Science.gov

Sample records for strong lensing tests

  1. Cosmological test using strong gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Yuan, C. C.; Wang, F. Y.

    2015-09-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.

  2. Strong gravitational lensing statistics as a test of cosmogonic scenarios

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.

    1994-01-01

    Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the

  3. Strong gravitational lensing statistics as a test of cosmogonic scenarios

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.

    1994-01-01

    Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the

  4. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Bacon, David

    2017-03-01

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080, 10.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on cGW/cγ at the 10-7 level, if a high-energy EM counterpart is observed within the field of view of an observing γ -ray burst monitor.

  5. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    PubMed

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  6. Lensed: Forward parametric modelling of strong lenses

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2015-05-01

    Lensed performs forward parametric modelling of strong lenses. Using a provided model, Lensed renders the expected image of the lensing event for a large number of parameter settings, thereby exploring the space of possible realizations of the observation. It compares the expectation to the observed image by calculating the likelihood that the observation was indeed produced by the assumed model, thus reconstructing the probability distribution over the parameter space of the model. Written in C, the code uses a massively parallel ray-tracing kernel to perform the necessary calculations on a graphics processing unit (GPU), making the precise rendering of the background lensed sources fast and allowing the simultaneous optimization of tens of parameters for the selected model.

  7. Test of Parameterized Post-Newtonian Gravity with Galaxy-scale Strong Lensing Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Li, Xiaolei; Biesiada, Marek; Xu, Tengpeng; Cai, Yongzhi; Zhu, Zong-Hong

    2017-01-01

    Based on a mass-selected sample of galaxy-scale strong gravitational lenses from the SLACS, BELLS, LSD, and SL2S surveys and using a well-motivated fiducial set of lens-galaxy parameters, we tested the weak-field metric on kiloparsec scales and found a constraint on the post-Newtonian parameter γ ={0.995}-0.047+0.037 under the assumption of a flat ΛCDM universe with parameters taken from Planck observations. General relativity (GR) predicts exactly γ = 1. Uncertainties concerning the total mass density profile, anisotropy of the velocity dispersion, and the shape of the light profile combine to systematic uncertainties of ˜25%. By applying a cosmological model-independent method to the simulated future LSST data, we found a significant degeneracy between the PPN γ parameter and the spatial curvature of the universe. Setting a prior on the cosmic curvature parameter -0.007 < Ωk < 0.006, we obtained the constraint on the PPN parameter that γ ={1.000}-0.0025+0.0023. We conclude that strong lensing systems with measured stellar velocity dispersions may serve as another important probe to investigate validity of the GR, if the mass-dynamical structure of the lensing galaxies is accurately constrained in future lens surveys.

  8. Strong Gravitational Lensing: Relativity in Action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2009-05-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  9. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  10. LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2016-12-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimization of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the Sloan Lens ACS Survey lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.

  11. Roulettes: a weak lensing formalism for strong lensing: I. Overview

    NASA Astrophysics Data System (ADS)

    Clarkson, Chris

    2016-08-01

    We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.

  12. Cooking with Strong Lenses and Other Ingredients

    NASA Astrophysics Data System (ADS)

    Bolton, Adam; SLACS; BELLS; SDSS-III

    2013-07-01

    Strong lensing offers the most direct method for constraining the distribution of mass in galaxies at cosmological distances. The combination of strong lensing with other observables increases its power, but often in ways that are model-dependent and resistant to intuition. In this talk, I will unpack the information content of spectroscopic, photometric, kinematic, and strong-lensing observables as they translate into constraints on the macroscopic distribution of luminous and dark matter in massive elliptical galaxies. I will also highlight how the choice of priors and analysis methods affects the conclusions drawn from a given set of observations. Finally, in this context I will present the latest results from observational efforts to extend strong-lensing analyses to lower mass galaxies in the Sloan Lens ACS Survey (SLACS) and to earlier cosmic times in the BOSS Emission-Line Lens Survey (BELLS).

  13. A photometric survey of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Hesterly, Katie

    Strong gravitational lenses of active galactic nuclei are useful tools for studying many astrophysical issues including the rate of expansion of the universe and the equation of state of dark energy. These issues are highly dependent on the mass distribution near or in the line-of-sight of the lens. Because gravitational lenses often lie in poorly-studied complex environments, models for the mass distribution have been poorly constructed. Over the past decade, our team has been involved in a large study to fully characterize the environments of and line-of-sight structures toward a number of strong gravitational lenses. One vexing problem has been that nearby structures are important contributors to lensing potentials, but our photometry of these is incomplete due to saturation of galaxy cores on the deep images from the project. The purpose of this thesis is to complete a photometric survey of 28 lenses found by CASTLEs that will be combined with a previous study done by Williams et al. (2006). The previous study's data and my data are combined to form a large catalog of strong gravitational lenses that will be used for further studies.

  14. Simulating HST observations of strong lensing clusters

    NASA Astrophysics Data System (ADS)

    Meneghetti, Massimo

    2014-10-01

    The Frontier Fields {FF} are using galaxy cluster gravitational lensing to boost the powers of Hubble and Spitzer to reveal the faintest galaxies yet observed. Accurate gravitational lensing models with uncertainty estimates are required to study some of the physical parameters of the lensed galaxies. Simulated HST observations of lensing clusters with known mass distributions are ideal to determine the accuracies of these modeling methods. Our team has begun performing these tests, demonstrating that integrated quantities such as lensed number counts are accurately recovered, enabling luminosity functions to be constrained. We have also begun to quantify magnification uncertainties for individual galaxies, but additional tests are needed. Here we propose to create a set of simulated osbervations of clusters selected to be analogs of the CLASH and FF clusters. They will include lensing effects and they will be delivered to the Mikulski Archive for Space Telescopes as a legacy product for others to analyze. They will be usable to extend our tests for robustly determine the accuracies in model magnification and mass measurements. Mass uncertainties will be a key ingredient in efforts to use galaxy clusters to constrain cosmology and theories of structure formation. Results from this program will also be useful to improve lens modeling methods toward more optimal use of the large numbers of lensing constraints available in deep FF imaging. This program will help astronomers realize the full potential of the large investments of Hubble, Spitzer, Chandra, and ground-based observing time in the FF, CLASH, and other past and future cluster lensing observations.

  15. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    SciTech Connect

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  16. Cosmology with Strong-lensing Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Gavazzi, Raphaël; Piórkowska, Aleksandra; Zhu, Zong-Hong

    2015-06-01

    In this paper, we assemble a catalog of 118 strong gravitational lensing systems from the Sloan Lens ACS Survey, BOSS emission-line lens survey, Lens Structure and Dynamics, and Strong Lensing Legacy Survey and use them to constrain the cosmic equation of state. In particular, we consider two cases of dark energy phenomenology: the XCDM model, where dark energy is modeled by a fluid with constant w equation-of-state parameter, and in the Chevalier-Polarski-Linder (CPL) parameterization, where w is allowed to evolve with redshift, w(z)={{w}0}+{{w}1}\\frac{z}{1 + z} . We assume spherically symmetric mass distribution in lensing galaxies, but we relax the rigid assumption of the SIS model in favor of a more general power-law index γ, also allowing it to evolve with redshifts γ (z). Our results for the XCDM cosmology show agreement with values (concerning both w and γ parameters) obtained by other authors. We go further and constrain the CPL parameters jointly with γ (z). The resulting confidence regions for the parameters are much better than those obtained with a similar method in the past. They are also showing a trend of being complementary to the Type Ia supernova data. Our analysis demonstrates that strong gravitational lensing systems can be used to probe cosmological parameters like the cosmic equation of state for dark energy. Moreover, they have a potential to judge whether the cosmic equation of state evolved with time or not.

  17. Strong gravitational lensing and dark energy complementarity

    SciTech Connect

    Linder, Eric V.

    2004-01-21

    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w{sub 0} and time variation w{sub a}. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1 percent accuracy can improve equation of state characterization by 15-50 percent. Next generation surveys should provide data on roughly 105 lens systems, though systematic errors will remain challenging.

  18. Finding strong lenses in CFHTLS using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Glazebrook, K.; Collett, T.; More, A.; McCarthy, C.

    2017-10-01

    We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62 406 simulated lenses and 64 673 non-lens negative examples generated with two different methodologies. An ensemble of trained networks was applied to all of the 171 deg2 of the CFHTLS wide field image data, identifying 18 861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early-type galaxies selected from the survey catalogue as potential deflectors, identified 2465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalogue-based search we estimate a completeness of 21-28 per cent with respect to detectable lenses and a purity of 15 per cent, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify 20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  19. Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z = 1.4

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Amanullah, R.; Bulla, M.; Kromer, M.; Ferretti, R.; Goobar, A.; Papadogiannakis, S.

    2017-07-01

    Context. The light from distant supernovae (SNe ) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. Aims: We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z = 1.4, deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. Methods: We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at - 5 and + 1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. Results: We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low and intermediate redshift. There is a noticeable broad feature centred at λ 3500 Å, which is present only to a lesser extent in individual low- and intermediate-redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.

  20. Constraints on holographic cosmologies from strong lensing systems

    SciTech Connect

    Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica; Campo, Sergio del E-mail: alex.bonilla@uv.cl E-mail: sdelcamp@ucv.cl

    2013-11-01

    We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensing measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.

  1. Black hole tidal charge constrained by strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Horváth, Zs.; Gergely, L. Á.

    2013-11-01

    Spherically symmetric brane black holes have tidal charge which modifies both weak and strong lensing characteristics. Even if lensing measurements are in agreement with a Schwarzschild lens, the margin of error of the detecting instrument allows for a certain tidal charge only. In this paper we derive the respective constraint on the tidal charge of the supermassive black hole (SMBH) in the center of our galaxy, based on the radius of the first relativistic Einstein ring due to strong lensing. We find that even if general relativistic predictions are confirmed by high precision strong lensing measurements, SMBHs could have a much larger tidal charge than the Sun or neutron stars.

  2. Exciting discoveries of strong gravitational lenses from the HSC Survey

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Team 1: Masayuki Tanaka, Kenneth Wong, et al.; Team 2: Chien-Hsiu Lee, Masamune Oguri, et al.

