmental descriptors of the calling site. Path analysis revealed a strong effect of habitat structure on the temporal parameters of the call, and an effect of site temperature conditioning the size of organisms calling at each site and thus indirectly affecting the dominant frequency of the call. Experimental habitat modification with a styrofoam enclosure yielded results consistent with field observations, highlighting the potential role of call flexibility on detected call patterns. Both, experimental and correlative results indicate the need to incorporate the so far poorly considered role of phenotypic plasticity in the complex connection between environmental structure and individual call attributes. PMID:22479134

  18. Pairing versus quarteting coherence length

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Baran, V. V.

    2015-02-01

    We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which takes into account the overlap with the proton-neutron part of the α -particle wave function. It turns out that it does not depend on the nuclear size and has a value comparable to the free α -particle radius. We have shown that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected to the nuclear surface.

  19. Temporal stability and change in the social call repertoire of migrating humpback whales.

    PubMed

    Rekdahl, Melinda L; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W

    2013-03-01

    Quantifying the stability of a species vocal repertoire is fundamental for further investigations into repertoire function and geographic variation. Changes to the repertoire of sounds used in the song displays of male humpback whales have been well studied. In contrast, little is known about the stability of this species' non-song vocal calls. The stability of the social call repertoire of east Australian humpback whales was investigated from 1997, 2003-2004, and 2008. Out of 46 qualitatively defined call types, 19 were classified as "song-unit calls" that tended to change with the song, and 15 were "inconsistent" and only found in one or two years. Twelve call types were "stable" and present in all years and were commonly produced (64.2% of calls). Stable calls tended to vary in some of the measured call parameters but there was no clear trend between years. This result could indicate that minor changes to calls are not permanent, but reflect individual differences in call production or the graded nature of calls within different social environments. This research has clearly identified stable calls in the call repertoire of humpback whales and while their function is not well understood, their stability suggests an important role in social interactions.

  20. Electrical interactions in the cell: Asymmetric screening in a watery antiverse.

    PubMed

    Doerr, T P; Yu, Yi-Kuo

    2014-05-01

    The problem of electrostatics in biomolecular systems presents an excellent opportunity for cross-disciplinary science and a context in which fundamental physics is called for to answer complex questions. Due to the large density in biological cells of charged biomacromolecules such as protein factors and DNA, it is challenging to understand quantitatively the electric forces in these systems. Two questions are especially puzzling. First, how is it that such a dense system of charged molecules does not simply aggregate in random and non-functional ways? Second, since some mechanism apparently prevents such aggregation, how is it that binding of biomolecules still occurs so reliably? Recognizing the role of water as a universal solvent in living systems is key to understanding these questions. We present a simplified physical model in which water is regarded as a medium of high dielectric constant that nevertheless exhibits the key features essential for answering the two questions presented. The answer to the first question lies in the strong screening ability of water, which reduces the energy scale of the electrostatic interactions. Furthermore, our model reveals the existence of asymmetric screening, a pronounced asymmetry between the screening for a system with like charges and that for a system with opposite charges, and this provides an answer to the second question.

  1. Electrical interactions in the cell: Asymmetric screening in a watery antiverse

    PubMed Central

    Doerr, T. P.; Yu, Yi-Kuo

    2014-01-01

    The problem of electrostatics in biomolecular systems presents an excellent opportunity for cross-disciplinary science and a context in which fundamental physics is called for to answer complex questions. Due to the large density in biological cells of charged biomacromolecules such as protein factors and DNA, it is challenging to understand quantitatively the electric forces in these systems. Two questions are especially puzzling. First, how is it that such a dense system of charged molecules does not simply aggregate in random and non-functional ways? Second, since some mechanism apparently prevents such aggregation, how is it that binding of biomolecules still occurs so reliably? Recognizing the role of water as a universal solvent in living systems is key to understanding these questions. We present a simplified physical model in which water is regarded as a medium of high dielectric constant that nevertheless exhibits the key features essential for answering the two questions presented. The answer to the first question lies in the strong screening ability of water, which reduces the energy scale of the electrostatic interactions. Furthermore, our model reveals the existence of asymmetric screening, a pronounced asymmetry between the screening for a system with like charges and that for a system with opposite charges, and this provides an answer to the second question. PMID:25125701

  2. MEXnICA, Mexican group in the MPD-NICA experiment at JINR

    NASA Astrophysics Data System (ADS)

