Sample records for strong interaction processes

  1. Strong field QED in lepton colliders and electron/laser interactions

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.

  2. Scaling Considerations Related to Interactions of Hydrologics, Pedologic and Geomorphic Processes

    EPA Science Inventory

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K...

  3. Coherent quantum depletion of an interacting atom condensate

    PubMed Central

    Kira, M.

    2015-01-01

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044

  4. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  5. Colloquium: Strong-field phenomena in periodic systems

    NASA Astrophysics Data System (ADS)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  6. INTERACTIVE PLANNING TOOL FOR SUSTAINABLE URBAN PLANNING IN A BUILT, URBAN COMMUNITY

    EPA Science Inventory

    Technical Challenge to Sustainability: The primary goal for this project is to initiate a unique process to begin the task of redesigning the municipal zoning ordinances for the Borough of Dormont, Pennsylvania. This process will utilize conventional planni...

  7. A microphysical pathway analysis to investigate aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Heikenfeld, Max; White, Bethan; Labbouz, Laurent; Stier, Philip

    2017-04-01

    The impact of aerosols on ice- and mixed-phase processes in convective clouds remains highly uncertain, which has strong implications for estimates of the role of aerosol-cloud interactions in the climate system. The wide range of interacting microphysical processes are still poorly understood and generally not resolved in global climate models. To understand and visualise these processes and to conduct a detailed pathway analysis, we have added diagnostic output of all individual process rates for number and mass mixing ratios to two commonly-used cloud microphysics schemes (Thompson and Morrison) in WRF. This allows us to investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations throughout the development of convective clouds. Aerosol effects on cloud microphysics could strongly depend on the representation of these interactions in the model. We use different model complexities with regard to aerosol-cloud interactions ranging from simulations with different levels of fixed cloud droplet number concentration (CDNC) as a proxy for aerosol, to prognostic CDNC with fixed modal aerosol distributions. Furthermore, we have implemented the HAM aerosol model in WRF-chem to also perform simulations with a fully interactive aerosol scheme. We employ a hierarchy of simulation types to understand the evolution of cloud microphysical perturbations in atmospheric convection. Idealised supercell simulations are chosen to present and test the analysis methods for a strongly confined and well-studied case. We then extend the analysis to large case study simulations of tropical convection over the Amazon rainforest. For both cases we apply our analyses to individually tracked convective cells. Our results show the impact of model uncertainties on the understanding of aerosol-convection interactions and have implications for improving process representation in models.

  8. Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction

    PubMed Central

    Wang, Danhong; Buckner, Randy L.

    2014-01-01

    The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions. PMID:25209275

  9. Crossmodal interactions during non-linguistic auditory processing in cochlear-implanted deaf patients.

    PubMed

    Barone, Pascal; Chambaudie, Laure; Strelnikov, Kuzma; Fraysse, Bernard; Marx, Mathieu; Belin, Pascal; Deguine, Olivier

    2016-10-01

    Due to signal distortion, speech comprehension in cochlear-implanted (CI) patients relies strongly on visual information, a compensatory strategy supported by important cortical crossmodal reorganisations. Though crossmodal interactions are evident for speech processing, it is unclear whether a visual influence is observed in CI patients during non-linguistic visual-auditory processing, such as face-voice interactions, which are important in social communication. We analyse and compare visual-auditory interactions in CI patients and normal-hearing subjects (NHS) at equivalent auditory performance levels. Proficient CI patients and NHS performed a voice-gender categorisation in the visual-auditory modality from a morphing-generated voice continuum between male and female speakers, while ignoring the presentation of a male or female visual face. Our data show that during the face-voice interaction, CI deaf patients are strongly influenced by visual information when performing an auditory gender categorisation task, in spite of maximum recovery of auditory speech. No such effect is observed in NHS, even in situations of CI simulation. Our hypothesis is that the functional crossmodal reorganisation that occurs in deafness could influence nonverbal processing, such as face-voice interaction; this is important for patient internal supramodal representation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Approaches to characterizing biogeochemistry effects of groundwater and surface water interaction at the riparian interface

    EPA Science Inventory

    Groundwater-surface water interaction (GSI) in riparian ecosystems strongly influences biological activity that controls nutrient flux and processes. Shallow groundwater in riparian zones is a hot spot for nitrogen removal processes, a storage zone for solutes, and a target for ...

  11. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2017-11-01

    Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 {GeV}^{-1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the `bag constant' of the MIT bag model, B ˜eq 2 × 10^{14} {g} {cm}^{-3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity `particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ _f, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed.

  12. Micro- and mesoscopic process interactions in protein coagulation

    NASA Astrophysics Data System (ADS)

    San Biagio, P. L.; Martorana, V.; Emanuele, A.; Vaiana, S. M.; Manno, M.; Bulone, D.; Palma-Vittorelli, M. B.; Palma, M. U.

    2000-04-01

    It has recently been recognized that pathological protein coagulation is responsible for lethal pathologies as diverse as amyloidosis, Alzheimer and TSE. Understanding the coagulation mechanisms is therefore stirring great interest. In previous studies we have shown that on profoundly different systems coagulation is the result of a strong interaction between two processes on different length scales (mesoscopic and microscopic). Here we report experiments on bovine serum albumin (BSA) showing that the overall mechanism is the result of at least 3 distinct and strongly intertwined processes, on both length scales: molecular conformational changes, solution demixing and intermolecular crosslinking. This mechanism involves the statistical mechanics of protein-solvent interaction, its relation to the protein's landscape of configurational free energy and to the solution's thermodynamic stability, and its relation to the topological problem of crosslink-percolation, responsible for coagulation.

  13. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane

    NASA Astrophysics Data System (ADS)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-05-01

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j

  14. Quantum many-body dynamics of strongly interacting atom arrays

    NASA Astrophysics Data System (ADS)

    Bernien, Hannes; Keesling, Alexander; Levine, Harry; Schwartz, Sylvain; Omran, Ahmed; Anschuetz, Eric; Endres, Manuel; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail

    2017-04-01

    The coherent interaction between large numbers of particles gives rise to fascinating quantum many-body effects and lies at the center of quantum simulations and quantum information processing. The development of systems consisting of many, well-controlled particles with tunable interactions is an outstanding challenge. Here we present a new platform based on large, reconfigurable arrays of individually trapped atoms. Strong interactions between these atoms are enabled by exciting them to Rydberg states. This flexible approach allows access to vastly different regimes with interactions tunable over several orders of magnitude. We study the coherent many-body dynamics in varying array geometries and observe the formation of Rydberg crystals.

  15. A Finnish Concept for Academic Entrepreneurship: The Case of Satakunta University of Applied Sciences

    ERIC Educational Resources Information Center

    Lain, Kari

    2008-01-01

    In a knowledge-driven economy there is a growing need for deeper and more productive interaction between higher education and industry. The full exploitation of knowledge requires strategies, incentives, appropriate systems and strong interaction between the transfer processes and the main processes in higher education. In a knowledge-based…

  16. Strong expectations cancel locality effects: evidence from Hindi.

    PubMed

    Husain, Samar; Vasishth, Shravan; Srinivasan, Narayanan

    2014-01-01

    Expectation-driven facilitation (Hale, 2001; Levy, 2008) and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005) are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  17. Strong Expectations Cancel Locality Effects: Evidence from Hindi

    PubMed Central

    Husain, Samar; Vasishth, Shravan; Srinivasan, Narayanan

    2014-01-01

    Expectation-driven facilitation (Hale, 2001; Levy, 2008) and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005) are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech “verb” is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge. PMID:25010700

  18. Emerging Interaction of Political Processes: The Effect on a Study Abroad Program in Cuba

    ERIC Educational Resources Information Center

    Clarke, Ruth

    2007-01-01

    The emerging interaction of political processes sets the stage for the level of macro uncertainty and specific risk events that may occur in an international relationship. Strongly defined social control in Cuba, formal and informal, dominates the dynamics of the relationship, while simultaneously government, formal, action in the U.S. dominates…

  19. Simulation of Interaction of Strong Shocks with Gas Bubbles using the Direct Simulation Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra

    2016-11-01

    The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.

  20. Sensitivity of measurement-based purification processes to inner interactions

    NASA Astrophysics Data System (ADS)

    Militello, Benedetto; Napoli, Anna

    2018-02-01

    The sensitivity of a repeated measurement-based purification scheme to additional undesired couplings is analyzed, focusing on the very simple and archetypical system consisting of two two-level systems interacting with a repeatedly measured one. Several regimes are considered and in the strong coupling limit (i.e., when the coupling constant of the undesired interaction is very large) the occurrence of a quantum Zeno effect is proven to dramatically jeopardize the efficiency of the purification process.

  1. Specificity in cationic interaction with poly(N-isopropylacrylamide).

    PubMed

    Du, Hongbo; Wickramasinghe, Sumith Ranil; Qian, Xianghong

    2013-05-02

    Classical molecular dynamics (MD) simulations were conducted for PNIPAM in 1 M monovalent alkali chloride salt solutions as well as in 0.5 M divalent Mg(2+) and Ca(2+) chloride salt solutions. It was found that the strength for the direct alkali ion-amide O binding is strongly correlated with the size of the ionic radius. The smallest Li(+) ion binds strongest to amide O, and the largest Cs(+) ion has the weakest interaction with the amide bond. For the divalent Mg(2+) and Ca(2+) ions, their interactions with the amide bond are weak and appear to be mediated by the water molecules, particularly in the case of Mg(2+), resulting from their strong hydration. The direct binding between the cations and amide O requires partial desovlation of the ions that is energetically unfavorable for Mg(2+) and also to a great extent for Ca(2+). The higher cation charge makes the electrostatic interaction more favorable but the dehydration process less favorable. This competition between electrostatic interaction and the dehydration process largely dictates whether the direct binding between the cation and amide O is energetically preferred or not. For monovalent alkali ions, it is energetically preferred to bind directly with the amide O. Moreover, Li(+) ion is also found to associate strongly with the hydrophobic residues on PNIPAM.

  2. Strong dynamics and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S ≳ 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S ≳ 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.

  3. Identifying Systems of Interaction in Mathematical Engagement

    ERIC Educational Resources Information Center

    Brown, Bruce J. L.

    2014-01-01

    Mathematical engagement is a complex process of interaction between the person and the world. This interaction is strongly influenced by the concepts and structure of the mathematical field, by the practical and symbolic tools of mathematics and by the focus of investigation in the world. This paper reports on research that involves a detailed…

  4. Forces between Two Glass Surfaces with Adsorbed Hexadecyltrimethylammonium Salicylate.

    PubMed

    Imae, T; Kato, M; Rutland, M

    2000-02-22

    Forces have been measured for hexadecyltrimethylammonium salicylate (C(16)TASal) layers on glass beads. During the inward process, hydrophobic attraction occurred at lower adsorption of C(16)TASal and electrostatic repulsion interactions happened at higher adsorption. While the jump-in phenomenon was observed for solutions of concentrations below the critical micelle concentration (cmc = 0.15 mM), the step-in phenomenon was characteristic for solutions at the cmc and above the cmc, suggesting the push-out of adsorbed C(16)TASal layers and/or inserted micelles. The remarkable pull-off phenomenon on the outward process occurred for all solutions, indicating a strong interaction between C(16)TASal molecules. For aqueous 0.15 mM C(16)TASal solutions of various NaSal concentrations, on the inward process, the electrostatic repulsive interaction decreased with adding NaSal. This is due to the electrostatic shielding by salt excess. The height of the force wall on the inward process reached a maximum at 0.01 M NaSal, but the interlocking between molecules on two surfaces during the outward process was minimized at 0.1 M NaSal. These tendencies, which are different from that of the electrostatic repulsion interaction, imply the strong cohesion between adsorbed C(16)TASal layers.

  5. When "Emily Dickinson" Met "Steven Spielberg": Assessing Social Information Processing in Literacy Contexts.

    ERIC Educational Resources Information Center

    Donahue, Mavis L.; Szymanski, Carol M.; Flores, Christine Wujek

    1999-01-01

    Uses current research and theory to frame the peer interactions of "Emily Dickinson," a 16-year-old with oral-language problems and social isolation. Classroom-based assessment revealed an interaction pattern in which Emily used her strong literacy interests and skills to initiate and mediate social interaction with peers, including another gifted…

  6. Hydrologic processes influencing meadow ecosystems [chapter 4

    Treesearch

    Mark L. Lord; David G. Jewett; Jerry R. Miller; Dru Germanoski; Jeanne C. Chambers

    2011-01-01

    The hydrologic regime exerts primary control on riparian meadow complexes and is strongly influenced by past and present geomorphic processes; biotic processes; and, in some cases, anthropogenic activities. Thus, it is essential to understand not only the hydrologic processes that operate within meadow complexes but also the interactions of meadow hydrology with other...

  7. Performance implications of leader briefings and team-interaction training for team adaptation to novel environments.

    PubMed

    Marks, M A; Zaccaro, S J; Mathieu, J E

    2000-12-01

    The authors examined how leader briefings and team-interaction training influence team members' knowledge structures concerning processes related to effective performance in both routine and novel environments. Two-hundred thirty-seven undergraduates from a large mid-Atlantic university formed 79 three-member tank platoon teams and participated in a low-fidelity tank simulation. Team-interaction training, leader briefings, and novelty of performance environment were manipulated. Findings indicated that both leader briefings and team-interaction training affected the development of mental models, which in turn positively influenced team communication processes and team performance. Mental models and communication processes predicted performance more strongly in novel than in routine environments. Implications for the role of team-interaction training, leader briefings, and mental models as mechanisms for team adaptation are discussed.

  8. Colloidal characterization of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  9. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane.

    PubMed

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-06-07

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.

  10. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    NASA Astrophysics Data System (ADS)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  11. Language Is a Complex Adaptive System: Position Paper

    ERIC Educational Resources Information Center

    Beckner, Clay; Blythe, Richard; Bybee, Joan; Christiansen, Morten H.; Croft, William; Ellis, Nick C.; Holland, John; Ke, Jinyun; Larsen-Freeman, Diane; Schoenemann, Tom

    2009-01-01

    Language has a fundamentally social function. Processes of human interaction along with domain-general cognitive processes shape the structure and knowledge of language. Recent research in the cognitive sciences has demonstrated that patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent…

  12. Reliability of measurement and genotype x environment 1 interaction for potato specific gravity

    USDA-ARS?s Scientific Manuscript database

    The dry matter content of potatoes used to make potato chips and French fries strongly influences fry oil absorption and texture of the finished product. Specific gravity (SpGr) is often used to assess the processing quality of potatoes tubers because of its strong correlation with dry matter conten...

  13. Statistical analysis of native contact formation in the folding of designed model proteins

    NASA Astrophysics Data System (ADS)

    Tiana, Guido; Broglia, Ricardo A.

    2001-02-01

    The time evolution of the formation probability of native bonds has been studied for designed sequences which fold fast into the native conformation. From this analysis a clear hierarchy of bonds emerge: (a) local, fast forming highly stable native bonds built by some of the most strongly interacting amino acids of the protein; (b) nonlocal bonds formed late in the folding process, in coincidence with the folding nucleus, and involving essentially the same strongly interacting amino acids already participating in the fast bonds; (c) the rest of the native bonds whose behavior is subordinated, to a large extent, to that of the strong local and nonlocal native contacts.

  14. Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.

    PubMed

    Singh; Nilsson

    1999-05-01

    The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.

  15. Cascading activation from lexical processing to letter-level processing in written word production.

    PubMed

    Buchwald, Adam; Falconer, Carolyn

    2014-01-01

    Descriptions of language production have identified processes involved in producing language and the presence and type of interaction among those processes. In the case of spoken language production, consensus has emerged that there is interaction among lexical selection processes and phoneme-level processing. This issue has received less attention in written language production. In this paper, we present a novel analysis of the writing-to-dictation performance of an individual with acquired dysgraphia revealing cascading activation from lexical processing to letter-level processing. The individual produced frequent lexical-semantic errors (e.g., chipmunk → SQUIRREL) as well as letter errors (e.g., inhibit → INBHITI) and had a profile consistent with impairment affecting both lexical processing and letter-level processing. The presence of cascading activation is suggested by lower letter accuracy on words that are more weakly activated during lexical selection than on those that are more strongly activated. We operationalize weakly activated lexemes as those lexemes that are produced as lexical-semantic errors (e.g., lethal in deadly → LETAHL) compared to strongly activated lexemes where the intended target word (e.g., lethal) is the lexeme selected for production.

  16. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collision

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1992-01-01

    The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange.

  17. A Proposed Model for Protein Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined association pathway may lead to formation of multiple species, i.e., amorphous precipitation. Weak interactions, such as hydrogen bonds, are promiscuous, serving to strengthen rather than define specific interactions. Participation in an interaction sequesters that surface from subsequent interactions, and we expect the strongest bonds to form first. This model, its basis, how it fits into the currently understood osmotic second virial coefficient approach to crystallization, and what it suggests will be discussed.

  18. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yi; Xu, Ben; Hu, Shenyang Y.

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  19. Modelling surface water-groundwater interaction with a conceptual approach: model development and application in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; McMillan, H. K.

    2016-12-01

    As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.

  20. Interplay of interaction and disorder in the steady state of an open quantum system

    NASA Astrophysics Data System (ADS)

    Xu, Xiansong; Guo, Chu; Poletti, Dario

    2018-04-01

    Many types of dissipative processes can be found in nature or be engineered, and their interplay with a system can give rise to interesting phases of matter. Here we study the interplay among interaction, tunneling, and disorder in the steady state of a spin chain coupled to a tailored bath. We consider a dissipation which, in contrast to disorder, tends to generate a homogeneously polarized steady state. We find that the steady state can be highly sensitive even to weak disorder. We also establish that, in the presence of such dissipation, even in the absence of interaction, a finite amount of disorder is needed for localization. Last, we show that for strong disorder the system reveals signatures of localization both in the weakly and strong interacting regimes.

  1. Unified picture of strong-coupling stochastic thermodynamics and time reversals

    NASA Astrophysics Data System (ADS)

    Aurell, Erik

    2018-04-01

    Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.

  2. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  3. Probing the strongly driven spin-boson model in a superconducting quantum circuit.

    PubMed

    Magazzù, L; Forn-Díaz, P; Belyansky, R; Orgiazzi, J-L; Yurtalan, M A; Otto, M R; Lupascu, A; Wilson, C M; Grifoni, M

    2018-04-11

    Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators. A fundamental question to date is to what extent intense coherent driving impacts a strongly dissipative system. Here we investigate experimentally and theoretically a superconducting qubit strongly coupled to an electromagnetic environment and subjected to a coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the drive reinforces environmental suppression of quantum coherence, and that a coherent-to-incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium detailed balance relation is demonstrated. These results advance fundamental understanding of open quantum systems and bear potential for the design of entangled light-matter states.

  4. Search for pair production of strongly interacting particles decaying to pairs of jets in pp collisions at √s=1.96 TeV.

    PubMed

    Aaltonen, T; Albin, E; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-07-19

    We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at √[s]=1.96 TeV corresponding to an integrated luminosity of 6.6 fb(-1). We find the data to be consistent with nonresonant production. We report limits on σ(pp[over ¯]→jjjj) as a function of the masses of the hypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived.

  5. Search for Pair Production of Strongly Interacting Particles Decaying to Pairs of Jets in pp̄ Collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Albin, E.; Amerio, S.; ...

    2013-07-18

    We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.6 fb⁻¹. We find the data to be consistent with nonresonant production. We report limits on σ(pp̄→jjjj) as a function of the masses of themore » hypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived.« less

  6. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  7. Tele-Learning and Distance Learning Re-Engineering Process.

    ERIC Educational Resources Information Center

    Cruz, Dulce Marcia; de Moraes, Marialice; Barcia, Ricardo Miranda

    The adoption and use of new interactive technologies in Distance Education, especially Tele-learning is a growing tendency in the most advanced countries. Nowadays, this tendency is so strong that being interactive is seen as a necessary pre-condition. Some reasons for this are a the growing perceived value of group-working; the popularization of…

  8. Temperature alters the relative abundance and population growth rates of species within the Dendroctonus frontalis (Coleoptera: Curculionidae) community.

    Treesearch

    L. Evans; Richard Hoffstetter; Matthew Ayres; Kier Klepzig

    2011-01-01

    Temperature has strong effects on metabolic processes ofindividuals and demographics of populations, but effects on ecological communities are not well known. Many economically and ecologically important pest species have obligate associations with other organisms; therefore, effects of temperature on these species might be mediated by strong interactions. The southern...

  9. Control of Electron Flow Direction in Photoexcited Cycloplatinated Complex Containing Conjugated Polymer-Single Walled Carbon Nanotube Hybrids.

    PubMed

    Xiong, Wenjuan; Du, Lili; Lo, Kin Cheung; Shi, Haiting; Takaya, Tomohisa; Iwata, Koichi; Chan, Wai Kin; Phillips, David Lee

    2018-06-25

    Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photo-induced electron transfer flow, which are important in regulating the charge transport processes SWCNT-based optoelectronic devices.

  10. The dynamic nature of the reconsolidation process and its boundary conditions: Evidence based on human tests.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Forcato, Cecilia; Pedreira, María E

    2016-04-01

    The reconsolidation process is the mechanism by which the strength and/or content of consolidated memories are updated. This process is triggered by the presentation of a reminder (training cues). It is not always possible to trigger the reconsolidation process. For example, memory age and strength are boundary conditions for the reconsolidation process. Here, we investigated the dynamic changes in these conditions. We propose that the boundary conditions of the reconsolidation process are not fixed and vary as a consequence of the interaction between memory features and reminder characteristics. To modify memory properties, participants received a threatening social protocol that improves memory acquisition or a control condition (fake, without social interaction) prior to learning pairs of meaningless syllables. To determine whether a strong young or old declarative memory undergoes the reconsolidation process, we used an interference task (a second list of pairs of meaningless syllables) to disrupt memory re-stabilization. To assess whether the older memory could be strengthened, we repeated the triggering of reconsolidation. Strong young or old memories modulated by a threatening experience could be interfered during reconsolidation and updated (strengthened) by reconsolidation. Rather than being fixed, boundary conditions vary according to the memory features (strong memory), which indicates the dynamic nature of the reconsolidation process. Our findings demonstrate that it is possible to modify these limits by recruiting the reconsolidation process and making it functionally operative again. This novel scenario opens the possibility to new therapeutically approaches that take into account the reconsolidation process. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Asymmetry in the CME-CME interaction process for the events from 2011 February 14-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temmer, M.; Veronig, A. M.; Peinhart, V.

    2014-04-20

    We present a detailed study of the interaction process of two coronal mass ejections (CMEs) successively launched on 2011 February 14 (CME1) and 2011 February 15 (CME2). Reconstructing the three-dimensional shape and evolution of the flux ropes, we verify that the two CMEs interact. The frontal structure of both CMEs, measured along different position angles (PAs) over the entire latitudinal extent, reveals differences in the kinematics for the interacting flanks and the apexes. The interaction process is strongly PA-dependent in terms of timing as well as kinematical evolution. The central interaction occurs along PA-100°, which shows the strongest changes inmore » kinematics. During interaction, CME1 accelerates from ∼400 km s{sup –1} to ∼700 km s{sup –1} and CME2 decelerates from ∼1300 km s{sup –1} to ∼600 km s{sup –1}. Our results indicate that a simplified scenario such as inelastic collision may not be sufficient to describe the CME-CME interaction. The magnetic field structures of the intertwining flux ropes and the momentum transfer due to shocks each play an important role in the interaction process.« less

  12. Study on the PTC/NTC effect of carbon black-filled polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hao; Chen, Xinfang; Luo, Yunxia

    1995-12-01

    In this work, the effect of processing condition and radiation-crosslinking on the electrical and dynamic behaviors of carbon black filled low density polyethylene (LDPE) composites were investigated. Compared with the solution counterpart, the mechanical composites have a strong PTC effect and a great dynamic elastic mold, which results from the strong interaction between carbon black and LDPE. The experiment result shows that the NTC effect is caused by the decrease of elastic mold of LDPE at high temperature, and it can be declined significantly by radiation-crosslinking. We conclude that the strong interaction between polymer and carbon black is essentially importantmore » for composites to have a great PTC intensity good electrical reproducibility and high dynamic elastic sold.« less

  13. Gestural coupling and social cognition: Möbius Syndrome as a case study

    PubMed Central

    Krueger, Joel; Michael, John

    2012-01-01

    Social cognition researchers have become increasingly interested in the ways that behavioral, physiological, and neural coupling facilitate social interaction and interpersonal understanding. We distinguish two ways of conceptualizing the role of such coupling processes in social cognition: strong and moderate interactionism. According to strong interactionism (SI), low-level coupling processes are alternatives to higher-level individual cognitive processes; the former at least sometimes render the latter superfluous. Moderate interactionism (MI) on the other hand, is an integrative approach. Its guiding assumption is that higher-level cognitive processes are likely to have been shaped by the need to coordinate, modulate, and extract information from low-level coupling processes. In this paper, we present a case study on Möbius Syndrome (MS) in order to contrast SI and MI. We show how MS—a form of congenital bilateral facial paralysis—can be a fruitful source of insight for research exploring the relation between high-level cognition and low-level coupling. Lacking a capacity for facial expression, individuals with MS are deprived of a primary channel for gestural coupling. According to SI, they lack an essential enabling feature for social interaction and interpersonal understanding more generally and thus ought to exhibit severe deficits in these areas. We challenge SI's prediction and show how MS cases offer compelling reasons for instead adopting MI's pluralistic model of social interaction and interpersonal understanding. We conclude that investigations of coupling processes within social interaction should inform rather than marginalize or eliminate investigation of higher-level individual cognition. PMID:22514529

  14. The Influence of Contextual Contrast on Syntactic Processing: Evidence for Strong-Interaction in Sentence Comprehension

    ERIC Educational Resources Information Center

    Grodner, D.; Gibson, E.; Watson, D.

    2005-01-01

    The present study compares the processing of unambiguous restrictive and non-restrictive relative clauses (RCs) within both a null context and a supportive discourse using a self-paced reading methodology. Individuals read restrictive RCs more slowly than non-restrictive RCs in a null context, but processed restrictive RCs faster than…

  15. ICPP: Identification and Quantification of Elementary Plasma Surface Processes during thin Film Growth

    NASA Astrophysics Data System (ADS)

    Keudell, A. V.

    2000-10-01

    The quantification of elementary plasma surface processes in glow discharges used for thin film deposition, is mandatory for a complete description of these low temperature plasmas. Since the surface to volume ratio in these discharge systems is often large, all particle densities in the discharge can be strongly influenced by any surface reactions. The identification and quantification of these surface processes will be illustrated for the plasma deposition of amorphous hydrogenated carbon films. A variety of experiments will be discussed ranging from plasma experiments using the cavity technique or ionization threshold mass spectrometry as well as a new class of experiments using quantified radical beams to quantify surface reactions in terms of sticking coefficients directly. It is shown that the reactivity of the hydrocarbon radicals depends strongly on the state of hybridization of the hydrocarbon growth precursor, and that the sticking coefficients for various hydrocarbon radicals are strongly influenced by the simultaneous interaction of several reactive species with the film surface. With the knowledge of these interaction mechanisms and the quantification of the corresponding cross sections, a better understanding of growth processes has become possible, ranging from the deposition of polycrystalline diamond in microwave discharges to the formation of re-deposited layers in fusion experiments.

  16. Examining the relationship between face processing and social interaction behavior in children with and without autism spectrum disorder

    PubMed Central

    2014-01-01

    Background Children with autism spectrum disorder (ASD) show impairment in reciprocal social communication, which includes deficits in social cognition and behavior. Since social cognition and social behavior are considered to be interdependent, it is valuable to examine social processes on multiple levels of analysis. Neuropsychological measures of face processing often reveal deficits in social cognition in ASD including the ability to identify and remember facial information. However, the extent to which neuropsychological measures are associated with or predictive of real-world social behavior is unclear. Methods The study investigated 66 children (ASD 34, typically developing (TD) 32) using neuropsychological measures of face processing (identity, affect, and memory). Children also participated in a peer interaction paradigm, which allowed observation and coding of natural social interaction behaviors during play with peers (e.g., Self-Play, Cooperative Play, Verbal Bout). ANCOVA, regression, and correlation models analyzed between-group differences, the ability of neuropsychological measures to predict social behavior, and the strength of the associations. Results Between-group differences were shown on Memory for Faces Delayed and the peer interaction variables Self-Play and Verbal Bout. Regression models indicated that Memory for Faces Delayed predicted the amount of Self-Play, Equipment use alone, and Cooperative Play with peers on the playground. Autism symptomology only predicted verbal exchange with peers. Conclusions Face memory strongly predicts relevant social engagement patterns in both children with and without ASD. Impairment in facial memory is associated with reduced ‘real-world’ social interaction and more self-play, whereas higher performance in face memory predicts more cooperative play. Results highlight the strong connection between face memory and reciprocal social interaction, suggesting that improvement in one may benefit the other. PMID:25180050

  17. Effect of interactions for one-dimensional asymmetric exclusion processes under periodic and bath-adapted coupling environment

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar

    2018-04-01

    Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.

  18. Interactions between attention, context and learning in primary visual cortex.

    PubMed

    Gilbert, C; Ito, M; Kapadia, M; Westheimer, G

    2000-01-01

    Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.

  19. Tunable Optical Polymer Systems

    DTIC Science & Technology

    2004-10-29

    effected , the amount of energy required to achieve optical tunability, satisfactory color contrasts, durability, the processability of the chromogenic...moieties. However, this interaction is not strong enough to cause a pronounced effect in its photophysics. As a result of this slight interaction...oxidation accompanied by a color change. The reduction behavior is unstable and causes loss of the electrochromic effect . The PPTZPQ

  20. Neural evidence for moral intuition and the temporal dynamics of interactions between emotional processes and moral cognition.

    PubMed

    Gui, Dan-Yang; Gan, Tian; Liu, Chao

    2016-01-01

    Behavioral and neurological studies have revealed that emotions influence moral cognition. Although moral stimuli are emotionally charged, the time course of interactions between emotions and moral judgments remains unknown. In the present study, we investigated the temporal dynamics of the interaction between emotional processes and moral cognition. The results revealed that when making moral judgments, the time course of the event-related potential (ERP) waveform was significantly different between high emotional arousal and low emotional arousal contexts. Different stages of processing were distinguished, showing distinctive interactions between emotional processes and moral reasoning. The precise time course of moral intuition and moral reasoning sheds new light on theoretical models of moral psychology. Specifically, the N1 component (interpreted as representing moral intuition) did not appear to be influenced by emotional arousal. However, the N2 component and late positive potential were strongly affected by emotional arousal; the slow wave was influenced by both emotional arousal and morality, suggesting distinct moral processing at different emotional arousal levels.