    2017-01-01

    Strong gravitational lenses have numerous applications in astrophysics and cosmology. We expect to discover thousands of strong gravitational lenses from the Hyper Suprime-Cam (HSC) Survey, thanks to its unique combination of deep and wide imaging. I will give highlights on a few interesting gravitational lenses that were discovered recently from early HSC data, for example, the first spectroscopically confirmed double source plane (DSP) lens system dubbed ''Eye of Horus'' and the highest-redshift quadruply-lensed low-luminosity Active Galactic Nucleus (LLAGN).DSP lenses such as ''Eye of Horus'' are even more rare than ordinary lenses but provide tighter constraints on the lens mass distribution and can also be useful to measure cosmological parameters such as Dark Energy and Matter density parameter. The lensed LLAGN discovered recently from HSC is only the second such lens system in our knowledge. LLAGNs are thought to have differentmechanisms driving their nuclear activity compared to their brighter counterparts i.e. quasars. Our knowledge about this abundant but faint population of AGNs is limited to the local universe so far. But lensing magnification will allow studies of distant LLAGNs which should be discovered in large numbers from a deep survey like HSC for the first time. Also, owing to the variable nature of LLAGNs, they could potentially be used as a cosmological probe similar to the lensed quasars.

  3. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    SciTech Connect

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.

  4. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.

  5. Line-of-sight structure toward strong lensing galaxy clusters

    SciTech Connect

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren; Gladders, Michael D.; Oguri, Masamune

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines of sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.

  6. A comparison of cosmological models using strong gravitational lensing galaxies

    SciTech Connect

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng E-mail: jjwei@pmo.ac.cn E-mail: fmelia@email.arizona.edu E-mail: xfwu@pmo.ac.cn

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually

  7. A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the {{R}h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ˜ 99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ˜ 200 strong gravitational lenses would be sufficient to rule out {{R}h}=ct at this level of accuracy, while ˜ 300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead {{R}h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the {{R}h}=ct universe eventually emerge as

  8. Constraints on cosmological models from strong gravitational lensing systems

    SciTech Connect

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz E-mail: panyu@cqupt.edu.cn E-mail: godlowski@uni.opole.pl

    2012-03-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.

  9. The Distance Duality Relation from Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Li, Zhengxiang; Cao, Shuo; Biesiada, Marek; Zheng, Xiaogang; Zhu, Zong-Hong

    2016-05-01

    Under very general assumptions of the metric theory of spacetime, photons traveling along null geodesics and photon number conservation, two observable concepts of cosmic distance, i.e., the angular diameter and the luminosity distances are related to each other by the so-called distance duality relation (DDR) {D}L={D}A{(1+z)}2. Observational validation of this relation is quite important because any evidence of its violation could be a signal of new physics. In this paper we introduce a new method to test the DDR based on strong gravitational lensing systems and type Ia supernovae (SNe Ia) under a flat universe. The method itself is worth attention because unlike previously proposed techniques, it does not depend on all other prior assumptions concerning the details of cosmological model. We tested it using a new compilation of strong lensing (SL) systems and JLA compilation of SNe Ia and found no evidence of DDR violation. For completeness, we also combined it with previous cluster data and showed its power on constraining the DDR. It could become a promising new probe in the future in light of forthcoming massive SL surveys and because of expected advances in galaxy cluster modeling.

  10. Strong gravitational lensing by Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Younas, Azka; Jamil, Mubasher; Bahamonde, Sebastian; Hussain, Saqib

    2015-10-01

    We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We work for the special case of Kiselev black hole where we take the state parameter wq=-2/3 . For the detailed derivation and analysis of the bending angle involved in the deflection of light, we discuss three special cases of Kiselev black hole: nonextreme, extreme, and naked singularity. We also calculate the approximate bending angle and compare it with the exact bending angle. We found the relation of bending angles in the decreasing order as: naked singularity, extreme Kiselev black hole, nonextreme Kiselev black hole, and Schwarzschild black hole. In the weak field approximation, we compute the position and total magnification of relativistic images as well.

  11. Strong biases in infrared-selected gravitational lenses

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen

    2012-08-01

    Bright submillimetre-selected galaxies have been found to be a rich source of strong gravitational lenses. However, strong gravitational lensing of extended sources leads inevitably to differential magnification. In this paper I quantify the effect of differential magnification on simulated far-infrared and submillimetre surveys of strong gravitational lenses, using a foreground population of Navarro-Frenk-White plus de Vaucouleurs' density profiles, with a model source resembling the Cosmic Eyelash and quasi-stellar object J1148+5251. Some emission-line diagnostics are surprisingly unaffected by differential magnification effects: for example, the bolometric fractions of [CII] 158 μm and CO(J = 1 - 0), often used to infer densities and ionization parameters, have typical differential magnification effects that are smaller than the measurement errors. However, the CO ladder itself is significantly affected. Far-infrared lensed galaxy surveys (e.g. at 60 μm) strongly select for high-redshift galaxies with caustics close to active galactic nuclei (AGNs), boosting the apparent bolometric contribution of AGN. The lens configuration of IRAS F10214+4724 is naturally explained in this context. Conversely, submillimetre/millimetre-wave surveys (e.g. 500-1400 μm) strongly select for caustics close to knots of star formation boosting the latter's bolometric fraction. In general, estimates of bolometric fractions from spectral energy distributions of strongly lensed infrared galaxies are so unreliable as to be useless, unless a lens mass model is available to correct for differential magnification.

  12. Line-of-sight Structure toward Strong Lensing Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Johnson, Traci; Gladders, Michael D.; Sharon, Keren; Oguri, Masamune

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 <= z <= 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines of sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ <= 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses. From observations taken with the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona; the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; with the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf

  13. Cosmological constraints from strong gravitational lensing in clusters of galaxies.

    PubMed

    Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo

    2010-08-20

    Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.

  14. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter

    2017-08-01

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M */L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M ⊙. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2σ. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m ≲ 0.3 M ⊙), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M */L relative to the mean matched-σ ETG. We provide the spectra used in this study to facilitate future comparisons.

  15. KERTAP: Strong lensing effects of Kerr black holes

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2017-08-01

    KERTAP computes the strong lensing effects of Kerr black holes, including the effects on polarization. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles.

  16. Observable properties of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas

    2017-01-01

    It is shown which properties of a strong gravitational lens can in principle be recovered from observations of multiple extended images when no assumptions are made about the deflector or sources. The mapping between individual multiple images is identified as the carrier of information about the gravitational lens and it is shown how this information can be extracted from a hypothetical observation. The derivatives of the image map contain information about convergence ratios and reduced shears over the regions of the multiple images. For two observed images, it is not possible to reconstruct the convergence ratio and shear at the same time. For three observed images, it is possible to recover the convergence ratios and reduced shears identically. For four or more observed images, the system of constraints is overdetermined, but the same quantities can theoretically be recovered.

  17. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    NASA Astrophysics Data System (ADS)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure

  18. Strong lensing of gravitational waves as seen by LISA.

    PubMed

    Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C

    2010-12-17

    We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).

  19. Roulettes: a weak lensing formalism for strong lensing: II. Derivation and analysis

    NASA Astrophysics Data System (ADS)

    Clarkson, Chris

    2016-12-01

    We present a new extension of the weak lensing formalism capable of describing strongly lensed images. This paper accompanies Paper I (Clarkson C 2016 Class. Quantum Grav. 33 16LT01), where we provide a condensed overview of the approach and illustrated how it works. Here we give all the necessary details, together with some more explicit examples. We solve the nonlinear geodesic deviation equation order-by-order, keeping the leading derivatives of the optical tidal matrix, giving rise to a series of maps from which a complete strongly lensed image is formed. The family of maps are decomposed by separating the trace and trace-free parts of each map. Each trace-free tensor represents an independent spin mode, which distorts circles into a variety of roulettes in the screen-space. It is shown how summing this series expansion allows us to create large strongly lensed images in regions where convergence, shear and flexion are not sufficient. This paper is a detailed exposition of Paper I [1], which presents the key elements of the subject matter in a wider context.

  20. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert; Kisner, Theodore; Kuhlen, Michael; Perreault Levasseur, Laurence

    2016-11-01

    In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, and test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (~10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.

  1. Strong gravitational lensing in a noncommutative black-hole spacetime

    SciTech Connect

    Ding Chikun; Kang Shuai; Chen Changyong; Chen Songbai; Jing Jiliang

    2011-04-15

    Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant {theta} by the astronomical instruments in the future.

  2. Analysis of luminosity distributions and the shape parameters of strong gravitational lensing elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Biernaux, J.; Magain, P.; Sluse, D.; Chantry, V.

    2016-01-01

    Context. The luminosity profiles of galaxies acting as strong gravitational lenses can be tricky to study. Indeed, strong gravitational lensing images display several lensed components, both point-like and diffuse, around the lensing galaxy. Those objects limit the study of the galaxy luminosity to its inner parts. Therefore, the usual fitting methods perform rather badly on such images. Previous studies of strong lenses luminosity profiles using software such as GALFIT or IMFITFITS and various PSF-determining methods have resulted in somewhat discrepant results. Aims: The present work aims at investigating the causes of those discrepancies, as well as at designing more robust techniques for studying the morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. Methods: We design a new method to independently measure each shape parameter, namely, the position angle, ellipticity, and half-light radius of the galaxy. Our half-light radius measurement method is based on an innovative scheme for computing isophotes that is well suited to measuring the morphological properties of gravititational lensing galaxies. Its robustness regarding various specific aspects of gravitational lensing image processing is analysed and tested against GALFIT. It is then applied to a sample of systems from the CASTLES database. Results: Simulations show that, when restricted to small, inner parts of the lensing galaxy, the technique presented here is more trustworthy than GALFIT. It gives more robust results than GALFIT, which shows instabilities regarding the fitting region, the value of the Sérsic index, and the signal-to-noise ratio. It is therefore better suited than GALFIT for gravitational lensing galaxies. It is also able to study lensing galaxies that are not much larger than the PSF. New values for the half-light radius of the objects in our sample are presented and compared to previous works. Table 6 is only available

  3. Background, foreground and nearby matter influence on strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jaroszynski, M.; Kostrzewa-Rutkowska, Z.

    2012-07-01

    We investigate strong lensing by non-singular finite isothermal ellipsoids taking into account the influence of the matter along the line of sight and in the close lens vicinity. We compare three descriptions of light propagation: the full approach taking into account all matter inhomogeneities along the rays; the single plane approach, where we take into account the influence of the strong lens neighbours but neglect the foreground and background objects; and the single lens approach. In each case, we simulate many strong lensing configurations placing a point source at the same redshift but in different locations inside the region surrounded by caustics. We further analyse configurations of four or five images. For every simulated strong lensing configuration, we attempt to fit a simplified lens model using a single isothermal ellipsoid or a single isothermal ellipsoid with external shear. The single lens fits to configurations obtained in the full approach are rejected in majority of cases with 95 per cent significance. For configurations obtained in the single plane approach, the rejection rate is substantially lower. Also the inclusion of external shear in simplified modelling improves the chances of obtaining acceptable fits, but the problem is not solved completely. The quantitative estimates of the rates of rejection of simplified models depend on the required accuracy of the models, and we present few illustrative examples, which show that both matter close to the lens and matter along the rays do have important influence on lens modelling. We also estimate the typical value of the external shear and compare the fitted parameters of the simplified models with the parameters of the lenses used in the simulations.