    Rodríguez Cahuantzi, M.; MEXnICA Group

    2017-10-01

    The Nuclotron Ion Collider fAcility (NICA) accelerator complex is currently under construction at the Joint Institute for Nuclear Research (JINR) laboratory located in the city of Dubna in the Russian Federation. The main goal of NICA is to collide heavy ion nuclei to study the properties of the phase diagram of strongly interacting matter at high baryon density. In this accelerator complex, two big particle detectors are planned to be installed: Spin Physics Detector (SPD) and Multi-Purpose Detector (MPD). At the design luminosity, the event rate in the MPD interaction region is about 6 kHz; the total charged particle multiplicity would exceeds 1000 in the most central Au+Au collisions at \\sqrt{{sNN}} = 11 {{GeV}}. Since the middle of 2016 a group of researchers and students from Mexican institutions was formed (MEXnICA). The main goal of the MEXnICA group is to collaborate in the experimental efforts of MPD-NICA proposing a BEam-BEam counter detector which we called BEBE. In this written general aspects of MPD-NICA detector and BEBE are discussed. This material was shown in a contributed talk given at the XXXI Annual Meeting of the Mexican Division of Particles and Fields held in the Physics Department of CINVESTAV located in Mexico City during the last week of May 2017.

  3. 20F beta spectrum shape and weak interaction tests

    NASA Astrophysics Data System (ADS)

    Voytas, Paul; George, Elizabeth; Chuna, Thomas; Naviliat-Cuncic, Oscar; Hughes, Max; Huyan, Xueying; Minamisono, Kei; Paulauskas, Stanley

    2016-09-01

    Precision measurements of the shape of beta spectra can test our understanding of the weak interaction. We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. The primary motivation is to test the so-called strong form of the conserved vector current (CVC) hypothesis. The measurement should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. We aim to achieve a relative precision better than 3% on the linear contribution to the shape. This represents an order of magnitude improvement compared to previous experiments in 20F. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in scintillation detectors deeply enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the implantation beam. Ancillary detectors are used to identify the 1.633-MeV γ-rays following the 20F β decay for coincidence measurements in order to tag the transition of interest and to reduce backgrounds. We report on the status of the analysis. Supported in part with Awards from the NSCL PAC and the National Science Foundation under Grant No. PHY-1506084.

  4. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring.

    PubMed

    Mu, Xiang-Qi; Savarino, Stephen J; Bullitt, Esther

    2008-02-22

    To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.

  5. Enhanced α-Transfer population of the 2ms+ mixed-symmetry state in 52Ti

    NASA Astrophysics Data System (ADS)

    Ali, Fuad A.; Muecher, Dennis; Bildstein, Vinzenz; Greaves, Beau; Kilic, Ali. I.; Holt, Jason D.; Berner, Christian; Gernhaeuser, R.; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.

    2017-09-01

    The residual nucleon-nucleon interaction plays a crucial role in nuclear structure physics. In spherical even-even nuclei the quadrupole interaction leads to so called proton-neutron mixed symmetry states, which are sensitive to the underlying subshell structure. We present new data using the MINIBALL germanium array. States in 52Ti were populated via the α-transfer reaction 48Ca(12C,8Be)52Ti using a 48Ca beam from the Maier-Leibnitz-Laboratory in Munich. In the frame work of IBM-2, Alonso et al. have shown that the population of the 2ms+ state is strictly forbidden for the alpha transfer from a doubly magic nucleus. In contrast, we measured a large relative cross section into the 22+ mixed-symmetry state in 52Ti relative to the 21+ state of 31.1(20) %. This value exceeds earlier measurements in the 140Ba nucleus, representing the case of a particular strong population of the 2ms,SUP>+ state. This points towards effects of core polarizations of 48Ca in the low-lying structure of 52Ti. We have performed ab-initio shell model calculations to understand the origin of the discovered discrepancies. Permanent Address: Department of Physics, College of Education, University of Sulaimani, P. O. Box 334, Sulaimani, Kurdistan Region, Iraq.