  1. Adsorption Kinetics, Conformation, and Mobility of the Growth Hormone and Lysozyme on Solid Surfaces, Studied with TIRF

    PubMed

    Buijs; Hlady

    1997-06-01

    Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.

  2. Thermal spraying of polyethylene-based polymers: Processing and characterization

    NASA Astrophysics Data System (ADS)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational processing map with the collected splats and microstructures. Finally, a strong interaction was observed between standoff distance and flame length, which is determined by the air:fuel ratio. When flame length exceeds the standoff distance, polymer degradation results from excessive heating of the substrate. A descriptive model of the process is then provided to highlight the importance of these interactions. (Abstract shortened by UMI.)

  3. The Volume Field Model about Strong Interaction and Weak Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Rongwu

    2016-03-01

    For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.

  4. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  5. The Effects of Concept Map-Oriented Gesture-Based Teaching System on Learners' Learning Performance and Cognitive Load in Earth Science Course

    ERIC Educational Resources Information Center

    Hsieh, Sheng-Wen; Ho, Shu-Chun; Wu, Min-ping; Ni, Ci-Yuan

    2016-01-01

    Gesture-based learning have particularities, because learners interact in the learning process through the actual way, just like they interact in the nondigital world. It also can support kinesthetic pedagogical practices to benefit learners with strong bodily-kinesthetic intelligence. But without proper assistance or guidance, learners' learning…

  6. Australian DefenceScience. Volume 16, Number 2, Winter

    DTIC Science & Technology

    2008-01-01

    Making Virtual Advisers speedily interactive To provide an authentically interactive experience for humans working with Virtual Advisers, the Virtual...peer trusted and strong authentication for checking of security credentials without recourse to third parties or infrastructure, thus eliminating...multiple passwords, or carry around multiple security tokens.” Each CodeStick device is readied for use with a biometric authentication process. Since

  7. Lichenysin, a cyclooctapeptide occurring in Chinese liquor jiannanchun reduced the headspace concentration of phenolic off-flavors via hydrogen-bond interactions.

    PubMed

    Zhang, Rong; Wu, Qun; Xu, Yan

    2014-08-20

    Nonvolatile compounds play important roles in the quality of alcoholic beverages. In our previous work, a type of cyclooctapeptide lichenysin was newly identified in Chinese strong-aroma type liquor. In this work, it was found that lichenysin could selectively affect aroma volatility in strong-aroma type (Jiannanchun) liquor. Interaction of lichenysin and volatile phenolic compounds (off-odors in strong-aroma type liquor) was characterized using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HS-SPME results indicated that lichenysin very efficiently suppressed the volatility of phenolic compounds by 36-48% (P < 0.05). Thermodynamic analysis showed that the binding process was mainly mediated by hydrogen bonding. Furthermore, the mixture of lichenysin and 4-ethylguaiacol revealed intermolecular cross peaks between the aH (Val) of lichenysin and the 1H of 4-ethylguaiacol, by using nuclear Overhauser effect spectroscopy. This study will help to further understand the interaction mechanisms between flavor and nonvolatile matrix components in Chinese liquors.

  8. Chemical Interactions of Polyethylene Glycols (PEG) and Glycerol with Protein Functional Groups: Applications to PEG, Glycerol Effects on Protein Processes

    PubMed Central

    Knowles, DB; Shkel, Irina A; Phan, Noel M; Sternke, Matt; Lingeman, Emily; Cheng, Xian; Cheng, Lixue; O’Connor, Kevin; Record, M. Thomas

    2015-01-01

    Here we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds, and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α-values) quantifying interactions of glycerol, tetraEG and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence tetraEG and PEG 300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD) while glycerol, di- and mono-ethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α-values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA), and separated from excluded volume effects. PMID:25962980

  9. Bar-spheroid interaction in galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  10. Plasma Flow Past Cometary and Planetary Satellite Atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Gombosi, Tamas I.; Kabin, Konstantin

    2000-01-01

    The tenuous atmospheres and ionospheres of comets and outer planet satellites share many common properties and features. Such similarities include a strong interaction with their outer radiation, fields and particles environs. For comets the interaction is with the magnetized solar wind plasma, whereas for satellites the interaction is with the strongly magnetized and corotating planetary magnetospheric plasma. For this reason there are many common or analogous physical regimes, and many of the same modeling techniques are used to interpret remote sensing and in situ measurements in order to study the important underlying physical phenomena responsible for their appearances. We present here a review of various modeling approaches which are used to elucidate the basic properties and processes shaping the energetics and dynamics of these systems which are similar in many respects.

  11. Strong-field ionization of Li and Be: a time-dependent density functional theory with self-interaction correction

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.

    2011-11-01

    In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.

  12. SIMP model at NNLO in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  13. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  15. Spatial Imaging of Strongly Interacting Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Thaicharoen, Nithiwadee

    The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction coefficients. The final experiment demonstrates the ability to enhance or suppress the degree of spatial correlation in a system of Rydberg excitations, using a rotary-echo excitation process in concert with particular excitation laser detunings. The work in this thesis demonstrates an ability to control long-range interactions between Rydberg atoms, which paves the way towards preparing and studying increasingly complex many-body systems.

  16. Subduction and Restratification Along an Eddy Edge: The Role of Ekman Dynamics and Submesoscale Processes

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.

    2016-02-01

    The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.

  17. Energetics of protein-DNA interactions.

    PubMed

    Donald, Jason E; Chen, William W; Shakhnovich, Eugene I

    2007-01-01

    Protein-DNA interactions are vital for many processes in living cells, especially transcriptional regulation and DNA modification. To further our understanding of these important processes on the microscopic level, it is necessary that theoretical models describe the macromolecular interaction energetics accurately. While several methods have been proposed, there has not been a careful comparison of how well the different methods are able to predict biologically important quantities such as the correct DNA binding sequence, total binding free energy and free energy changes caused by DNA mutation. In addition to carrying out the comparison, we present two important theoretical models developed initially in protein folding that have not yet been tried on protein-DNA interactions. In the process, we find that the results of these knowledge-based potentials show a strong dependence on the interaction distance and the derivation method. Finally, we present a knowledge-based potential that gives comparable or superior results to the best of the other methods, including the molecular mechanics force field AMBER99.

  18. Dynamics of the job search process: developing and testing a mediated moderation model.

    PubMed

    Sun, Shuhua; Song, Zhaoli; Lim, Vivien K G

    2013-09-01

    Taking a self-regulatory perspective, we develop a mediated moderation model explaining how within-person changes in job search efficacy and chronic regulatory focus interactively affect the number of job interview offers and whether job search effort mediates the cross-level interactive effects. A sample of 184 graduating college students provided monthly reports of their job search activities over a period of 8 months. Findings supported the hypothesized relationships. Specifically, at the within-person level, job search efficacy was positively related with the number of interview offers for job seekers with strong prevention focus and negatively related with the number of interview offers for job seekers with strong promotion focus. Results show that job search effort mediated the moderated relationships. Findings enhance understandings of the complex self-regulatory processes underlying job search. PsycINFO Database Record (c) 2013 APA, all rights reserved

  19. Nanostructure formation and regulation during low-energy ion beam sputtering of fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin

    2017-12-01

    Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.

  20. Electromagnetic Dissociation and Spacecraft Electronics Damage

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  1. IGGy: An interactive environment for surface grid generation

    NASA Technical Reports Server (NTRS)

    Prewitt, Nathan C.

    1992-01-01

    A graphically interactive derivative of the EAGLE boundary code is presented. This code allows the user to interactively build and execute commands and immediately see the results. Strong ties with a batch oriented script language are maintained. A generalized treatment of grid definition parameters allows a more generic definition of the grid generation process and allows the generation of command scripts which can be applied to topologically similar configurations. The use of the graphical user interface is outlined and example applications are presented.

  2. NMR investigation of gaseous SF6 confinement into EPDM rubber.

    PubMed

    Neutzler, Sven; Terekhov, Maxim; Hoepfel, Dieter; Oellrich, Lothar Rainer

    2005-02-01

    The confinement process of gaseous sulphurhexafluoride (SF6) in ethylene-propylene-diene (EPDM) rubber was investigated by spectroscopic and spatially resolved NMR techniques. A strong elongation of T1 relaxation time of SF6 and a decrease of the diffusion coefficient were found. A possible explanation may be the strong restriction of molecular mobility due to interactions between SF6 and active centers of the EPDM.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, L. L.; Guo, X. G., E-mail: xgguo@mail.sim.ac.cn; Fu, Z. L.

    Strong and sharp photocurrent peak at longitudinal optical (LO) phonon frequency (8.87 THz) is found in GaAs/(Al,Ga)As terahertz quantum-well photodetectors (QWPs). Two mesa-structure terahertz QWPs with and without one-dimensional metal grating are fabricated to investigate the behavior of such photoresponse peak. The experimental and simulation results indicate that the photocurrent peak originates from a two-step process. First, at the LO phonon frequency, a large number of non-equilibrium LO phonons are excited by the incident electromagnetic field, and the electromagnetic energy is localized and enhanced in the thin multi-quantum-well layer. Second, through the Frohlich interaction, the localized electrons are excited tomore » continuum states by absorbing the non-equilibrium LO phonons, which leads to the strong photoresponse peak. This finding is useful for exploring strong light-matter interaction and realizing high sensitive terahertz photodetectors.« less

  4. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  5. Intrinsic colony conditions affect the provisioning and oviposition process in the stingless bee Melipona scutellaris.

    PubMed

    Pereira, R A; Morais, M M; Nascimento, F S; Bego, L R

    2009-01-01

    The cell provisioning and oviposition process (POP) is a unique characteristic of stingless bees (Meliponini), in which coordinated interactions between workers and queen regulate the filling of brood cells with larval resources and subsequent egg laying. Environmental conditions seem to regulate reproduction in stingless bees; however, little is known about how the amount of food affects quantitative sequences of the process. We examined intrinsic variables by comparing three colonies in distinct conditions (strong, intermediate and weak state). We predicted that some of these variables are correlated with temporal events of POP in Melipona scutellaris colonies. The results demonstrated that the strong colony had shorter periods of POP.

  6. Dual process interaction model of HIV-risk behaviors among drug offenders.

    PubMed

    Ames, Susan L; Grenard, Jerry L; Stacy, Alan W

    2013-03-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected.

  7. Dual Process Interaction Model of HIV-Risk Behaviors Among Drug Offenders

    PubMed Central

    Grenard, Jerry L.; Stacy, Alan W.

    2012-01-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected. PMID:22331391

  8. Familiarity does indeed promote attraction in live interaction.

    PubMed

    Reis, Harry T; Maniaci, Michael R; Caprariello, Peter A; Eastwick, Paul W; Finkel, Eli J

    2011-09-01

    Does familiarity promote attraction? Prior research has generally suggested that it does, but a recent set of studies by Norton, Frost, and Ariely (2007) challenged that assumption. Instead, they found that more information about another person, when that information was randomly selected from lists of trait adjectives, using a trait evaluation paradigm, promoted perceptions of dissimilarity and, hence, disliking. The present research began with the assumption that natural social interaction involves contexts and processes not present in Norton et al.'s research or in the typical familiarity experiment. We theorized that these processes imply a favorable impact of familiarity on attraction. Two experiments are reported using a live interaction paradigm in which two previously unacquainted same-sex persons interacted with each other for varying amounts of time. Findings strongly supported the "familiarity leads to attraction" hypothesis: The more participants interacted, the more attracted they were to each other. Mediation analyses identified three processes that contribute to this effect: perceived responsiveness, increased comfort and satisfaction during interaction, and perceived knowledge. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  9. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    PubMed Central

    Süßmann, F.; Seiffert, L.; Zherebtsov, S.; Mondes, V.; Stierle, J.; Arbeiter, M.; Plenge, J.; Rupp, P.; Peltz, C.; Kessel, A.; Trushin, S. A.; Ahn, B.; Kim, D.; Graf, C.; Rühl, E.; Kling, M. F.; Fennel, T.

    2015-01-01

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena. PMID:26264422

  10. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.

    PubMed

    Süßmann, F; Seiffert, L; Zherebtsov, S; Mondes, V; Stierle, J; Arbeiter, M; Plenge, J; Rupp, P; Peltz, C; Kessel, A; Trushin, S A; Ahn, B; Kim, D; Graf, C; Rühl, E; Kling, M F; Fennel, T

    2015-08-12

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.

  11. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.

  12. Study of top quark dipole interactions in t t \\xAF production associated with two heavy gauge bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Etesami, Seyed Mohsen; Khatibi, Sara; Mohammadi Najafabadi, Mojtaba

    2018-04-01

    In this paper, we investigate the prospects of measuring the strong and weak dipole moments of the top quark at the Large Hadron Collider (LHC). Measurements of these couplings provide an excellent opportunity to probe new physics interactions as they have quite small magnitudes in the standard model. Our analyses are performed using the production cross sections of t t ¯W W and t t ¯Z Z processes in the same sign dilepton and four-lepton final states, respectively. The sensitivities to strong and weak top quark dipole interactions at the 95% confidence level for various integrated luminosity scenarios are derived and compared with other studies. To estimate the constraints, the main source of backgrounds and a realistic simulation of the detector response are considered.

  13. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  14. Metasurface-Enabled Remote Quantum Interference.

    PubMed

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  15. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  16. Wall-layer eruptions in turbulent flows

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1989-01-01

    The near-wall region of a turbulent flow is investigated in the limit of large Reynolds numbers. When low-speed streaks are present, the governing equations are shown to be of the boundary-layer type. Physical processes leading to local breakdown and a strong interaction with the outer region are considered. It is argued that convected vortices, predominantly of the hairpin type, will provoke eruptions and regenerative interactions with the outer region.

  17. An experiment to verify that the weak interactions satisfy the strong equivalence principle. [electron capture and gravitational potential

    NASA Technical Reports Server (NTRS)

    Eby, P. B.

    1978-01-01

    The construction of a clock based on the beta decay process is proposed to test for any violations by the weak interaction of the strong equivalence principle bu determining whether the weak interaction coupling constant beta is spatially constant or whether it is a function of gravitational potential (U). The clock can be constructed by simply counting the beta disintegrations of some suitable source. The total number of counts are to be taken a measure of elapsed time. The accuracy of the clock is limited by the statistical fluctuations in the number of counts, N, which is equal to the square root of N. Increasing N gives a corresponding increase in accuracy. A source based on the electron capture process can be used so as to avoid low energy electron discrimination problems. Solid state and gaseous detectors are being considered. While the accuracy of this type of beta decay clock is much less than clocks based on the electromagnetic interaction, there is a corresponding lack of knowledge of the behavior of beta as a function of gravitational potential. No predictions from nonmetric theories as to variations in beta are available as yet, but they may occur at the U/sg C level.

  18. INTEGRATED COASTAL RESERVE PLANNING: MAKING THE LAND-SEA CONNECTION

    EPA Science Inventory

    Land use, watershed processes, and coastal biodiversity can be strongly coupled. Land-sea interactions are ignored, however, when selecting terrestrial and marine reserves with existing models, with the risk that reserves will fail to achieve their conservation objectives. The co...

  19. Destructions of {sup 7}Be and {sup 7}Li in Big Bang nucleosynthesis through reactions with exotic long-lived sub-strongly interacting massive particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakabe, Motohiko; Kawasaki, Masahiro; Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan and Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582

    An observed plateau abundance of {sup 7}Li in metal-poor halo stars indicates its primordial origin. The {sup 7}Li abundances are about a factor of three smaller than that predicted in standard big bang nucleosynthesis (BBN) model. In addition, some of the stars possibly contain {sup 6}Li in abundances larger than standard BBN prediction. Particle models sometimes include heavy longlived colored particles which are confined in exotic strongly interacting massive particles (SIMPs). We have found reactions which destroy {sup 7}Be and {sup 7}Li during BBN in the scenario of BBN affected by a long-lived sub-strongly interactingmassive particle (sub-SIMP, X). The reactionsmore » are non radiative X captures of {sup 7}Be and {sup 7}Li which can operate if the X particle interacts with nuclei strongly enough to drive {sup 7}Be destruction but not strongly enough to form a bound state with {sup 4}He of relative angular momentum L = 1. The processes can be a cause of the {sup 7}Li problem. In this paper we suggest new possible reactions for {sup 6}Li production. Especially, a {sup 6}Li production through the deuteron capture of {sup 4}He bound to X can operate in the parameter region solving the {sup 7}Li problem.« less

  20. Entanglement of remote material qubits through nonexciting interaction with single photons

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2018-05-01

    We propose a scheme to entangle multiple material qubits through interaction with single photons via nonexciting processes associated with strongly coupling systems. The basic idea is based on the material state dependent reflection and transmission for the input photons. Thus, the material qubits in several systems can be entangled when one photon interacts with each system in cascade and the photon paths are mixed by the photon detection. The character of nonexciting of material qubits does not change the state of the material qubit and thus ensures the possibility of purifying entangled states by using more photons under realistic imperfect parameters. It also guarantees directly scaling up the scheme to entangle more qubits. Detailed analysis of fidelity and success probability of the scheme in the frame of an optical Fabry-Pérot cavity based strongly coupling system is presented. It is shown that a two-qubit entangled state with fidelity above 0.99 is promised with only two photons by using currently feasible experimental parameters. Our scheme can also be directly implemented on other strongly coupled system.

  1. Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction.

    PubMed

    Li, Siwei; Xu, Yao; Chen, Yifu; Li, Weizhen; Lin, Lili; Li, Mengzhu; Deng, Yuchen; Wang, Xiaoping; Ge, Binghui; Yang, Ce; Yao, Siyu; Xie, Jinglin; Li, Yongwang; Liu, Xi; Ma, Ding

    2017-08-28

    A one-step ligand-free method based on an adsorption-precipitation process was developed to fabricate iridium/cerium oxide (Ir/CeO 2 ) nanocatalysts. Ir species demonstrated a strong metal-support interaction (SMSI) with the CeO 2 substrate. The chemical state of Ir could be finely tuned by altering the loading of the metal. In the carbon dioxide (CO 2 ) hydrogenation reaction it was shown that the chemical state of Ir species-induced by a SMSI-has a major impact on the reaction selectivity. Direct evidence is provided indicating that a single-site catalyst is not a prerequisite for inhibition of methanation and sole production of carbon monoxide (CO) in CO 2 hydrogenation. Instead, modulation of the chemical state of metal species by a strong metal-support interaction is more important for regulation of the observed selectivity (metallic Ir particles select for methane while partially oxidized Ir species select for CO production). The study provides insight into heterogeneous catalysts at nano, sub-nano, and atomic scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2018-05-01

    Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.

  3. Energy transfer and correlations in cavity-embedded donor-acceptor configurations.

    PubMed

    Reitz, Michael; Mineo, Francesca; Genes, Claudiu

    2018-06-13

    The rate of energy transfer in donor-acceptor systems can be manipulated via the common interaction with the confined electromagnetic modes of a micro-cavity. We analyze the competition between the near-field short range dipole-dipole energy exchange processes and the cavity mediated long-range interactions in a simplified model consisting of effective two-level quantum emitters that could be relevant for molecules in experiments under cryogenic conditions. We find that free-space collective incoherent interactions, typically associated with sub- and superradiance, can modify the traditional resonant energy transfer scaling with distance. The same holds true for cavity-mediated collective incoherent interactions in a weak-coupling but strong-cooperativity regime. In the strong coupling regime, we elucidate the effect of pumping into cavity polaritons and analytically identify an optimal energy flow regime characterized by equal donor/acceptor Hopfield coefficients in the middle polariton. Finally we quantify the build-up of quantum correlations in the donor-acceptor system via the two-qubit concurrence as a measure of entanglement.

  4. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  5. High-harmonic generation from an atomically thin semiconductor [Observation of high harmonics from an atomically thin semiconductor

    DOE PAGES

    Liu, Hanzhe; Li, Yilei; You, Yong Sing; ...

    2016-11-14

    High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process, including different symmetries, access to individual valleys and enhanced many-body interactions. Here we demonstrate non-perturbative HHG from a monolayer MoS 2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatiblemore » with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. In conclusion, the combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.« less

  6. Fast-responding property of electromagnetically induced transparency in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bai, Zhengyang; Huang, Guoxiang

    2018-04-01

    We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be five times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e., two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.

  7. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  8. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lapas, Panteleimon; Stamokostas, Georgios; Fiete, Gregory

    2015-03-01

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  9. Affective and executive network processing associated with persuasive antidrug messages.

    PubMed

    Ramsay, Ian S; Yzer, Marco C; Luciana, Monica; Vohs, Kathleen D; MacDonald, Angus W

    2013-07-01

    Previous research has highlighted brain regions associated with socioemotional processes in persuasive message encoding, whereas cognitive models of persuasion suggest that executive brain areas may also be important. The current study aimed to identify lateral prefrontal brain areas associated with persuasive message viewing and understand how activity in these executive regions might interact with activity in the amygdala and medial pFC. Seventy adolescents were scanned using fMRI while they watched 10 strongly convincing antidrug public service announcements (PSAs), 10 weakly convincing antidrug PSAs, and 10 advertisements (ads) unrelated to drugs. Antidrug PSAs compared with nondrug ads more strongly elicited arousal-related activity in the amygdala and medial pFC. Within antidrug PSAs, those that were prerated as strongly persuasive versus weakly persuasive showed significant differences in arousal-related activity in executive processing areas of the lateral pFC. In support of the notion that persuasiveness involves both affective and executive processes, functional connectivity analyses showed greater coactivation between the lateral pFC and amygdala during PSAs known to be strongly (vs. weakly) convincing. These findings demonstrate that persuasive messages elicit activation in brain regions responsible for both emotional arousal and executive control and represent a crucial step toward a better understanding of the neural processes responsible for persuasion and subsequent behavior change.

  10. Precise calibration of few-cycle laser pulses with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  11. Propagation of Intra-Seasonal Tropical Oscillations (PISTON)

    NASA Astrophysics Data System (ADS)

    Moum, J. N.

    2017-12-01

    During monsoon season over the South China Sea and Philippines, weather varies on the subseasonal time scale. Disturbances of the "boreal summer intraseasonal oscillation" (BSISO) move north and east across the region over periods of weeks. These disturbances are strongly conditioned by the complex geography of the region. The diurnal cycle in convection over islands and adjacent coastal seas is strong. Air-sea interaction is modulated by ocean stratification and local circulation patterns that are themselves complex and diurnally varying. The multiple pathways and space-time scales in the regional ocean-atmosphere-land system make prediction on subseasonal to seasonal time scales challenging. The PISTON field campaign targets the west coast of Luzon in August/September 2018. It includes ship-based, moored and land-based measurements, a significant modeling effort and coordinates with the Philippine SALICA program (Sea Air Land Interactions in the Context of Archipelagos) and the aircraft-based, NASA-funded CAMP2EX campaign (Cloud and Aerosol Monsoonal Processes-Philippines Experiment). The diurnal cycle and its interaction with the BSISO are primary targets for PISTON. Key questions are: how heat is stored and released in the upper ocean on intraseasonal time scales; how that heat storage interacts with atmospheric convection; and what role it plays in BSISO maintenance and propagation. Key processes include land-sea breezes, orographic influence on convection, river discharge to coastal oceans, gravity waves, diurnal warm layers, internal tides, and a buoyancy-driven northward coastal current. As intraseasonal disturbances approach the region, the presence of islands, with their low surface heat capacity, mountains, inhomogeneous distribution of urban/vegetation/soil, and strong diurnal cycle disrupts the air-sea heat exchange that sustains the BSISO over the ocean, confounding prediction models in which these processes are inadequately represented. Along with upscale influences, PISTON seeks to advance our understanding of how large scale atmospheric circulation variability over the South China Sea, related to the monsoon, BSISO, and convectively coupled waves, modifies the local diurnal cycle, synoptic systems, and air sea interaction in coastal regions and nearby open seas.

  12. A systems view of mother-infant face-to-face communication.

    PubMed

    Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E; Margolis, Amy; Buck, Karen A; Chen, Henian

    2016-04-01

    Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. The process of interaction across time in a large low-risk community sample at infant age 4 months was examined. Split-screen videotape was coded on a 1-s time base for communication modalities of attention, affect, orientation, touch, and composite facial-visual engagement. Time-series approaches generated self- and interactive contingency estimates in each modality. Evidence supporting the following principles was obtained: (a) Significant moment-to-moment predictability within each partner (self-contingency) and between the partners (interactive contingency) characterizes mother-infant communication. (b) Interactive contingency is organized by a bidirectional, but asymmetrical, process: Maternal contingent coordination with infant is higher than infant contingent coordination with mother. (c) Self-contingency organizes communication to a far greater extent than interactive contingency. (d) Self- and interactive contingency processes are not separate; each affects the other in communication modalities of facial affect, facial-visual engagement, and orientation. Each person's self-organization exists in a dynamic, homoeostatic (negative feedback) balance with the degree to which the person coordinates with the partner. For example, those individuals who are less facially stable are likely to coordinate more strongly with the partner's facial affect and vice versa. Our findings support the concept that the dyad is a fundamental unit of analysis in the investigation of early interaction. Moreover, an individual's self-contingency is influenced by the way the individual coordinates with the partner. Our results imply that it is not appropriate to conceptualize interactive processes without simultaneously accounting for dynamically interrelated self-organizing processes. (c) 2016 APA, all rights reserved).

  13. A Systems View of Mother-Infant Face-to-Face Communication

    PubMed Central

    Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E.; Margolis, Amy; Buck, Karen A.; Chen, Henian

    2016-01-01

    Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. We examined the process of interaction across time in a large, low-risk community sample, at infant age 4 months. Split-screen videotape was coded on a 1-s time base for communication modalities of attention, affect, orientation, touch and composite facial-visual engagement. Time-series approaches generated self- and interactive contingency estimates in each modality. Evidence supporting the following principles was obtained: (1) Significant moment-to-moment predictability within each partner (self-contingency) and between the partners (interactive contingency) characterizes mother-infant communication. (2) Interactive contingency is organized by a bi-directional, but asymmetrical, process: maternal contingent coordination with infant is higher than infant contingent coordination with mother. (3) Self-contingency organizes communication to a far greater extent than interactive contingency. (4) Self-and interactive contingency processes are not separate; each affects the other, in communication modalities of facial affect, facial-visual engagement, and orientation. Each person’s self-organization exists in a dynamic, homoeostatic (negative feedback) balance with the degree to which the person coordinates with the partner. For example, those individuals who are less facially stable are likely to coordinate more strongly with the partner’s facial affect; and vice-versa. Our findings support the concept that the dyad is a fundamental unit of analysis in the investigation of early interaction. Moreover, an individual’s self-contingency is influenced by the way the individual coordinates with the partner. Our results imply that it is not appropriate to conceptualize interactive processes without simultaneously accounting for dynamically inter-related self-organizing processes. PMID:26882118

  14. The X-ray properties of Be/X-ray pulsars in quiescence

    NASA Astrophysics Data System (ADS)

    Tsygankov, Sergey S.; Wijnands, Rudy; Lutovinov, Alexander A.; Degenaar, Nathalie; Poutanen, Juri

    2017-09-01

    Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (I) the interaction of a rotating NS (magnetosphere) with the infalling matter at different accretion rates, and (II) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: (I) relatively bright objects with a luminosity around ˜1034 erg s-1 and (hard) power-law spectra, and (II) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group (I) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the infalling matter with the NS magnetic field and those describing heating and cooling in accreting NSs.

  15. A New Theoretical Foundation for Relationship-centered Care

    PubMed Central

    Suchman, Anthony L

    2006-01-01

    Relationship-centered care (RCC) is a clinical philosophy that stresses partnership, careful attention to relational process, shared decision-making, and self-awareness. A new complexity-inspired theory of human interaction called complex responsive processes of relating (CRPR) offers strong theoretical confirmation for the principles and practices of RCC, and thus may be of interest to communications researchers and reflective practitioners. It points out the nonlinear nature of human interaction and accounts for the emergence of self-organizing patterns of meaning (e.g., themes or ideas) and patterns of relating (e.g., power relations). CRPR offers fresh new perspectives on the mind, self, communication, and organizations. For observers of interaction, it focuses attention on the nature of moment-to-moment relational process, the value of difference and diversity, and the importance of authentic and responsive participation, thus closely corresponding to and providing theoretical support for RCC. PMID:16405709

  16. Information processing in the vertebrate habenula.

    PubMed

    Fore, Stephanie; Palumbo, Fabrizio; Pelgrims, Robbrecht; Yaksi, Emre

    2018-06-01

    The habenula is a brain region that has gained increasing popularity over the recent years due to its role in processing value-related and experience-dependent information with a strong link to depression, addiction, sleep and social interactions. This small diencephalic nucleus is proposed to act as a multimodal hub or a switchboard, where inputs from different brain regions converge. These diverse inputs to the habenula carry information about the sensory world and the animal's internal state, such as reward expectation or mood. However, it is not clear how these diverse habenular inputs interact with each other and how such interactions contribute to the function of habenular circuits in regulating behavioral responses in various tasks and contexts. In this review, we aim to discuss how information processing in habenular circuits, can contribute to specific behavioral programs that are attributed to the habenula. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermalization near Integrability in a Dipolar Quantum Newton's Cradle

    NASA Astrophysics Data System (ADS)

    Tang, Yijun; Kao, Wil; Li, Kuan-Yu; Seo, Sangwon; Mallayya, Krishnanand; Rigol, Marcos; Gopalakrishnan, Sarang; Lev, Benjamin L.

    2018-04-01

    Isolated quantum many-body systems with integrable dynamics generically do not thermalize when taken far from equilibrium. As one perturbs such systems away from the integrable point, thermalization sets in, but the nature of the crossover from integrable to thermalizing behavior is an unresolved and actively discussed question. We explore this question by studying the dynamics of the momentum distribution function in a dipolar quantum Newton's cradle consisting of highly magnetic dysprosium atoms. This is accomplished by creating the first one-dimensional Bose gas with strong magnetic dipole-dipole interactions. These interactions provide tunability of both the strength of the integrability-breaking perturbation and the nature of the near-integrable dynamics. We provide the first experimental evidence that thermalization close to a strongly interacting integrable point occurs in two steps: prethermalization followed by near-exponential thermalization. Exact numerical calculations on a two-rung lattice model yield a similar two-timescale process, suggesting that this is generic in strongly interacting near-integrable models. Moreover, the measured thermalization rate is consistent with a parameter-free theoretical estimate, based on identifying the types of collisions that dominate thermalization. By providing tunability between regimes of integrable and nonintegrable dynamics, our work sheds light on the mechanisms by which isolated quantum many-body systems thermalize and on the temporal structure of the onset of thermalization.

  18. Exciton-plasmon coupling interactions: from principle to applications

    NASA Astrophysics Data System (ADS)

    Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi

    2018-01-01

    The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  19. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.

  20. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  1. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C

    USGS Publications Warehouse

    Shanks, Wayne C.; Bischoff, James L.; Rosenbauer, Robert J.