  4. Strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir

    2014-06-01

    In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.

  5. DeepLensing: The Use of Deep Machine Learning to Find Strong Gravitational Lenses in Astronomical Surveys

    NASA Astrophysics Data System (ADS)

    Nord, Brian

    2017-01-01

    Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.

  6. Extensive light profile fitting of galaxy-scale strong lenses. Towards an automated lens detection method

    NASA Astrophysics Data System (ADS)

    Brault, F.; Gavazzi, R.

    2015-05-01

    Aims: We investigate the merits of a massive forward-modeling of ground-based optical imaging as a diagnostic for the strong lensing nature of early-type galaxies, in the light of which blurred and faint Einstein rings can hide. Methods: We simulated several thousand mock strong lenses under ground- and space-based conditions as arising from the deflection of an exponential disk by a foreground de Vaucouleurs light profile whose lensing potential is described by a singular isothermal ellipsoid. We then fitted for the lensed light distribution with sl_fit after subtracting the foreground light emission (ideal case) and also after fitting the deflector light with galfit. By setting thresholds in the output parameter space, we can determine the lensed or unlensed status of each system. We finally applied our strategy to a sample of 517 lens candidates in the CFHTLS data to test the consistency of our selection approach. Results: The efficiency of the fast modeling method at recovering the main lens parameters such as Einstein radius, total magnification, or total lensed flux is quite similar under CFHT and HST conditions when the deflector is perfectly subtracted (only possible in simulations), fostering a sharp distinction between good and poor candidates. Conversely, a substantial fraction of the lensed light is absorbed into the deflector model for a more realistic subtraction, which biases the subsequent fitting of the rings and then disturbs the selection process. We quantify completeness and purity of the lens-finding method in both cases. Conclusions: This suggests that the main limitation currently resides in the subtraction of the foreground light. Provided further enhancement of the latter, the direct forward-modeling of large numbers of galaxy-galaxy strong lenses thus appears tractable and might constitute a competitive lens finder in the next generation of wide-field imaging surveys.

  7. A Strongly Lensed Planck Source at z = 3.26

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Jullo, E.; Cooray, A.; H-ATLAS Team

    2012-01-01

    We report the discovery of a strongly lensed Planck-detected source at z = 3.26. The lensing nature of G12v2.30 was confirmed during our Keck Adaptive Optics imaging program of bright Herschel 500um sources from H-ATLAS. The 0.1"-resolution K-band image shows multiple lensed images across a 4" area, while the 2"-resolution Submillimeter Array image shows two 880um sources separated by 3". The positions of the submillimeter sources do not match those of the K-band sources, indicating differential magnifications due to a spatial offset between the rest-frame g-band stellar emission and the dust emission on the source plane. We construct a lens model by fitting the positions of the conjugate multiple images in the K-band and by assuming singular isothermal ellipsoid dark matter halos associated with the group of lensing galaxies at z 1.0. We then constrain the location of the 880um emission on the source plane with the best-fit lens model and the observed 880um image. The reconstructed source plane image shows two merging galaxies with the optical nuclei separated by 0.75 kpc (0.1") and a submillimeter source 2.2 kpc (0.3") north of the optical galaxies. The optical emission is magnified by a factor of 13, while the submilimeter emission is magnified by a factor of only 5. Our SED fitting indicates a dust temperature of 43 K and an obscured SFR of 900 M_sun/yr after correcting for the amplification. G12v2.30 provides a prelude to hundreds of lensed submillimeter galaxies from H-ATLAS that will be studied in depth with existing facilities.

  8. Strong lensing in the inner halo of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Saez, C.; Campusano, L. E.; Cypriano, E. S.; Sodré, L.; Kneib, J.-P.

    2016-08-01

    We present an axially symmetric formula to calculate the probability of finding gravitational arcs in galaxy clusters, being induced by their massive dark matter haloes, as a function of clusters redshifts and virial masses. The formula includes the ellipticity of the clusters dark matter potential by using a pseudo-elliptical approximation. The probabilities are calculated and compared for two dark matter halo profiles, the Navarro, Frenk and White (NFW) and the non-singular-isothermal-sphere (NSIS). We demonstrate the power of our formulation through a Kolmogorov-Smirnov (KS) test on the strong lensing statistics of an X-ray bright sample of low-redshift Abell clusters. This KS test allows us to establish limits on the values of the concentration parameter for the NFW profile (c_Δ) and the core radius for the NSIS profile (rc), which are related to the lowest cluster redshift (zcut) where strong arcs can be observed. For NFW dark matter profiles, we infer cluster haloes with concentrations that are consistent to those predicted by ΛCDM simulations. As for NSIS dark matter profiles, we find only upper limits for the clusters core radii and thus do not rule out a purely SIS model. For alternative mass profiles, our formulation provides constraints through zcut on the parameters that control the concentration of mass in the inner region of the clusters haloes. We find that zcut is expected to lie in the 0.0-0.2 redshift, highlighting the need to include very low-z clusters in samples to study the clusters mass profiles.

  9. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    PubMed

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  10. THE GINI COEFFICIENT AS A MORPHOLOGICAL MEASUREMENT OF STRONGLY LENSED GALAXIES IN THE IMAGE PLANE

    SciTech Connect

    Li, Nan; Florian, Michael K.; Gladders, Michael D.

    2016-12-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time-and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.

  11. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals

    NASA Astrophysics Data System (ADS)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-01

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 1 04 s . This uncertainty can be suppressed by a factor of ˜1 010, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ -ray bursts and fast radio bursts.

  12. The Gini Coefficient as a Morphological Measurement of Strongly Lensed Galaxies in the Image Plane

    NASA Astrophysics Data System (ADS)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-12-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time- and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.

  13. Strong field gravitational lensing by a charged Galileon black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Shan-Shan; Xie, Yi

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  14. Strong lensing by fermionic dark matter in galaxies

    NASA Astrophysics Data System (ADS)

    Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.

    2016-12-01

    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used

  15. Three quasi-stellar objects acting as strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Courbin, F.; Faure, C.; Djorgovski, S. G.; Rérat, F.; Tewes, M.; Meylan, G.; Stern, D.; Mahabal, A.; Boroson, T.; Dheeraj, R.; Sluse, D.

    2012-04-01

    We report the discovery of three new cases of quasi-stellar objects (QSOs) acting as strong gravitational lenses on background emission line galaxies: SDSS J0827+5224 (zQSO = 0.293, zs = 0.412), SDSS J0919+2720 (zQSO = 0.209, zs = 0.558), SDSS J1005+4016 (zQSO = 0.230, zs = 0.441). The selection was carried out using a sample of 22,298 SDSS spectra displaying at least four emission lines at a redshift beyond that of the foreground QSO. The lensing nature is confirmed from Keck imaging and spectroscopy, as well as from HST/WFC3 imaging in the F475W and F814W filters. Two of the QSOs have face-on spiral host galaxies and the third is a QSO+galaxy pair. The velocity dispersion of the host galaxies, inferred from simple lens modeling, is between σ = 210 and 285 km s-1, making these host galaxies comparable in mass with the SLACS sample of early-type strong lenses. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #GO12233.

  16. Measuring angular diameter distances of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jee, Inh; Komatsu, Eiichiro; Suyu, Sherry H.

    2014-10-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential ($GM/r$) and a mass ($GM$) of the lens, respectively, dividing them gives a physical size ($r$) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 ($z_{\\rm L}=0.6304$) and RXJ1131$-$1231 ($z_{\\rm L}=0.295$), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, $\\sigma^2$, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in $D_A$ per object. This improves to 13% when we measure $\\sigma^2$ at the so-called sweet-spot radius. Achieving 7% is possible if we can determine $\\sigma^2$ with 5% precision.

  17. Measuring angular diameter distances of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.

  18. Measuring angular diameter distances of strong gravitational lenses

    SciTech Connect

    Jee, I.; Komatsu, E.; Suyu, S.H. E-mail: komatsu@mpa-garching.mpg.de

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.

  19. Three Gravitational Lenses for the Price of One: Enhanced Strong Lensing Through Galaxy Clustering

    SciTech Connect

    Fassnacht, Chris D.; McKean, J.P.; Koopmans, L.V.E.; Treu, T.; Blandford, R.D.; Auger, M.W.; Jeltema, T.E.; Lubin, L.M.; Margoniner, V.E.; Wittman, D.; /UC, Davis /Kapteyn Astron. Inst., Groningen /UC, Santa Barbara /KIPAC, Menlo Park /Carnegie Inst. Observ.

    2006-04-03

    We report the serendipitous discovery of two strong gravitational lens candidates (ACS J160919+6532 and ACS J160910+6532) in deep images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, each less than 40'' from the previously known gravitational lens system CLASS B1608+656. The redshifts of both lens galaxies have been measured with Keck and Gemini: one is a member of a small galaxy group at z {approx} 0.63, which also includes the lensing galaxy in the B1608+656 system, and the second is a member of a foreground group at z {approx} 0.43. By measuring the effective radii and surface brightnesses of the two lens galaxies, we infer their velocity dispersions based on the passively evolving Fundamental Plane (FP) relation. Elliptical isothermal lens mass models are able to explain their image configurations within the lens hypothesis, with a velocity dispersion compatible with that estimated from the FP for a reasonable source-redshift range. Based on the large number of massive early-type galaxies in the field and the number-density of faint blue galaxies, the presence of two additional lens systems around CLASS B1608+656 is not unlikely in hindsight. Gravitational lens galaxies are predominantly early-type galaxies, which are clustered, and the lensed quasar host galaxies are also clustered. Therefore, obtaining deep high-resolution images of the fields around known strong lens systems is an excellent method of enhancing the probability of finding additional strong gravitational lens systems.

  20. Digital holographic testing of biconvex lenses.

    PubMed

    Chhaniwal, V K; Kihiko, J M; Dubey, S; Shearon, G; Javidi, B; Anand, A

    2013-12-20

    Lenses are one of the most important optical elements for manipulation of wavefronts. For their proper selection, the wavefronts produced by the lenses should be analyzed. Digital holography is a tool which provides whole-field reconstructions of wavefronts, and here the use of digital holographic interferometry in complete characterization of wavefronts from lenses is investigated. Digital holograms of the wavefront from the test lens are recorded for various positions of the test lens from a point source. The reconstructed phase of the wavefront from the test lens is compared with a digitally inputted wavefront for measurement of parallelism as well as curvature. The focal length of the test lens is computed by measuring the change in curvature of the wavefront for two positions of the test lens. The radius of curvature of the test lens is determined by using the test lens in the reflection mode. Refractive index of the lens material is also determined using this method. Detailed theoretical and experimental analysis is provided.