  6. An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFields

    PubMed Central

    Tuszynski, Jack A.; Wenger, Cornelia; Friesen, Douglas E.; Preto, Jordane

    2016-01-01

    Long-standing research on electric and electromagnetic field interactions with biological cells and their subcellular structures has mainly focused on the low- and high-frequency regimes. Biological effects at intermediate frequencies between 100 and 300 kHz have been recently discovered and applied to cancer cells as a therapeutic modality called Tumor Treating Fields (TTFields). TTFields are clinically applied to disrupt cell division, primarily for the treatment of glioblastoma multiforme (GBM). In this review, we provide an assessment of possible physical interactions between 100 kHz range alternating electric fields and biological cells in general and their nano-scale subcellular structures in particular. This is intended to mechanistically elucidate the observed strong disruptive effects in cancer cells. Computational models of isolated cells subject to TTFields predict that for intermediate frequencies the intracellular electric field strength significantly increases and that peak dielectrophoretic forces develop in dividing cells. These findings are in agreement with in vitro observations of TTFields’ disruptive effects on cellular function. We conclude that the most likely candidates to provide a quantitative explanation of these effects are ionic condensation waves around microtubules as well as dielectrophoretic effects on the dipole moments of microtubules. A less likely possibility is the involvement of actin filaments or ion channels. PMID:27845746

  7. Calderas produced by hydromagmatic eruptions through permafrost in northwest Alaska

    NASA Technical Reports Server (NTRS)

    Beget, J. E.

    1993-01-01

    Most hydromagmatic eruptions on Earth are generated by interactions of lava and ground or surface water. This eruptive process typically produces craters 0.1-1 km in diameter, although a few as large as 1-2 km were described. In contrast, a series of Pleistocene hydromagmatic eruptions through 80-100-m-thick permafrost on the Seward Peninsula of Alaska produced four craters 3-8 km in diameter. These craters, called the Espenberg maars, are the four largest maars known on Earth. The thermodynamic properties of ground ice influence the rate and amount of water melted during the course of the eruption. Large quantities of water are present, but only small amounts can be melted at any time to interact with magma. This would tend to produce sustained and highly explosive low water/magma (fuel-coolant) ratios during the eruptions. An area of 400 km(sub 2) around the Alaskan maars shows strong reductions in the density of thaw lakes, ground ice, and other surface manifestations of permafrost because of deep burial by coeval tephra falls. The unusually large Espenberg maars are the first examples of calderas produced by hydromagmatic eruptions. These distinctive landforms can apparently be used as an indicator of the presence of permafrost at the time of eruption.

  8. Development of a Multisystemic Parent Management Training Intervention for Incarcerated Parents, Their Children and Families

    PubMed Central

    Eddy, J. Mark; Martinez, Charles R.; Schiffmann, Tracy; Newton, Rex; Olin, Laura; Leve, Leslie; Foney, Dana M.; Shortt, Joann Wu

    2008-01-01

    The majority of men and women prison inmates are parents. Many lived with children prior to incarceration, and most have at least some contact with their children and families while serving their sentences. As prison populations have increased in the United States, there has been a renewed interest in finding ways not only to reduce recidivism, but also to prevent incarceration in the first place, particularly amongst the children of incarcerated parents. Positive family interaction is related to both issues. The ongoing development of a multisystemic intervention designed to increase positive family interaction for parents and families involved in the criminal justice system is described. The intervention package currently includes a prison-based parent management training program called Parenting Inside Out (PIO); a prison-based therapeutic visitation program; and complimentary versions of PIO designed for jail and probation and parole settings. Work on other components designed for justice-involved parents, children and for caregivers during reunification from prison is ongoing. Program development has occurred within the context of strong support from the state department of corrections and other key governmental and non-profit sector groups, and support systems have been established to help maintain the interventions as well as to develop complimentary interventions, policies and procedures. PMID:19885365

  9. Environmental constraints and call evolution in torrent-dwelling frogs.

    PubMed

    Goutte, Sandra; Dubois, Alain; Howard, Samuel D; Marquez, Rafael; Rowley, Jodi J L; Dehling, J Maximilian; Grandcolas, Philippe; Rongchuan, Xiong; Legendre, Frédéric

    2016-04-01

    Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent-dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (∼3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent-dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine-scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  10. 53rd Course Molecular Physics and Plasmas in Hypersonics 2

    DTIC Science & Technology

    2013-09-09

    between CO2 symmetric and bending modes ( 11 ) proceeds fast due to the Fermi resonance between the frequencies of these modes and can be considered as...of local maximization of the collision frequency given by Eq. ( 11 ) allows a strong reduction of the computational cost and it is verified a...called arc-jets or DC-Plasmatron [25, 26]. PWTs using Inductively Coupled Plasma (ICP) torch, based on Radio - Frequency (RF) discharge, are so- called