    1981-01-01

    Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.

  2. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru; Chelibanov, V. P., E-mail: Chelibanov@gmail.com

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  3. From viscous fingers to wormholes - interactions between structures emerging in unstable growth

    NASA Astrophysics Data System (ADS)

    Budek, Agnieszka; Kwiatkowski, Kamil; Szymczak, Piotr

    2017-04-01

    Dissolution of porous and fractured rock can lead to instabilities, where long finger-like channels or „wormholes" are spontaneously formed, focusing the majority of the flow. Formation of those structures leads to a significant increase in permeability of the system, and is thus important in many engineering applications, e.g. in acidization during oil and gas recovery stimulation. In this communication, we analyse this process using two different numerical models (a network model and a Darcy scale one). We show that wormhole patterns depend strongly on the amount of soluble material in the system, as quantified by the permeability contrast κ between the dissolved and undissolved medium. For small and intermediate values of κ, a large number of relatively thin and strongly interacting channels are formed. The longer channels attract shorter ones, with loops being formed as a result. However, for large values of κ the pattern gets sparse with individual wormholes repelling each other. Interestingly, a similar succession of patterns can be observed in viscous fingering in a rectangular network of channels. In such a system, anisotropy of the network promotes the growth of long and thin fingers which behave similarly to wormholes. The attraction rate between growing fingers depends strongly on the viscosity ratio, I. The latter plays a role similar to that of permeability ratio for dissolution of porous material. To explain this behaviour, we have created a simple analytical model of interacting fingers, allowing us to quantify their mutual interaction as a function of finger lengths, distances between them and - most importantly - relative permeabilities. The theoretical predictions are in a good agreement with simulation data for both dissolution and viscous fingering processes.

  4. Interactions between Depression and Facilitation within Neural Networks: Updating the Dual-Process Theory of Plasticity

    PubMed Central

    Prescott, Steven A.

    1998-01-01

    Repetitive stimulation often results in habituation of the elicited response. However, if the stimulus is sufficiently strong, habituation may be preceded by transient sensitization or even replaced by enduring sensitization. In 1970, Groves and Thompson formulated the dual-process theory of plasticity to explain these characteristic behavioral changes on the basis of competition between decremental plasticity (depression) and incremental plasticity (facilitation) occurring within the neural network. Data from both vertebrate and invertebrate systems are reviewed and indicate that the effects of depression and facilitation are not exclusively additive but, rather, that those processes interact in a complex manner. Serial ordering of induction of learning, in which a depressing locus precedes the modulatory system responsible for inducing facilitation, causes the facilitation to wane. The parallel and/or serial expression of depression and waning facilitation within the stimulus–response pathway culminates in the behavioral changes that characterize dual-process learning. A mathematical model is presented to formally express and extend understanding of the interactions between depression and facilitation. PMID:10489261

  5. Water as a matrix for life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Pratt, Lawrence

    2006-01-01

    "Follow the water" is the canonical strategy in searching for life in the universe. Conventionally, discussion of this topic is focused on how solvent supports organic chemistry sufficiently rich to seed life. Perhaps more importantly, solvent must promote self-organization of organic matter into functional structures capable of responding to environmental changes. This process is based on non-covalent interactions. They are constantly formed and broken in response to internal and external stimuli. This requires that their strength must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. Non-covalent interactions are strongly mediated by the solvent. Specifically, high dielectric solvents for life are needed for solubility of polar species and flexibility of biological structures stabilized by electrostatic interactions. Water exhibits a remarkable trait that it promotes solvophobic interactions between non-polar species, which are responsible for self-organization phenomena such as the formation of cellular boundary structures, and protein folding and aggregation. Unusual temperature dependence of hydrophobic interactions - they often become stronger as temperature increases - is a consequence of the temperature insensitivity of properties of the liquid water. This contributes to the existence of robust life over a wide temperature range. Water is not the only liquid with favorable properties for supporting life. Other pure liquids or their mixtures that have high dielectric constants and simultaneously support some level of self-organization will be discussed.

  6. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.

    PubMed

    Gabor, Nathaniel M

    2013-06-18

    In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.

  7. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  8. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.

  9. Champagne experiences various rhythmical bubbling regimes in a flute.

    PubMed

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  10. Interaction strength combinations and the overfishing of a marine food web.

    PubMed

    Bascompte, Jordi; Melián, Carlos J; Sala, Enric

    2005-04-12

    The stability of ecological communities largely depends on the strength of interactions between predators and their prey. Here we show that these interaction strengths are structured nonrandomly in a large Caribbean marine food web. Specifically, the cooccurrence of strong interactions on two consecutive levels of food chains occurs less frequently than expected by chance. Even when they occur, these strongly interacting chains are accompanied by strong omnivory more often than expected by chance. By using a food web model, we show that these interaction strength combinations reduce the likelihood of trophic cascades after the overfishing of top predators. However, fishing selectively removes predators that are overrepresented in strongly interacting chains. Hence, the potential for strong community-wide effects remains a threat.

  11. Interaction strength combinations and the overfishing of a marine food web

    PubMed Central

    Bascompte, Jordi; Melián, Carlos J.; Sala, Enric

    2005-01-01

    The stability of ecological communities largely depends on the strength of interactions between predators and their prey. Here we show that these interaction strengths are structured nonrandomly in a large Caribbean marine food web. Specifically, the cooccurrence of strong interactions on two consecutive levels of food chains occurs less frequently than expected by chance. Even when they occur, these strongly interacting chains are accompanied by strong omnivory more often than expected by chance. By using a food web model, we show that these interaction strength combinations reduce the likelihood of trophic cascades after the overfishing of top predators. However, fishing selectively removes predators that are overrepresented in strongly interacting chains. Hence, the potential for strong community-wide effects remains a threat. PMID:15802468

  12. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    DOE PAGES

    SuBmann, F.; Seiffert, L.; Zherebtsov, S.; ...

    2015-08-12

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less

  13. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SuBmann, F.; Seiffert, L.; Zherebtsov, S.

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less

  14. Microwave photonics with superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-11-01

    In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

  15. Coalescence and Collisions of Gold Nanoparticles

    PubMed Central

    Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel

    2011-01-01

    We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra. PMID:28879995

  16. Coalescence and Collisions of Gold Nanoparticles.

    PubMed

    Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel

    2011-01-28

    We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

  17. The evolving interaction of low-frequency earthquakes during transient slip.

    PubMed

    Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel

    2016-04-01

    Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.

  18. Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

    NASA Astrophysics Data System (ADS)

    Kerman, Andrew

    2013-03-01

    Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In most cases they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called ``circuit QED'' architecture, it also comes with some important disadvantages. In this talk, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead exert quasi-classical, effective ``forces'' on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum, and that the resulting entangling operations are insensitive both to the state of the resonator and to its quality factor. The methods we describe are applicable to a variety of qubit-resonator systems, including superconducting and semiconducting solid-state qubits, and trapped molecular ions. This work is sponsored by the ASDR&E under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

  19. Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz), coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz) showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales. PMID:18946516

  20. Executive Functions and Motivation as Moderators of the Relationship Between Automatic Associations and Alcohol Use in Problem Drinkers Seeking Online Help.

    PubMed

    van Deursen, Denise S; Salemink, Elske; Boendermaker, Wouter J; Pronk, Thomas; Hofmann, Wilhelm; Wiers, Reinout W

    2015-09-01

    Dual process models posit that problem drinking is maintained by an imbalance between relatively strong automatic processes and weak controlled processes, a combination of executive functions and motivation. Few studies have examined how the interplay between automatic processes and executive functions is affected by motivation to change. This study examined this relationship in problem drinkers seeking online help to change their alcohol use. It was expected that executive functions (i.e., working memory, response inhibition) would moderate the relationship between automatic (valence and approach) associations and alcohol use and that this effect would be stronger in individuals with strong motivation to change. A sample of 302 problem drinkers (mean age: 51.7 years) participated in this study as part of the baseline assessment before an Internet intervention. Participants completed an online version of the brief Implicit Association Test (valence and approach associations), the self-ordered pointing task (working memory), the Stroop task (response inhibition), the Readiness to Change Questionnaire (motivation to change), and the Timeline Follow-Back Questionnaire (alcohol use). Hierarchical moderated regression analysis was used to test the 4 hypothesized 3-way interactions. As expected, the interaction between valence associations and working memory only predicted alcohol use among individuals with strong motivation. This pattern was neither found for response inhibition nor for approach associations. Results provide partial support for the moderating role of motivation in the interplay between automatic processes and executive functions. Future studies should investigate this relationship in participants with the full range of motivation and alcohol use. Copyright © 2015 by the Research Society on Alcoholism.

  1. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  2. Direct processes in 54-MeV Li-7 breakup reactions on C-12 and Au-197 targets, and the extraction of astrophysical cross sections

    NASA Astrophysics Data System (ADS)

    Gazes, S. B.; Mason, J. E.; Roberts, R. B.; Teichmann, S. G.

    1992-01-01

    Strong direct processes were observed for elastic breakup in 54-MeV Li-7 + C-12, Au-197 reactions. In the case of C-12, the observed Li-7 to alpha + t direct-breakup yield was significantly larger than predicted by a Coulomb-breakup calculation, indicating the importance of the nuclear field. For Au-197, final-state interactions produced a strong distortion in the fragment energy spectra, as well as a modulation of the coincidence efficiency for different detector geometries. Such Coulomb effects are found to severely complicate the extraction of radiative-capture cross sections from direct-breakup data.

  3. Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport

    DOE PAGES

    Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.

    2015-07-29

    Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less

  4. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Phase of an optical wave as an additional degree of freedom in optical information processing systems based on optical bistability

    NASA Astrophysics Data System (ADS)

    Basharov, Askhat M.

    1995-10-01

    It is shown theoretically that additional illumination by a squeezed field of a thin layer of two-level atoms, which interact with a resonant coherent electromagnetic wave, results in bistable transmission/reflection of this wave. This bistability depends strongly on the difference between the phases of the coherent and squeezed fields.

  5. Effect of Sorbitol Plasticizer on the Structure and Properties of Melt Processed Polyvinyl Alcohol Films.

    PubMed

    Tian, Huafeng; Liu, Di; Yao, Yuanyuan; Ma, Songbai; Zhang, Xing; Xiang, Aimin

    2017-12-01

    Poly (vinyl alcohol) (PVA) possesses wide applications as food packaging materials, but is difficult to melt process for its strong inter/intra hydrogen bonding. In this work, flexible PVA films with different content of sorbitol plasticizers were prepared by melt processing with the assistance of water. And the influence of sorbitol plasticizer content on the crystallinity, optical transparency, water-retaining capability, mechanical properties, thermal stability and oxygen and water permeability were investigated. The results indicated that sorbitol dramatically improved the melt processing ability of PVA. Sorbitol could interact with PVA to form strong hydrogen bonding interactions, which would decrease the original hydrogen bonding of the matrix, resulting in the decrease of crystallinity degrees. The glass transition, melting and crystallization peak temperatures decreased with the increase of sorbitol. All the films exhibited fine optical transparency. The water retaining capability were improved with the increase of sorbitol. Especially, an increase in elongation at break and decrease in Young's modulus and tensile strength were observed indicating good plasticizing effect of sorbitol on PVA films. In addition, the PVA films prepared in this work exhibited fine barrier properties against oxygen and water, suggesting wide application potential as packaging materials. © 2017 Institute of Food Technologists®.

  6. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    NASA Astrophysics Data System (ADS)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  7. The Drell-Yan Process

    DOE PAGES

    Peng, Jen -Chieh; Qiu, Jian -Wei

    2016-09-01

    The Drell-Yan process, proposed over 45 years ago by Sid Drell and Tung-Mow Yan to describe high-mass lepton-pair production in hadron-hadron collision, has played an important role in validating QCD as the correct theory for strong interaction. This process has also become a powerful tool for probing the partonic structures of hadrons. The Drell-Yan mechanism has led to the discovery of new particles, and will continue to be an important tool to search for new physics. In this study, we review some highlights and future prospects of the Drell-Yan process.

  8. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi

    2017-03-01

    Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Applying Culturally Responsive Pedagogy to the Vocational Training of Immigrants

    ERIC Educational Resources Information Center

    Wu, Ya-Ling

    2016-01-01

    Training and learning are the personal process in which individuals interact with social and cultural contexts. Immigrant trainees bring their early educational and life experiences into training classrooms, and their learning is strongly affected by their prior socialization and socio-cultural experiences. Therefore, it is necessary to provide…

  10. Elementary Quantum Mechanics in a High-Energy Process

    ERIC Educational Resources Information Center

    Denville, A.; And Others

    1978-01-01

    Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)

  11. Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui

    2016-07-01

    The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.

  12. Origin of poor doping efficiency in solution processed organic semiconductors.

    PubMed

    Jha, Ajay; Duan, Hong-Guang; Tiwari, Vandana; Thorwart, Michael; Miller, R J Dwayne

    2018-05-21

    Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm -1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.

  13. Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex

    PubMed Central

    McMains, Stephanie; Kastner, Sabine

    2011-01-01

    Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that the amount of attentional modulation varied linearly with the degree of competition left unresolved by bottom-up processes, such that attentional modulation was greatest when neural competition was little influenced by bottom-up mechanisms and smallest when competition was strongly influenced by bottom-up mechanisms. These findings suggest that the strength of attentional modulation in the visual system is constrained by the degree to which competitive interactions have been resolved by bottom-up processes related to the segmentation of scenes into candidate objects. PMID:21228167

  14. Collider effects of unparticle interactions in multiphoton signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Frank, Mariana; Turan, Ismail

    2009-12-01

    A new model of physics, with a hidden conformal sector which manifests itself as an unparticle coupling to standard model particles effectively through higher dimensional operators, predicts strong collider signals due to unparticle self-interactions. We perform a complete analysis of the most spectacular of these signals at the hadron collider, pp(p){yields}{gamma}{gamma}{gamma}{gamma} and {gamma}{gamma}gg. These processes can go through the three-point unparticle self-interactions as well as through some s and t channel diagrams with one and/or two unparticle exchanges. We study the contributions of individual diagrams classified with respect to the number of unparticle exchanges and discuss their effect on themore » cross sections at the Tevatron and the LHC. We also restrict the Tevatron bound on the unknown coefficient of the three-point unparticle correlator. With the availability of data from the Tevatron, and the advent of the data emerging from the LHC, these interactions can provide a clear and strong indication of unparticle physics and distinguish this model from other beyond the standard model scenarios.« less

  15. Origins of collectivity in small systems

    NASA Astrophysics Data System (ADS)

    Schenke, Björn

    2017-11-01

    We review recent developments in the theoretical description and understanding of multi-particle correlation measurements in collisions of small projectiles (p/d/3He) with heavy nuclei (Au, Pb) as well as proton+proton collisions. We focus on whether the physical processes responsible for the observed long range rapidity correlations and their azimuthal structure are the same in small systems as in heavy ion collisions. In the latter they are interpreted as generated by the initial spatial geometry being transformed into momentum correlations by strong final state interactions. However, explicit calculations show that also initial state momentum correlations are present and could contribute to observables in small systems. If strong final state interactions are present in small systems, recent developments show that results are sensitive to the shape of the proton and its fluctuations.

  16. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.

    2017-12-01

    Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.

  17. Topological Quantum Phase Transition and Local Topological Order in a Strongly Interacting Light-Matter System.

    PubMed

    Sarkar, Sujit

    2017-05-12

    An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).

  18. Diversity Increases Indirect Interactions, Attenuates the Intensity of Competition, and Promotes Coexistence.

    PubMed

    Aschehoug, Erik T; Callaway, Ragan M

    2015-10-01

    A fundamental assumption of coexistence theory is that competition inevitably decreases species diversity. Consequently, in the quest to understand the ecological regulators of diversity, there has been a great deal of focus on processes with the potential to reduce competitive exclusion. However, the notion that competition must decrease diversity is largely based on the outcome of two-species interaction experiments and models, despite the fact that species rarely interact only in pairs in natural systems. In a field experiment, we found that competition among native perennial plants in multispecies assemblages was far weaker than competition between those same species in pairwise arrangements and that indirect interactions appeared to weaken direct competitive effects. These results suggest that community assembly theory based on pairwise approaches may overestimate the strength of competition and likelihood of competitive exclusion in species-rich communities. We also found that Centaurea stoebe, a North American invader, retained strong competitive effects when competing against North American natives in both pairwise and multispecies assemblages. Our experimental results support an emerging body of theory suggesting that complex networks of competing species may generate strong indirect interactions that can maintain diversity and that ecological differentiation may not be necessary to attenuate competition.

  19. Scattering calculations and confining interactions

    NASA Technical Reports Server (NTRS)

    Buck, Warren W.; Maung, Khin M.

    1993-01-01

    Most of the research work performed under this grant were concerned with strong interaction processes ranging from kaon-nucleon interaction to proton-nucleus scattering calculations. Research performed under this grant can be categorized into three groups: (1) parametrization of fundamental interactions, (2) development of formal theory, and (3) calculations based upon the first two. Parametrizations of certain fundamental interactions, such as kaon-nucleon interaction, for example, were necessary because kaon-nucleon scattering amplitude was needed to perform kaon-nucleus scattering calculations. It was possible to calculate kaon-nucleon amplitudes from the first principle, but it was unnecessary for the purpose of the project. Similar work was also done for example for anti-protons and anti-nuclei. Formal developments to some extent were also pursued so that consistent calculations can be done.

  20. Strong Poison Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince, R.C.; Gailer, J.; Gunson, D.E.

    2009-06-04

    Selenium in the form of selenocysteine plays an essential role in a number of proteins, but its role in non-enzymatic biochemistry is also important. In this short review we discuss the interactions between inorganic selenium, arsenic and mercury under physiological conditions, especially in the presence of glutathione. This chemistry is obviously important in making the arsenic and mercury unavailable for more toxic interactions, but in the process it suggests that a side-effect of chronic arsenic and/or mercury exposure is likely to be functional selenium deficiency.

  1. Short-range interactions between surfactants, silica species and EDTA⁴- salt during self-assembly of siliceous mesoporous molecular sieve: a UV Raman study.

    PubMed

    Song, Jiayin; Liu, Liping; Li, Peng; Xiong, Guang

    2012-11-01

    The effects of surfactants, counterions and additive salts on the formation of siliceous mesoporous molecular sieves during self-assembly process were investigated by UV Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The surfactant molecules experience the rearrangement after adding the silica species and adjusting the pH value. The obvious change of the Raman bands related to the surfactants supports a cooperative interaction between surfactant and inorganic species during self-assembly process. The addition of EDTANa(4) to the system induces the interaction between the COO(-) groups of EDTA(4-) and silanol groups of silica and a strong interaction between the EDTA(4-) and the N(+)(CH(3))(3) groups of the surfactant. The above interactions may be the main reason for the salt effect. The new information from the change of the chemical bonds allows for a further analysis to the interactions of different salts between surfactants and silica species at molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System

    NASA Astrophysics Data System (ADS)

    Indah, K. A. T.; Sukarata, G.

    2018-01-01

    Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.

  3. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels the connection between equatorial Indian Ocean circulation and evolution and strengthening of IOD.

  4. REFLECTIVE PRACTICE IN ORGANIZATIONAL LEARNING, CULTURAL SELF-UNDERSTANDING, AND COMMUNITY SELF-STRENGTHENING.

    PubMed

    Sparrow, Joshua

    2016-11-01

    The infant mental health field can amplify its effects when it extends its purview beyond the dyad to the larger contexts in which infants and adult caregivers interact and develop over time. Within health, mental health, education, and other human service organizations, the quality of relationships is a critical variable in the individual-level outcomes that such organizations seek. The goals of this work and the means for accomplishing them are highly dependent on human qualities and interactions that are shaped by organizational processes. In communities, too, processes that shape relationships also strongly influence child-, family-, and community-level outcomes. The Touchpoints approach to reflective practice can guide relational processes among professionals, parents, and infants in organizations and communities that influence these outcomes. © 2016 Michigan Association for Infant Mental Health.

  5. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    PubMed Central

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-01-01

    In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238

  6. Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Stimatze, Justin T.

    We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.

  7. Universal charge relaxation resistance and electrochemical capacitance suppression in an interacting coherent capacitor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Guo, Huazhong; He, Jianhong; Gao, Jie

    2018-05-01

    We have measured the dynamic admittance of an interacting coherent capacitor in the quantum Hall regime. Our experiments demonstrate that, in the fully coherent regime, the charge relaxation resistance is universal and independent of the transmission even in the presence of strong charge interactions. Conversely, we observe strong suppression of the electrochemical capacitance, which is related to the density of states of the charge excitations due to strong interactions. Our experiments form the building blocks for the realization of electron quantum optics experiments with strong charge interactions, and they should prove useful for quantum bits in interacting ballistic conductors.

  8. Landscape community genomics: understanding eco-evolutionary processes in complex environments

    USGS Publications Warehouse

    Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon

    2015-01-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.

  9. Interaction between contours and eye movements in the perception of afterimages: A test of the signal ambiguity theory.

    PubMed

    Powell, Georgie; Sumner, Petroc; Harrison, James J; Bompas, Aline

    2016-05-01

    An intriguing property of afterimages is that conscious experience can be strong, weak, or absent following identical stimulus adaptation. Previously we suggested that postadaptation retinal signals are inherently ambiguous, and therefore the perception they evoke is strongly influenced by cues that increase or decrease the likelihood that they represent real objects (the signal ambiguity theory). Here we provide a more definitive test of this theory using two cues previously found to influence afterimage perception in opposite ways and plausibly at separate loci of action. However, by manipulating both cues simultaneously, we found that their effects interacted, consistent with the idea that they affect the same process of object interpretation rather than being independent influences. These findings bring contextual influences on afterimages into more general theories of cue combination, and we suggest that afterimage perception should be considered alongside other areas of vision science where cues are found to interact in their influence on perception.

  10. Integrated information storage and transfer with a coherent magnetic device

    PubMed Central

    Jia, Ning; Banchi, Leonardo; Bayat, Abolfazl; Dong, Guangjiong; Bose, Sougato

    2015-01-01

    Quantum systems are inherently dissipation-less, making them excellent candidates even for classical information processing. We propose to use an array of large-spin quantum magnets for realizing a device which has two modes of operation: memory and data-bus. While the weakly interacting low-energy levels are used as memory to store classical information (bits), the high-energy levels strongly interact with neighboring magnets and mediate the spatial movement of information through quantum dynamics. Despite the fact that memory and data-bus require different features, which are usually prerogative of different physical systems – well isolation for the memory cells, and strong interactions for the transmission – our proposal avoids the notorious complexity of hybrid structures. The proposed mechanism can be realized with different setups. We specifically show that molecular magnets, as the most promising technology, can implement hundreds of operations within their coherence time, while adatoms on surfaces probed by a scanning tunneling microscope is a future possibility. PMID:26347152

  11. On the role of humic acids' carboxyl groups in the binding of charged organic compounds.

    PubMed

    Smilek, Jiří; Sedláček, Petr; Kalina, Michal; Klučáková, Martina

    2015-11-01

    Interactions of humic acids (HAs) with two cationic dyes (methylene blue and rhodamine 6G) were studied using a unique combination of diffusion and partitioning studies in HAs, containing hydrogels and batch sorption experiments. In order to investigate the involvement of carboxyl groups of HAs in these interactions, all experiments were performed for both, the original lignite HAs and HAs with selectively methylated carboxyls. The results of the diffusion experiments confirm that the interactions between the solute and humic substances have a strong impact on the rate of diffusion process. Surprisingly, the effect is almost equally approved for original and methylated HAs. On the other hand, the results of batch sorption experiments show strong improvement of the sorption capacity (methylated HAs), which is explained by changed morphology of alkylated HAs. The comparison of the results of diffusion and adsorption experiments shows that the diffusion experiments simulate the transport of solutes in natural humics containing environment more reasonably. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction.

    PubMed

    Shankar, Swetha; Kayser, Andrew S

    2017-06-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. Copyright © 2017 the American Physiological Society.

  13. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction

    PubMed Central

    Kayser, Andrew S.

    2017-01-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects’ decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. PMID:28250149

  14. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less

  15. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  16. Second order nonlinear QED processes in ultra-strong laser fields

    NASA Astrophysics Data System (ADS)

    Mackenroth, Felix

    2017-10-01

    In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.

  17. Agricultural Multifunctionality and Farmers' Entrepreneurial Skills: A Study of Tuscan and Welsh Farmers

    ERIC Educational Resources Information Center

    Morgan, Selyf Lloyd; Marsden, Terry; Miele, Mara; Morley, Adrian

    2010-01-01

    The process of agricultural restructuring in Europe has been strongly influenced both by CAP support of multifunctional agriculture and by market liberalisation, and farmers are exhorted to become more entrepreneurial in response. This paper explores the interaction of these policy goals in two regions where a rural development form of…

  18. Synergistic interaction in dual-species biofilms formation by Escherichia coli O157:H7 and Ralstonia spp

    USDA-ARS?s Scientific Manuscript database

    Introduction: Ralstonia spp., a heterotrophic bacterium that are isolated from produce processing environments as part of the native microflora, have strong potentials for formaing biofilms on various surfaces. When co-cultured, Escherichia coli O157:H7 (EcO157) and Ralstonia spp. displayed a synerg...

  19. A glimpse of gluons through deeply virtual compton scattering on the proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.

    The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less

  20. A glimpse of gluons through deeply virtual compton scattering on the proton

    DOE PAGES

    Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.; ...

    2017-11-10

    The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less

  1. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    PubMed

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  2. Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion.

    PubMed

    Buntkowsky, G; Walaszek, B; Adamczyk, A; Xu, Y; Limbach, H-H; Chaudret, B

    2006-04-28

    In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.

  3. Kinetics of protein unfolding at interfaces

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.

    2012-12-01

    The conformation of protein molecules is determined by a balance of various forces, including van der Waals attraction, electrostatic interaction, hydrogen bonding, and conformational entropy. When protein molecules encounter an interface, they are often adsorbed on the interface. The conformation of an adsorbed protein molecule strongly depends on the interaction between the protein and the interface. Recent time-resolved investigations have revealed that protein conformation changes during the adsorption process due to the protein-protein interaction increasing with increasing interface coverage. External conditions also affect the protein conformation. This review considers recent dynamic observations of protein adsorption at various interfaces and their implications for the kinetics of protein unfolding at interfaces.

  4. The role of electron-phonon interactions on the coherence lifetime of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2017-10-01

    We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with 'ab initio' calculations of the phonon energies and the phonon density of state reveal strong interaction with the E‧ and E″ phonon modes.

  5. The role of electron-phonon interactions on the coherence lifetime of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2017-06-01

    We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with ‘ab initio’ calculations of the phonon energies and the phonon density of state reveal strong interaction with the E’ and E” phonon modes.

  6. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  7. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  8. Interactions between parasites and microbial communities in the human gut.

    PubMed

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites.

  9. Interactions between parasites and microbial communities in the human gut

    PubMed Central

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802

  10. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers.

    PubMed

    Fusco, Giuliana; Chen, Serene W; Williamson, Philip T F; Cascella, Roberta; Perni, Michele; Jarvis, James A; Cecchi, Cristina; Vendruscolo, Michele; Chiti, Fabrizio; Cremades, Nunilo; Ying, Liming; Dobson, Christopher M; De Simone, Alfonso

    2017-12-15

    Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    PubMed

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  12. The determinants of response time in a repeated constant-sum game: A robust Bayesian hierarchical dual-process model.

    PubMed

    Spiliopoulos, Leonidas

    2018-03-01

    The investigation of response time and behavior has a long tradition in cognitive psychology, particularly for non-strategic decision-making. Recently, experimental economists have also studied response time in strategic interactions, but with an emphasis on either one-shot games or repeated social-dilemmas. I investigate the determinants of response time in a repeated (pure-conflict) game, admitting a unique mixed strategy Nash equilibrium, with fixed partner matching. Response times depend upon the interaction of two decision models embedded in a dual-process framework (Achtziger and Alós-Ferrer, 2014; Alós-Ferrer, 2016). The first decision model is the commonly used win-stay/lose-shift heuristic and the second the pattern-detecting reinforcement learning model in Spiliopoulos (2013b). The former is less complex and can be executed more quickly than the latter. As predicted, conflict between these two models (i.e., each one recommending a different course of action) led to longer response times than cases without conflict. The dual-process framework makes other qualitative response time predictions arising from the interaction between the existence (or not) of conflict and which one of the two decision models the chosen action is consistent with-these were broadly verified by the data. Other determinants of RT were hypothesized on the basis of existing theory and tested empirically. Response times were strongly dependent on the actions chosen by both players in the previous rounds and the resulting outcomes. Specifically, response time was shortest after a win in the previous round where the maximum possible payoff was obtained; response time after losses was significantly longer. Strongly auto-correlated behavior (regardless of its sign) was also associated with longer response times. I conclude that, similar to other tasks, there is a strong coupling in repeated games between behavior and RT, which can be exploited to further our understanding of decision making. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    PubMed

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  14. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less

  15. Development of Hairpin Vortices in Turbulent Spots and End-Wall Transition

    NASA Technical Reports Server (NTRS)

    Smith, Charles R.

    2007-01-01

    The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.

  16. Face-to-face: Perceived personal relevance amplifies face processing

    PubMed Central

    Pittig, Andre; Schupp, Harald T.; Alpers, Georg W.

    2017-01-01

    Abstract The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer—conveyed by facial expression and face direction—amplifies emotional face processing within triadic group situations. PMID:28158672

  17. Understanding patients' behavioral intentions: evidence from Iran's private hospitals industry.

    PubMed

    Zarei, Ehsan; Arab, Mohammad; Tabatabaei, Seyed Mahmoud Ghazi; Rashidian, Arash; Forushani, Abbas Rahimi; Khabiri, Roghayeh

    2014-01-01

    In the ever-increasing competitive market of private hospital industry, creating a strong relationship with the customers that shapes patients' loyalty has been considered a key factor in obtaining market share. The purpose of this paper is to test a model of customer loyalty among patients of private hospitals in Iran. This cross-sectional study was carried out in Tehran, the capital of the Islamic Republic of Iran in 2010. The study samples composed of 969 patients who were consecutively selected from eight private hospitals. The survey instrument was designed based on a review of the related literature and included 36 items. Data analysis was performed using structural equation modeling. For the service quality construct, three dimensions extracted: Process, interaction, and environment. Both process and interaction quality had significant effects on perceived value. Perceived value along with the process and interaction quality were the most important antecedents of patient overall satisfaction. The direct effect of the process and interaction quality on behavioral intentions was insignificant. Perceived value and patient overall satisfaction were the direct antecedents of patient behavioral intentions and the mediators between service quality and behavioral intentions. Environment quality of service delivery had no significant effect on perceived value, overall satisfaction, and behavioral intentions. Contrary to previous similar studies, the role of service quality was investigated not in a general sense, but in the form of three types of qualities including quality of environment, quality of process, and quality of interaction.