  1. Probing small-scale structure in galaxies with strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur Benjamin

    - solar-mass scale, we predict that the probability of observing strong lensing of a background star is roughly 56%. We also consider how lensing by Sgr A* could be used to test general relativity against alternative theories, concluding that microarcsecond resolution would make this possible.

  2. Strong lensing in the MARENOSTRUM UNIVERSE. I. Biases in the cluster lens population

    NASA Astrophysics Data System (ADS)

    Meneghetti, M.; Fedeli, C.; Pace, F.; Gottlöber, S.; Yepes, G.

    2010-09-01

    Context. Strong lensing is one of the most direct probes of mass distribution in the inner regions of galaxy clusters. It can be used to constrain the density profiles and to measure the mass of the lenses. Moreover, the abundance of strong lensing events can be used to constrain structure formation and cosmological parameters through the so-called “arc-statistics” approach. However, several issues related to the use of strong lensing clusters in cosmological applications are still controversial, leading to the suspicion that several biases may affect this very peculiar class of objects. Aims: With this study we aim a better understanding of the properties of galaxy clusters that can potentially act as strong lenses. Methods: We do so by investigating the properties of a large sample of galaxy clusters extracted from the N-body/hydrodynamical simulation MareNostrum Universe. We perform ray-tracing simulations with each of them and identify those objects capable of producing strong lensing effects. We explore the correlation between the cross section for lensing and many properties of clusters, such as mass, three-dimensional and projected shapes, their concentrations, the X-ray luminosity, and the dynamical activity. Results: We quantify the minimal cluster mass required for producing both multiple images and large distortions. While we do not measure a significant excess of triaxiality in strong lensing clusters, we find that the probability of strong alignments between the major axes of the lenses and the line of sight is a growing function of the lensing cross section. In projection, the strong lenses appear rounder within R200, but we find that their cores tend to be more elliptical as the lensing cross section increases. As a result of the orientation bias, we also find that the cluster concentrations estimated from the projected density profiles tend to be biased high. The X-ray luminosity of strong lensing clusters tend to be higher than for normal

  3. Modelling the impact testing of prescription lenses.

    PubMed

    McAuliffe, P J; Truss, R W; Pittolo, M

    1997-04-01

    Lenses are tested in an impact test in which a steel ball is dropped from a height onto the centre of the lens. This causes the lens to deform until the stress in the lens reaches a point at which fracture occurs. A survey of the literature was carried out and analytical models of the load/deflection and of the deflection/stress relationships were selected. A mathematical model of the impact test on lenses was developed. This model consisted of calculating the load-deflection relationship of a lens loaded at a central point, combined with calculating the deflection at which fracture occurred. From this model the impact energy required to deform a lens to fracture was obtained. This was held to be equal to the minimum kinetic energy of an impactor, less losses, that would be needed to cause lens fracture. As the losses are small, the calculated energy was used as an estimate of the impact strength of the lens. These values were then compared to those established by experiment. The impact energies predicted by the model were a close approximation of the experimental results for the lenses tested.

  4. Strong gravitational lensing by a charged Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Jamil, Mubasher

    2017-06-01

    We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter w_q. For all w_q, we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner-Nordström black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated.

  5. THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES

    SciTech Connect

    Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G. E-mail: azabludoff@as.arizona.edu

    2011-01-10

    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of {gamma} = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is {gamma} = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.

  6. The Effect of Environment on Shear in Strong Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth C.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.; Zabludoff, Ann I.

    2011-01-01

    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    SciTech Connect

    Shin, Min-Su; Strauss, Michael A.; Oguri, Masamune; Inada, Naohisa; Falco, Emilio E.; Broadhurst, Tom; Gunn, James E.

    2008-09-30

    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of {approx} 1.2 x 10{sup 12} M{sub {circle_dot}} and the corresponding mass to light ratio in the B-band is {approx} 26 M{sub {circle_dot}}/L{sub {circle_dot}} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.

  8. Resolving high energy emission of jets using strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna

    2014-11-01

    Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.

  9. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  10. Strong-lensing Analysis of the Powerful Lensing Cluster MACS J2135.2-0102 (z = 0.33)

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi; Broadhurst, Tom

    2016-12-01

    We present a light-traces-mass (LTM) strong-lensing model of the massive lensing cluster MACS J2135.2-0102 (z = 0.33 hereafter MACS2135), known in part for hosting the cosmic eye galaxy lens. MACS2135 is also known to multiply lens a z = 2.3 sub-millimeter galaxy near the brightest cluster galaxy (BCG), as well as a prominent, triply imaged system at a large radius of ˜37″ south of the BCG. We use the latest available Hubble imaging to construct an accurate lensing model for this cluster, identifying six new multiply imaged systems with the guidance of our LTM method, so that we have roughly quadrupled the number of lensing constraints. We determine that MACS2135 is among the top lensing clusters known, comparable in size to the Hubble Frontier Fields. For a source at {z}s=2.32, we find an effective Einstein radius of {θ }e=27+/- 3\\prime\\prime , enclosing 1.12+/- 0.16× {10}14 {M}⊙ . We make our lens model, including mass and magnification maps, publicly available, in anticipation of searches for high-z galaxies with the James Webb Space Telescope, for which this cluster is a compelling target.

  11. Strength of thin chemtempered lenses: static load testing.

    PubMed

    Duckworth, W H; Rosenfield, A R; Gulati, S T; Rieger, R A; Hoekstra, K E

    1979-01-01

    Static load tests were conducted on heat-tempered and chemtempered plano white crown glass lenses from five different optical laboratories. With both ball-on-ring and ring-on-ring loading, chemtempered lenses considerably thinner than 2.0 mm were found to be as failure resistant as 2.0-mm-thick heat-tempered lenses. A similar result was obtained previously using the drop-ball test. It is shown that the theory of brittle fracture can be used to relate the results of different tests and provides a rational basis for comparing the relative performance of chemtempered and heat-tempered lenses.

  12. Strong gravitational lensing of gravitational waves in Einstein Telescope

    SciTech Connect

    Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2013-10-01

    Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.

  13. Research and analysis on new test lenses for calibration of focimeters used for measuring contact lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Wang, Liru; Ma, Zhenya

    2006-11-01

    A focimeter is one of the basic ophthalmic instruments used in every optometric practice, and verification of the accuracy and calibration of the instrument are of the utmost importance. For many years the International Standardization for Organization requires that calibrations for all kinds of focimeters shall be accomplished by using test lenses described in ISO 9342:1996. These test lenses must be of high quality and of nominal back vertex power that is known with high accuracy. With the development of science and technology, ISO 9342 was revised in 2005. A new part ISO 9342-2 had been drafted for test lenses used to calibrate focimeters with contact lens measurement, and the original ISO 9342 was turned into the current ISO 9342-1, which could only be used to calibrate fociemters with spectacle lens measurement. As one of the standard drafters, the background for the newly published ISO 9342-2 is introduced in this study, and comparison between test lenses of ISO 9342-1 and ISO 9342-2 is made. Further, the influence of tolerance and uncertainty in design and production of standard test lenses of ISO 9342-2 is analyzed. The paraxial approximation is used to relate the lens parameters with back vertex power and to calculate the uncertainty budget. Moreover, one set of test lenses conforming to ISO 9342-2 is manufactured and experiments are done with it. Results show that test lenses described in ISO 9342-2 can correct the measurement errors of focimeters used for measuring contact lenses well, especially for spherical aberration, and the correction is more effective for spherical contact lenses with high back vertex power.

  14. Strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime

    SciTech Connect

    Chen, Songbai; Jing, Jiliang E-mail: jljing@hunnu.edu.cn

    2015-10-01

    We have investigated the strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime. We find that in the four-dimensional black hole spacetime the equation of motion of the photons depends not only on the coupling between photon and Weyl tensor, but also on the polarization direction of the photons. It is quite different from that in the case of the usual photon without coupling to Weyl tensor in which the equation of motion is independent of the polarization of the photon. Moreover, we find that the coupling and the polarization direction modify the properties of the photon sphere, the deflection angle, the coefficients in strong field lensing, and the observational gravitational lensing variables. Combining with the supermassive central object in our Galaxy, we estimated three observables in the strong gravitational lensing for the photons coupled to Weyl tensor.

  15. GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

    SciTech Connect

    Anguita, T.; Barrientos, L. F.; Gladders, M. D.; Faure, C.; Yee, H. K. C.; Gilbank, D. G.

    2012-04-01

    We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey. The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 {approx}< z {approx}< 0.5 surrounded by blue arcs or apparent multiple images of background sources. The catalog is a valuable complement to previous galaxy-galaxy lens catalogs as it samples an intermediate lens redshift range and is composed of bright sources and lenses that allow easy follow-up for detailed analysis. Mass and mass-to-light ratio estimates reveal that the lens galaxies are massive ( M-bar {approx} 5.5 Multiplication-Sign 10{sup 11} [M{sub Sun} h{sup -1}]) and rich in dark matter (M/L-bar{approx} 14 [M{sub Sun }/L{sub Sun ,B} h]). Even though a slight increasing trend in the mass-to-light ratio is observed from z = 0.2 to z = 0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.

  16. DARK MATTER DISTRIBUTION IN GALAXY GROUPS FROM COMBINED STRONG LENSING AND DYNAMICS ANALYSIS

    SciTech Connect

    Thanjavur, Karun; Crampton, David; Willis, Jon

    2010-05-10

    Using a combined analysis of strong lensing and galaxy dynamics, we characterize the mass distributions and the mass-to-light (M/L) ratios of galaxy groups, virialized structures in the mass range of few x 10{sup 14} M{sub sun}, which form an important transition regime in the hierarchical assembly of mass in {Lambda}CDM cosmology. Our goals are to not only map the mass distributions, but to also test whether the underlying density distribution at this mass scale is dark matter dominated, Navarro-Frenk-White (NFW) like as hypothesized by the standard cosmogony, or isothermal as observed in baryon-rich massive field galaxies. We present details of our lensing + galaxy dynamics formalism built around three representative density profiles, the dark matter dominant NFW and Hernquist distributions, compared with the softened isothermal sphere which matches baryon-rich galaxy scale objects. By testing the effects on the characteristics of these distributions due to variations in their parameters, we show that mass measurements in the core of the group (r/r{sub vir} {approx} 0.2), determined jointly from a lens model and from differential velocity dispersion estimates, may effectively distinguish between these density distributions. We apply our method to multi-object spectroscopy observations of two groups, SL2SJ143000+554648 and SL2SJ143139+553323, drawn from our catalog of galaxy group scale lenses discovered in CFHTLS-Wide imaging. With the lensing and dynamical mass estimates from our observations along with a maximum likelihood estimator built around our model, we estimate the concentration index characterizing each density distribution and the corresponding virial mass of each group. Our likelihood estimation indicates that both groups are dark matter dominant and rejects the isothermal distribution at >>3{sigma} level. For both groups, the estimated i-band M/L ratios of {approx}260 M{sub sun} L{sub sun} {sup -1} are similar to other published values for groups

  17. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    SciTech Connect

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.