  11. Comparing handheld and hands-free cell phone usage behaviors while driving.

    PubMed

    Soccolich, Susan A; Fitch, Gregory M; Perez, Miguel A; Hanowski, Richard J

    2014-01-01

    The goal of this study was to compare cell phone usage behaviors while driving across 3 types of cell phones: handheld (HH) cell phones, portable hands-free (PHF) cell phones, and integrated hands-free (IHF) cell phones. Naturalistic driving data were used to observe HH, PHF, and IHF usage behaviors in participants' own vehicles without any instructions or manipulations by researchers. In addition to naturalistic driving data, drivers provided their personal cell phone call records. Calls during driving were sampled and observed in naturalistically collected video. Calls were reviewed to identify cell phone type used for, and duration of, cell phone subtasks, non-cell phone secondary tasks, and other use behaviors. Drivers in the study self-identified as HH, PHF, or IHF users if they reported using that cell phone type at least 50% of the time. However, each sampled call was classified as HH, PHF, or IHF if the talking/listening subtask was conducted using that cell phone type, without considering the driver's self-reported group. Drivers with PHF or IHF systems also used HH cell phones (IHF group used HH cell phone in 53.2% of the interactions, PHF group used HH cell phone for 55.5% of interactions). Talking/listening on a PHF phone or an IHF phone was significantly longer than talking/listening on an HH phone (P <.05). HH dialing was significantly longer in duration than PHF or IHF begin/answer tasks. End phone call task for HH phones was significantly longer in duration than the end phone call task for PHF and IHF phones. Of all the non-cell phone-related secondary tasks, eating or drinking was found to occur significantly more often during IHF subtasks (0.58%) than in HH subtasks (0.15%). Drivers observed to reach for their cell phone mostly kept their cell phone in the cup holder (36.3%) or in their seat or lap (29.0% of interactions); however, some observed locations may have required drivers to move out of position. Hands-free cell phone technologies reduce the duration of cell phone visual-manual tasks compared to handheld cell phones. However, drivers with hands-free cell phone technologies available to them still choose to use handheld cell phones to converse or complete cell phone visual-manual tasks for a noteworthy portion of interactions.

  12. Dialogue-Based Call: A Case Study on Teaching Pronouns

    ERIC Educational Resources Information Center

    Vlugter, P.; Knott, A.; McDonald, J.; Hall, C.

    2009-01-01

    We describe a computer assisted language learning (CALL) system that uses human-machine dialogue as its medium of interaction. The system was developed to help students learn the basics of the Maori language and was designed to accompany the introductory course in Maori running at the University of Otago. The student engages in a task-based…

  13. The Fluid Reading Primer: Animated Decoding Support for Emergent Readers.

    ERIC Educational Resources Information Center

    Zellweger, Polle T.; Mackinlay, Jock D.

    A prototype application called the Fluid Reading Primer was developed to help emergent readers with the process of decoding written words into their spoken forms. The Fluid Reading Primer is part of a larger research project called Fluid Documents, which is exploring the use of interactive animation of typography to show additional information in…

  14. Mediating Systems of Care: Emergency Calls to Long-Term Care Facilities at Life's End.

    PubMed

    Waldrop, Deborah P; McGinley, Jacqueline M; Clemency, Brian

    2018-04-09

    Nursing home (NH) residents account for over 2.2 million emergency department visits yearly; the majority are cared for and transported by prehospital providers (emergency medical technicians and paramedics). The purpose of this study was to investigate prehospital providers' perceptions of emergency calls at life's end. This article focuses on perceptions of end-of-life calls in long-term care (LTC). This pilot study employed a descriptive cross-sectional design. Concepts from the symbolic interaction theory guided the exploration of perceptions and interpretations of emergency calls in LTC facilities. A purposeful sample of prehospital providers was developed from one agency in a small northeastern U.S. city. Semistructured interviews were conducted with 43 prehospital providers to explore their perceptions of factors that trigger emergency end-of-life calls in LTC facilities. Qualitative data analysis involved iterative coding in an inductive process that included open, systematic, focused, and axial coding. Interview themes illustrated the contributing factors as follows: care crises; dying-related turmoil; staffing ratios; and organizational protocols. Distress was crosscutting and present in all four themes. The findings illuminate how prehospital providers become mediators between NHs and emergency departments by managing tension, conflict, and challenges in patient care between these systems and suggest the importance of further exploration of interactions between LTC staff, prehospital providers, and emergency departments. Enhanced communication between LTC facilities and prehospital providers is important to address potentially inappropriate calls and transport requests and to identify means for collaboration in the care of sick frail residents.