  18. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGES

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; ...

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V jet~ 20V A) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early inmore » time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less

  19. Eco-evolutionary feedbacks drive species interactions

    PubMed Central

    Andrade-Domínguez, Andrés; Salazar, Emmanuel; del Carmen Vargas-Lagunas, María; Kolter, Roberto; Encarnación, Sergio

    2014-01-01

    In the biosphere, many species live in close proximity and can thus interact in many different ways. Such interactions are dynamic and fall along a continuum between antagonism and cooperation. Because interspecies interactions are the key to understanding biological communities, it is important to know how species interactions arise and evolve. Here, we show that the feedback between ecological and evolutionary processes has a fundamental role in the emergence and dynamics of species interaction. Using a two-species artificial community, we demonstrate that ecological processes and rapid evolution interact to influence the dynamics of the symbiosis between a eukaryote (Saccharomyces cerevisiae) and a bacterium (Rhizobium etli). The simplicity of our experimental design enables an explicit statement of causality. The niche-constructing activities of the fungus were the key ecological process: it allowed the establishment of a commensal relationship that switched to ammensalism and provided the selective conditions necessary for the adaptive evolution of the bacteria. In this latter state, the bacterial population radiates into more than five genotypes that vary with respect to nutrient transport, metabolic strategies and global regulation. Evolutionary diversification of the bacterial populations has strong effects on the community; the nature of interaction subsequently switches from ammensalism to antagonism where bacteria promote yeast extinction. Our results demonstrate the importance of the evolution-to-ecology pathway in the persistence of interactions and the stability of communities. Thus, eco-evolutionary dynamics have the potential to transform the structure and functioning of ecosystems. Our results suggest that these dynamics should be considered to improve our understanding of beneficial and detrimental host–microbe interactions. PMID:24304674

  20. Climate-chemical interactions and greenhouse effects of trace gases

    NASA Technical Reports Server (NTRS)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  1. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  2. Sticky ions in biological systems.

    PubMed Central

    Collins, K D

    1995-01-01

    Aqueous gel sieving chromatography on Sephadex G-10 of the Group IA cations (Li+, Na+, K+, Rb+, Cs+) plus NH4+ as the Cl- salts, in combination with previous results for the halide anions (F-, Cl-, Br-, I-) as the Na+ salts [Washabaugh, M.W. & Collins, K.D. (1986) J. Biol. Chem. 261, 12477-12485], leads to the following conclusions. (i) The small monovalent ions (Li+, Na+, F-) flow through the gel with water molecules attached, whereas the large monovalent ions (K+, Rb+, Cs+, Cl-, Br-, I-) adsorb to the nonpolar surface of the gel, a process requiring partial dehydration of the ion and implying that these ions bind the immediately adjacent water molecules weakly. (ii) The transition from strong to weak hydration occurs at a radius of about 1.78 A for the monovalent anions, compared with a radius of about 1.06 A for the monovalent cations (using ionic radii), indicating that the anions are more strongly hydrated than the cations for a given charge density. (iii) The anions show larger deviations from ideal behavior (an elution position corresponding to the anhydrous molecular weight) than do the cations and dominate the chromatographic behavior of the neutral salts. These results are interpreted to mean that weakly hydrated ions (chaotropes) are "pushed" onto weakly hydrated surfaces by strong water-water interactions and that the transition from strong ionic hydration to weak ionic hydration occurs where the strength of ion-water interactions approximately equals the strength of water-water interactions in bulk solution. PMID:7539920

  3. Water as a matrix for life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid and lipid-protein interactions needed for membrane integrity, fusion and division). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions. Physical and chemical properties of solvent provide strong constraints for life. Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic interactions; related to high dielectric constant of the solvent) are necessary for self-organization of matter whereas solvophilic interactions are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristics hydrophobic effects are a consequence of the temperature in sensitivity of essential properties of its liquid state. Water, however, is not the only liquid with these favorable properties. I will compare in detail properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization. I will also discuss properties of water that are unfavorable to life (e.g. its chemical activity against polymerization reactions) and close with summarizing what are alternatives to water as a matrix of life in space.

  4. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.

    PubMed

    Trigos, Anna S; Pearson, Richard B; Papenfuss, Anthony T; Goode, David L

    2017-06-13

    Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.

  5. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors

    PubMed Central

    Trigos, Anna S.; Pearson, Richard B.; Papenfuss, Anthony T.; Goode, David L.

    2017-01-01

    Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer. PMID:28484005

  6. Addendum to: Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS4

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.; Compean, C. B.

    2017-04-01

    In the article under discussion the analysis of the spectra of the unflavored mesons lead us to some intriguing insights into the possible geometry of space-time outside the causal Minkowski light cone and into the nature of strong interactions. In applying the potential theory concept of geometrization of interactions, we showed that the meson masses are best described by a confining potential composed by the centrifugal barrier on the three-dimensional spherical space, S3, and of a charge-dipole potential constructed from the Green function to the S3 Laplacian. The dipole potential emerged in view of the fact that S3 does not support single-charges without violation of the Gauss theorem and the superposition principle, thus providing a natural stage for the description of the general phenomenon of confined charge-neutral systems. However, in the original article we did not relate the charge-dipoles on S3 to the color neutral mesons, and did not express the magnitude of the confining dipole potential in terms of the strong coupling αS and the number of colors, Nc, the subject of the addendum. To the amount S3 can be thought of as the unique closed space-like geodesic of a four-dimensional de Sitter space-time, dS4, we hypothesized the space-like region outside the causal Einsteinian light cone (it describes virtual processes, among them interactions) as the (1+4)-dimensional subspace of the conformal (2+4) space-time, foliated with dS4 hyperboloids, and in this way assumed relevance of dS4 special relativity for strong interaction processes. The potential designed in this way predicted meson spectra of conformal degeneracy patterns, and in accord with the experimental observations. We now extract the αs values in the infrared from data on meson masses. The results obtained are compatible with the αs estimates provided by other approaches.

  7. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak, E-mail: Lorin_Matthews@baylor.edu

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface ofmore » an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.« less

  8. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  9. Au-thiol interaction chemistry to influence the structural transformation of semiconductor nanocrystals and formation of giant nanostructures.

    PubMed

    Bose, Riya; Manna, Goutam; Pradhan, Narayan

    2014-04-09

    Giant nanostructures which are difficult to design by the classical growth process can be fabricated in a facilitated and well programmed surface ligand removal protocol employing the thiol-gold strong interaction chemistry. When thiol capped small ZnSe seed nanocrystals are treated with amine capped gold particles, gold snatches the thiol ligands from ZnSe and forces them to agglomerate leading to the giant crystalline ZnSe nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Onset of damping in energetic heavy-ion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, L.; Haustein, P.E.; Cumming, J.B.

    1983-08-22

    Measurements of longitudinal momenta transferred to mass-identified products of the fragmentation of Cu by /sup 12/C ions give clear evidence for a change in reaction mechanism between 22 and 84 MeV/u. Results at 84 MeV/u are generally consistent with peripheral interactions. However, at 22 MeV/u large momentum transfers observed for near-target products suggest that strongly damped processes have become important. Limits to momentum transfer of the type reported by Galin et al. are shown to arise in a natural way from this transition.

  11. Electron attachment to molecules in a cluster environment: suppression and enhancement effects

    NASA Astrophysics Data System (ADS)

    Fabrikant, Ilya I.

    2018-05-01

    Cluster environments can strongly influence dissociative electron attachment (DEA) processes. These effects are important in many applications, particularly for surface chemistry, radiation damage, and atmospheric physics. We review several mechanisms for DEA suppression and enhancement due to cluster environments, particularly due to microhydration. Long-range electron-molecule and electron-cluster interactions play often a significant role in these effects and can be analysed by using theoretical models. Nevertheless many observations remain unexplained due to complexity of the physics and chemistry of interaction of DEA fragments with the cluster environment.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  13. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    PubMed Central

    Lakeman-Fraser, Poppy; Ewers, Robert M.

    2014-01-01

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374

  14. Temperature dependent CO2 behavior in microporous 1-D channels of a metal-organic framework with multiple interaction sites

    PubMed Central

    Kim, Dongwook; Park, Jaehun; Kim, Yung Sam; Lah, Myoung Soo

    2017-01-01

    The MOF with the encapsulated CO2 molecule shows that the CO2 molecule is ligated to the unsaturated Cu(II) sites in the cage using its Lewis basic oxygen atom via an angular η1-(OA) coordination mode and also interacts with Lewis basic nitrogen atoms of the tetrazole ligands using its Lewis acidic carbon atom. Temperature dependent structure analyses indicate the simultaneous weakening of both interactions as temperature increases. Infrared spectroscopy of the MOF confirmed that the CO2 interaction with the framework is temperature dependent. The strength of the interaction is correlated to the separation of the two bending peaks of the bound CO2 rather than the frequency shift of the asymmetric stretching peak from that of free CO2. The encapsulated CO2 in the cage is weakly interacting with the framework at around ambient temperatures and can have proper orientation for wiggling out of the cage through the narrow portals so that the reversible uptake can take place. On the other hand, the CO2 in the cage is restrained at a specific orientation at 195 K since it interacts with the framework strong enough using the multiple interaction sites so that adsorption process is slightly restricted and desorption process is almost clogged. PMID:28128298

  15. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

    NASA Astrophysics Data System (ADS)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping

    2013-03-01

    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  16. Natural polymer biocomposites produced from processing raw wood flour by severe shear deformation.

    PubMed

    Zhang, Xiaoqing; Wu, Xiaolin; Haryono, Hengky; Xia, Kenong

    2014-11-26

    Wood flour (WF) based natural polymer biocomposites were produced using the equal channel angular pressing (ECAP) technique. The wood particle structures were disrupted and the cellulose crystallinity was decreased while bulk materials were formed with continuous phase structures by the severe shear-deformation during ECAP. The mechanical properties of the processed WF materials were enhanced when the processing temperature was increased due to enhanced intermolecular interactions and thermal crosslinking reactions among WF components. The processing capability was improved by using wheat gluten (WG) as additives, leading to significantly reduced processing temperature. Effective chain penetration and strong intermolecular interactions in conjunction with chemical crosslinking occurred between WG and the amorphous components in WF. However, the thermal decomposition of the WG component also occurred at increased temperatures, resulting in a decrease in the mechanical strength of the WF/WG composites. The result has demonstrated that ECAP is a promising methodology to produce renewable and degradable biocomposites from wood waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix

    NASA Astrophysics Data System (ADS)

    White, Alan R.

    2011-04-01

    The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.

  18. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest.

    Treesearch

    Mark P. Waldrop; Jennifer W. Harden

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or...

  19. The Influence of Typeface on Students' Perceptions of Online Instructors

    ERIC Educational Resources Information Center

    Louch, Michelle O'Brien; Stork, Elizabeth

    2014-01-01

    At its base, advertising is the process of using visual images and words to attract and convince consumers that a certain product has certain attributes. The same effect exists in electronic communication, strongly so in online courses where most if not all interaction between instructor and student is in writing. Arguably, if consumers make…

  20. Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus.

    PubMed

    Ben-David, Jonathan; Chipman, Ariel D

    2010-10-01

    The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions.

    PubMed

    Yue, Junyang; Zhang, Danfeng; Ban, Rongjun; Ma, Xiaojing; Chen, Danyang; Li, Guangwei; Liu, Jia; Wisniewski, Michael; Droby, Samir; Liu, Yongsheng

    2017-01-01

    Penicillium expansum , the causal agent of blue mold, is one of the most prevalent post-harvest pathogens, infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium -crop interaction is a multifaceted process and mediated by pathogen- and host-derived proteins. Identification and characterization of the inter-species protein-protein interactions (PPIs) are fundamental to elucidating the molecular mechanisms underlying infection processes between P. expansum and plant crops. Here, we have developed PCPPI, the Penicillium -Crop Protein-Protein Interactions database, which is constructed based on the experimentally determined orthologous interactions in pathogen-plant systems and available domain-domain interactions (DDIs) in each PPI. Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host species, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis through the gene ontology (GO) annotation indicated that proteins with more interacting partners tend to execute the essential function. Significantly, semantic statistics of the GO terms also provided strong support for the accuracy of our predicted interactions in PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of pathogen-crop interactions and freely available to the research community. : http://bdg.hfut.edu.cn/pcppi/index.html. © The Author(s) 2017. Published by Oxford University Press.

  2. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  3. Phosphine-substrate recognition through the C-H...O hydrogen bond: application to the asymmetric Pauson-Khand reaction.

    PubMed

    Solà, Jordi; Riera, Antoni; Verdaguer, Xavier; Maestro, Miguel A

    2005-10-05

    A unique methine moiety attached to three heteroatoms (O, P, S) and contained in the PuPHOS and CamPHOS ligands serves as a strong hydrogen-bond donor. Nonclassical hydrogen bonding of this methine with an amido-carbonyl acceptor provides a completely diastereoselective ligand exchange process between an alkyne dicobalthexacarbonyl complex and a phosphine ligand. This weak contact has been studied by means of X-ray analysis, 1H NMR, and quantum mechanical calculations and revealed that the present interaction falls in the range of strong C-H...O=C bonds. The hydrogen-bond bias obtained in the ligand exchange process has been exploited in the asymmetric intermolecular Pauson-Khand reaction to yield the corresponding cyclization adducts in up to 94% ee.

  4. Context-dependent interactions and the regulation of species richness in freshwater fish.

    PubMed

    MacDougall, Andrew S; Harvey, Eric; McCune, Jenny L; Nilsson, Karin A; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B; Kelly, Jocelyn; Tunney, Tyler D; McMeans, Bailey; Matsuzaki, Shin-Ichiro S; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S

    2018-03-06

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11 o latitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently 'scale-up' to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  5. Context-dependent interactions and the regulation of species richness in freshwater fish

    USGS Publications Warehouse

    MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.

    2018-01-01

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  6. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  7. Polarized micro Raman spectroscopy of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moon, Hyerim; Yoon, Duhee; Son, Young-Woo; Cheong, Hyeonsik

    2009-03-01

    The frequency of Raman 2D band of the graphite depends on the excitation laser energy. This phenomenon is explained with double resonance Raman process. In polarized micro-Raman spectroscopy of single layer graphene, Raman G band (˜1586 cm-1) is isotropic, and 2D band (˜2686 cm-1) strongly depends on relative polarizations of the incident and scattered photons. This strong polarization dependence originates from inhomogeneous optical absorption and emission mediated by resonant electron-phonon interaction. In bi-layer graphene, Raman 2D band can be decomposed into four Lorenztian peaks which can be interpreted in terms of the four transition paths in the double resonance Raman process. We investigated the polarization dependence of each Lorenztian peak in the Raman 2D band of bi-layer graphene for different excitation laser energies. Strong polarization dependence of the Raman 2D band, similar to the case of single layer graphene, is observed. The excitation energy dependence of the polarized Raman scattering is analyzed in terms of the band structure of bi-layer graphene.

  8. Self-consistent modelling of the polar thermosphere and ionosphere to magnetospheric convection and precipitation (invited review)

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T.; Quegan, S.; Moffett, R.

    1986-01-01

    It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap.

  9. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  10. Progress on wave-ice interactions: satellite observations and model parameterizations

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael

    2017-04-01

    In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins et al. (2015). Ongoing developments include the coupling of WAVEWATCH III to the NEMO-LIM3 and NEMO-CICE models using the OASIS3-MCT communicator. This coupled system will provide a meaningful memory of the ice floe sizes, as the ice is advected. It will also make possible the investigation of feedback processes on the ice.

  11. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Peng-Bo; Xiang, Ze-Liang; Rabl, Peter; Nori, Franco

    2016-07-01

    We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

  12. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    PubMed

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  13. Mass loss from interacting close binary systems

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  14. Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2015-10-01

    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.

  15. Robots show us how to teach them: feedback from robots shapes tutoring behavior during action learning.

    PubMed

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.

  16. Robots Show Us How to Teach Them: Feedback from Robots Shapes Tutoring Behavior during Action Learning

    PubMed Central

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J.; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J.; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction. PMID:24646510

  17. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  18. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  19. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  20. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree.

    PubMed

    Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure

    2017-01-01

    Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.

  1. MEMORY MODULATION

    PubMed Central

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  2. Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Ciobotaru, Constantin Claudiu; Polosan, Silviu; Ciobotaru, Iulia Corina

    2018-02-01

    This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host-guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet-triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4'-bis( N-carbazolyl)-1,1'-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet-triplet exothermic charge transfer. The higher charge carrier mobility in the case of N, N'-bis(3-methylphenyl)- N, N'-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet-triplet harvesting in the host-guest system. The excitation is transferred to the guest molecules by triplet-triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

  3. New insights about flocculation process in sodium caseinate-stabilized emulsions.

    PubMed

    Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris

    2016-11-01

    Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Active galactic nuclei and galaxy interactions

    NASA Astrophysics Data System (ADS)

    Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina

    2007-03-01

    We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.

  5. Species Associations in a Species-Rich Subtropical Forest Were Not Well-Explained by Stochastic Geometry of Biodiversity

    PubMed Central

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996

  6. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    PubMed

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  7. Spectrum and Angular Distribution of γ-rays from Radiative Damping in Extremely Relativistic Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2013-10-01

    Effects of the radiative damping in the interaction of extremely intense laser (> 1022 W/cm2) with dense plasma is studied via a relativistic collisional particle-in-cell simulation, PICLS. When the laser intensity is getting close to 1024 W/cm2, the effect of quantum electrodynamics (QED) appears. We had calculated γ-rays from the radiative damping processes based on the classical model [1], but had taken into account the QED effect [2] in the spectrum calculation. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. Such relativistic γ-ray has wide range of frequencies and the angular distribution depends on the hot electron source. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and also the QED effect in the γ-rays spectrum at the extremely relativistic intensity. Supported by US DOE DE-SC0008827.

  8. Studies in High Energy Heavy Ion Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Gerald W.; Markert, Christina

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STARmore » at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or "decay" into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled conditions of the collisions provides another test of theory. Our results provide unambiguous evidence that the briefly existing hot, dense matter has strong effects on the measurements and indicate that the matter is best described in terms of the fundamental quarks and gluons, that its internal interactions are surprisingly strong, and that new and never before seen strong interaction processes are occurring which remain to be explained theoretically. To enable these studies our group has also made substantial contributions to the detection capabilities of the STAR experiment. These contributions were to the electronics required to "read out" the weak electrical signals from the detectors and transfer the raw data to offline computers for processing. Although this experimental program is now concluded, the resonance and correlation results we have extracted from the raw collision data will continue to challenge and perhaps guide theoretical developments of the strong nuclear force for many years to come.« less

  9. Angular distributions and mechanisms of fragmentation by relativistic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoenner, R.W.; Haustein, P.E.; Cumming, J.B.

    1984-07-23

    Angular distributions of massive fragments from relativistic heavy-ion interactions are reported. Sideward peaking is observed for the light fragment /sup 37/Ar, from 25-GeV /sup 12/C+Au, while the distribution for /sup 127/Xe is strongly forward peaked. Conflicts of these observations and other existing data with predictions of models for the fragmentation process are discussed.

  10. Exclusive Reactions Involving Pions and Nucleons

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.

    2002-01-01

    The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.

  11. Evolution of Inbreeding Avoidance and Inbreeding Preference through Mate Choice among Interacting Relatives.

    PubMed

    Duthie, A Bradley; Reid, Jane M

    2016-12-01

    While extensive population genetic theory predicts conditions favoring evolution of self-fertilization versus outcrossing, there is no analogous theory that predicts conditions favoring evolution of inbreeding avoidance or inbreeding preference enacted through mate choice given obligate biparental reproduction. Multiple interacting processes complicate the dynamics of alleles underlying such inbreeding strategies, including sexual conflict, distributions of kinship, genetic drift, purging of mutation load, direct costs, and restricted kin discrimination. We incorporated these processes into an individual-based model to predict conditions where selection should increase or decrease frequencies of alleles causing inbreeding avoidance or inbreeding preference when females or males controlled mating. Selection for inbreeding avoidance occurred given strong inbreeding depression when either sex chose mates, while selection for inbreeding preference occurred given very weak inbreeding depression when females chose but never occurred when males chose. Selection for both strategies was constrained by direct costs and restricted kin discrimination. Purging was negligible, but allele frequencies were strongly affected by drift in small populations, while selection for inbreeding avoidance was weak in larger populations because inbreeding risk decreased. Therefore, while selection sometimes favored alleles underlying inbreeding avoidance or preference, evolution of such strategies may be much more restricted and stochastic than is commonly presumed.

  12. Attention, biological motion, and action recognition.

    PubMed

    Thompson, James; Parasuraman, Raja

    2012-01-02

    Interacting with others in the environment requires that we perceive and recognize their movements and actions. Neuroimaging and neuropsychological studies have indicated that a number of brain regions, particularly the superior temporal sulcus, are involved in a number of processes essential for action recognition, including the processing of biological motion and processing the intentions of actions. We review the behavioral and neuroimaging evidence suggesting that while some aspects of action recognition might be rapid and effective, they are not necessarily automatic. Attention is particularly important when visual information about actions is degraded or ambiguous, or if competing information is present. We present evidence indicating that neural responses associated with the processing of biological motion are strongly modulated by attention. In addition, behavioral and neuroimaging evidence shows that drawing inferences from the actions of others is attentionally demanding. The role of attention in action observation has implications for everyday social interactions and workplace applications that depend on observing, understanding and interpreting actions. Published by Elsevier Inc.

  13. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  14. Face-to-face: Perceived personal relevance amplifies face processing.

    PubMed

    Bublatzky, Florian; Pittig, Andre; Schupp, Harald T; Alpers, Georg W

    2017-05-01

    The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer-conveyed by facial expression and face direction-amplifies emotional face processing within triadic group situations. © The Author (2017). Published by Oxford University Press.

  15. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth

    Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less

  16. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE PAGES

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...

    2015-12-18

    Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less

  17. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases*

    PubMed Central

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (PIntr) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a 14C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site −3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. PMID:26468285

  18. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    PubMed

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    NASA Astrophysics Data System (ADS)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  20. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    PubMed

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3 concentration. The interaction between the metal chelate ligand and proteins and the selectivity of metal chelate chromatography can be changed through changing chromatographic conditions.

  1. Inverse Ising Inference Using All the Data

    NASA Astrophysics Data System (ADS)

    Aurell, Erik; Ekeberg, Magnus

    2012-03-01

    We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples with good accuracy and that the use of l1 regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.

  2. Violation of the Wiedemann-Franz law in a single-electron transistor.

    PubMed

    Kubala, Björn; König, Jürgen; Pekola, Jukka

    2008-02-15

    We study the influence of Coulomb interaction on the thermoelectric transport coefficients for a metallic single-electron transistor. By performing a perturbation expansion up to second order in the tunnel-barrier conductance, we include sequential and cotunneling processes as well as quantum fluctuations that renormalize the charging energy and the tunnel conductance. We find that Coulomb interaction leads to a strong violation of the Wiedemann-Franz law: the Lorenz ratio becomes gate-voltage dependent for sequential tunneling, and is increased by a factor 9/5 in the cotunneling regime. Finally, we suggest a measurement scheme for an experimental realization.

  3. Recent results from the strong interactions program of NA61/SHINE

    NASA Astrophysics Data System (ADS)

    Pulawski, Szymon

    2017-12-01

    The NA61/SHINE experiment studies hadron production in hadron+hadron, hadron+nucleus and nucleus+nucleus collisions. The strong interactions program has two main purposes: study the properties of the onset of deconfinement and search for the signatures of the critical point of strongly interacting matter. This aim is pursued by performing a two-dimensional scan of the phase diagram by varying the energy/momentum (13A-158A GeV/c) and the system size (p+p, Be+Be, Ar+Sc, Xe+La) of the collisions. This publication reviews recent results from p+p, Be+Be and Ar+Sc interactions. Measured particle spectra are discussed and compared to NA49 results from Pb+Pb collisions. The results illustrate the progress towards scanning the phase diagram of strongly interacting matter.

  4. Ant Species Differences Determined by Epistasis between Brood and Worker Genomes

    PubMed Central

    Linksvayer, Timothy A.

    2007-01-01

    Epistasis arising from physiological interactions between gene products often contributes to species differences, particularly those involved in reproductive isolation. In social organisms, phenotypes are influenced by the genotypes of multiple interacting individuals. In theory, social interactions can give rise to an additional type of epistasis between the genomes of social partners that can contribute to species differences. Using a full-factorial cross-fostering design with three species of closely related Temnothorax ants, I found that adult worker size was determined by an interaction between the genotypes of developing brood and care-giving workers, i.e. intergenomic epistasis. Such intergenomic social epistasis provides a strong signature of coevolution between social partners. These results demonstrate that just as physiologically interacting genes coevolve, diverge, and contribute to species differences, so do socially interacting genes. Coevolution and conflict between social partners, especially relatives such as parents and offspring, has long been recognized as having widespread evolutionary effects. This coevolutionary process may often result in coevolved socially-interacting gene complexes that contribute to species differences. PMID:17912371

  5. On the interaction between ocean surface waves and seamounts

    NASA Astrophysics Data System (ADS)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  6. Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex

    PubMed Central

    Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel

    2015-01-01

    The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262

  7. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.

  8. Co-adaptation of Electric Organ Discharges and Chirps in South American Ghost Knifefishes (Apteronotidae)

    PubMed Central

    Petzold, Jacquelyn M.; Marsat, Gary; Smith, G. Troy

    2016-01-01

    Animal communication signals that simultaneously share the same sensory channel are likely to coevolve to maximize the transmission of each signal component. Weakly electric fish continuously produce a weakly electric field that functions in communication. Fish modulate the electric organ discharge (EOD) on short timescales to produce context-specific signals called chirps. EODs and chirps are simultaneously detected by electroreceptors and processed in the electrosensory system. We analyzed these signals, first to explore whether EOD waveform is encoded in the signal received by electroreceptors and then to examine how EODs and chirps interact to influence conspicuousness. Our findings show that gross discrimination of sinusoidal from complex EOD waveforms is feasible for all species, but fine discrimination of waveform may be possible only for species with waveforms of intermediate complexity. The degree of chirp frequency modulation and chirp relative decay strongly influenced chirp conspicuousness, but other chirp parameters were less influential. The frequency difference between the interacting EODs also strongly impacted chirp conspicuousness. Finally, we developed a method for creating hybrid chirp/EOD combinations to independently analyze the impact of chirp species, EOD species, and EOD difference frequency on chirp conspicuousness. All three components and their interactions strongly influenced chirp conspicuousness, which suggests that evolutionary changes in parameters of either chirps or EODs are likely to influence chirp detection. Examining other environmental factors such as noise created by fish movement and species-typical patterns of sociality may enrich our understanding of how interacting EODs affect the detection and discrimination of chirps across species. PMID:27989653

  9. Numerical Study of the Influences of a Monsoon Gyre on Intensity Changes of Typhoon Chan-Hom (2015)

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Wu, Liguang; Gu, Guojun

    2018-05-01

    Typhoon Chan-Hom (2015) underwent a weakening in the tropical western North Pacific (WNP) when it interacted with a monsoon gyre, but all operational forecasts failed to predict this intensity change. A recent observational study indicated that it resulted from its interaction with a monsoon gyre on the 15-30-day timescale. In this study, the results of two numerical experiments are presented to investigate the influence of the monsoon gyre on the intensity changes of Typhoon Chan-Hom (2015). The control experiment captures the main observed features of the weakening process of Chan-Hom (2015) during a sharp northward turn in the Philippine Sea, including the enlargement of the eye size, the development of strong convection on the eastern side of the monsoon gyre, and the corresponding strong outer inflow. The sensitivity experiment suggests that intensity changes of Chan-Hom (2015) were mainly associated with its interaction with the monsoon gyre. When Chan-Hom (2015) initially moved westward in the eastern part of the monsoon gyre, the monsoon gyre enhanced the inertial stability for the intensification of the typhoon. With its coalescence with the monsoon gyre, the development of the strong convection on the eastern side of the monsoon gyre prevented moisture and mass entering the inner core of Chan-Hom (2015), resulting in the collapse of the eyewall. Thus, the weakening happened in the deep tropical WNP region. The numerical simulations confirm the important effects of the interaction between tropical cyclones and monsoon gyres on tropical cyclone intensity.

  10. Strongly-Interacting Fermi Gases in Reduced Dimensions

    DTIC Science & Technology

    2009-05-29

    effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark -gluon plasmas (elliptic flow), and most...strong interactions: Superconductors, neutron stars and quark -gluon plasmas on a desktop," Seminar on Modern Optics and Spectroscopy, M. I. T...interface of quark -gluon plasma physics and cold-atom physics," (Trento, Italy, March 19-23, 2007). Talk given by Andrey Turlapov. 17) J. E. Thomas

  11. Type D personality is associated with social anxiety in the general population.

    PubMed

    Kupper, Nina; Denollet, Johan

    2014-06-01

    Research on the emotional processes associated with Type D personality is important for its further conceptualization. We examined the associations of Type D personality with social and general anxiety symptoms in a large community sample. The aim of the current study was to disentangle the associations of Type D personality and its components with social anxiety and general anxiety in a large sample from the general population. A random sample of 2,475 adults from the general population filled out questionnaires to assess Type D personality (DS-14), social anxiety (SIAS(10), SPS(11), BFNE-II), and general anxiety (HADS-A, GAD-7). Type D individuals were characterized by increased levels of both social and general anxiety. The social inhibition (SI) component of Type D personality was most strongly associated with social interaction anxiety (r = .63), while negative affectivity (NA) was strongly associated with general anxiety (GAD-7: r = .70; HADS-A: r = .66). Within social anxiety, SI was more strongly associated with facets of social interaction anxiety than with social phobia. Multiple regression analysis showed that the synergistic interaction of NA and SI was a predictor of social anxiety (SIAS(10): β = .32, p < .0005; SPS(11): β = .27, p < .0005; BFNE-II: β = .11, p = .007) independent of demographics and the scores on the individual Type D components. This interaction was not a significant predictor of general anxiety. Logistic regression using the dichotomous Type D classification demonstrated a 9.1-fold (95%CI, 7.0-11.8) increased odds of a score in the highest quartile of social interaction anxiety and a 7.6-fold (95%CI, 5.8-9.8) increased odds of high social phobia. Odds ratios for clinically relevant levels of general anxiety were 8.3 (95%CI, 5.5-12.5) for GAD-7 and 6.5 (95%CI, 3.4-12.6) for HADS-A. In the general population, Type D individuals were characterized by both social and general anxiety. The SI component of Type D is strongly associated with social interaction anxiety and the synergistic interaction of NA and SI was associated with high social anxiety, above and beyond the main NA and SI effects.