  18. Up to 100,000 Reliable Strong Gravitational Lenses in Future Dark Energy Experiments

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2014-09-01

    The Euclid space telescope will observe ~105 strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 103 strong lensing events are detectable with this method in the Euclid wide survey. While only ~1% of the total haul of Euclid lenses, this sample has ~100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 105.

  19. THE SLOAN BRIGHT ARCS SURVEY: SIX STRONGLY LENSED GALAXIES AT z = 0.4-1.4

    SciTech Connect

    Kubo, Jeffrey M.; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Kubik, Donna; Lin, Huan; Tucker, Douglas

    2009-05-01

    We present new results of our program to systematically search for strongly lensed galaxies in the Sloan Digital Sky Survey (SDSS) imaging data. In this study six strong lens systems are presented which we have confirmed with follow-up spectroscopy and imaging using the 3.5 m telescope at the Apache Point Observatory. Preliminary mass models indicate that the lenses are group-scale systems with velocity dispersions ranging from 464 to 882 km s{sup -1} at z = 0.17 - 0.45 which are strongly lensing source galaxies at z = 0.4 - 1.4. Galaxy groups are a relatively new mass scale just beginning to be probed with strong lensing. Our sample of lenses roughly doubles the confirmed number of group-scale lenses in the SDSS and complements ongoing strong lens searches in other imaging surveys. As our arcs were discovered in the SDSS imaging data they are all bright (r {approx}< 22), making them ideally suited for detailed follow-up studies.

  20. The Sloan Bright Arcs Survey : Six Strongly Lensed Galaxies at z=0.4-1.4

    SciTech Connect

    Kubo, Jeffrey M.; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H.Thomas; Kubik, Donna; Lin, Huan; Tucker, Douglas; /Fermilab

    2008-12-01

    We present new results of our program to systematically search for strongly lensed galaxies in the Sloan Digital Sky Survey (SDSS) imaging data. In this study six strong lens systems are presented which we have confirmed with followup spectroscopy and imaging using the 3.5m telescope at the Apache Point Observatory. Preliminary mass models indicate that the lenses are group-scale systems with velocity dispersions ranging from 466?878 km s{sup -1} at z = 0.17-0.45 which are strongly lensing source galaxies at z = 0.4-1.4. Galaxy groups are a relatively new mass scale just beginning to be probed with strong lensing. Our sample of lenses roughly doubles the confirmed number of group-scale lenses in the SDSS and complements ongoing strong lens searches in other imaging surveys such as the CFHTLS (Cabanac et al. 2007). As our arcs were discovered in the SDSS imaging data they are all bright (r {approx_equal} 22), making them ideally suited for detailed follow-up studies.

  1. The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies

    NASA Astrophysics Data System (ADS)

    Negrello, Mattia; Hopwood, R.; De Zotti, G.; Cooray, A.; Verma, A.; Bock, J.; Frayer, D. T.; Gurwell, M. A.; Omont, A.; Neri, R.; Dannerbauer, H.; Leeuw, L. L.; Barton, E.; Cooke, J.; Kim, S.; da Cunha, E.; Rodighiero, G.; Cox, P.; Bonfield, D. G.; Jarvis, M. J.; Serjeant, S.; Ivison, R. J.; Dye, S.; Aretxaga, I.; Hughes, D. H.; Ibar, E.; Bertoldi, F.; Valtchanov, I.; Eales, S.; Dunne, L.; Driver, S. P.; Auld, R.; Buttiglione, S.; Cava, A.; Grady, C. A.; Clements, D. L.; Dariush, A.; Fritz, J.; Hill, D.; Hornbeck, J. B.; Kelvin, L.; Lagache, G.; Lopez-Caniego, M.; Gonzalez-Nuevo, J.; Maddox, S.; Pascale, E.; Pohlen, M.; Rigby, E. E.; Robotham, A.; Simpson, C.; Smith, D. J. B.; Temi, P.; Thompson, M. A.; Woodgate, B. E.; York, D. G.; Aguirre, J. E.; Beelen, A.; Blain, A.; Baker, A. J.; Birkinshaw, M.; Blundell, R.; Bradford, C. M.; Burgarella, D.; Danese, L.; Dunlop, J. S.; Fleuren, S.; Glenn, J.; Harris, A. I.; Kamenetzky, J.; Lupu, R. E.; Maddalena, R. J.; Madore, B. F.; Maloney, P. R.; Matsuhara, H.; Michałowski, M. J.; Murphy, E. J.; Naylor, B. J.; Nguyen, H.; Popescu, C.; Rawlings, S.; Rigopoulou, D.; Scott, D.; Scott, K. S.; Seibert, M.; Smail, I.; Tuffs, R. J.; Vieira, J. D.; van der Werf, P. P.; Zmuidzinas, J.

    2010-11-01

    Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

  2. The detection of a population of submillimeter-bright, strongly lensed galaxies.

    PubMed

    Negrello, Mattia; Hopwood, R; De Zotti, G; Cooray, A; Verma, A; Bock, J; Frayer, D T; Gurwell, M A; Omont, A; Neri, R; Dannerbauer, H; Leeuw, L L; Barton, E; Cooke, J; Kim, S; da Cunha, E; Rodighiero, G; Cox, P; Bonfield, D G; Jarvis, M J; Serjeant, S; Ivison, R J; Dye, S; Aretxaga, I; Hughes, D H; Ibar, E; Bertoldi, F; Valtchanov, I; Eales, S; Dunne, L; Driver, S P; Auld, R; Buttiglione, S; Cava, A; Grady, C A; Clements, D L; Dariush, A; Fritz, J; Hill, D; Hornbeck, J B; Kelvin, L; Lagache, G; Lopez-Caniego, M; Gonzalez-Nuevo, J; Maddox, S; Pascale, E; Pohlen, M; Rigby, E E; Robotham, A; Simpson, C; Smith, D J B; Temi, P; Thompson, M A; Woodgate, B E; York, D G; Aguirre, J E; Beelen, A; Blain, A; Baker, A J; Birkinshaw, M; Blundell, R; Bradford, C M; Burgarella, D; Danese, L; Dunlop, J S; Fleuren, S; Glenn, J; Harris, A I; Kamenetzky, J; Lupu, R E; Maddalena, R J; Madore, B F; Maloney, P R; Matsuhara, H; Michaowski, M J; Murphy, E J; Naylor, B J; Nguyen, H; Popescu, C; Rawlings, S; Rigopoulou, D; Scott, D; Scott, K S; Seibert, M; Smail, I; Tuffs, R J; Vieira, J D; van der Werf, P P; Zmuidzinas, J

    2010-11-05

    Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

  3. Cosmological Studies with Galaxy Clusters, Active Galactic Nuclei, and Strongly Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Nicholas Andrew

    transitional `green valley' on a color-magnitude diagram. Spectral analysis of the AGN hosts showed that the average host galaxy had either on-going or recent star formation, and was younger than the average galaxy, across all LSS in our sample. We further subdivided our sample in two based on the average evolutionary state of the LSS. The AGN in the more evolved structures had lower X-ray luminosities and longer times since last starburst. These results provide some evidence for merger-based AGN triggering, although other mechanisms, and possibly more than one, could be responsible. In the third study, we probed LambdaCDM cosmology from a different angle. An important part of the model is the cosmological parameters that define our universe. As such, probes that can more accurately and precisely measure these parameters, such as H0 and the dark energy equation of state, w, can allow us to more closely inspect the model. Strongly-lensed quasars provide one such probe, and we sought to perform the first step in using them for cosmological inference, which is to measure the time delays between strongly lensed images. We performed radio monitoring campaigns on six strongly lensed quasars using the Very Large Array. Lightcurves were extracted for each lensed image and analyzed for intrinsic variability. Two lensed quasars showed strong time variations, but the variations were linear in time, preventing precise time delay measurements due to a degeneracy with the magnifications. These results suggest most of the systems should be targeted for followup monitoring, and we estimate that time delays can be measured for the most variable systems with precision of 0.5 to 3.5 days with two more seasons of monitoring. In a joint fit with previously studied systems, these measurements could tighten constraints on H 0 by up to ~1.4.

  4. Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming

    2005-08-01

    We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from 0" to 10") is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev, & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS + NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profile (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.

  5. Strong lensing in the MARENOSTRUM UNIVERSE. II. Scaling relations and optical depths

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Meneghetti, M.; Gottlöber, S.; Yepes, G.

    2010-09-01

    The strong lensing events that are observed in compact clusters of galaxies can, both statistically and individually, return important clues about the structural properties of the most massive structures in the Universe. Substantial work is ongoing in order to understand the degree of similarity between the lensing cluster population and the population of clusters as a whole, with members of the former being likely more massive, compact, and substructured than members of the latter. In this work we exploit synthetic clusters extracted from the MareNostrum Universe cosmological simulation in order to estimate the correlation between the strong lensing efficiency and other bulk properties of lensing clusters, such as the virial mass and the bolometric X-ray luminosity. We found that a positive correlation exist between all these quantities, with the substantial scatter being smaller for the luminosity-cross section relation. We additionally used the relation between the lensing efficiency and the virial mass in order to construct a synthetic optical depth that agrees well with the true one, while being extremely faster to be evaluated. We finally estimated what fraction of the total giant arc abundance is recovered when galaxy clusters are selected according to their dynamical activity or their X-ray luminosity. Our results show that there is a high probability for high-redshift strong lensing clusters to be substantially far away from dynamical equilibrium, and that 30-40% of the total amount of giant arcs are lost if looking only at very X-ray luminous objects.

  6. Constraining Horava-Lifshitz gravity by weak and strong gravitational lensing

    SciTech Connect

    Horvath, Zsolt; Gergely, Laszlo A.; Keresztes, Zoltan; Harko, Tiberiu; Lobo, Francisco S. N.