  15. Bell miner provisioning calls are more similar among relatives and are used by helpers at the nest to bias their effort towards kin

    PubMed Central

    McDonald, Paul G.; Wright, Jonathan

    2011-01-01

    Kin selection predicts that helpers in cooperative systems should preferentially aid relatives to maximize fitness. In family-based groups, this can be accomplished simply by assisting all group members. In more complex societies, where large numbers of kin and non-kin regularly interact, more sophisticated kin-recognition mechanisms are needed. Bell miners (Manorina melanophrys) are just such a system where individuals regularly interact with both kin and non-kin within large colonies. Despite this complexity, individual helpers of both sexes facultatively work harder when provisioning the young of closer genetic relatedness. We investigated the mechanism by which such adaptive discrimination occurs by assessing genetic kinship influences on the structure of more than 1900 provisioning vocalizations of 185 miners. These ‘mew’ calls showed a significant, positive linear increase in call similarity with increasing genetic relatedness, most especially in comparisons between male helpers and the breeding male. Furthermore, individual helping effort was more heavily influenced by call similarity to breeding males than to genetic relatedness, as predicted if call similarity is indeed the rule-of-thumb used to discriminate kin in this system. Individual mew call structure appeared to be inflexible and innate, providing an effective mechanism by which helpers can assess their relatedness to any individual. This provides, to our knowledge, the first example of a mechanism for fine-scale kin discrimination in a complex avian society. PMID:21450738

  16. Crystallization and dynamical arrest of attractive hard spheres.

    PubMed

    Babu, Sujin; Gimel, Jean-Christophe; Nicolai, Taco

    2009-02-14

    Crystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition.

  17. Asymmetric reproductive character displacement in male aggregation behaviour

    PubMed Central

    Pfennig, Karin S.; Stewart, Alyssa B.

    2011-01-01

    Reproductive character displacement—the evolution of traits that minimize reproductive interactions between species—can promote striking divergence in male signals or female mate preferences between populations that do and do not occur with heterospecifics. However, reproductive character displacement can affect other aspects of mating behaviour. Indeed, avoidance of heterospecific interactions might contribute to spatial (or temporal) aggregation of conspecifics. We examined this possibility in two species of hybridizing spadefoot toad (genus Spea). We found that in Spea bombifrons sympatric males were more likely than allopatric males to associate with calling males. Moreover, contrary to allopatric males, sympatric S. bombifrons males preferentially associated with conspecific male calls. By contrast, Spea multiplicata showed no differences between sympatry and allopatry in likelihood to associate with calling males. Further, sympatric and allopatric males did not differ in preference for conspecifics. However, allopatric S. multiplicata were more variable than sympatric males in their responses. Thus, in S. multiplicata, character displacement may have refined pre-existing aggregation behaviour. Our results suggest that heterospecific interactions can foster aggregative behaviour that might ultimately contribute to clustering of conspecifics. Such clustering can generate spatial or temporal segregation of reproductive activities among species and ultimately promote reproductive isolation. PMID:21177683

  18. Signal interactions and interference in insect choruses: singing and listening in the social environment.

    PubMed

    Greenfield, Michael D

    2015-01-01

    Acoustic insects usually sing amidst conspecifics, thereby creating a social environment-the chorus-in which individuals communicate, find mates, and avoid predation. A temporal structure may arise in a chorus because of competitive and cooperative factors that favor certain signal interactions between neighbors. This temporal structure can generate significant acoustic interference among singers that pose problems for communication, mate finding, and predator detection. Acoustic insects can reduce interference by means of selective attention to only their nearest neighbors and by alternating calls with neighbors. Alternatively, they may synchronize, allowing them to preserve call rhythm and also to listen for predators during the silent intervals between calls. Moreover, males singing in choruses may benefit from reduced per capita predation risk as well as enhanced vigilance. They may also enjoy greater per capita attractiveness to females, particularly in the case of synchronous choruses. In many cases, however, the overall temporal structure of the chorus is only an emergent property of simple, pairwise interactions between neighbors. Nonetheless, the chorus that emerges can impose significant selection pressure on the singing of those individual males. Thus, feedback loops may occur and potentially influence traits at both individual and group levels in a chorus.

  19. Strong coupling of collection of emitters on hyperbolic meta-material

    NASA Astrophysics Data System (ADS)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  20. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

Top