  12. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  13. MDMA alters emotional processing and facilitates positive social interaction.

    PubMed

    Wardle, Margaret C; de Wit, Harriet

    2014-10-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") produces "prosocial" effects, such as feelings of empathy and closeness, thought to be important to its abuse and its value in psychotherapy. However, it is not fully understood how MDMA alters basic emotional processes to produce these effects, or whether it produces corresponding changes in actual social behavior. Here, we examined how MDMA affects perceptions of and responses to emotional expressions, and tested its effects on behavior during a social interaction. We also examined whether MDMA's prosocial effects related to a measure of abuse liability. Over three sessions, 36 healthy volunteers with previous ecstasy use received MDMA (0.75, 1.5 mg/kg) and placebo under double-blind conditions. We measured (i) mood and cardiovascular effects, (ii) perception of and psychophysiological responses to emotional expressions, (iii) use of positive and negative words in a social interaction, and (iv) perceptions of an interaction partner. We then tested whether these effects predicted desire to take the drug again. MDMA slowed perception of angry expressions, increased psychophysiological responses to happy expressions, and increased positive word use and perceptions of partner empathy and regard in a social interaction. These effects were not strongly related to desire to take the drug again. MDMA alters basic emotional processes by slowing identification of negative emotions and increasing responses to positive emotions in others. Further, it positively affects behavior and perceptions during actual social interaction. These effects may contribute to the efficacy of MDMA in psychotherapy, but appear less closely related to its abuse potential.

  14. Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.

  15. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  16. Bloch oscillations in the absence of a lattice

    NASA Astrophysics Data System (ADS)

    Meinert, Florian; Knap, Michael; Kirilov, Emil; Jag-Lauber, Katharina; Zvonarev, Mikhail B.; Demler, Eugene; Nägerl, Hanns-Christoph

    2017-06-01

    The interplay of strong quantum correlations and far-from-equilibrium conditions can give rise to striking dynamical phenomena. We experimentally investigated the quantum motion of an impurity atom immersed in a strongly interacting one-dimensional Bose liquid and subject to an external force. We found that the momentum distribution of the impurity exhibits characteristic Bragg reflections at the edge of an emergent Brillouin zone. Although Bragg reflections are typically associated with lattice structures, in our strongly correlated quantum liquid they result from the interplay of short-range crystalline order and kinematic constraints on the many-body scattering processes in the one-dimensional system. As a consequence, the impurity exhibits periodic dynamics, reminiscent of Bloch oscillations, although the quantum liquid is translationally invariant. Our observations are supported by large-scale numerical simulations.

  17. Plutonium interaction studies with the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99: changes in the plutonium speciation by solvent extractions.

    PubMed

    Moll, Henry; Cherkouk, Andrea; Bok, Frank; Bernhard, Gert

    2017-05-01

    Since plutonium could be released from nuclear waste disposal sites, the exploration of the complex interaction processes between plutonium and bacteria is necessary for an improved understanding of the fate of plutonium in the vicinity of such a nuclear waste disposal site. In this basic study, the interaction of plutonium with cells of the bacterium, Sporomusa sp. MT-2.99, isolated from Mont Terri Opalinus Clay, was investigated anaerobically (in 0.1 M NaClO 4 ) with or without adding Na-pyruvate as an electron donor. The cells displayed a strong pH-dependent affinity for Pu. In the absence of Na-pyruvate, a strong enrichment of stable Pu(V) in the supernatants was discovered, whereas Pu(IV) polymers dominated the Pu oxidation state distribution on the biomass at pH 6.1. A pH-dependent enrichment of the lower Pu oxidation states (e.g., Pu(III) at pH 6.1 which is considered to be more mobile than Pu(IV) formed at pH 4) was observed in the presence of up to 10 mM Na-pyruvate. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g., biosorption and bioreduction.

  18. Enzymatic mechanisms of biological magnetic sensitivity.

    PubMed

    Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi

    2017-10-01

    Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    PubMed

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  20. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management

    USGS Publications Warehouse

    Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd

    2018-01-01

    Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.

  1. Gettering in multicrystalline silicon: A design-of-experiments approach

    NASA Astrophysics Data System (ADS)

    Schubert, W. K.

    1994-12-01

    Design-of-experiment methods were used to study gettering due to phosphorus diffusion and aluminum alloying in four industrial multicrystalline silicon materials: Silicon-Film material from AstroPower, heat-exchanger method (HEM) material from Crystal Systems, edge-defined film-fed growth (EFG) material from Mobil Solar, and cast material from Solarex. Time and temperature for the diffusion and alloy processes were chosen for a four-factor quadratic interaction experiment. Simple diagnostic devices were used to evaluate the gettering. Only EFG and HEM materials exhibited statistically significant gettering effects within the ranges used for the various parameters. Diffusion and alloying temperature were significant for HEM material; also there was a second-order interaction between the diffusion time and temperature. There was no interaction between the diffusion and alloying processes in HEM material. EFG material showed a first-order dependence on diffusion temperature and a second-order interaction between the diffusion temperature and the alloying time. Gettering recommendations for the HEM material were used to produce the best-yet Sandia cells on this material, but correlation with the gettering experiment was not strong. Some of the discrepancy arises from necessary processing differences between the diagnostic devices and regular solar cells. This issue and other lessons learned concerning this type of experiment are discussed.

  2. User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.

    PubMed

    Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu

    2016-04-01

    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.

  3. Microsolvation of the 5-hydroxyindole cation (5HI+) with nonpolar and quadrupolar ligands: Infrared photodissociation spectra of 5HI+-Ln clusters with L = Ar and N2 (n ≤ 3)

    NASA Astrophysics Data System (ADS)

    Klyne, Johanna; Dopfer, Otto

    2017-07-01

    Solvation of biomolecules and their building blocks has a strong influence on their structure and function. Herein we characterize the initial microsolvation of the 5-hydroxyindole cation (5HI+) in its 2A″ ground electronic state with nonpolar and quadrupolar ligands (L = Ar, N2) by infrared photodissociation (IRPD) spectroscopy of cold and mass-selected 5HI+-Ln (n ≤ 3) clusters in a molecular beam and dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ). The isomer-selective OH and NH stretch frequency shifts (ΔνOH/NH) disentangle the competition between H-bonding to the acidic OH and NH groups and π-stacking to the conjugated bicyclic aromatic π-electron system, the intermolecular interaction strengths, and the cluster growth sequence. For 5HI+-Arn, H-bonding and π-stacking strongly compete, indicating that dispersion forces are important for the interaction of 5HI+ with nonpolar ligands. In contrast, for 5HI+-(N2)n clusters, the H-bonds are much stronger than the π-bonds and largely determine the initial solvation process. In all clusters, the OH…L bonds are stronger than the NH…L bonds followed by the π-bonds. The interaction of 5HI+ with N2 is roughly twice stronger than with Ar, mainly due to the additional quadrupole moment of N2. The nature and strength of the individual interactions are quantified by the noncovalent interaction approach. Comparison of 5HI+-L with the corresponding neutral clusters reveals the strong impact of ionization on the total and relative interaction strengths of the H-bonds and π-bonds. In addition, comparison of 5HI+-L with corresponding clusters of the phenol, indole, and pyrrole radical cations illustrates the effects of substitution of functional groups and the addition of aromatic rings to the various subunits of 5HI on the intermolecular potential.

  4. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  5. Density-Functional Theory with Optimized Effective Potential and Self-Interaction Correction for the Double Ionization of He and Be Atoms

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2012-06-01

    We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.

  6. Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.

    PubMed

    Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H

    2015-06-18

    The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.

  7. Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites

    PubMed Central

    2015-01-01

    The photophysical properties of films of organic–inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials. PMID:26266592

  8. Testing interactive effects of automatic and conflict control processes during response inhibition - A system neurophysiological study.

    PubMed

    Chmielewski, Witold X; Beste, Christian

    2017-02-01

    In everyday life successful acting often requires to inhibit automatic responses that might not be appropriate in the current situation. These response inhibition processes have been shown to become aggravated with increasing automaticity of pre-potent response tendencies. Likewise, it has been shown that inhibitory processes are complicated by a concurrent engagement in additional cognitive control processes (e.g. conflicting monitoring). Therefore, opposing processes (i.e. automaticity and cognitive control) seem to strongly impact response inhibition. However, possible interactive effects of automaticity and cognitive control for the modulation of response inhibition processes have yet not been examined. In the current study we examine this question using a novel experimental paradigm combining a Go/NoGo with a Simon task in a system neurophysiological approach combining EEG recordings with source localization analyses. The results show that response inhibition is less accurate in non-conflicting than in conflicting stimulus-response mappings. Thus it seems that conflicts and the resulting engagement in conflict monitoring processes, as reflected in the N2 amplitude, may foster response inhibition processes. This engagement in conflict monitoring processes leads to an increase in cognitive control, as reflected by an increased activity in the anterior and posterior cingulate areas, while simultaneously the automaticity of response tendencies is decreased. Most importantly, this study suggests that the quality of conflict processes in anterior cingulate areas and especially the resulting interaction of cognitive control and automaticity of pre-potent response tendencies are important factors to consider, when it comes to the modulation of response inhibition processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Atomic and molecular data for spacecraft re-entry plasmas

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.

    2016-06-01

    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.

  10. Withholding response to self-face is faster than to other-face.

    PubMed

    Zhu, Min; Hu, Yinying; Tang, Xiaochen; Luo, Junlong; Gao, Xiangping

    2015-01-01

    Self-face advantage refers to adults' response to self-face is faster than that to other-face. A stop-signal task was used to explore how self-face advantage interacted with response inhibition. The results showed that reaction times of self-face were faster than that of other-face not in the go task but in the stop response trials. The novelty of the finding was that self-face has shorter stop-signal reaction time compared to other-face in the successful inhibition trials. These results indicated the processing mechanism of self-face may be characterized by a strong response tendency and a corresponding strong inhibition control.

  11. Nonequilibrium spintronic transport through an artificial Kondo impurity: conductance, magnetoresistance, and shot noise.

    PubMed

    López, Rosa; Sánchez, David

    2003-03-21

    We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.

  12. Interactions between drugs and polymers influencing hot melt extrusion.

    PubMed

    Li, Yongcheng; Pang, Huishi; Guo, Zhefei; Lin, Ling; Dong, Yixuan; Li, Ge; Lu, Ming; Wu, Chuangbin

    2014-02-01

    Hot melt extrusion (HME) as a technique for producing amorphous solid dispersion (ASD) has been widely used in pharmaceutical research. The biggest challenge for the application of HME is the thermal degradation of drug, poor physical stability of ASD and precipitation of drug during dissolution. Interactions between drugs and polymers may play an important role in overcoming these barriers. In this review, influence of drug-polymer interactions on HME and the methods for characterizing the drug-polymer interactions were reviewed. Strong drug-polymer interactions, especially ionic interactions and hydrogen bonds, are helpful to improving the thermal stability of drug during HME, enhancing the physical stability of ASD during storage and maintaining supersaturated solution after dissolution in gastrointestinal tract. The interactions can be quantitatively and qualitatively characterized by many analysing methods. As many factors collectively determine the properties of HME products, drug-polymer interactions play an extremely important role. However, the action mechanisms of drug-polymer interactions need intensive investigation to provide more useful information for optimizing the formulation and the process parameters of HME. © 2013 Royal Pharmaceutical Society.

  13. NRL Review 1991

    DTIC Science & Technology

    1991-05-01

    contact between averaging of the strong nuclear dipolar interaction the components will result at the interfacial region in this sample. In contrast, tho...and a sea marker to help save survivors $1.5 million for the institution in 1916, but of disasters at sea. A thermal diffusion process wartime delays...memory for large simulations on parallel intervening medium. Accomplishing this research array processors and immediate displays of results requires

  14. Canopy closure exerts weak controls on understory dynamics: a 30-year study of overstory-understory interactions

    Treesearch

    C.B. Halpern; J.A. Lutz

    2013-01-01

    Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory trees exert strong controls on understory herbs and shrubs during the transition from open- to closed-canopy forests, but long-term observations of this process are rare. We use long-term data from 188 plots to explore...

  15. Interannual Variability of Asian Tropopause Aerosol Layer (ATAL) and Asian Summer Monsoon Evolution

    NASA Astrophysics Data System (ADS)

    Yuan, C.; Lau, W. K. M.; Li, Z.

    2017-12-01

    The Asian Tropopause Aerosol Layer (ATAL), recently discovered from satellite observations, has drawn much attention on the need to study and better understand processes of atmospheric constituents' transportation in the upper troposphere and lower stratosphere (UTLS) and the variability of the Asian Monsoon Anticyclone (AMA). In this paper, based on analysis of 15 years (2001 - 2015) MERRA2 reanalysis data, we have investigated the interaction between the ATAL and monsoon dynamics and aerosol transport processes with respect to the variability of the AMA on interannual and intraseasonal time scales. Here, we present results showing that: (1) during pre- monsoon season, carbonaceous aerosols (CA), dust and carbon monoxide (CO)) accumulate along the southern slope of Tibetan Plateau (TP) and the Sichuan Basin of southwestern China. Surface pollutants are lofted up to UTLS by strong vertical convection, advected by the anticyclonic flow within the AMA forming ATAL during peak monsoon season, (2) during strong monsoon years (2001, 2005, 2007, 2010, 2012, 2014, 2015) the AMA peaks later, with stronger heating over TP and stronger ATAL, compared to weak monsoon years (2002, 2003, 2004, 2008, 2009, 2011, 2013). Enhanced vertical transport was also found over the top of TP during strong monsoon years, in conjunction with an enlarged and northward-shifted AMA, while near surface region was suppressed because of heavy rainout, (3) inspite of stronger precipitation wash out more dust and are transported to Indo-Gangetic Plain, and from the top of the TP to the UTLS, during peak monsoon season due to the stronger westerlies. (4) spectral analysis of aerosol and monsoon winds, shows that the ATAL can be modulated by UTLS transport processes on monsoon intraseasonal oscillations with strong quasi- biweekly time scales during strong monsoon, and strong 20-30 day quasi-periodicity during weak monsoon years.

  16. Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years

    PubMed Central

    Zhang, Shuai; Zhang, Limin; Lacasse, Suzanne; Nadim, Farrokh

    2016-01-01

    It is increasingly clear that landslides represent a major cause of economic costs and deaths in earthquakes in mountains. In the Wenchuan earthquake case, post-seismic cascading landslides continue to represent a major problem eight years on. Failure to anticipate the impact of cascading landslides could lead to unexpected losses of human lives and properties. Previous studies tended to focus on separate landslide processes, with little attention paid to the quantification of long-term evolution of multiple processes or the evolution of mass movements. The very active mass movements near the epicentre of the Wenchuan earthquake provided us a unique opportunity to understand the complex processes of the evolving cascading landslides after a strong earthquake. This study budgets the mass movements on the hillslopes and in the channels in the first eight years since the Wenchuan earthquake and verify a conservation in mass movements. A system illustrating the evolution and interactions of mass movement after a strong earthquake is proposed. PMID:27824077

  17. Thermodynamic Origins of Monovalent Facilitated RNA Folding

    PubMed Central

    Holmstrom, Erik D.; Fiore, Julie L.; Nesbitt, David J.

    2012-01-01

    Cations have long been associated with formation of native RNA structure and are commonly thought to stabilize the formation of tertiary contacts by favorably interacting with the electrostatic potential of the RNA, giving rise to an “ion atmosphere”. A significant amount of information regarding the thermodynamics of structural transitions in the presence of an ion atmosphere has accumulated and suggests stabilization is dominated by entropic terms. This work provides an analysis of how RNA–cation interactions affect the entropy and enthalpy associated with an RNA tertiary transition. Specifically, temperature-dependent single-molecule fluorescence resonance energy transfer studies have been exploited to determine the free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) of folding for an isolated tetraloop–receptor tertiary interaction as a function of Na+ concentration. Somewhat unexpectedly, increasing the Na+ concentration changes the folding enthalpy from a strongly exothermic process [e.g., ΔH° = −26(2) kcal/mol at 180 mM] to a weakly exothermic process [e.g., ΔH° = −4(1) kcal/mol at 630 mM]. As a direct corollary, it is the strong increase in folding entropy [Δ(ΔS°) > 0] that compensates for this loss of exothermicity for the achievement of more favorable folding [Δ(ΔG°) < 0] at higher Na+ concentrations. In conjunction with corresponding measurements of the thermodynamics of the transition state barrier, these data provide a detailed description of the folding pathway associated with the GAAA tetraloop–receptor interaction as a function of Na+ concentration. The results support a potentially universal mechanism for monovalent facilitated RNA folding, whereby an increasing monovalent concentration stabilizes tertiary structure by reducing the entropic penalty for folding. PMID:22448852

  18. Facilitation drives 65 years of vegetation change in the Sonoran Desert

    USGS Publications Warehouse

    Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.

    2010-01-01

    Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.

  19. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light.

    PubMed

    Moncayo-Lasso, Alejandro; Mora-Arismendi, Luis Enrique; Rengifo-Herrera, Julián Andrés; Sanabria, Janeth; Benítez, Norberto; Pulgarin, César

    2012-05-01

    TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxidative conditions, inactivation of Escherichia coli, Shigella sonnei and Salmonella typhimurium was carried out in the absence and in the presence of 10 mg L(-1) of R and H. The 100% abatement of R and H by using a TiO2 photocatalytic process in the absence of bacteria was observed in 90 min for R and in 120 min for H, while in the presence of microorganisms abatement was only of 55% and 35% for R and H, respectively. Photo-Fenton reagent at pH 5.0 completely removed R and H in 40 min, whereas in the presence of microorganisms their degradation was of 60% to 80%. On the other hand, 2 h of TiO2 photocatalytic process inactivated S. typhimurium and E. coli cells in three and six orders of magnitude, respectively, while S. sonnei was completely inactivated in 10 min. In the presence of R or H, the bacterial inactivation via TiO2 photocatalysis was significantly decreased. With photo-Fenton reagent at pH 5 all the microorganisms tested were completely inactivated in 40 min of simulated solar light irradiation in the absence of organics. When R and H were present, bacterial photo-Fenton inactivation was less affected. The obtained results suggest that in both TiO2 and iron photo-assisted processes, there is competition between organic substances and bacteria simultaneously present for generated reactive oxygen species (ROS). This competition is most important in heterogeneous systems, mainly when there are strong organic-TiO2 surface interactions, as in the resorcinol case, suggesting that bacteria-TiO2 interactions could play a key role in photocatalytic cell inactivation processes.

  20. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    NASA Astrophysics Data System (ADS)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of polyatomic molecules, including high harmonic generation (HHG). We discuss an experimental method, Channel-Resolved Above Threshold Ionization (CRATI), which directly unveils the electronic channels participating in the attosecond molecular strong field ionization response [10]. This work was supported by the National Research Council of Canada and the Natural Sciences & Engineering Research Council.

  1. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  2. The Strength of Strong Ties for Older Rural Adults: Regional Distinctions in the Relationship between Social Interaction and Subjective Well-Being

    ERIC Educational Resources Information Center

    Mair, Christine A.; Thivierge-Rikard, R. V.

    2010-01-01

    Classic and contemporary sociological theories suggest that social interaction differs in rural and urban areas. Intimate, informal interactions (strong ties) are theorized to characterize rural areas while urban areas may possess more formal and rationalized interactions (weak ties). Aging and social support literature stresses social interaction…

  3. Pentavalent neptunyl ([OΞNpΞO] +) cation–cation interactions in aqueous/polar organic mixed-solvent media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, Adam G.; Martin, Leigh R.; Nash, Kenneth L.

    Bonding interactions between polyvalent cations and oxo-anions are well known and characterized by predictably favorable Gibbs energies in solution-phase coordination chemistry. In contrast, interactions between ions of like charge are generally expected to be repulsive and strongly influenced by cation solvation. An exception to this instinctive rule is found in the existence of complexes resulting from interactions of pentavalent actinyl cations ([O≡An≡O] +) with selected polyvalent cations. Such cation–cation complexes have been known to exist since the 1960s, when they were first reported by Sullivan and co-workers. The weak actinyl cation–cation complex, resulting from a bonding interaction between a pentavalentmore » linear dioxo actinyl cation donor and hexavalent actinyl or trivalent/tetravalent metal cation acceptor, has been most commonly seen in media in which water activities are reduced, principally highly-salted aqueous media. Such interactions of pentavalent actinides are of relevance in ongoing research that focuses on advanced nuclear fuel processing systems based on the upper oxidation states of americium. This investigation focuses on exploring the thermodynamic stability of complexes between selected highly-charged metal cations (Al 3+, Sc 3+, Cr 3+, Fe 3+, In 3+ and UO 2+ 2) and the pentavalent neptunyl cation (NpO + 2, whose coordination chemistry is similar to that of AmO + 2 while exhibiting significantly greater oxidation state stability) in aqueous–polar organic mixed-solvents. As a result, the Gibbs energies for the cation–cation complexation reactions are correlated with general features of electrostatic bonding models; the NpO + 2 • Cr 3+ complex exhibits unexpectedly strong interactions that may indicate significant covalency in the cation–cation bonding interaction.« less

  4. Pentavalent neptunyl ([OΞNpΞO] +) cation–cation interactions in aqueous/polar organic mixed-solvent media

    DOE PAGES

    Burn, Adam G.; Martin, Leigh R.; Nash, Kenneth L.

    2017-06-17

    Bonding interactions between polyvalent cations and oxo-anions are well known and characterized by predictably favorable Gibbs energies in solution-phase coordination chemistry. In contrast, interactions between ions of like charge are generally expected to be repulsive and strongly influenced by cation solvation. An exception to this instinctive rule is found in the existence of complexes resulting from interactions of pentavalent actinyl cations ([O≡An≡O] +) with selected polyvalent cations. Such cation–cation complexes have been known to exist since the 1960s, when they were first reported by Sullivan and co-workers. The weak actinyl cation–cation complex, resulting from a bonding interaction between a pentavalentmore » linear dioxo actinyl cation donor and hexavalent actinyl or trivalent/tetravalent metal cation acceptor, has been most commonly seen in media in which water activities are reduced, principally highly-salted aqueous media. Such interactions of pentavalent actinides are of relevance in ongoing research that focuses on advanced nuclear fuel processing systems based on the upper oxidation states of americium. This investigation focuses on exploring the thermodynamic stability of complexes between selected highly-charged metal cations (Al 3+, Sc 3+, Cr 3+, Fe 3+, In 3+ and UO 2+ 2) and the pentavalent neptunyl cation (NpO + 2, whose coordination chemistry is similar to that of AmO + 2 while exhibiting significantly greater oxidation state stability) in aqueous–polar organic mixed-solvents. As a result, the Gibbs energies for the cation–cation complexation reactions are correlated with general features of electrostatic bonding models; the NpO + 2 • Cr 3+ complex exhibits unexpectedly strong interactions that may indicate significant covalency in the cation–cation bonding interaction.« less

  5. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  6. Theory of type 3b solar radio bursts. [plasma interaction and electron beams

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Delanoee, J.

    1975-01-01

    During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.

  7. Advances in Lipidomics for Cancer Biomarkers Discovery

    PubMed Central

    Perrotti, Francesca; Rosa, Consuelo; Cicalini, Ilaria; Sacchetta, Paolo; Del Boccio, Piero; Genovesi, Domenico; Pieragostino, Damiana

    2016-01-01

    Lipids play critical functions in cellular survival, proliferation, interaction and death, since they are involved in chemical-energy storage, cellular signaling, cell membranes, and cell–cell interactions. These cellular processes are strongly related to carcinogenesis pathways, particularly to transformation, progression, and metastasis, suggesting the bioactive lipids are mediators of a number of oncogenic processes. The current review gives a synopsis of a lipidomic approach in tumor characterization; we provide an overview on potential lipid biomarkers in the oncology field and on the principal lipidomic methodologies applied. The novel lipidomic biomarkers are reviewed in an effort to underline their role in diagnosis, in prognostic characterization and in prediction of therapeutic outcomes. A lipidomic investigation through mass spectrometry highlights new insights on molecular mechanisms underlying cancer disease. This new understanding will promote clinical applications in drug discovery and personalized therapy. PMID:27916803

  8. Soni-removal of nucleic acids from inclusion bodies.

    PubMed

    Neerathilingam, Muniasamy; Mysore, Sumukh; Gandham, Sai Hari A

    2014-05-23

    Inclusion bodies (IBs) are commonly formed in Escherichia coli due to over expression of recombinant proteins in non-native state. Isolation, denaturation and refolding of these IBs is generally performed to obtain functional protein. However, during this process IBs tend to form non-specific interactions with sheared nucleic acids from the genome, thus getting carried over into downstream processes. This may hinder the refolding of IBs into their native state. To circumvent this, we demonstrate a methodology termed soni-removal which involves disruption of nucleic acid-inclusion body interaction using sonication; followed by solvent based separation. As opposed to conventional techniques that use enzymes and column-based separations, soni-removal is a cost effective alternative for complete elimination of buried and/or strongly bound short nucleic acid contaminants from IBs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The roles of fluid motion and other transport phenomena in the morphology of materials

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1993-01-01

    Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile.

  10. Unbinding of fluorinated oxime drug from the AChE gorge in polarizable water: a well-tempered metadynamics study.

    PubMed

    Pathak, Arup Kumar; Bandyopadhyay, Tusar

    2017-02-15

    Despite the fact that fluorination makes a drug more lipophilic, the molecular level understanding of protein-fluorinated drug interactions is very poor. Due to their enhanced ability to penetrate the blood brain barrier, they are suitable for reactivation of organophosphorus inactivated acetylcholinesterase (AChE) in the central nervous system. We systematically studied the unbinding of fluorinated obidoxime (FOBI) and non-fluorinated obidoxime (OBI) from the active site gorge of the serine hydrolase AChE in mean field polarizable water by employing all atom molecular dynamics simulations. It is observed that the unbinding process is strongly influenced by cation-π, hydrogen bond (HB) and water bridge interactions. The FOBI drug interacts more strongly with the protein residues than OBI and this is also verified from quantum mechanical calculations. Distinct unbinding pathways for FOBI and OBI are observed as evident from the 1D and 2D potential of mean force of the unbinding profiles. The present study suggests that the FOBI drug is held more firmly in the gorge of AChE in comparison to OBI and may lead to higher reactivation efficiency of the inactivated enzyme.

  11. The roles of fluid motion and other transport phenomena in the morphology of materials

    NASA Astrophysics Data System (ADS)

    Saville, D. A.

    1993-11-01

    Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile.

  12. Intensive Evening Outpatient Treatment for Patients With Personality Dysfunction: Early Group Process, Change in Interpersonal Distress, and Longer-Term Social Functioning.

    PubMed

    Joyce, Anthony S; Ogrodniczuk, John S; Kealy, David

    2017-01-01

    Entrenched interpersonal difficulties are a defining feature of those with personality dysfunction. Evening treatment-a comprehensive and intensive group-oriented outpatient therapy program-offers a unique approach to delivering mental health services to patients with chronic personality dysfunction. This study assessed change in interpersonal problems as a key outcome, the relevance of such change to future social functioning, and the influence of early group processes on this change. Consecutively admitted patients (N = 75) to a group-oriented evening treatment program were recruited; the majority were diagnosed with personality disorder. Therapy outcome was represented by scores on the Inventory of Interpersonal Problems. Follow-up outcome was represented by the global score of the Social Adjustment Scale. Group climate, group cohesion, and the therapeutic alliance were examined as process variables. Patients experienced substantial reduction in distress associated with interpersonal problems; early process factors that reflected a cohesive and engaged group climate and stronger therapeutic alliance were predictive of this outcome. Improvement in interpersonal distress was predictive of global social functioning six months later. The therapeutic alliance most strongly accounted for change in interpersonal problems at posttreatment and social functioning at follow-up. A comprehensive and integrated outpatient group therapy program, offered in the evening to accommodate patients' real-life demands, can facilitate considerable improvement in interpersonal problems, which in turn influences later social functioning. The intensity and intimacy of peer interactions in the therapy groups, and a strong alliance with the program therapists, are likely interacting factors that are particularly important to facilitate such change.

  13. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  14. Grammatical constraints on phonological encoding in speech production.

    PubMed

    Heller, Jordana R; Goldrick, Matthew

    2014-12-01

    To better understand the influence of grammatical encoding on the retrieval and encoding of phonological word-form information during speech production, we examine how grammatical class constraints influence the activation of phonological neighbors (words phonologically related to the target--e.g., MOON, TWO for target TUNE). Specifically, we compare how neighbors that share a target's grammatical category (here, nouns) influence its planning and retrieval, assessed by picture naming latencies, and phonetic encoding, assessed by word productions in picture names, when grammatical constraints are strong (in sentence contexts) versus weak (bare naming). Within-category (noun) neighbors influenced planning time and phonetic encoding more strongly in sentence contexts. This suggests that grammatical encoding constrains phonological processing; the influence of phonological neighbors is grammatically dependent. Moreover, effects on planning times could not fully account for phonetic effects, suggesting that phonological interaction affects articulation after speech onset. These results support production theories integrating grammatical, phonological, and phonetic processes.

  15. A facile molten-salt route to graphene synthesis.

    PubMed

    Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus

    2014-01-15

    Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  17. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Jui-Yuan

    2010-10-19

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less

  18. Spectral and angular distribution of photons via radiative damping in extreme ultra-intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2012-10-01

    Spectral and angular distribution of photons produced in the interaction of extremely intense laser (> 10^22,/cm^2) with dense plasma are studied with a help of a collisional particle-in-cell simulation, PICLS. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. We had developed numerical models of these processes in PICLS and study the spectrum and the angular distribution of γ-rays produced in the relativistic laser regime. Such relativistic γ-rays have wide range of frequencies and the angular distribution depends on the hot electron source. From the power loss calculation in PICLS we found that the Bremsstrahlung will get saturated at I > 10^22,/cm^2 while the radiative damping will continuously increase. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and how to catch the signature of the radiative damping in future experiments.

  19. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    NASA Astrophysics Data System (ADS)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  20. Multiple parton interactions and forward double pion production in pp and dA scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, M.; Vogelsang, W.