    2011-10-15

    We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Horava-Lifshitz gravity. In weak lensing, we show that there are three regimes, depending on the value of {lambda}=1/{omega}d{sup 2}, where {omega} is the Horava-Lifshitz parameter and d characterizes the lensing geometry. When {lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large {lambda}, the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of {lambda}, only the upper focused image is produced due to the existence of a maximal deflection angle {delta}{sub max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Horava-Lifshitz parameter compatible with present-day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.

  7. Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Balestra, I.; Rosati, P.; Grillo, C.; Halkola, A.; Suyu, S. H.; Coe, D.; Caminha, G. B.; Frye, B.; Koekemoer, A.; Mercurio, A.; Nonino, M.; Postman, M.; Zitrin, A.

    2017-01-01

    We present a detailed strong lensing mass reconstruction of the core of the galaxy cluster MACSJ 2129.4-0741 (z_{cl}=0.589) obtained by combining high-resolution HST photometry from the CLASH survey with new spectroscopic observations from the CLASH-VLT survey. A background bright red passive galaxy at z_{sp}=1.36, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region (R<100 kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of 0.4″. This translates to an high precision mass reconstruction of MACS 2129, which is constrained at a level of 2%. The cluster has Einstein parameter ΘE = (29 ± 4)″ and a projected total mass of M_{tot}(<Θ _E)=(1.35± 0.03)× 10^{14}M_{⊙} within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic dataset for the cluster members and lensed images measured with VLT/VIMOS within the CLASH-VLT survey.

  8. Strength of thin chemtempered lenses: drop-ball testing.

    PubMed

    Duckworth, W H; Rosenfield, A R; Gulati, S T; Rieger, R A; Hoekstra, K E

    1978-12-01

    Failure heights were measured in drop-ball tests for both chemtempered and heat-tempered plano, white crown glass lenses from five different optical laboratories. It was found that (1) failure height was proportional to the square of the lens thickness, (2) chemtempered lenses substantially thinner than 2.0 mm are as resistant to breakage as 2.0-mm-thick heat-tempered lenses, and (3) a close correlation existed between results of single-drop and multiple-drop tests and between results of tests using rigid and compliant mounts.

  9. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  10. Stellar and dust properties of strongly lensed z~1.5-3 star forming galaxies from the Herschel Lensing Survey

    NASA Astrophysics Data System (ADS)

    Sklias, Panos; Schaerer, Daniel; Dessauges-Zavadsky, Miroslava

    2015-08-01

    Understanding and constraining the early cosmic star formation history of the Universe is a key question of galaxy evolution. In the IR, deep surveys are limited by instrumentation/confusion, so gravitational lensing is a potent tool to probe lower luminosities than detectable in blank fields at redshifts above 1.Utilizing the multi-wavelength photometry (optical to IR/submm) from the Herschel Lensing Survey, we perform SED fitting with different variable star formation histories (SFHs) on a small sample of strongly lensed star forming galaxies at z~1.5-3. Although in general SED modeling of dust obscured galaxies is affected by degeneracies (eg., in age-extinction), we reduce them by imposing energy conservation, i.e. by constraining the dust attenuation thanks to the observed IR luminosities.In order to mitigate the small number statistics, we also apply our method on a larger sample from GOODS-Herschel, and explore its effects on physical parameter determination and extent of applicability.Thanks to lensing, we have robust detections of faint sources below the usual confusion limits of the observing instruments, and thus can characterize the properties of normal star-forming galaxies at epochs surrounding the peak of the cosmic star formation history. We constrain the IR luminosities of sources down to 1011 Lsun, estimate dust masses and temperatures, as well as stellar properties. The IR and - when available - nebular emission observations allow us to discriminate between SFHs, and between starbursts, post-starbursts and Main Sequence galaxies. This is illustrated specifically with for the well known galaxy nicknamed the «Cosmic Eye». We observe that most of our sources have warmer dust temperature that low-z galaxies in the same luminosity range. They are comparable to temperatures of bright IR galaxies at high-z, indicative that there is a general rising trend of temperature with redshift, due to the more intensively star-forming environment at earlier

  11. Strong deflection limit analysis and gravitational lensing of an Ellis wormhole

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki

    2016-12-01

    Observations of gravitational lenses in strong gravitational fields give us a clue to understanding dark compact objects. In this paper, we extend a method to obtain a deflection angle in a strong deflection limit provided by Bozza [Phys. Rev. D 66, 103001 (2002)] to apply to ultrastatic spacetimes. We also discuss on the order of an error term in the deflection angle. Using the improved method, we consider gravitational lensing by an Ellis wormhole, which is an ultrastatic wormhole of the Morris-Thorne class.

  12. Strong gravitational lensing of gravitational waves from double compact binaries—perspectives for the Einstein Telescope

    SciTech Connect

    Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong; Piórkowska, Aleksandra E-mail: dingxuheng@mail.bnu.edu.cn E-mail: zhuzh@bnu.edu.cn

    2014-10-01

    Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previous paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.

  13. Role of deficit solid angle and quintessence-like matter in strong field gravitational lensing

    NASA Astrophysics Data System (ADS)

    Geng, Jin-Ling; Zhang, Yu; Li, En-Kun; Duan, Peng-Fei

    2016-12-01

    Using the strong field limit approach, the strong field gravitational lensing in a black hole with deficit solid angle (DSA) and surrounded by quintessence-like matter (QM) has been investigated. The results show that the DSA ɛ2, the energy density of QM ρ0 and the equation of state (EOS) parameter w have some distinct effects on the strong field gravitational lensing. As ɛ2 or ρ0 increases, the deflection angle and the strong field limit coefficients all increase faster and faster. Moreover, the evolution of the main observables also has been studied, which shows that the curves at w = -2/3 are more steepy than those of w = -1/3. Compared with the Schwarzschild black hole, the black hole surrounded by QM has smaller relative magnitudes, and at w = -1/3 both the angular position and angular separation are slightly bigger than those of Schwarzschild black hole, but when w = -2/3, the angular position and the relative magnitudes all diminish significantly. Therefore, by studying the strong gravitational lensing, we can distinguish the black hole with a DSA and surrounded by QM from the Schwarzschild black hole and the effects of the DSA and QM on the strong gravitational lensing by black holes can be known better.

  14. Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Balestra, I.; Rosati, P.; Grillo, C.; Halkola, A.; Suyu, S. H.; Coe, D.; Caminha, G. B.; Frye, B.; Koekemoer, A.; Mercurio, A.; Nonino, M.; Postman, M.; Zitrin, A.

    2017-04-01

    We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACS J2129.4-0741 (zcl = 0.589) obtained by combining high-resolution Hubble Space Telescope photometry from the CLASH (Cluster Lensing And Supernovae survey with Hubble) survey with new spectroscopic observations from the CLASH-VLT (Very Large Telescope) survey. A background bright red passive galaxy at zsp = 1.36, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region (R < 100 kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of 0.4 arcsec. This translates to a high-precision mass reconstruction of MACS 2129, which is constrained at a level of 2 per cent. The cluster has Einstein parameter ΘE = (29 ± 4) arcsec and a projected total mass of Mtot(<ΘE) = (1.35 ± 0.03) × 1014 M⊙ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic data set for the cluster members and lensed images measured with VLT/Visible Multi-Object Spectrograph within the CLASH-VLT survey.

  15. Strongly lensed gravitational waves from intrinsically faint double compact binaries—prediction for the Einstein Telescope

    SciTech Connect

    Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2015-12-01

    With a fantastic sensitivity improving significantly over the advanced GW detectors, Einstein Telescope (ET) will be able to observe hundreds of thousand inspiralling double compact objects per year. By virtue of gravitational lensing effect, intrinsically unobservable faint sources can be observed by ET due to the magnification by intervening galaxies. We explore the possibility of observing such faint sources amplified by strong gravitational lensing. Following our previous work, we use the merger rates of DCO (NS-NS,BH-NS,BH-BH systems) as calculated by Dominik et al.(2013). It turns out that tens to hundreds of such (lensed) extra events will be registered by ET. This will strongly broaden the ET's distance reach for signals from such coalescences to the redshift range z = 2 − 8. However, with respect to the full inspiral event catalog this magnification bias is at the level of 0.001 and should not affect much cosmological inferences.

  16. Observational selection biases in time-delay strong lensing and their impact on cosmography

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Cunnington, Steven D.

    2016-11-01

    Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters inferred. Using an ellipsoidal power-law deflector population, we build a sample of double- and quadruple-image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quads, we find that this selection function can introduce a 3.5 per cent bias on the inferred time-delay distances if the properties of the input ensemble are (incorrectly) used as priors on the lens model. This bias remains at the 2.4 per cent level when high-resolution imaging of the quasar host is used to precisely infer the properties of individual lenses. We also investigate if the lines of sight for monitorable strong lenses are biased. The expectation value for the line-of-sight convergence is increased by 0.009 (0.004) for quads (doubles) implying a 0.9 per cent (0.4 per cent) bias on H0. We therefore conclude that whilst the properties of typical quasar lenses and their lines of sight do deviate from the global population, the total magnitude of this effect is likely to be a subdominant effect for current analyses, but has the potential to be a major systematic for samples of ˜25 or more lenses.

  17. Strong gravitational lensing in f(χ) = χ3/2 gravity

    NASA Astrophysics Data System (ADS)

    Campigotto, M. C.; Diaferio, A.; Hernandez, X.; Fatibene, L.

    2017-06-01

    We discuss the phenomenology of gravitational lensing in the purely metric f(χ) gravity, an f(R) gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy lens systems and in clusters of galaxies. By adopting point-like lenses and using an approximate metric solution accurate to second order of the velocity field v/c, we show how, in the f(χ) = χ3/2 gravity, the same light deflection can be produced by lenses with masses smaller than in General Relativity (GR); this mass difference increases with increasing impact parameter and decreasing lens mass. However, for sufficiently massive point-like lenses and small impact parameters, f(χ) = χ3/2 and GR yield indistinguishable light deflection angles: this regime occurs both in observed galaxy-galaxy lens systems and in the central regions of galaxy clusters. In the former systems, the GR and f(χ) masses are compatible with the mass of standard stellar populations and little or no dark matter, whereas, on the scales of the core of galaxy clusters, the presence of substantial dark matter is required by our point-like lenses both in GR and in our approximate f(χ) = χ3/2 solution. We thus conclude that our approximate metric solution of f(χ) = χ3/2 is unable to describe the observed phenomenology of the strong lensing regime without the aid of dark matter.