    2011-02-01

    We estimate the contributions by double-parton interactions to the cross sections for pp{yields}{pi}{sup 0}{pi}{sup 0}X and dA{yields}{pi}{sup 0}{pi}{sup 0}X at the Relativistic Heavy Ion Collider (RHIC). We find that such contributions become important at large forward rapidities of the produced pions. This is, in particular, the case for dA scattering, where they strongly enhance the azimuthal-angular independent pedestal component of the cross section, providing a natural explanation of this feature of the RHIC dA data. We argue that the discussed processes open a window to studies of double quark distributions in nucleons. We also briefly address the roles of shadowingmore » and energy loss in dA scattering, which we show to affect the double-inclusive pion cross section much more strongly than the single-inclusive one. We discuss the implications of our results for the interpretation of pion azimuthal correlations.« less

  1. Comprehensive Parameterization of the p-Meson Spectral Function in Hot and Dense Matter

    NASA Astrophysics Data System (ADS)

    Onyango, Thomas; Rapp, Ralf

    2017-09-01

    The goal of this research is to study how hadronic matter transitions into quark-gluon plasma. This transition is believed to have occurred in the early universe about 10 microseconds after the big bang. In particular, this transition created more than 95% of the visible mass in the universe, and confined quarks and gluons into hadrons. Hot nuclear matter can be recreated in the laboratory by colliding heavy atomic nuclei at very high energies. This transition into the quark-gluon plasma can be probed by analyzing the invariant mass distributions of ρ-mesons. The ρ-meson was chosen because it decays into dilepton pairs, e.g. or . Dilepton pairs are a preferred observable because they do not interact through the strong nuclear force inside the strongly interacting fireball, therefore ρ-mesons decay into dileptons in the medium and can be measured during heavy ion collisions. In this project, we developed a parameterization of this process which will help to describe quark-gluon plasma which filled the early universe.

  2. A highly stretchable autonomous self-healing elastomer

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Hui; Wang, Chao; Keplinger, Christoph; Zuo, Jing-Lin; Jin, Lihua; Sun, Yang; Zheng, Peng; Cao, Yi; Lissel, Franziska; Linder, Christian; You, Xiao-Zeng; Bao, Zhenan

    2016-06-01

    It is a challenge to synthesize materials that possess the properties of biological muscles—strong, elastic and capable of self-healing. Herein we report a network of poly(dimethylsiloxane) polymer chains crosslinked by coordination complexes that combines high stretchability, high dielectric strength, autonomous self-healing and mechanical actuation. The healing process can take place at a temperature as low as -20 °C and is not significantly affected by surface ageing and moisture. The crosslinking complexes used consist of 2,6-pyridinedicarboxamide ligands that coordinate to Fe(III) centres through three different interactions: a strong pyridyl-iron one, and two weaker carboxamido-iron ones through both the nitrogen and oxygen atoms of the carboxamide groups. As a result, the iron-ligand bonds can readily break and re-form while the iron centres still remain attached to the ligands through the stronger interaction with the pyridyl ring, which enables reversible unfolding and refolding of the chains. We hypothesize that this behaviour supports the high stretchability and self-healing capability of the material.

  3. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  4. Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics.

    PubMed

    Yamamoto, Keiji; Limwikrant, Waree; Moribe, Kunikazu

    2011-01-01

    The molecular states of active pharmaceutical ingredients (APIs) in pharmaceutical dosage forms strongly affect the properties and quality of a drug. Various important fundamental physicochemical studies were reviewed from the standpoint of molecular pharmaceutics. Mechanochemical effects were evaluated in mixtures of APIs and pharmaceutical additives. Amorphization, complex formation and nanoparticle formation are observed after grinding process depending on the combination of APIs and pharmaceutical additives. Sealed-heating method and mesoporous materials have been used to investigate drug molecular interactions in dosage forms. Molecular states have been investigated using powder X-ray diffraction, thermal analysis, IR, solid state fluorometry, and NMR. © 2011 Pharmaceutical Society of Japan

  5. Third order nonlinear phenomena in silica solid and hollow whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Barucci, A.; Berneschi, S.; Cosi, F.; Righini, G. C.; Nunzi Conti, G.; Soria, Silvia

    2016-03-01

    We report efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility χ(3) interactions in resonant silica microspheres and microbubbles in the regime of normal dispersion. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS) and comb generation. Unusually strong anti-Stokes components and extraordinarily symmetric spectra have been observed. Resonant SARS and SRS corresponding to different Raman bands were also observed. The lack of correlation between stimulated anti-stokes and stokes scattering spectra indicates that the signal has to be resonant with the cavity.

  6. Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Xue, Qi-Kun; Xie, X. C.

    2003-11-01

    Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo effect is influenced in a significant way by the presence of the processing magnetic field. In particular, when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot, Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong coupling low temperature regime.

  7. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface.

    PubMed

    Penna, Matthew J; Mijajlovic, Milan; Biggs, Mark J

    2014-04-09

    Although protein adsorption on solids is of immense relevance, experimental limitations mean there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. By subjecting 240+ molecular dynamics simulations of two peptide/water/solid surface systems to statistical analysis, a generalized molecular level mechanism for peptide adsorption has been identified for uncharged surfaces that interact strongly with the solution phase. This mechanism is composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a slow, stepwise and largely sequential adsorption of its residues, which we term 'statistical zippering'. The adsorption mechanism is dictated by the existence of water layers adjacent to the solid and orientational ordering therein. By extending the solid into the solution by ~8 Å and endowing it with a charged character, the water layers ensure the peptide feels the effect of the solid at a range well beyond the dispersion force that arises from it, thus inducing biased diffusion from afar. The charging of the interface also facilitates anchoring of the peptide near the surface via one of its hydrophilic groups, allowing it time it would otherwise not have to rearrange and lockdown. Finally, the slowness of the lockdown process is dictated by the need for the peptide groups to replace adjacent tightly bound interfacial water.

  8. Perceiving nonverbal behavior: neural correlates of processing movement fluency and contingency in dyadic interactions.

    PubMed

    Georgescu, Alexandra L; Kuzmanovic, Bojana; Santos, Natacha S; Tepest, Ralf; Bente, Gary; Tittgemeyer, Marc; Vogeley, Kai

    2014-04-01

    Despite the fact that nonverbal dyadic social interactions are abundant in the environment, the neural mechanisms underlying their processing are not yet fully understood. Research in the field of social neuroscience has suggested that two neural networks appear to be involved in social understanding: (1) the action observation network (AON) and (2) the social neural network (SNN). The aim of this study was to determine the differential contributions of the AON and the SNN to the processing of nonverbal behavior as observed in dyadic social interactions. To this end, we used short computer animation sequences displaying dyadic social interactions between two virtual characters and systematically manipulated two key features of movement activity, which are known to influence the perception of meaning in nonverbal stimuli: (1) movement fluency and (2) contingency of movement patterns. A group of 21 male participants rated the "naturalness" of the observed scenes on a four-point scale while undergoing fMRI. Behavioral results showed that both fluency and contingency significantly influenced the "naturalness" experience of the presented animations. Neurally, the AON was preferentially engaged when processing contingent movement patterns, but did not discriminate between different degrees of movement fluency. In contrast, regions of the SNN were engaged more strongly when observing dyads with disturbed movement fluency. In conclusion, while the AON is involved in the general processing of contingent social actions, irrespective of their kinematic properties, the SNN is preferentially recruited when atypical kinematic properties prompt inferences about the agents' intentions. Copyright © 2013 Wiley Periodicals, Inc.

  9. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  10. Lectures on Chiral Symmetries and Soft Pion Processes

    DOE R&D Accomplishments Database

    Nambu, Y.

    1966-08-01

    At the Istanbul Summer School in 1962 I gave lectures on "Chiral Symmetries in Weak and Strong Interactions." It is only recently, however, that the basic ideas that were started several years ago have begun to bear fruit. We will cover in the present lectures more or less the same general field, but certainly there will be a lot more results to be discussed now than four years ago.

  11. QCD and strongly coupled gauge theories: challenges and perspectives.

    PubMed

    Brambilla, N; Eidelman, S; Foka, P; Gardner, S; Kronfeld, A S; Alford, M G; Alkofer, R; Butenschoen, M; Cohen, T D; Erdmenger, J; Fabbietti, L; Faber, M; Goity, J L; Ketzer, B; Lin, H W; Llanes-Estrada, F J; Meyer, H B; Pakhlov, P; Pallante, E; Polikarpov, M I; Sazdjian, H; Schmitt, A; Snow, W M; Vairo, A; Vogt, R; Vuorinen, A; Wittig, H; Arnold, P; Christakoglou, P; Di Nezza, P; Fodor, Z; Garcia I Tormo, X; Höllwieser, R; Janik, M A; Kalweit, A; Keane, D; Kiritsis, E; Mischke, A; Mizuk, R; Odyniec, G; Papadodimas, K; Pich, A; Pittau, R; Qiu, J-W; Ricciardi, G; Salgado, C A; Schwenzer, K; Stefanis, N G; von Hippel, G M; Zakharov, V I

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  12. Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study.

    PubMed

    Sami, Selim; Haase, Pi A B; Alessandri, Riccardo; Broer, Ria; Havenith, Remco W A

    2018-04-19

    The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn-Sham method to calculate the electronic contribution to the dielectric constant for fullerene C 60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C 60 .

  13. Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study

    PubMed Central

    2018-01-01

    The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn–Sham method to calculate the electronic contribution to the dielectric constant for fullerene C60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C60. PMID:29561616

  14. Classification of processes involved in sharing individual participant data from clinical trials.

    PubMed

    Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena

    2018-01-01

    Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods : Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing.

  15. Classification of processes involved in sharing individual participant data from clinical trials

    PubMed Central

    Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena

    2018-01-01

    Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods: Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing. PMID:29623192

  16. Gravitational wave from dark sector with dark pion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsumura, Koji; Yamada, Masatoshi; Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiralmore » perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.« less

  17. MDMA alters emotional processing and facilitates positive social interaction

    PubMed Central

    Wardle, Margaret C.; de Wit, Harriet

    2014-01-01

    Background ±3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) produces “prosocial” effects, such as feelings of empathy and closeness, thought to be important to its abuse and its value in psychotherapy. However, it is not fully understood how MDMA alters basic emotional processes to produce these effects, or whether it produces corresponding changes in actual social behavior. Here we examined how MDMA affects perceptions of and responses to emotional expressions, and tested its effects on behavior during a social interaction. We also examined whether MDMA’s prosocial effects related to a measure of abuse liability. Methods Over three sessions 36 healthy volunteers with previous ecstasy use received MDMA (0.75mg/kg, 1.5mg/kg) and placebo under double-blind conditions. We measured i) mood and cardiovascular effects, ii) perception of and psychophysiological responses to emotional expressions iii) use of positive and negative words in a social interaction and iv) perceptions of an interaction partner. We then tested whether these effects predicted desire to take the drug again. Results MDMA slowed perception of angry expressions, increased psychophysiological responses to happy expressions, and increased positive word use and perceptions of partner empathy and regard in a social interaction. These effects were not strongly related to desire to take the drug again. Conclusions MDMA alters basic emotional processes by slowing identification of negative emotions and increasing responses to positive emotions in others. Further, it positively affects behavior and perceptions during actual social interaction. These effects may contribute to the efficacy of MDMA in psychotherapy, but appear less closely related to its abuse potential. PMID:24728603

  18. Termites promote resistance of decomposition to spatiotemporal variability in rainfall.

    PubMed

    Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P

    2017-02-01

    The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.

  19. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    PubMed

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  20. Contaminant-State Broadening Mechanism in a Driven Dissipative Rydberg System

    NASA Astrophysics Data System (ADS)

    Porto, J. V.

    2017-04-01

    The strong interactions in Rydberg atoms make them an ideal system for the study of correlated many-body physics, both in the presence and absence of dissipation. Using such highly excited atomic states requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. A full understanding of the scope and limitations of many Rydberg-based proposals requires simultaneously including these effects, which typically cannot be described by a mean-field treatment due to correlations in the quantum coherent and dissipative processes. We study a driven, dissipative system of Rydberg atoms in a 3D optical lattice, and observe substantial deviation from single-particle excitation rates, both on and off resonance. The observed broadened spectra cannot be explained by van der Waals interactions or a mean-field treatment of the system. Based on the magnitude of the broadening and the scaling with density and two-photon Rabi frequency, we attribute these effects to unavoidable blackbody-induced transitions to nearby Rydberg states of opposite parity, which have large, resonant dipole-dipole interactions with the state of interest. Even at low densities of Rydberg atoms, uncontrolled production of atoms in other states significantly modifies the energy levels of the remaining atoms. These off-diagonal exchange interactions result in complex many-body states of the system and have implications for off-resonant Rydberg dressing proposals. This work was partially supported by the ARL-CDQI program.

  1. Molecular description of the propagation of chirality from molecules to complex systems: different mechanisms controlled by hydrophobic interactions.

    PubMed

    Marinelli, Fabrizio; Sorrenti, Alessandro; Corvaglia, Valentina; Leone, Vanessa; Mancini, Giovanna

    2012-11-12

    In this work a combined theoretical and experimental approach was used to elucidate and describe at the molecular level the basic interactions that drive the transfer of the chiral information from chiral surfactant molecules to dye/surfactant assemblies. It was found that both hydrophobic interactions and relative concentrations strongly influence the chiroptical features of the heteroaggregates. In particular it was observed that, depending on the length of the surfactant hydrophobic chain, the chiral information is transferred to the dye by stabilizing an enantiomer either of a chiral conformer or of a chiral topological arrangement. These findings underline the role of hydrophobic interactions in the transfer of chirality and provide an example of the potential of in silico simulations for providing an accurate description of the process of chirality propagation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators

    NASA Astrophysics Data System (ADS)

    Anisimovas, Egidijus; Žlabys, Giedrius; Anderson, Brandon M.; JuzeliÅ«nas, Gediminas; Eckardt, André

    2015-06-01

    Fractional Chern insulators are the proposed phases of matter mimicking the physics of fractional quantum Hall states on a lattice without an overall magnetic field. The notion of Floquet fractional Chern insulators refers to the potential possibilities to generate the underlying topological band structure by means of Floquet engineering. In these schemes, a highly controllable and strongly interacting system is periodically driven by an external force at a frequency such that double tunneling events during one forcing period become important and contribute to shaping the required effective energy bands. We show that in the described circumstances it is necessary to take into account also third order processes combining two tunneling events with interactions. Referring to the obtained contributions as micromotion-induced interactions, we find that those interactions tend to have a negative impact on the stability of fractional Chern insulating phases and discuss implications for future experiments.

  3. TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig

    NASA Astrophysics Data System (ADS)

    Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco

    2018-03-01

    Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.

  4. Jet formation at the interaction of localized waves on the free surface of dielectric liquid in a tangential electric field

    NASA Astrophysics Data System (ADS)

    Kochurin, E. A.; Zubarev, N. M.

    2018-01-01

    Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a strip, the process of interaction of counter-propagating waves is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the wave amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.

  5. Spatially varying dispersion to model breakthrough curves.

    PubMed

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  6. Plant interactions alter the predictions of metabolic scaling theory.

    PubMed

    Lin, Yue; Berger, Uta; Grimm, Volker; Huth, Franka; Weiner, Jacob

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning). Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  7. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. © 2016 The Author(s).

  8. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  9. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    PubMed

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  10. Interaction between catechol-O-methyltransferase (COMT) Val158Met genotype and genetic vulnerability to schizophrenia during explicit processing of aversive facial stimuli.

    PubMed

    Lo Bianco, L; Blasi, G; Taurisano, P; Di Giorgio, A; Ferrante, F; Ursini, G; Fazio, L; Gelao, B; Romano, R; Papazacharias, A; Caforio, G; Sinibaldi, L; Popolizio, T; Bellantuono, C; Bertolino, A

    2013-02-01

    Emotion dysregulation is a key feature of schizophrenia, a brain disorder strongly associated with genetic risk and aberrant dopamine signalling. Dopamine is inactivated by catechol-O-methyltransferase (COMT), whose gene contains a functional polymorphism (COMT Val158Met) associated with differential activity of the enzyme and with brain physiology of emotion processing. The aim of the present study was to investigate whether genetic risk for schizophrenia and COMT Val158Met genotype interact on brain activity during implicit and explicit emotion processing. A total of 25 patients with schizophrenia, 23 healthy siblings of patients and 24 comparison subjects genotyped for COMT Val158Met underwent functional magnetic resonance imaging during implicit and explicit processing of facial stimuli with negative emotional valence. We found a main effect of diagnosis in the right amygdala, with decreased activity in patients and siblings compared with control subjects. Furthermore, a genotype × diagnosis interaction was found in the left middle frontal gyrus, such that the effect of genetic risk for schizophrenia was evident in the context of the Val/Val genotype only, i.e. the phenotype of reduced activity was present especially in Val/Val patients and siblings. Finally, a complete inversion of the COMT effect between patients and healthy subjects was found in the left striatum during explicit processing. Overall, these results suggest complex interactions between genetically determined dopamine signalling and risk for schizophrenia on brain activity in the prefrontal cortex during emotion processing. On the other hand, the effects in the striatum may represent state-related epiphenomena of the disorder itself.

  11. Affective decision-making moderates the effects of automatic associations on alcohol use among drug offenders.

    PubMed

    Cappelli, Christopher; Ames, Susan; Shono, Yusuke; Dust, Mark; Stacy, Alan

    2017-09-01

    This study used a dual-process model of cognition in order to investigate the possible influence of automatic and deliberative processes on lifetime alcohol use in a sample of drug offenders. The objective was to determine if automatic/implicit associations in memory can exert an influence over an individual's alcohol use and if decision-making ability could potentially modify the influence of these associations. 168 participants completed a battery of cognitive tests measuring implicit alcohol associations in memory (verb generation) as well as their affective decision-making ability (Iowa Gambling Task). Structural equation modeling procedures were used to test the relationship between implicit associations, decision-making, and lifetime alcohol use. Results revealed that among participants with lower levels of decision-making, implicit alcohol associations more strongly predicted higher lifetime alcohol use. These findings provide further support for the interaction between a specific decision function and its influence over automatic processes in regulating alcohol use behavior in a risky population. Understanding the interaction between automatic associations and decision processes may aid in developing more effective intervention components.

  12. Molecular Dynamics Simulation of Mahkota Dewa (Phaleria Macrocarpa) Extract in Subcritical Water Extraction Process

    NASA Astrophysics Data System (ADS)

    Hashim, N. A.; Mudalip, S. K. Abdul; Harun, N.; Che Man, R.; Sulaiman, S. Z.; Arshad, Z. I. M.; Shaarani, S. M.

    2018-05-01

    Mahkota Dewa (Phaleria Macrocarpa), a good source of saponin, flavanoid, polyphenol, alkaloid, and mangiferin has an extensive range of medicinal effects. The intermolecular interactions between solute and solvents such as hydrogen bonding considered as an important factor that affect the extraction of bioactive compounds. In this work, molecular dynamics simulation was performed to elucidate the hydrogen bonding exists between Mahkota Dewa extracts and water during subcritical extraction process. A bioactive compound in the Mahkota Dewa extract, namely mangiferin was selected as a model compound. The simulation was performed at 373 K and 4.0 MPa using COMPASS force field and Ewald summation method available in Material Studio 7.0 simulation package. The radial distribution functions (RDF) between mangiferin and water signify the presence of hydrogen bonding in the extraction process. The simulation of the binary mixture of mangiferin:water shows that strong hydrogen bonding was formed. It is suggested that, the intermolecular interaction between OH2O••HMR4(OH1) has been identified to be responsible for the mangiferin extraction process.

  13. Implications of recurrent disturbance for genetic diversity.

    PubMed

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  14. Covalent bond force profile and cleavage in a single polymer chain

    NASA Astrophysics Data System (ADS)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  15. Results from the Biology Concept Inventory (BCI), and what they mean for biogeoscience literacy.

    NASA Astrophysics Data System (ADS)

    Garvin-Doxas, K.; Klymkowsky, M.

    2008-12-01

    While researching the Biology Concept Inventory (BCI) we found that a wide class of student difficulties in genetics and molecular biology can be traced to deep-seated misconceptions about random processes and molecular interactions. Students believe that random processes are inefficient, while biological systems are very efficient, and are therefore quick to propose their own rational explanations for various processes (from diffusion to evolution). These rational explanations almost always make recourse to a driver (natural selection in genetics, or density gradients in molecular biology) with the process only taking place when the driver is present. The concept of underlying random processes that are taking place all the time giving rise to emergent behaviour is almost totally absent. Even students who have advanced or college physics, and can discuss diffusion correctly in that context, cannot make the transfer to biological processes. Furthermore, their understanding of molecular interactions is purely geometric, with a lock-and-key model (rather than an energy minimization model) that does not allow for the survival of slight variations of the "correct" molecule. Together with the dominant misconception about random processes, this results in a strong conceptual barrier in understanding evolutionary processes, and can frustrate the success of education programs.

  16. Application of agent-based system for bioprocess description and process improvement.

    PubMed

    Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J

    2010-01-01

    Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers

  17. About Edible Restaurants: Conflicts between Syntax and Semantics as Revealed by ERPs

    PubMed Central

    Kos, Miriam; Vosse, Theo; van den Brink, Daniëlle; Hagoort, Peter

    2010-01-01

    In order to investigate conflicts between semantics and syntax, we recorded ERPs, while participants read Dutch sentences. Sentences containing conflicts between syntax and semantics (Fred eats in a sandwich…/Fred eats a restaurant…) elicited an N400. These results show that conflicts between syntax and semantics not necessarily lead to P600 effects and are in line with the processing competition account. According to this parallel account the syntactic and semantic processing streams are fully interactive and information from one level can influence the processing at another level. The relative strength of the cues of the processing streams determines which level is affected most strongly by the conflict. The processing competition account maintains the distinction between the N400 as index for semantic processing and the P600 as index for structural processing. PMID:21833277

  18. Tunability of the fractional quantum Hall states in buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Apalkov, Vadym M.; Chakraborty, Tapash

    2014-12-01

    We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.

  19. TASEP of interacting particles of arbitrary size

    NASA Astrophysics Data System (ADS)

    Narasimhan, S. L.; Baumgaertner, A.

    2017-10-01

    A mean-field description of the stationary state behaviour of interacting k-mers performing totally asymmetric exclusion processes (TASEP) on an open lattice segment is presented employing the discrete Takahashi formalism. It is shown how the maximal current and the phase diagram, including triple-points, depend on the strength of repulsive and attractive interactions. We compare the mean-field results with Monte Carlo simulation of three types interacting k-mers: monomers, dimers and trimers. (a) We find that the Takahashi estimates of the maximal current agree quantitatively with those of the Monte Carlo simulation in the absence of interaction as well as in both the the attractive and the strongly repulsive regimes. However, theory and Monte Carlo results disagree in the range of weak repulsion, where the Takahashi estimates of the maximal current show a monotonic behaviour, whereas the Monte Carlo data show a peaking behaviour. It is argued that the peaking of the maximal current is due to a correlated motion of the particles. In the limit of very strong repulsion the theory predicts a universal behavior: th maximal currents of k-mers correspond to that of non-interacting (k+1) -mers; (b) Monte Carlo estimates of the triple-points for monomers, dimers and trimers show an interesting general behaviour : (i) the phase boundaries α * and β* for entry and exit current, respectively, as function of interaction strengths show maxima for α* whereas β * exhibit minima at the same strength; (ii) in the attractive regime, however, the trend is reversed (β * > α * ). The Takahashi estimates of the triple-point for monomers show a similar trend as the Monte Carlo data except for the peaking of α * ; for dimers and trimers, however, the Takahashi estimates show an opposite trend as compared to the Monte Carlo data.

  20. Meta-analysis of the effects of forest fragmentation on interspecific interactions.

    PubMed

    Magrach, Ainhoa; Laurance, William F; Larrinaga, Asier R; Santamaria, Luis

    2014-10-01

    Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). © 2014 Society for Conservation Biology.

  1. Finding Waldo: Learning about Users from their Interactions.

    PubMed

    Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-01

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.

  2. Quark soup al dente: applied superstring theory

    NASA Astrophysics Data System (ADS)

    Myers, R. C.; Vázquez, S. E.

    2008-06-01

    In recent years, experiments have discovered an exotic new state of matter known as the strongly coupled quark gluon plasma (sQGP). At present, it seems that standard theoretical tools, such as perturbation theory and lattice gauge theory, are poorly suited to understand this new phase. However, recent progress in superstring theory has provided us with a theoretical laboratory for studying very similar systems of strongly interacting hot non-Abelian plasmas. This surprising new perspective extracts the fluid properties of the sQGP from physical processes in a black hole spacetime. Hence we may find the answers to difficult particle physics questions about the sQGP from straightforward calculations in classical general relativity.

  3. Towards a turbulent magnetic dysnamo platform

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Rasmus, Alexander; Li, Hui; Li, Shengtai; Kuranz, Carolyn; Levesque, Joseph; Klein, Sallee; Tzeferacos, Petros

    2017-10-01

    It is known through astronomical observations that most of the Universe is ionized, magnetized, and often turbulent and filled with jets. One theorized process to create strong magnetic fields and jets is the turbulent magnetic dynamo. The magnetic dynamo is a fundamental process in plasma physics, taking kinetic energy and converting it to magnetic energy and is very important to planetary physics and astrophysics. We report on recent Omega EP experiments to produce platform with a turbulent plume of magnetized material with which to study the turbulent magnetic dynamo process. The laser interaction with the target can seed magnetic fields that can be advected into the plume and amplified to saturation by the turbulent magnetic dynamo process. The experimentally measured plume characteristics are compared to hydro code calculations.

  4. Gamma-ray lines from neutron stars as probes of fundamental physics

    NASA Technical Reports Server (NTRS)

    Brecher, K.

    1978-01-01

    The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.

  5. Handedness and the fringe of consciousness: strong handers ruminate while mixed handers self-reflect.

    PubMed

    Niebauer, Christopher Lee

    2004-12-01

    Previous research found that mixed handers (i.e., those that are more ambidextrous) were more likely than strong handers to update their beliefs (Niebauer, Aselage, & Schutte, 2002). It was assumed that this was due to greater degrees of communication between the two cerebral hemispheres in mixed handers. Niebauer and Garvey (2004) made connections between this model of updating beliefs and metacognitive processing. The current work proposes that variations in interhemispheric interaction (as measured by degree of handedness) contribute to differences in consciousness, specifically when consciousness is used in rumination versus the metacognitive task of self-reflection. Using the Rumination-Reflection Questionnaire (Trapnell & Campbell, 1999), predictions were supported such that strong handedness was associated with self-rumination; whereas, mixed handedness was associated with increased self-reflection p values<.01, (N=255). James's (1890) concept of the "fringe of consciousness" is used to make connections between metacognition, updating beliefs, and self-reflection. Several studies are reviewed suggesting that mixed handers experience fringe consciousness to a greater degree than strong handers.

  6. Reward-dependent modulation of working memory is associated with negative symptoms in schizophrenia.

    PubMed

    Hager, Oliver M; Kirschner, Matthias; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan

    2015-10-01

    The negative symptoms of schizophrenia have been associated with altered neural activity during both reward processing and cognitive processing. Even though increasing evidence suggests a strong interaction between these two domains, it has not been studied in relation to negative symptoms. To elucidate neural mechanisms of the reward-cognition interaction, we applied a letter variant of the n-back working memory task and varied the financial incentives for performance. In the interaction contrast, we found a significantly activated cluster in the rostral anterior cingulate cortex (ACC), the middle frontal gyrus, and the bilateral superior frontal gyrus. The interaction did not differ significantly between the patient group and a healthy control group, suggesting that patients with schizophrenia are on average able to integrate reward information and utilize this information to maximize cognitive performance. However within the patient group, we found a significant inverse correlation of ACC activity with the factor diminished expression. This finding is consistent with the model that a lack of available cognitive resources leads to diminished expression. We therefore argue that patients with diminished expression have difficulties in recruiting additional cognitive resources (as implemented in the ACC) in response to an anticipated reward. Due to this lack of cognitive resources, less processing capacity is available for effective expression, resulting in diminished expressive behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Borne, Kirk D.

    2003-09-01

    We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  9. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree

    PubMed Central

    Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure

    2017-01-01

    Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality. PMID:29051767

  10. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates

    PubMed Central

    Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur

    2013-01-01

    We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360

  11. Broken Scale Invariance and Anomalous Dimensions

    DOE R&D Accomplishments Database

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  12. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansil, Arun

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspectsmore » of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole predominantly decays via Auger processes, thereby providing an internal time-scale, which limits intermediate-state processes to timescales of a few femtoseconds. Accordingly, a number of activities directed at modeling K-, L- and M-edge RIXS in correlated materials were also pursused by our CRT. Our research effort supported by this CMCSN grant substantially advanced the understanding of x-ray scattering processes in the time-domain as well as in the more conventional scattering channels, including time-resolved photoemission, and how such processes can be modeled realistically in complex correlated materials more generally. The modeling of relaxation processes involved in time-domain spectroscopies is important also for understanding photoinduced effects such as energy conversion in photosynthesis and solar cell applications, and thus impacts the basic science for energy needs.« less

  13. Omega-Omega interaction on the Lattice

    NASA Astrophysics Data System (ADS)

    Yamada, Masanori; Halqcd Collaboration

    2014-09-01

    We report our results of central potential between two Omega baryons from 2+1 flavor full Lattice QCD simulation. In the past studies, there is a possibility that some decouplet baryons have a bound state. However, almost all decuplet baryons are unstable due to decays via the strong interaction. An exception is the Omega decuplte baryon, which is stable against the strong decays, so its interaction is suitable to be investigated. It is, however, still difficult to investigate the Omega-Omega interaction experimentally due to its short-life time via weak decays. Therefore, the lattice QCD study for the Omega-Omega interaction is necessary and important. We present results obtained by the extension of the HAL QCD method to the system of two decuplet baryons. Our numerical results are obtained from 2+1 flavor full QCD gauge configurations at L ~ 2 . 9 fm mπ ~ 701 MeV and mΩ ~ 1966 MeV, generated by the PACS-CS Collaboration. We find that the Omega-Omega interaction is strong attractive, but it's not strong enough to make a bound state at out simulation set up.

  14. Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok Kumar; Singh, Rajendra Kumar

    2018-02-01

    In this work, ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMIM][FSI]) has been immobilized into ordered mesoporous silica MCM-41 by a physical imbibition process. Transmission electron microscopy confirms the filling of mesopores of MCM-41. The effect of IL content in MCM-41 was probed in terms of thermal stability, chemical interactions, and dielectric properties. N2-sorption results indicate the compression of the IL in the nanopores of MCM-41, which contributes to an increase of the melting point probed by differential scanning calorimetry. The quantum chemical calculations confirmed that the ion-ion interaction in ion-pairs of IL were preferred over the hydrogen bonding interaction in the presence of SiO2 molecules, and these interactions probably compress the molecular size in the nanopores of MCM-41. Strong interactions between IL and porous MCM-41 were suggested as the mechanism of this immobilization, which was characterized by FTIR and dielectric spectroscopy.