  18. XMMU J100750.5+125818: a strong lensing cluster at z = 1.082

    NASA Astrophysics Data System (ADS)

    Schwope, A. D.; Lamer, G.; de Hoon, A.; Kohnert, J.; Böhringer, H.; Dietrich, J. P.; Fassbender, R.; Mohr, J.; Mühlegger, M.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J.; Šuhada, R.

    2010-04-01

    We report on the discovery of the X-ray luminous cluster XMMU J100750.5+125818 at redshift 1.082 based on 19 spectroscopic members. The cluster displays several strong lensing features. SED modeling of the lensed arc features from multicolor imaging with the VLT and the LBT reveals likely redshifts ~2.7 for the most prominent of the lensed background galaxies. Mass estimates are derived for different radii from the velocity dispersion of the cluster members, M200 ≃ 1.8 × 1014 M_⊙, from the X-ray spectral parameters, M500 ≃ 1.0 × 1014 M_⊙, and the largest lensing arc, MSL ≃ 2.3 × 1013 M_⊙. The projected spatial distribution of cluster galaxies appears to be elongated, and the brightest galaxy lies off center with respect to the X-ray emission, indicating a not yet relaxed structure. XMMU J100750.5+125818 offers excellent diagnostics of the inner mass distribution of a distant cluster with strong and weak lensing, in combination with optical and X-ray spectroscopy. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under programs 78.A-0265 and 80.A-0659.Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.Appendix is only available in electronic form at http://www.aanda.org

  19. Strong lensing signatures of luminous structure and substructure in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gilman, Daniel; Agnello, Adriano; Treu, Tommaso; Keeton, Charles R.; Nierenberg, Anna M.

    2017-01-01

    The arrival times, positions, and fluxes of multiple images in strong lens systems can be used to infer the presence of dark subhalos in the deflector, and thus test predictions of cold dark matter models. However, gravitational lensing does not distinguish between perturbations to a smooth gravitational potential arising from baryonic and non-baryonic mass. In this work, we quantify the extent to which the stellar mass distribution of a deflector can reproduce flux ratio and astrometric anomalies typically associated with the presence of a dark matter subhalo. Using Hubble Space Telescope images of nearby galaxies, we simulate strong lens systems with real distributions of stellar mass as they would be observed at redshift zd = 0.5. We add a dark matter halo and external shear to account for the smooth dark matter field, omitting dark substructure, and use a Monte Carlo procedure to characterize the distributions of image positions, time delays, and flux ratios for a compact background source of diameter 5 pc. By convolving high-resolution images of real galaxies with a Gaussian PSF, we simulate the most detailed smooth potential one could construct given high quality data, and find scatter in flux ratios of ≈10%, which we interpret as a typical deviation from a smooth potential caused by large and small scale structure in the lensing galaxy. We demonstrate that the flux ratio anomalies arising from galaxy-scale baryonic structure can be minimized by selecting the most massive and round deflectors, and by simultaneously modeling flux ratio and astrometric data.

  20. Strong lensing signatures of luminous structure and substructure in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gilman, Daniel; Agnello, Adriano; Treu, Tommaso; Keeton, Charles R.; Nierenberg, Anna M.

    2017-06-01

    The arrival times, positions and fluxes of multiple images in strong lens systems can be used to infer the presence of dark subhaloes in the deflector, and thus test predictions of cold dark matter models. However, gravitational lensing does not distinguish between perturbations to a smooth gravitational potential arising from baryonic and non-baryonic mass. In this work, we quantify the extent to which the stellar mass distribution of a deflector can reproduce flux ratio and astrometric anomalies typically associated with the presence of a dark matter subhalo. Using Hubble Space Telescope images of nearby galaxies, we simulate strong lens systems with real distributions of stellar mass as they would be observed at redshift zd = 0.5. We add a dark matter halo and external shear to account for the smooth dark matter field, omitting dark substructure, and use a Monte Carlo procedure to characterize the distributions of image positions, time delays and flux ratios for a compact background source of diameter 5 pc. By convolving high-resolution images of real galaxies with a Gaussian point spread function, we simulate the most detailed smooth potential one could construct given high-quality data, and find scatter in flux ratios of ≈10 per cent, which we interpret as a typical deviation from a smooth potential caused by large- and small-scale structure in the lensing galaxy. We demonstrate that the flux ratio anomalies arising from galaxy-scale baryonic structure can be minimized by selecting the most massive and round deflectors and by simultaneously modelling flux ratio and astrometric data.

  1. Herschel-ATLAS: Toward a Sample of ~1000 Strongly Lensed Galaxies

    NASA Astrophysics Data System (ADS)

    González-Nuevo, J.; Lapi, A.; Fleuren, S.; Bressan, S.; Danese, L.; De Zotti, G.; Negrello, M.; Cai, Z.-Y.; Fan, L.; Sutherland, W.; Baes, M.; Baker, A. J.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Frayer, D. T.; Harris, A. I.; Ivison, R.; Jarvis, M. J.; Michałowski, M. J.; López-Caniego, M.; Rodighiero, G.; Rowlands, K.; Serjeant, S.; Scott, D.; van der Werf, P.; Auld, R.; Buttiglione, S.; Cava, A.; Dariush, A.; Fritz, J.; Hopwood, R.; Ibar, E.; Maddox, S.; Pascale, E.; Pohlen, M.; Rigby, E.; Smith, D.; Temi, P.

    2012-04-01

    While the selection of strongly lensed galaxies (SLGs) with 500 μm flux density S 500 > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of ~= 1.5-2 deg-2, i.e., a factor of about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to ~1000 candidate SLGs (with amplifications μ >~ 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field (sime 14.4 deg2) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a ~= 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density (sime 1.45 deg-2) can be reached with a ~70% efficiency. Herschel is an ESA space observatory with science instruments provided by European-led Principal

  2. THE SLOAN BRIGHT ARCS SURVEY: FOUR STRONGLY LENSED GALAXIES WITH REDSHIFT > 2

    SciTech Connect

    Diehl, H. Thomas; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Frieman, Joshua A.; Kubik, Donna; Kubo, Jeffrey M.; Lin Huan; Tucker, Douglas; West, Anderson

    2009-12-10

    We report the discovery of four very bright, strongly lensed galaxies found via systematic searches for arcs in Sloan Digital Sky Survey Data Release 5 and 6. These were followed up with spectroscopy and imaging data from the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory and found to have redshift z > 2.0. With isophotal magnitudes r = 19.2-20.4 and 3'' diameter magnitudes r = 20.0-20.6, these systems are some of the brightest and highest surface brightness lensed galaxies known in this redshift range. In addition to the magnitudes and redshifts, we present estimates of the Einstein radii, which range from 5.''0 to 12.''7, and use those to derive the enclosed masses of the lensing galaxies.

  3. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan

    2017-08-01

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  4. The Structure of the Strongly Lensed Gamma-Ray Source B2 0218+35

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Zitrin, Adi

    2016-04-01

    Strong gravitational lensing is a powerful tool for resolving the high-energy universe. We combine the temporal resolution of Fermi-LAT, the angular resolution of radio telescopes, and the independently and precisely known Hubble constant from the analysis by the Planck collaboration, to resolve the spatial origin of gamma-ray flares in the strongly lensed source B2 0218+35. The lensing model achieves 1 mas spatial resolution of the source at gamma-ray energies. The data imply that the gamma-ray flaring sites are separate from the radio core: the bright gamma-ray flare (MJD: 56160-56280) occurred 51+/- 8 pc from the 15 GHz radio core, toward the central engine. This displacement is significant at the ˜ 3σ level, and is limited primarily by the precision of the Hubble constant. B2 0218+35 is the first source where the position of the gamma-ray emitting region relative to the radio core can be resolved. We discuss the potential of an ensemble of strongly lensed high-energy sources for elucidating the physics of distant variable sources based on data from Chandra and SKA.

  5. Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth C.; Raney, Catie; Keeton, Charles R.; Umetsu, Keiichi; Zabludoff, Ann I.; Ammons, S. Mark; French, K. Decker

    2017-08-01

    We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which contains the massive cluster Zwicky 1953. This field was selected for its high projected concentration of luminous red galaxies. Using Subaru/Suprime-Cam {{BVR}}c{I}c{i}\\prime {z}\\prime imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at z = 0.3774 and a smaller foreground halo at z = 0.2713. We then add a strong lensing constraint from a multiply imaged galaxy in the imaging data with a photometric redshift of z ≈ 5.03. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that used only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic, such that one image is a highly magnified “fold arc” that could be used to probe the source galaxy’s structure at ultra-high spatial resolution (<30 pc). We calculate the mass of the primary cluster to be {M}{vir}={2.93}-0.65+0.71× {10}15 {M}⊙ with a concentration of {c}{vir}={3.46}-0.59+0.70, consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.

  6. CLASH: Joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters*

    SciTech Connect

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc

    2016-04-20

    Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at $0.19\\lesssim z\\lesssim 0.69$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h–1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c{| }_{z=0.34}=3.95\\pm 0.35$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h–1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely

  7. CLASH: Joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters*

    SciTech Connect

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc

    2016-04-20

    Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at $0.19\\lesssim z\\lesssim 0.69$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h–1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c{| }_{z=0.34}=3.95\\pm 0.35$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h–1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely

  8. CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc

    2016-04-01

    We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19≲ z≲ 0.69 selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10″-16‧). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200-2000 kpc h-1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration-mass (c-M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of c{| }z=0.34=3.95+/- 0.35 at M200c ≃ 14 × 1014 M⊙ and an intrinsic scatter of σ ({ln}{c}200{{c}})=0.13+/- 0.06, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h-1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), Einasto, and DARKexp models, whereas the single

  9. CLASH: Joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters*

    DOE PAGES

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; ...

    2016-04-20

    Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters atmore » $$0.19\\lesssim z\\lesssim 0.69$$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h–1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $$c{| }_{z=0.34}=3.95\\pm 0.35$$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $$\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h–1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the

  10. Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune; Bayliss, Matthew B.; Dahle, Hâkon; Sharon, Keren; Gladders, Michael D.; Natarajan, Priyamvada; Hennawi, Joseph F.; Koester, Benjamin P.