  15. Topological invariant and cotranslational symmetry in strongly interacting multi-magnon systems

    NASA Astrophysics Data System (ADS)

    Qin, Xizhou; Mei, Feng; Ke, Yongguan; Zhang, Li; Lee, Chaohong

    2018-01-01

    It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-particle quantum system, we systematically develop a method to define a Chern invariant, which is a generalization of the well-known Thouless-Kohmoto-Nightingale-den Nijs invariant, for identifying strongly interacting topological states. As an example, we study the topological multi-magnon states in a generalized Heisenberg XXZ model, which can be realized by the currently available experiment techniques of cold atoms (Aidelsburger et al 2013 Phys. Rev. Lett. 111, 185301; Miyake et al 2013 Phys. Rev. Lett. 111, 185302). Through calculating the two-magnon excitation spectrum and the defined Chern number, we explore the emergence of topological edge bound states and give their topological phase diagram. We also analytically derive an effective single-particle Hofstadter superlattice model for a better understanding of the topological bound states. Our results not only provide a new approach to defining a topological invariant for interacting multi-particle systems, but also give insights into the characterization and understanding of strongly interacting topological states.

  16. The Charm and Beauty of Strong Interactions

    NASA Astrophysics Data System (ADS)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  17. Two Distinct Scene-Processing Networks Connecting Vision and Memory.

    PubMed

    Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M

    2016-01-01

    A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.

  18. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.

  19. Using satellites and global models to investigate aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  20. L. V. Keldysh’s “Ionization in the Field of a Strong Electromagnetic Wave” and modern physics of atomic interaction with a strong laser field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, M. V., E-mail: fedorov@gmail.com

    2016-03-15

    Basic premises, approximations, and results of L.V. Keldysh’s 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic–molecular systems with a strong laser field.

  1. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  2. The influence of interspecific interactions on species range expansion rates.

    PubMed

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe

    2014-12-01

    Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  3. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537

  4. Stay tuned: active amplification tunes tree cricket ears to track temperature-dependent song frequency.

    PubMed

    Mhatre, Natasha; Pollack, Gerald; Mason, Andrew

    2016-04-01

    Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).

  5. Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing.

    PubMed

    Seghier, Mohamed L; Price, Cathy J

    2013-08-01

    The ventral occipitotemporal sulcus (vOT) sustains strong interactions with the inferior frontal cortex during word processing. Consequently, activation in both regions co-lateralize towards the same hemisphere in healthy subjects. Because the determinants of lateralisation differ across posterior, middle and anterior vOT subregions, we investigated whether lateralisation in different inferior frontal regions would co-vary with lateralisation in the three different vOT subregions. A whole brain analysis found that, during semantic decisions on written words, laterality covaried in (1) posterior vOT and the precentral gyrus; (2) middle vOT and the pars opercularis, pars triangularis, and supramarginal gyrus; and (3) anterior vOT and the pars orbitalis, middle frontal gyrus and thalamus. These findings increase the spatial resolution of our understanding of how vOT interacts with other brain areas during semantic categorisation on words. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The spatial evolution of energetic electrons and plasma waves during the steady state beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Llobet, X.; Bernstein, W.; Kondradi, A.

    1985-01-01

    Experiments, involving the injection of energetic (keV) electron beams into the ionosphere-upper atmosphere system from rocket-borne electron guns, have provided evidence for the occurrence of strong beam-plasma interactions (BPI) both near to and remote from the injection point. However, the flight experiments have not provided clear and unambiguous evidence for the basic physical processes which produce the variety of confusing signatures. A laboratory experimental program was initiated to clarify some of a number of ambiguities regarding the obtained results. The present investigation is concerned with some experimental studies of the evolution of both the beam energy spectrum and the local wave amplitude-frequency spectrum at increasing axial distances from the electron gun for a variety of experimental conditions. The results of the studies show that the high frequency beam-plasma interaction represents the most important process.

  7. Physical discipline in Chinese American immigrant families: An adaptive culture perspective.

    PubMed

    Lau, Anna S

    2010-07-01

    Research on ethnic minority parenting has examined heritage cultural influences and contextual stressors on parenting processes. However, rarely are adaptive cultural processes considered, whereby ethnic minority parents bring their cultural values to bear in adapting to contextual demands in the host society. A survey of 107 Chinese American immigrant parents examined whether use of physical discipline can be predicted by cultural values, contextual stressors, and their interactions. Results indicated that distinct domains of cultural values were related to physical discipline in disparate ways, with some values decreasing risk and others indirectly increasing risk. There was some evidence that cultural values interacted with contextual stress to predict physical discipline. Parent-child acculturation conflicts were only related to physical discipline when parents held strong values about the importance of firm parental control. The findings illustrate how heritage cultural influences and current ecological demands may converge to shape parenting in immigrant families.

  8. The relationship between human behavior and the process of epidemic spreading in a real social network

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Rosińska, M.

    2012-07-01

    On the basis of experimental data on interactions between humans we have investigated the process of epidemic spreading in a social network. We found that the distribution of the number of contacts maintained in one day is exponential. Data on frequency and duration of interpersonal interactions are presented. They allow us to simulate the spread of droplet-/-air-borne infections and to investigate the influence of human dynamics on the epidemic spread. Specifically, we investigated the influence of the distribution of frequency and duration of those contacts on magnitude, epidemic threshold and peak timing of epidemics propagating in respective networks. It turns out that a large increase in the magnitude of an epidemic and a decrease in epidemic threshold are visible if and only if both are taken into account. We have found that correlation between contact frequency and duration strongly influences the effectiveness of control measures like mass immunization campaigns.

  9. Metal adatoms generated by the co-play of melamine assembly and subsequent CO adsorption.

    PubMed

    Wang, Li; Chen, Qiwei; Shi, Hong; Liu, Huihui; Ren, Xinguo; Wang, Bing; Wu, Kai; Shao, Xiang

    2016-01-28

    Molecular self-assembly films are expected to tailor the surface process by the periodic nanostructures and add-on functional groups. In this work, a molecular network of melamine with featured pores of subnanometer size is prepared on the Au(111) surface, and is found to be able to trap the gold adatoms and concomitant single vacancies generated under the impingement of CO molecules at room temperature. DFT calculations suggest that the strong CO-Au adatom interaction as well as the high adhesion of the Au adatom inside the melamine pore could well be the driving force behind such process. This study not only sheds light onto the interactions between gasses and the metal surface that is covered by molecular self-assembly films, but also provides a novel route to manipulate the monoatomic surface species which is of catalytic interest.

  10. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  11. Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy.

    PubMed

    Nemec, H; Rochford, J; Taratula, O; Galoppini, E; Kuzel, P; Polívka, T; Yartsev, A; Sundström, V

    2010-05-14

    Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.

  12. Predicting decisions in human social interactions using real-time fMRI and pattern classification.

    PubMed

    Hollmann, Maurice; Rieger, Jochem W; Baecke, Sebastian; Lützkendorf, Ralf; Müller, Charles; Adolf, Daniela; Bernarding, Johannes

    2011-01-01

    Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one's counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of their neuronal activation signature. However, to enable an online-assessment of the participant's mind state both approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging (fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70% when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum game. Using whole brain classification we were also able to discriminate between brain processes related to subjective emotional and motivational states and brain processes related to the evaluation of objective financial incentives.

  13. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1990-01-01

    Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.

  14. Eco-evolutionary processes affecting plant-herbivore interactions during early community succession.

    PubMed

    Howard, Mia M; Kalske, Aino; Kessler, André

    2018-06-01

    The quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima. We use surveys in a large-scale field experiment with repeated plots representing 6 years of early oldfield succession and reciprocal transplant common garden experiments to test for the relative importance of rapid evolution (genetic) and environmental changes (soil quality) in affecting mean plant resistance and growth phenotypes during community succession. While plant growth varied strongly with soil quality over the first 5 years of agricultural abandonment, plant secondary metabolism, and herbivore resistance varied minimally with the soil environment. Instead, mean composition and abundance of plant secondary compound bouquets differed between S. altissima plants from populations collected in communities in the first ("early") and sixth ("intermediate") years of oldfield succession, which was reflected in the feeding preference of the specialist herbivore, Trirhabda virgata, for early succession lines. Moreover, this preference was most pronounced on poorer quality, early succession soils. Overall, our data demonstrate that plant quality varies for insect herbivores during the course of early succession and this change is a combination of altered genotypic composition of the population and phenotypic plasticity in different soil environments.

  15. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis

    PubMed Central

    Lee, Seongju; Chang, Jaerak; Renvoisé, Benoît; Tipirneni, Anita; Yang, Sarah; Blackstone, Craig

    2012-01-01

    Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission. PMID:23015756

  16. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    NASA Technical Reports Server (NTRS)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  17. High taxonomic variability despite stable functional structure across microbial communities.

    PubMed

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  18. Unified Aerosol Microphysics for NWP

    DTIC Science & Technology

    2013-09-30

    it may be treated as a generic variable such as when it is processed by advection, or it may be used specifically like dust in ice nucleation...interactions. We shifted instead to a winter-time passage of a low pressure system across North Africa and the Mediterranean Sea (Figure 1). The strong...MODIS multispectral albedo data, MODIS land surface data, and the NRL DSD for SW Asia and E Asia a multi-variate, non-linear classification was

  19. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries.

    PubMed

    Niu, Shuzhang; Lv, Wei; Zhou, Guangmin; He, Yanbing; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2015-12-28

    Nitrogen and sulfur co-doped porous carbon spheres (NS-PCSs) were prepared using L-cysteine to control the structure and functionalization during the hydrothermal reaction of glucose and the subsequent activation process. As the sulfur hosts in Li-S batteries, NS-PCSs combine strong physical confinement and surface chemical interaction to improve the affinity of polysulfides to the carbon matrix.

  20. Optical wave turbulence and the condensation of light

    NASA Astrophysics Data System (ADS)

    Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania

    2009-11-01

    In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.

  1. Electromagnetic structure of the proton within the CP-violation hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutov, A. F., E-mail: krutov@ssu.samara.ru; Kudinov, M. Yu., E-mail: kudinov@ssu.samara.ru

    2013-11-15

    The so-called non-Rosenbluth behavior of the proton electromagnetic form factors can be explained within the hypothesis of CP violation in electromagnetic processes involving composite systems of strongly interacting particles. It is shown that this hypothesis leads to the appearance of an additional, anapole, form factor of the proton. The proton electromagnetic form factors, including the anapole form factor, are estimated on the basis of experimental data on elastic electron-proton scattering.

  2. SOME DISCRETE PROCESSES IN THE THEORY OF STOCHASTIC DUELS,

    DTIC Science & Technology

    By limiting the time between rounds to a constant, certain duels in which each side has a fixed kill probability in which strong interactions occur...are investigated. The models investigated here are (1) the fundamental (one versus one) duel in which firing times are fixed and their ratio is a...rational number; (2) the duel with displacements in which two contestants fire simultaneously at fixed intervals and a near miss causes a contestant to

  3. In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.

    2012-01-01

    The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.

  4. TEMPUS: A facility for containerless electromagnetic processing onboard spacelab

    NASA Technical Reports Server (NTRS)

    Lenski, H.; Willnecker, R.

    1990-01-01

    The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).

  5. The Methodology of Interactive Parametric Modelling of Construction Site Facilities in BIM Environment

    NASA Astrophysics Data System (ADS)

    Kozlovská, Mária; Čabala, Jozef; Struková, Zuzana

    2014-11-01

    Information technology is becoming a strong tool in different industries, including construction. The recent trend of buildings designing is leading up to creation of the most comprehensive virtual building model (Building Information Model) in order to solve all the problems relating to the project as early as in the designing phase. Building information modelling is a new way of approaching to the design of building projects documentation. Currently, the building site layout as a part of the building design documents has a very little support in the BIM environment. Recently, the research of designing the construction process conditions has centred on improvement of general practice in planning and on new approaches to construction site layout planning. The state of art in field of designing the construction process conditions indicated an unexplored problem related to connection of knowledge system with construction site facilities (CSF) layout through interactive modelling. The goal of the paper is to present the methodology for execution of 3D construction site facility allocation model (3D CSF-IAM), based on principles of parametric and interactive modelling.

  6. Competition and cooperation among similar representations: toward a unified account of facilitative and inhibitory effects of lexical neighbors.

    PubMed

    Chen, Qi; Mirman, Daniel

    2012-04-01

    One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.

  7. Femtosecond Time-Resolved Photoelectron Imaging of Excited Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Saladrigas, Catherine; Bacellar, Camila; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver

    2017-04-01

    Helium nanodroplets are excellent matrices for high resolution spectroscopy and the study of ultracold chemistry. They are optically transparent. In their electronic ground state, interact very weakly with any atomic or molecular dopant. Electronically excited droplets, however, can strongly interact with dopants through a variety of relaxation mechanisms. Previously, these host-dopant interactions were studied in the energy domain, revealing Penning ionization processes enabled by energy transfer between the droplet host and atomic dopants. Using femtosecond time resolved XUV photoelectron imaging, we plan to perform complementary experiments in the time domain to gain deeper insight into the timescales of energy transfer processes and how they compete with internal droplet relaxation. First experiments will be performed using noble gas dopants, such as Kr and Ne, which will be compared to previous energy-domain studies. Femtosecond XUV pulses produced by high harmonic generation will be used to excite the droplets, IR and near-UV light will be used to monitor the relaxation dynamics. Using velocity map imaging, both photoelectron kinetic energies and angular distributions will be recorded as a function of time. Preliminary results and proposed experiments will be presented.

  8. Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary Si-based type-I clathrates

    NASA Astrophysics Data System (ADS)

    Euchner, Holger; Pailhès, Stéphane; Giordano, Valentina M.; de Boissieu, Marc

    2018-01-01

    Despite their crystalline nature, thermoelectric clathrates exhibit a strongly reduced lattice thermal conductivity. While the reason for this unexpected behavior is known to lie in the peculiarities of the complex crystal structure and the interplay of the underlying guest-host framework, their respective roles are still not fully disentangled and understood. Our ab initio study of the most simple type-I clathrate phase, the binary compound Ba8Si46 and its derivatives Ba8 -xSi46 seeks to identify these mechanisms and provides insight into their origin. Indeed, the strongly decreased lattice thermal conductivity in thermoelectric clathrates is a consequence of a reduction of the acoustic phonon bandwidth, a lowering of the acoustic phonon group velocities, and the amplification of three-phonon-scattering processes. While the complexity of the crystal structure is demonstrated not to be the leading factor, the reasons are manifold. A modified Si-Si interaction causes a first decrease of the sound velocity, whereas the presence of flat Ba modes results in an additional lowering. These modes correspond to confined Bloch states that are localized on the Ba atoms and significantly increase the scattering phase space and, together with an increased anharmonicity of the interatomic interactions, strongly affect the phonon lifetimes.

  9. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  10. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.

    PubMed

    Xu, Y Y; Chen, B; Liu, J

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model-a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  11. Mixtures of Strongly Interacting Bosons in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.

    2008-06-20

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of {sup 41}K induces a significant loss of coherence in {sup 87}Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.

  12. EEG Correlates of Song Prosody: A New Look at the Relationship between Linguistic and Musical Rhythm

    PubMed Central

    Gordon, Reyna L.; Magne, Cyrille L.; Large, Edward W.

    2011-01-01

    Song composers incorporate linguistic prosody into their music when setting words to melody, a process called “textsetting.” Composers tend to align the expected stress of the lyrics with strong metrical positions in the music. The present study was designed to explore the idea that temporal alignment helps listeners to better understand song lyrics by directing listeners’ attention to instances where strong syllables occur on strong beats. Three types of textsettings were created by aligning metronome clicks with all, some or none of the strong syllables in sung sentences. Electroencephalographic recordings were taken while participants listened to the sung sentences (primes) and performed a lexical decision task on subsequent words and pseudowords (targets, presented visually). Comparison of misaligned and well-aligned sentences showed that temporal alignment between strong/weak syllables and strong/weak musical beats were associated with modulations of induced beta and evoked gamma power, which have been shown to fluctuate with rhythmic expectancies. Furthermore, targets that followed well-aligned primes elicited greater induced alpha and beta activity, and better lexical decision task performance, compared with targets that followed misaligned and varied sentences. Overall, these findings suggest that alignment of linguistic stress and musical meter in song enhances musical beat tracking and comprehension of lyrics by synchronizing neural activity with strong syllables. This approach may begin to explain the mechanisms underlying the relationship between linguistic and musical rhythm in songs, and how rhythmic attending facilitates learning and recall of song lyrics. Moreover, the observations reported here coincide with a growing number of studies reporting interactions between the linguistic and musical dimensions of song, which likely stem from shared neural resources for processing music and speech. PMID:22144972

  13. Experimental evidence for asymmetric mate preference and aggression: behavioral interactions in a woodrat (Neotoma) hybrid zone

    PubMed Central

    2013-01-01

    Background Female mate preferences may be under strong selection in zones of contact between closely related species because of greater variation in available mates and the potential costs of hybridization. We studied female mate preferences experimentally in a zone of secondary contact between Desert and Bryant’s Woodrat (Neotoma lepida and N. bryanti) in the southern foothills of the Sierra Nevada of California. We tested female preference for conspecific versus heterospecific males in paired choice trials in which females could interact freely with males, but males could not interact directly with each other. We compared preferences of females from both allopatric and sympatric sites. Results We did not find evidence of the process of reinforcement as assortative preferences were not stronger in sympatry than in allopatry. Mate preferences, however, were asymmetric, with N. lepida females mating preferentially with conspecifics and N. bryanti females showing no preference by species. Sympatric females were less likely to mate than allopatric females, due in part to an increase in aggressive interactions. However, even in the absence of aggression, courtship led to mating less often in sympatric females, suggesting they were choosier or had lower sexual motivation than allopatric females. Conclusions Patterns of mate choice in this woodrat system appear to be strongly impacted by body size and aggressive behavior. In particular, females of the smaller-bodied species rarely interact with the relatively large heterospecific males. In contrast females of the larger-bodied species accept the relatively small heterospecific males. For sympatric animals, rates of aggression were markedly higher than for allopatric animals and reduced affiliative and reproductive behavior in our trials. Sympatric animals are larger and more aggressive, traits that are likely under strong ecological selection across the sharp resource gradient that characterizes the contact zone. However, our results suggest that these traits that are likely favored in competitive interactions between the species also impact reproductive interactions. Combined with our previous findings of post-zygotic isolation in this system, this study suggests that multiple isolating mechanisms contribute to the rate of genetic exchange between these species when they come into contact, and that these mechanisms are the result of selection on traits that are important in a range of ecological and reproductive interactions. PMID:24093823

  14. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  15. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  16. Ghosts, strong coupling, and accidental symmetries in massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffayet, C.; GReCO/IAP, 98 bis boulevard Arago, 75014 Paris; Rombouts, J.-W.

    2005-08-15

    We show that the strong self-interaction of the scalar polarization of a massive graviton can be understood in terms of the propagation of an extra ghostlike degree of freedom, thus relating strong coupling to the sixth degree of freedom discussed by Boulware and Deser in their Hamiltonian analysis of massive gravity. This enables one to understand the Vainshtein recovery of solutions of massless gravity as being due to the effect of the exchange of this ghost, which gets frozen at distances larger than the Vainshtein radius. Inside this region, we can trust the two-field Lagrangian perturbatively, while at larger distancesmore » one can use the higher derivative formulation. We also compare massive gravity with other models, namely, deconstructed theories of gravity, as well as the Dvali-Gabadadze-Porrati model. In the latter case, we argue that the Vainshtein recovery process is of a different nature, not involving a ghost degree of freedom.« less

  17. Egalitarianism in young children.

    PubMed

    Fehr, Ernst; Bernhard, Helen; Rockenbach, Bettina

    2008-08-28

    Human social interaction is strongly shaped by other-regarding preferences, that is, a concern for the welfare of others. These preferences are important for a unique aspect of human sociality-large scale cooperation with genetic strangers-but little is known about their developmental roots. Here we show that young children's other-regarding preferences assume a particular form, inequality aversion that develops strongly between the ages of 3 and 8. At age 3-4, the overwhelming majority of children behave selfishly, whereas most children at age 7-8 prefer resource allocations that remove advantageous or disadvantageous inequality. Moreover, inequality aversion is strongly shaped by parochialism, a preference for favouring the members of one's own social group. These results indicate that human egalitarianism and parochialism have deep developmental roots, and the simultaneous emergence of altruistic sharing and parochialism during childhood is intriguing in view of recent evolutionary theories which predict that the same evolutionary process jointly drives both human altruism and parochialism.

  18. Real causes of apparent abnormal results in heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; De Leo, V.; Fazio, G.; Giardina, G.

    2015-06-01

    We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.

  19. Particle Energization via Tearing Instability with Global Self-Organization Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarff, John; Guo, Fan

    The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less

  20. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites.

    PubMed

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-06-01

    Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.

  1. Cool but counterproductive: interactive, Web-based risk communications can backfire.

    PubMed

    Zikmund-Fisher, Brian J; Dickson, Mark; Witteman, Holly O

    2011-08-25

    Paper-based patient decision aids generally present risk information using numbers and/or static images. However, limited psychological research has suggested that when people interactively graph risk information, they process the statistics more actively, making the information more available for decision making. Such interactive tools could potentially be incorporated in a new generation of Web-based decision aids. The objective of our study was to investigate whether interactive graphics detailing the risk of side effects of two treatments improve knowledge and decision making over standard risk graphics. A total of 3371 members of a demographically diverse Internet panel viewed a hypothetical scenario about two hypothetical treatments for thyroid cancer. Each treatment had a chance of causing 1 of 2 side effects, but we randomly varied whether one treatment was better on both dimensions (strong dominance condition), slightly better on only one dimension (mild dominance condition), or better on one dimension but worse on the other (trade-off condition) than the other treatment. We also varied whether respondents passively viewed the risk information in static pictograph (icon array) images or actively manipulated the information by using interactive Flash-based animations of "fill-in-the-blank" pictographs. Our primary hypothesis was that active manipulation would increase respondents' ability to recognize dominance (when available) and choose the better treatment. The interactive risk graphic conditions had significantly worse survey completion rates (1110/1695, 65.5% vs 1316/1659, 79.3%, P < .001) than the static image conditions. In addition, respondents using interactive graphs were less likely to recognize and select the dominant treatment option (234/380, 61.6% vs 343/465, 73.8%, P < .001 in the strong dominance condition). Interactivity, however visually appealing, can both add to respondent burden and distract people from understanding relevant statistical information. Decision-aid developers need to be aware that interactive risk presentations may create worse outcomes than presentations of static risk graphic formats.

  2. Cool but Counterproductive: Interactive, Web-Based Risk Communications Can Backfire

    PubMed Central

    Dickson, Mark; Witteman, Holly O

    2011-01-01

    Background Paper-based patient decision aids generally present risk information using numbers and/or static images. However, limited psychological research has suggested that when people interactively graph risk information, they process the statistics more actively, making the information more available for decision making. Such interactive tools could potentially be incorporated in a new generation of Web-based decision aids. Objective The objective of our study was to investigate whether interactive graphics detailing the risk of side effects of two treatments improve knowledge and decision making over standard risk graphics. Methods A total of 3371 members of a demographically diverse Internet panel viewed a hypothetical scenario about two hypothetical treatments for thyroid cancer. Each treatment had a chance of causing 1 of 2 side effects, but we randomly varied whether one treatment was better on both dimensions (strong dominance condition), slightly better on only one dimension (mild dominance condition), or better on one dimension but worse on the other (trade-off condition) than the other treatment. We also varied whether respondents passively viewed the risk information in static pictograph (icon array) images or actively manipulated the information by using interactive Flash-based animations of “fill-in-the-blank” pictographs. Our primary hypothesis was that active manipulation would increase respondents’ ability to recognize dominance (when available) and choose the better treatment. Results The interactive risk graphic conditions had significantly worse survey completion rates (1110/1695, 65.5% vs 1316/1659, 79.3%, P < .001) than the static image conditions. In addition, respondents using interactive graphs were less likely to recognize and select the dominant treatment option (234/380, 61.6% vs 343/465, 73.8%, P < .001 in the strong dominance condition). Conclusions Interactivity, however visually appealing, can both add to respondent burden and distract people from understanding relevant statistical information. Decision-aid developers need to be aware that interactive risk presentations may create worse outcomes than presentations of static risk graphic formats. PMID:21868349

  3. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    NASA Astrophysics Data System (ADS)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  4. Hard QCD processes in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Freese, Adam

    The environment inside the atomic nucleus is one of the most fascinating arenas for the study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear medium a?ects the nature of both QCD processes and the quark-gluon structure of hadrons, allowing several unique aspects of the strong nuclear force to be investigated in reactions involving nuclear targets. The research presented in this dissertation explores two aspects of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of the nucleus as a micro-laboratory in which QCD processes can be studied. The partonic structure of the nucleus is calculated in this work by deriving and utilizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon structure of its constituent nucleons are taken together to determine the nuclear partonic structure. Light cone descriptions of short range correlations, in terms of both hadronic and partonic structure, are derived and taken into account. Medium modifications of the bound nucleons are accounted for using the color screening model, and QCD evolution is used to connect nuclear partonic structure at vastly di?erent energy scales. The formalism developed for calculating nuclear partonic structure is applied to inclusive dijet production from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and presented for the dijet cross section. The nucleus is investigated as a micro-laboratory in vector meson photoproduction reactions. In particular, the deuteron is studied in the break-up reaction gammad → Vpn, for both the φ(1020) and J/v vector mesons. The generalized eikonal approximation is utilized, allowing unambiguous separation of the impulse approximation and final state interactions (FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross section, each of which is due to an FSI between either the proton and neutron, or the produced vector meson and the spectator nucleon. The presence and size of the latter FSI valley/peak contains information about the meson-nucleon interaction, and it is shown that several models of this interaction can be distinguished by measuring the angular distribution for the deuteron breakup reaction.

  5. Giant exchange interaction in mixed lanthanides

    PubMed Central

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  6. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Lin, Changfeng; Qin, Wu; Dong, Changqing

    2016-11-01

    Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ < 33%), then dissociative adsorption occurs and becomes the main adsorption type after χ > 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.

  7. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    NASA Astrophysics Data System (ADS)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.

  8. Strain-induced shear instability in Liverpool Bay

    NASA Astrophysics Data System (ADS)

    Wihsgott, Juliane; Palmer, Matthew R.

    2013-04-01

    Liverpool Bay is a shallow subsection of the eastern Irish Sea with large tides (10 m), which drive strong tidal currents (1 ms-1). The Bay is heavily influenced by large freshwater inputs from several Welsh and English rivers that maintain a strong and persistent horizontal density gradient. This gradient interacts with the sheared tidal currents to strain freshwater over denser pelagic water on a semi-diurnal frequency. This Strain-Induced-Periodic-Stratification (SIPS) has important implications on vertical and horizontal mixing. The subtle interaction between stratification and turbulence in this complex environment is shown to be of critical importance to freshwater transport, and subsequently the fate of associated biogeochemical and pollutant pathways. Recent work identified an asymmetry of current ellipses due to SIPS that increases shear instability in the halocline with the potential to enhance diapycnal mixing. Here, we use data from a short, high intensity process study which reveals this mid-water mechanism maintains prolonged periods of sub-critical gradient Richardson number (Ri ≤ ¼) that suggests shear instability is likely. A time series of measurements from a microstructure profiler identifies the associated increase in turbulence is short lived and 'patchy' but sufficient to promote diapycnal mixing. The significance of this mixing process is further investigated by comparing our findings with long-term observations from the Liverpool Bay Coastal Observatory. We identify that the conditions for shear instability during SIPS are regularly met and suggest that this process contributes to the current underestimates of near coastal mixing observed in regional models. To assist our understanding of the observed processes and to test the current capability of turbulence 'closure schemes' we employ a one-dimensional numerical model to investigate the physical mechanisms driving diapycnal mixing in Liverpool Bay.

  9. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  10. Mutualistic mimicry and filtering by altitude shape the structure of Andean butterfly communities.

    PubMed

    Chazot, Nicolas; Willmott, Keith R; Santacruz Endara, Paola G; Toporov, Alexandre; Hill, Ryan I; Jiggins, Chris D; Elias, Marianne

    2014-01-01

    Both the abiotic environment and abiotic interactions among species contribute to shaping species assemblages. While the roles of habitat filtering and competitive interactions are clearly established, less is known about how positive interactions, whereby species benefit from the presence of one another, affect community structure. Here we assess the importance of positive interactions by studying Andean communities of butterflies that interact mutualistically via Müllerian mimicry. We show that communities at similar altitudes have a similar phylogenetic composition, confirming that filtering by altitude is an important process. We also provide evidence that species that interact mutualistically (i.e., species that share the same mimicry wing pattern) coexist at large scales more often than expected by chance. Furthermore, we detect an association between mimicry structure and altitude that is stronger than expected even when phylogeny is corrected for, indicating adaptive convergence for wing pattern and/or altitudinal range driven by mutualistic interactions. Positive interactions extend far beyond Müllerian mimicry, with many examples in plants and animals, and their role in the evolution and assembly of communities may be more pervasive than is currently appreciated. Our findings have strong implications for the evolution and resilience of community structure in a changing world.

  11. High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases

    PubMed Central

    Hida, Naoki; Awais, Muhammad; Takeuchi, Masaki; Ueno, Naoto; Tashiro, Mayuri; Takagi, Chiyo; Singh, Tanuja; Hayashi, Makoto; Ohmiya, Yoshihiro; Ozawa, Takeaki

    2009-01-01

    Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects. PMID:19536355

  12. Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.

    PubMed

    Hines, Jes; Gessner, Mark O

    2012-11-01

    1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  13. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  14. Electromagnetic Dissociation Cross Sections for High LET Fragments

    NASA Technical Reports Server (NTRS)

    Norbury, John

    2016-01-01

    Nuclear interaction cross sections are used in space radiation transport codes to calculate the probability of fragment emission in high energy nucleus-nucleus collisions. Strong interactions usually dominate in these collisions, but electromagnetic (EM) interactions can also sometimes be important. Strong interactions typically occur when the projectile nucleus hits a target nucleus, with a small impact parameter. For impact parameters larger than the sum of the nuclear radii, EM reactions dominate and the process is called electromagnetic dissociation (EMD) if one of the nuclei undergo fragmentation. Previous models of EMD have been used to calculate single proton (p) production, single neutron (n) production or light ion production, where a light ion is defined as an isotope of hydrogen (H) or helium (He), such as a deuteron (2H), a triton (3H), a helion (3He) or an alpha particle (4He). A new model is described which can also account for multiple nucleon production, such as 2p, 2n, 1p1n, 2p1n, 2p2n, etc. in addition to light ion production. Such processes are important to include for the following reasons. Consider, for example, the EMD reaction 56Fe + Al --> 52Cr + X + Al, for a 56Fe projectile impacting Al, which produces the high linear energy transfer (LET) fragment 52Cr. In this reaction, the most probable particles representing X are either 2p2n or 4He. Therefore, production of the high LET fragment 52Cr, must include the multiple nucleon production of 2p2n in addition to the light ion production of 4He. Previous models, such as the NUCFRG3 model, could only account for the 4He production process in this reaction and could not account for 2p2n. The new EMD model presented in this work accounts for both the light ion and multiple nucleon processes, and is therefore able to correctly account for the production of high LET products such as 52Cr. The model will be described and calculations will be presented that show the importance of light ion and multiple nucleon production. The work will also show that EMD reactions contribute most to those fragments with the highest LET.

  15. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.

    2013-01-01

    The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  16. Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.

    1991-01-01

    Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.

  17. High efficiency Raman memory by suppressing radiation trapping

    NASA Astrophysics Data System (ADS)

    Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2017-06-01

    Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.

  18. Spectral Line Shapes. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoppi, M.; Ulivi, L.

    1997-02-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple{minus}free and ultra{minus}fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction{minus}induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energymore » Science and Technology database.(AIP)« less

  19. Study of structure defect interactions in aluminum by the acoustic method. [internal friction in pure aluminum

    NASA Technical Reports Server (NTRS)

    Nicolaescu, I. I.

    1974-01-01

    Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.

  20. Soft pair excitations and double-log divergences due to carrier interactions in graphene

    NASA Astrophysics Data System (ADS)

    Lewandowski, Cyprian; Levitov, L. S.

    2018-03-01

    Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.

  1. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Bridging the gap: using microsociological theory to understand how expressed emotion predicts clinical outcomes.

    PubMed

    Stanhope, Victoria; Solomon, Phyllis

    2007-06-01

    Research has shown that expressed emotion (EE) among families is a strong predictor of relapse for people with severe mental illness. Recent studies have also found the presence of EE in consumer-provider relationships. Despite high consistency in the findings related to EE and relapse, the concept has weak validity as little is known about how exactly it triggers relapse. Microsociological theory provides a framework with which to analyze social interaction and, more specifically, understand how interactions relate to the emotions of pride and shame. By identifying the components of interaction rituals, the theory provides insight into the key processes underlying EE and demonstrates how methodologies based on direct observation have the potential to measure EE with greater validity. This article describes how microsociological theory can be applied to the concept of EE.

  3. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  4. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  5. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  6. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons

    PubMed Central

    Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.

    2016-01-01

    We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894

  7. Probing the interaction of anticancer drug temsirolimus with human serum albumin: molecular docking and spectroscopic insight.

    PubMed

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees

    2018-05-01

    The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 10 4  M -1 implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.

  8. The heterodimerization of platelet-derived chemokines.

    PubMed

    Carlson, James; Baxter, Sarah A; Dréau, Didier; Nesmelova, Irina V

    2013-01-01

    Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication.

    PubMed

    Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.

  10. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication

    PubMed Central

    Zhou, Jing; Bethune, Michael T.; Malkova, Natalia; Sutherland, Alexander M.; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell—T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma. PMID:29360859

  11. Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.)

    PubMed Central

    Serrano, Irene; Romero-Puertas, María C.; Rodríguez-Serrano, María; Sandalio, Luisa M.; Olmedilla, Adela

    2012-01-01

    Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen–pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O2˙− and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O2˙− and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen–pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells. PMID:22140239

  12. Fourier transform infrared spectroscopic study of the interactions of a strongly antimicrobial but weakly hemolytic analogue of gramicidin S with lipid micelles and lipid bilayer membranes.

    PubMed

    Lewis, Ruthven N A H; Kiricsi, Monika; Prenner, Elmar J; Hodges, Robert S; McElhaney, Ronald N

    2003-01-21

    Cyclo[VKLdKVdYPLKVKLdYP] (GS14dK(4)), a synthetic tetradecameric ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S (GS), retains the strong antimicrobial activity of GS but is 15-20 times less hemolytic. To characterize its interaction with lipid membranes and to understand the molecular basis of its capacity to lyse bacterial cells, in preference to erythrocytes, we have investigated the interactions of GS14dK(4) with detergent micelles and with lipid bilayer model membranes by Fourier transform infrared spectroscopy and compared our results with those of a similar study of GS [Lewis, R. N. A. H., et al. (1999) Biochemistry 38, 15193-15203]. In both aqueous and organic solvent solutions, GS14dK(4) adopts a beta-sheet conformation that is somewhat distorted and more sensitive to the polarity of its environment than GS. Like GS, GS14dK(4) is completely or partially excluded from gel-state lipid bilayers but interacts strongly with liquid-crystalline lipid bilayers and detergent micelle, and interacts more strongly with more fluid liquid-crystalline lipid systems. However, its interactions are more strongly influenced by membrane lipid order and fluidity, and unlike GS, it is essentially excluded from cholesterol-containing phospholipid bilayers. Also, GS14dK(4) is excluded from cationic lipid bilayers, but partitions more strongly and/or penetrates more deeply into anionic lipid bilayers than into those composed of either zwitterionic or nonionic lipids. Anionic lipids also facilitate GS14dK(4) interactions with multicomponent lipid bilayers which are predominantly zwitterionic or nonionic. Although GS14dK(4) generally penetrates and/or partitions into zwitterionic or uncharged lipid bilayers less strongly than does GS, its greater size and altered distribution of positive charges make it intrinsically more perturbing with regard to membrane organization once associated with lipid bilayers. This fact, combined with its relatively strong interactions with anionic phospholipids, may explain why GS14dK(4) retains relatively high antimicrobial activity. However, its low hemolytic activity is probably largely attributable to its low propensity to penetrate and/or partition into cholesterol-containing zwitterionic lipid membranes.

  13. Dietary and Lifestyle Factors Associated with Colorectal Cancer Risk and Interactions with Microbiota: Fiber, Red or Processed Meat and Alcoholic Drinks

    PubMed Central

    Tuan, Juan; Chen, Ying-Xuan

    2016-01-01

    Background Diets and lifestyles have been strongly associated with colorectal cancer (CRC). In the past several decades, emerging evidence has suggested that the gut microbiota may have a role in the development of CRC. Its interaction with diets and lifestyles could affect the carcinogenesis of CRC. Summary This review presents the most recent epidemiologic and experimental evidence of three factors that may convincingly have a role in CRC, including fiber, red or processed meat, and alcohol, focusing on potential mechanisms and their interactions with the gut microbiota. Key Message High consumption of fiber, low consumption of red or processed red meat as well as minimizing alcohol intake have been associated with a lower risk of CRC. Many microbial metabolites formed from those three substances may mediate the microbial diversity and the composition and abundance of the gut microbiota, which eventually affects the balance between health and disease, including CRC. Practical Implications Based on our synthetic review, clinicians may probably offer some recommendations and explanations to their patients who may want to modulate their diet and lifestyle to prevent CRC. As an easily modifiable environmental factor, it may be possible that applying dietary or lifestyle intervention could effectively protect against the development of CRC in the future. PMID:27722153

  14. Dynamic Mechanism of a Fluorinated Oxime Reactivator Unbinding from AChE Gorge in Polarizable Water.

    PubMed

    Pathak, Arup K; Bandyopadhyay, Tusar

    2018-04-12

    A well-tempered metadynamics simulation is performed to study the unbinding process of a fluorinated oxime (FHI-6) drug from the active-site gorge of acetylcholinesterase enzyme in a polarizable water medium. Cation-π interactions and water bridge and hydrogen bridge formations between the protein and the drug molecule are found to strongly influence the unbinding process, forming basins and barriers along the gorge pathway. Distinct unbinding pathways are found when FHI-6 was compared with its recently reported nonfluorinated analogue, HI-6. For example, because of permanent positive charges on both the pyridinium rings of HI-6, it exhibits the minimum in the potential of mean force of the unbinding process in the gorge mouth (where the peripheral anion site, PAS, of the enzyme is located), which is largely caused by cation-π interactions. However, the same interaction, both in the catalytic active-site (CAS) and PAS regions, is found to be greatly enhanced in its lipophilic fluorinated analogue, FHI-6, causing a deep potential energy minimum in the bound state. This may render FHI-6 to be held more firmly in the CAS region of the gorge, as is also evidenced from the microkinetics of unbinding transitions, measured through a combination of metadynamics and hyperdynamics simulations.

  15. Dietary and Lifestyle Factors Associated with Colorectal Cancer Risk and Interactions with Microbiota: Fiber, Red or Processed Meat and Alcoholic Drinks.

    PubMed

    Tuan, Juan; Chen, Ying-Xuan

    2016-09-01

    Diets and lifestyles have been strongly associated with colorectal cancer (CRC). In the past several decades, emerging evidence has suggested that the gut microbiota may have a role in the development of CRC. Its interaction with diets and lifestyles could affect the carcinogenesis of CRC. This review presents the most recent epidemiologic and experimental evidence of three factors that may convincingly have a role in CRC, including fiber, red or processed meat, and alcohol, focusing on potential mechanisms and their interactions with the gut microbiota. High consumption of fiber, low consumption of red or processed red meat as well as minimizing alcohol intake have been associated with a lower risk of CRC. Many microbial metabolites formed from those three substances may mediate the microbial diversity and the composition and abundance of the gut microbiota, which eventually affects the balance between health and disease, including CRC. Based on our synthetic review, clinicians may probably offer some recommendations and explanations to their patients who may want to modulate their diet and lifestyle to prevent CRC. As an easily modifiable environmental factor, it may be possible that applying dietary or lifestyle intervention could effectively protect against the development of CRC in the future.

  16. Progress report

    NASA Technical Reports Server (NTRS)

    Abhiraman, A.; Collard, D.; Cardelino, B.; Bhatia, S.; Desai, P.; Harruna, I.; Khan, I.; Mariam, Y.; Mensah, T.; Mitchell, M.

    1992-01-01

    The NASA funding allowed Clark Atlanta University (CAU) to establish a High Performance Polymers And Ceramics (HiPPAC) Research Center. The HiPPAC Center is consolidating and expanding the existing polymer and ceramic research capabilities at CAU through the development of interdepartmental and interinstitutional research in: (1) polymer synthesis; (2) polymer characterization and properties; (3) polymer processing; (4) polymer-based ceramic synthesis; and (5) ceramic characterization and properties. This Center has developed strong interactions between scientists and materials scientists of CAU and their counterparts from sister institutions in the Atlanta University Center (AUC) and the Georgia Institute of Technology. As a component of the center, we have started to develop strong collaborations with scientists from other universities and the HBCU's, national and federal agency laboratories, and the private sector during this first year. During this first year we have refined the focus of the research in the HiPPAC Center to three areas with seven working groups that will start programmatic activities on January 1, 1993, as follows: (1) nonlinear optical properties of chitosan derivatives; (2) polymeric electronic materials; (3) nondestructive characterization and prediction of polyimide performance; (4) solution processing of high-performance materials; (5) processable polyimides for composite applications; (6) sol-gel based ceramic materials processing; and (7) synthetic based processing of pre-ceramic polymers.

  17. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  18. Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2017-12-01

    Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.

  19. QCD and strongly coupled gauge theories: Challenges and perspectives

    DOE PAGES

    Brambilla, N.; Eidelman, S.; Foka, P.; ...

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many researchmore » streams which flow into and out of QCD, as well as a vision for future developments.« less

  20. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.

  1. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  2. Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water.

    PubMed

    Korak, Julie A; Wert, Eric C; Rosario-Ortiz, Fernando L

    2015-01-01

    Intracellular organic matter (IOM) from cyanobacteria may be released into natural waters following cell death in aquatic ecosystems and during oxidation processes in drinking water treatment plants. Fluorescence spectroscopy was evaluated to identify the presence of IOM from three cyanobacteria species during simulated release into natural water and following oxidation processes (i.e. ozone, free chlorine, chloramine, chlorine dioxide). Peak picking and the fluorescence index (FI) were explored to determine which IOM components (e.g., pigments) provide unique and persistent fluorescence signatures with minimal interferences from the background dissolved organic matter (DOM) found in Colorado River water (CRW). When IOM was added to ultrapure water, the fluorescence signature of the three cyanobacteria species showed similarities to each other. Each IOM exhibited a strong protein-like fluorescence and fluorescence at Ex 370 nm and Em 460 nm (FDOM), where commercial fluorescence sensors monitor. All species also had strong phycobiliprotein fluorescence (i.e. phycocyanin or phycoerythrin) in the higher excitation range (500-650 nm). All three IOM isolates had FI values greater than 2. When IOM was added to CRW, phycobiliprotein fluorescence was quenched through interactions between IOM and CRW-DOM. Mixing IOM and CRW demonstrated that protein-like and FDOM intensity responses were not a simple superposition of the starting material intensities, indicating that interactions between IOM and CRW-DOM fluorescing moieties were important. Fluorescence intensity in all regions decreased with exposure to ozone, free chlorine, and chlorine dioxide, but the FI still indicated compositional differences compared to CRW-DOM. The phycobiliproteins in IOM are not promising as a surrogate for IOM release, because their fluorescence intensity is quenched by interactions with DOM and decreased during oxidation processes. Increases in both FDOM intensity and FI are viable qualitative indicators of IOM release in natural waters and following oxidation and may provide a more robust real-time indication of the presence of IOM than conventional dissolved organic carbon or UV absorbance measurements.

  3. How would photons describe natural phenomena based upon their physical experiences?

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2013-10-01

    The question posed in the title represents an impossible approach to scientific investigation, but the approach is like a subjectivist. Obviously, photons cannot express their views; neither can we ask directly any scientific questions to the photons. The purpose is to draw the attention of the reader that even our strongly mathematically driven scientific enterprise is full of subjectivism when we start dissecting our thinking process. First, we frame questions in our mind to understand a natural phenomenon we have been observing. Let us not forget that framing the question determine the answer. The answers guide us to frame the foundational hypotheses to build a theory to "explain" the phenomenon under study. Our mind is a product of biological evolutionary requirements; which is further re-programmed by strong human social cultures. In other words, human constructed theories cannot spontaneously become rigorously objective, unless we consciously make them so. We need to develop a methodology of scientific thinking that will automatically force us to make repeated iterative corrections in generating questions as objectively as possible. Those questions will then guide us to re-construct the foundational hypotheses and re-frame the working theories. We are proposing that we add Interaction Process Mapping Epistemology (IPM-E) as a necessary extra thinking tool; which will complement the prevailing Measurable Data Modeling Epistemology (MDM-E). We believe that ongoing interaction processes in nature represent reality ontology. So the iterative application of IPM-E, along with MDM-E, will keep us along the route of ontological reality. We apply this prescription to reveal the universal property, Non-Interaction of Waves, which we have been neglecting for centuries. Using this property, we demonstrate that a large number of ad hoc hypotheses from Classical-, QM-, Relativity- and Astro-Physics can be easily modified to make physics more causal and understandable through common sense logics.

  4. Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations

    NASA Astrophysics Data System (ADS)

    Yang, Li; Pu, Han

    2016-09-01

    We show that the wave function in one spatial sector x1

  5. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.

  6. Strong-field adiabatic passage in the continuum: Electromagnetically induced transparency and stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Eilam, A.; Shapiro, M.

    2012-01-01

    We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.

  7. Innateness and culture in the evolution of language

    PubMed Central

    Kirby, Simon; Dowman, Mike; Griffiths, Thomas L.

    2007-01-01

    Human language arises from biological evolution, individual learning, and cultural transmission, but the interaction of these three processes has not been widely studied. We set out a formal framework for analyzing cultural transmission, which allows us to investigate how innate learning biases are related to universal properties of language. We show that cultural transmission can magnify weak biases into strong linguistic universals, undermining one of the arguments for strong innate constraints on language learning. As a consequence, the strength of innate biases can be shielded from natural selection, allowing these genes to drift. Furthermore, even when there is no natural selection, cultural transmission can produce apparent adaptations. Cultural transmission thus provides an alternative to traditional nativist and adaptationist explanations for the properties of human languages. PMID:17360393

  8. Atom-field dressed states in slow-light waveguide QED

    NASA Astrophysics Data System (ADS)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  9. Deep inelastic scattering of leptons from nuclear targets and the BFKL Pomeron

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Czyz, Wieslaw; Florkowski, Wojciech

    1997-06-01

    We calculate shadowing in the process of deep inelastic interactions of leptons with nuclei in the perturbative regime of QCD. We find appreciable shadowing for heavy nuclei (e.g., Pb) in the region of a small Bjorken scaling variable 10-5<=x<=10-3. This shadowing depends weakly on Q2, but it may be strongly influenced, especially at x>=10-3, by the existence of real parts of the forward scattering amplitudes.

  10. The footprints of Saharan Air Layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Centeno Delgado, Diana C.

    In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.

  11. Molecular dynamics simulations for the examination of mechanical properties of hydroxyapatite/ poly α-n-butyl cyanoacrylate under additive manufacturing.

    PubMed

    Wang, Yanen; Wei, Qinghua; Pan, Feilong; Yang, Mingming; Wei, Shengmin

    2014-01-01

    Molecular dynamics (MD) simulations emerged to be a helpful tool in the field of material science. In rapid prototyping artificial bone scaffolds process, the binder spraying volume and mechanism are very important for bone scaffolds mechanical properties. In this study, we applied MD simulations to investigating the binding energy of α-n-butyl cyanoacrylate (NBCA) on Hydroxyapatite (HA) crystallographic planes (001, 100 and 110), and to calculating and analyzing the mechanical properties and radial distribution function of the HA(110)/NBCA mixed system. The simulation results suggested that HA (110) has the highest binding energy with NBCA owing to the high planar atom density, and the mechanical properties of HA(110)/NBCA mixed system is stronger than pure HA system. Therefore, the multi-grade strength bone scaffold could be fabricated through spraying various volume NBCA binders during 3D printing process. By calculating the radial distribution function of HA(110)/NBCA, the essence of the interface interaction were successfully elucidated. The forming situation parameters can be referred to calculation results. There exists a strong interaction between HA crystallographic plane (110) and NBCA, it is mainly derived from the hydrogen bonds between O atoms which connect with C atoms of NBCA and H atoms in HA crystal. Furthermore, a strong adsorption effect can be demonstrated between HA and NBCA.

  12. Strongly interacting dynamics beyond the standard model on a space-time lattice.

    PubMed

    Lucini, Biagio

    2010-08-13

    Strong theoretical arguments suggest that the Higgs sector of the standard model of electroweak interactions is an effective low-energy theory, with a more fundamental theory expected to emerge at an energy scale of the order of a teraelectronvolt. One possibility is that the more fundamental theory is strongly interacting and the Higgs sector is given by the low-energy dynamics of the underlying theory. I review recent works aimed at determining observable quantities by numerical simulations of strongly interacting theories proposed in the literature to explain the electroweak symmetry-breaking mechanism. These investigations are based on Monte Carlo simulations of the theory formulated on a space-time lattice. I focus on the so-called minimal walking technicolour scenario, an SU(2) gauge theory with two flavours of fermions in the adjoint representation. The emerging picture is that this theory has an infrared fixed point that dominates the large-distance physics. I shall discuss the first numerical determinations of quantities of phenomenological interest for this theory and analyse future directions of quantitative studies of strongly interacting theories beyond the standard model with lattice techniques. In particular, I report on a finite size scaling determination of the chiral condensate anomalous dimension gamma, for which 0.05 < or = gamma < or = 0.25.

  13. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  14. Beyond perceptual expertise: revisiting the neural substrates of expert object recognition

    PubMed Central

    Harel, Assaf; Kravitz, Dwight; Baker, Chris I.

    2013-01-01

    Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134

  15. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  16. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host.

    PubMed

    Norman, M Ursula; Moriarty, Tara J; Dresser, Ashley R; Millen, Brandie; Kubes, Paul; Chaconas, George

    2008-10-03

    Hematogenous dissemination is important for infection by many bacterial pathogens, but is poorly understood because of the inability to directly observe this process in living hosts at the single cell level. All disseminating pathogens must tether to the host endothelium despite significant shear forces caused by blood flow. However, the molecules that mediate tethering interactions have not been identified for any bacterial pathogen except E. coli, which tethers to host cells via a specialized pillus structure that is not found in many pathogens. Furthermore, the mechanisms underlying tethering have never been examined in living hosts. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination. We found that tethering and dragging interactions were mechanistically distinct from stationary adhesion, and constituted the rate-limiting initiation step of microvascular interactions. Surprisingly, initiation was mediated by host Fn and GAGs, and the Fn- and GAG-interacting B. burgdorferi protein BBK32. Initiation was also strongly inhibited by the low molecular weight clinical heparin dalteparin. These findings indicate that the initiation of spirochete microvascular interactions is dependent on host ligands known to interact in vitro with numerous other bacterial pathogens. This conclusion raises the intriguing possibility that fibronectin and GAG interactions might be a general feature of hematogenous dissemination by other pathogens.

  17. Finding Waldo: Learning about Users from their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eli T.; Ottley, Alvitta; Zhao, Helen

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less

  18. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana

    PubMed Central

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  19. Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.

  20. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet

    2017-11-01

    The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.

  1. Flagella, flexibility and flow: Physical processes in microbial ecology

    NASA Astrophysics Data System (ADS)

    Brumley, D. R.; Rusconi, R.; Son, K.; Stocker, R.

    2015-12-01

    How microorganisms interact with their environment and with their conspecifics depends strongly on their mechanical properties, on the hydrodynamic signatures they generate while swimming and on fluid flows in their environment. The rich fluid-structure interaction between flagella - the appendages microorganisms use for propulsion - and the surrounding flow, has broad reaching effects for both eukaryotic and prokaryotic microorganisms. Here, we discuss selected recent advances in our understanding of the physical ecology of microorganisms, which have hinged on the ability to directly interrogate the movement of individual cells and their swimming appendages, in precisely controlled fluid environments, and to image them at appropriately fast timescales. We review how a flagellar buckling instability can unexpectedly serve a fundamental function in the motility of bacteria, we elucidate the role of hydrodynamics and flexibility in the emergent properties of groups of eukaryotic flagella, and we show how fluid flows characteristic of microbial habitats can strongly bias the migration and spatial distribution of bacteria. The topics covered here are illustrative of the potential inherent in the adoption of experimental methods and conceptual frameworks from physics in understanding the lives of microorganisms.

  2. Self-assembly of chiral (1R,2S)-ephedrine and (1S,2S)-pseudoephedrine into low-dimensional aluminophosphate materials driven by their amphiphilic nature.

    PubMed

    Bernardo-Maestro, Beatriz; Garrido-Martín, Elisa; López-Arbeloa, Fernando; Pérez-Pariente, Joaquín; Gómez-Hortigüela, Luis

    2018-03-28

    In an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks. We analyze by molecular simulations the trend of these chiral molecules to form these types of framework, which is directly related to their amphiphilic nature that triggers a strong self-assembly through hydrophobic interactions between aromatic rings and hydrophilic interactions with the fluoro-aluminophosphate inorganic units. Such a self-assembly process is strongly dependent on the concentration of the organic molecules.

  3. Ultrafast dynamics of many-body processes and fundamental quantum mechanical phenomena in semiconductors

    PubMed Central

    Chemla, Daniel S.; Shah, Jagdeep

    2000-01-01

    The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981

  4. FAST TRACK COMMUNICATION: Attosecond correlation dynamics during electron tunnelling from molecules

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.; Smirnova, Olga

    2010-08-01

    In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters.

  5. GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.

    2011-08-01

    We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).

  6. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537

  7. Laser vaporization of cirrus-like ice particles with secondary ice multiplication.

    PubMed

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-05-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.

  8. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  9. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    PubMed

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.

  10. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yuanxu; Wang, Zhonglei; Huang, Weixin

    2016-12-01

    CuOx/TiO2 photocatalysts employing TiO2 with different phase structures as well as P25 as supports were prepared, and their structures and activity for photocatalytic H2 production in methanol/water solution under simulated solar light were comparatively studied. Structural characterization results demonstrated that the TiO2 phase structure strongly affects the CuOx-TiO2 interaction and copper species in various CuOx/TiO2 photocatalysts. The Cu2O-rutile TiO2 interaction is much stronger than the Cu2O-anatase TiO2 interaction, facilitates the interfacial charge transfer process within the Cu2O-rutile TiO2 heterojunction but disables supported Cu2O to catalyze the hole-participated methanol oxidation. The Cu2O-anatase TiO2 heterojunction with the appropriate Cu2O-anatase TiO2 interaction and thus the balancing efficiencies between the interfacial charge transfer process and hole-participated methanol oxidation is most photocatalytic active, and CuOx/P25 with the largest population of Cu2O-anatase TiO2 heterojunction exhibits the highest photocatalytic H2 production. These results provide novel insights in the applied surface science of CuOx/TiO2 photocatalysts.

  11. Hox Proteins Display a Common and Ancestral Ability to Diversify Their Interaction Mode with the PBC Class Cofactors

    PubMed Central

    Hudry, Bruno; Remacle, Sophie; Delfini, Marie-Claire; Rezsohazy, René; Graba, Yacine; Merabet, Samir

    2012-01-01

    Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX). This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC) assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes. PMID:22745600

  12. Below-ground biotic interactions moderated the postglacial range dynamics of trees.

    PubMed

    Pither, Jason; Pickles, Brian J; Simard, Suzanne W; Ordonez, Alejandro; Williams, John W

    2018-05-17

    Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering.

    PubMed

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-05-08

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal-dielectric-metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm(-1) is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry.

  14. Sex differences in the cerebral lateralization of a cichlid fish when detouring to view emotionally conditioned stimuli.

    PubMed

    Reddon, Adam R; Hurd, Peter L

    2009-09-01

    The lateralization of emotion has been described in a variety of animals. The right hemisphere has been implicated in the processing of negative emotions while positive emotions are processed in the left. Most animal studies of this phenomenon to date have used intrinsically emotionally arousing stimuli and there are few examples of lateralized responses to learned emotional triggers. It is known that males and females may demonstrate different patterns of lateralization, and that these sex differences may interact with other variables. We investigated the lateralized response of male and female convict cichlids to emotionally conditioned stimuli. One stimulus was given an appetitive (positive emotional valence) association by pairing with food. The other stimulus was given an aversive (negative emotional valence) association by pairing with a chemical alarm signal. We found that males tend to be more strongly lateralized to aversive stimuli while females are more strongly lateralized when responding to appetitive stimuli.

  15. Implications of intelligent, integrated microsystems for product design and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MYERS,DAVID R.; MCWHORTER,PAUL J.

    2000-04-19

    Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure.more » The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology.« less

  16. Neural and behavioural responses to face-likeness of objects in adolescents with autism spectrum disorder.

    PubMed

    Akechi, Hironori; Kikuchi, Yukiko; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu

    2014-01-27

    Numerous studies have revealed atypical face processing in autism spectrum disorders (ASD) characterized by social interaction and communication difficulties. This study investigated sensitivity to face-likeness in ASD. In Experiment 1, we found a strong positive correlation between the face-likeness ratings of non-face objects in the ASD (11-19 years old) and the typically developing (TD) group (9-21 years old). In Experiment 2 (the scalp-recorded event-related potential experiment), the participants of both groups (ASD, 12-19 years old; TD, 12-18 years old) exhibited an enhanced face-sensitive N170 amplitude to a face-like object. Whereas the TD adolescents showed an enhanced N170 during the face-likeness judgements, adolescents with ASD did not. Thus, both individuals with ASD and TD individuals have a perceptual and neural sensitivity to face-like features in objects. When required to process face-like features, a face-related brain system reacts more strongly in TD individuals but not in individuals with ASD.

  17. Individual differences in emotion lateralisation and the processing of emotional information arising from social interactions.

    PubMed

    Bourne, Victoria J; Watling, Dawn

    2015-01-01

    Previous research examining the possible association between emotion lateralisation and social anxiety has found conflicting results. In this paper two studies are presented to assess two aspects related to different features of social anxiety: fear of negative evaluation (FNE) and emotion regulation. Lateralisation for the processing of facial emotion was measured using the chimeric faces test. Individuals with greater FNE were more strongly lateralised to the right hemisphere for the processing of anger, happiness and sadness; and, for the processing of fearful faces the relationship was found for females only. Emotion regulation strategies were reduced to two factors: positive strategies and negative strategies. For males, but not females, greater reported use of negative emotion strategies is associated with stronger right hemisphere lateralisation for processing negative emotions. The implications for further understanding the neuropsychological processing of emotion in individuals with social anxiety are discussed.

  18. [Leadership and change processes in hospitals].

    PubMed

    Skogsaas, Bente P; Svendsen, Martin Veel

    2006-11-30

    Successful change processes in hospitals require leaders with strong competence and personal suitability, who can develop resource efficient and creative solutions. We have investigated how division leaders handle change processes and solve problems that arise in cross-disciplinary meeting activities. Eight division leaders at two hospitals in the same region of Norway have gone through in-depth interviews about change leadership. Some of the division leaders were familiar with facilitating change processes and used a range of methods and tools, but the majority had limited insight into which methods would be most appropriate in the various phases of a change process. They signalised that the most difficult challenge was to handle interactions dominated by suspicion, negative interpretation, assumptions and hidden agendas. Such interplays were the most limiting factor in the development of a common understanding of demands, goals and commitment to change processes across departments and units.

  19. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids.

    PubMed

    Vijayaraghavan, Meera; Stolnik, Snjezana; Howdle, Steven M; Illum, Lisbeth

    2012-11-15

    The thermodynamic behaviour of selected polymeric components for preparation of controlled release microparticles using supercritical carbon dioxide (scCO(2)) processing was investigated. The polymeric materials selected were egg lecithin (a model for the lung surfactant phospholipid), poly(ethyleneglycol) (PEG) of different molecular weights, fatty acids (C18, C16, and C14), and physical blends of PEGs and fatty acids. In addition a range of PEG-stearates was also assessed. Analysis of thermodynamic behaviour was performed by differential scanning calorimetry (DSC) and by assessment of their interaction with scCO(2) in a high-pressure variable volume view cell. The key criterion was to demonstrate a strong interaction with scCO(2) and to show liquefaction of the polymeric material at acceptable processing temperatures and pressures. Positive results should then indicate the suitability of these materials for processing by the Particle from Gas Saturated Solutions (PGSS) technique using scCO(2) to create microparticles for pulmonary administration. It was found that the materials tested interacted with scCO(2) and showed a sufficient lowering of their melting temperature (T(m)) to make them suitable for use in the PGSS microparticle production rig. Fatty acids of low T(m) were shown to act as a plasticising agent and to lower the T(m) of PEG further during interaction with scCO(2). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. New Approaches to Parameterizing Convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Lappen, Cara-Lyn

    1999-01-01

    Many general circulation models (GCMs) currently use separate schemes for planetary boundary layer (PBL) processes, shallow and deep cumulus (Cu) convection, and stratiform clouds. The conventional distinctions. among these processes are somewhat arbitrary. For example, in the stratocumulus-to-cumulus transition region, stratocumulus clouds break up into a combination of shallow cumulus and broken stratocumulus. Shallow cumulus clouds may be considered to reside completely within the PBL, or they may be regarded as starting in the PBL but terminating above it. Deeper cumulus clouds often originate within the PBL with also can originate aloft. To the extent that our models separately parameterize physical processes which interact strongly on small space and time scales, the currently fashionable practice of modularization may be doing more harm than good.

Top