    2012-03-01

    We study the mass distribution of a sample of 28 galaxy clusters using strong and weak lensing observations. The clusters are selected via their strong lensing properties as part of the Sloan Giant Arcs Survey (SGAS) from the Sloan Digital Sky Survey (SDSS). Mass modelling of the strong lensing information from the giant arcs is combined with weak lensing measurements from deep Subaru/Suprime-cam images to primarily obtain robust constraints on the concentration parameter and the shape of the mass distribution. We find that the concentration cvir is a steep function of the mass, cvir∝M-0.59±0.12vir, with the value roughly consistent with the lensing-bias-corrected theoretical expectation for high-mass (˜1015 h-1 M⊙) clusters. However, the observationally inferred concentration parameters appear to be much higher at lower masses (˜1014 h-1 M⊙), possibly a consequence of the modification to the inner density profiles provided by baryon cooling. The steep mass-concentration relation is also supported from direct stacking analysis of the tangential shear profiles. In addition, we explore the 2D shape of the projected mass distribution by stacking weak lensing shear maps of individual clusters with prior information on the position angle from strong lens modelling, and find significant evidence for a large mean ellipticity with the best-fitting value of = 0.47 ± 0.06 for the mass distribution of the stacked sample. We find that the luminous cluster member galaxy distribution traces the overall mass distribution very well, although the distribution of fainter cluster galaxies appears to be more extended than the total mass. a Photometric redshifts estimated from the SDSS data, as spectroscopic cluster redshifts are not available for these clusters. b Based on the spectroscopy of the brightest cluster galaxy at Apache Point Observatory 3.5-m telescope. c We use deep Rc-band images retrieved from SMOKA instead of obtaining r-band follow-up images. This field

  11. IMPROVED CONSTRAINTS ON THE GRAVITATIONAL LENS Q0957+561. II. STRONG LENSING

    SciTech Connect

    Fadely, R.; Keeton, C. R.; Nakajima, R.; Bernstein, G. M. E-mail: keeton@physics.rutgers.ed E-mail: rnakajima@berkeley.ed

    2010-03-01

    We present a detailed strong lensing analysis of a Hubble Space Telescope/Advanced Camera for Surveys legacy data set for the first gravitational lens, Q0957+561. With deep imaging we identify 24 new strongly lensed features, which we use to constrain mass models. We model the stellar component of the lens galaxy using the observed luminosity distribution and the dark matter halo using several different density profiles. We draw on the weak lensing analysis by Nakajima et al. to constrain the mass sheet and environmental terms in the lens potential. Adopting the well-measured time delay, we find H{sub 0} = 85{sup +14}{sub -13} km s{sup -1} Mpc{sup -1} (68% CL) using lensing constraints alone. The principal uncertainties in H{sub 0} are tied to the stellar mass-to-light ratio (a variant of the radial profile degeneracy in lens models). Adding constraints from stellar population synthesis models, we obtain H{sub 0} = 79.3{sup +6.7}{sub -8.5} km s{sup -1} Mpc{sup -1} (68% CL). We infer that the lens galaxy has a rising rotation curve and a dark matter distribution with an inner core. Intriguingly, we find the quasar flux ratios predicted by our models to be inconsistent with existing radio measurements, suggesting the presence of substructure in the lens.

  12. Black hole solution and strong gravitational lensing in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Yang, Ke; Liu, Yu-Xiao

    2015-06-01

    A new theory of gravity called Eddington-inspired Born-Infeld (EiBI) gravity was recently proposed by Bañados and Ferreira. This theory leads to some exciting new features, such as free of cosmological singularities. In this paper, we first obtain a charged EiBI black hole solution with a nonvanishing cosmological constant when the electromagnetic field is included in. Then based on it, we study the strong gravitational lensing by the asymptotic flat charged EiBI black hole. The strong deflection limit coefficients and observables are shown to closely depend on the additional coupling parameter in the EiBI gravity. It is found that, compared with the corresponding charged black hole in general relativity, the positive coupling parameter will shrink the black hole horizon and photon sphere. Moreover, the coupling parameter will decrease the angular position and relative magnitudes of the relativistic images, while increase the angular separation, which may shine new light on testing such gravity theory in near future by the astronomical instruments.

  13. Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Kitamura, Takao; Nakajima, Koki; Asada, Hideki

    2014-09-01

    The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/rn fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n =1) and the Ellis wormhole (n =2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.

  14. Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Busti, V. C.; Alcaniz, J. S.

    2016-02-01

    We propose and perform a new test of the cosmic distance-duality relation (CDDR), DL(z) / DA(z) (1 + z)2 = 1, where DA is the angular diameter distance and DL is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=DA12/DA2 and D*=DL12/DL2, where the subscripts 1 and 2 correspond, respectively, to redshifts z1 and z2, are linked by D/D*=(1+z1)2 if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z1), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) simeq 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.

  15. Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data

    SciTech Connect

    Holanda, R.F.L.; Busti, V.C.; Alcaniz, J.S. E-mail: vcbusti@astro.iag.usp.br

    2016-02-01

    We propose and perform a new test of the cosmic distance-duality relation (CDDR), D{sub L}(z) / D{sub A}(z) (1 + z){sup 2} = 1, where D{sub A} is the angular diameter distance and D{sub L} is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=D{sub A{sub 1{sub 2}}}/D{sub A{sub 2}} and D{sup *}=D{sub L{sub 1{sub 2}}}/D{sub L{sub 2}}, where the subscripts 1 and 2 correspond, respectively, to redshifts z{sub 1} and z{sub 2}, are linked by D/D{sup *}=(1+z{sub 1}){sup 2} if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z{sub 1}), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) ≅ 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.

  16. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    NASA Astrophysics Data System (ADS)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang

    2016-11-01

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case of the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.

  17. Fast automated analysis of strong gravitational lenses with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.

    2017-08-01

    Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.

  18. Fast automated analysis of strong gravitational lenses with convolutional neural networks

    DOE PAGES

    Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.

    2017-08-30

    Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. Our procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physicalmore » processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. We report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.« less

  19. Baryon effects on the dark matter haloes constrained from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chen, Da-Ming; Li, Ran

    2017-10-01

    Simulations are expected to be a powerful tool to investigate the baryon effects on dark matter (DM) haloes. Recent high resolution, cosmological hydrodynamic simulations predict that the inner density profiles of DM haloes depend systematically on the ratio of stellar to DM mass (M*/Mhalo), which is thought to be able to provide good fits to the observed rotation curves of galaxies. The Di Cintio et al. (hereafter DC14) profile is fitted from the simulations that are confined to Mhalo ≤ 1012 M⊙; in order to investigate the physical processes that may affect all haloes, we extrapolate it to much larger halo mass, including that of galaxy clusters. The inner slope of the DC14 profile is flat for low halo mass, it approaches 1 when the halo mass increases towards 1012 M⊙ and decreases rapidly after that mass. We use the DC14 profile for lenses and find that it predicts too few lenses compared with the most recent strong lensing observations Sloan Digital Sky Survey Quasar Lens Search (SQLS). We also calculate the strong lensing probabilities for a simulated density profile that continues the halo mass from the mass end of DC14 (∼1012 M⊙) to the mass that covers the galaxy clusters, and find that this Schaller et al. (hereafter Schaller15) model predict too many lenses compared with other models and SQLS observations. Interestingly, Schaller15 profile has no core, however, like DC14, the rotation curves of the simulated haloes are in excellent agreement with observational data. Furthermore, we show that the standard two-population model SIS+NFW cannot match the most recent SQLS observations for large image separations.

  20. Strongly Lensed Jets, Time Delays, and the Value of H 0

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan

    2015-01-01

    In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly lensed sources. It is a puzzle, then, that the values of H 0 obtained with this method span a range from ~50-100 km s-1Mpc-1. Quasars monitored to measure these time delays are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable-emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of the sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Therefore, we propose using the value of H 0 known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We particularly advocate this method for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0.°1 lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H 0.

  1. PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D.

    2015-01-30

    We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.

  2. The mass distribution of the unusual merging cluster Abell 2146 from strong lensing

    NASA Astrophysics Data System (ADS)

    Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen R.; Canning, Rebecca E. A.; Leonard, Adrienne; Santana, Rebecca; White, Jacob A.; Baum, Stefi A.; Clowe, Douglas I.; Edge, Alastair; Fabian, Andrew C.; McNamara, Brian R.; O'Dea, Christopher P.

    2017-01-01

    Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky, and it is unique in showing two large shocks on Chandra X-ray Observatory images. With an early stage merger, shortly after first core passage, one would expect the cluster galaxies and the dark matter to be leading the X-ray emitting plasma. In this regard, the cluster Abell 2146-A is very unusual in that the X-ray cool core appears to lead, rather than lag, the brightest cluster galaxy (BCG) in their trajectories. Here we present a strong-lensing analysis of multiple-image systems identified on Hubble Space Telescope images. In particular, we focus on the distribution of mass in Abell 2146-A in order to determine the centroid of the dark matter halo. We use object colours and morphologies to identify multiple-image systems; very conservatively, four of these systems are used as constraints on a lens mass model. We find that the centroid of the dark matter halo, constrained using the strongly lensed features, is coincident with the BCG, with an offset of ≈2 kpc between the centres of the dark matter halo and the BCG. Thus from the strong-lensing model, the X-ray cool core also leads the centroid of the dark matter in Abell 2146-A, with an offset of ≈30 kpc.

  3. A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Lens Environments and Line-of-Sight Structures

    NASA Astrophysics Data System (ADS)

    Wilson, Michelle; Zabludoff, Ann I.; Wong, Kenneth C.; Keeton, Charles R.; French, Katheryn Decker; Momcheva, Ivelina G.; Williams, Kurtis A.

    2016-01-01

    Galaxy-scale strong gravitational lensing has long been used to measure cosmological parameters such as the Hubble constant as well as the dark matter properties of galaxy halos. Additional mass around the lens galaxy or projected in the line-of-sight affects the light bending and needs to be incorporated into lensing analyses. We present new results from a spectroscopic survey to characterize the environmental and line-of-sight mass for 28 galaxy-scale lens fields. We show how the external convergence, number of lensed images, and lensed image separation are altered by groups at the lens and along the sightline.

  4. A framework for modeling line-of-sight effects in strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Keeton, Charles R.; McCully, C.; Wong, K. C.; Zabludoff, A. I.

    2014-01-01

    In strong gravitational lens systems, the light bending is usually dominated by one main galaxy but may be affected by other objects along the line of sight (LOS). Perturbers projected far from the lens can be approximated with convergence and shear, but perturbers projected closer to the lens create higher-order effects and need to be treated individually. We present a theoretical framework for multi-plane lensing that can handle an arbitrary combination of planes with shear/convergence and planes with higher-order terms. We test our framework first using simulations with a single perturber to study where the shear approximation is not valid and where non-linear effects are important. We show that perturbers behind the lens galaxy can be treated as an effective shear in the main lens plane, but perturbers in front of the lens cannot be mimicked by such a shear. Applying this to realistic fields, we find that our LOS framework can reproduce the fitted lens properties and the Hubble Constant, H0, without bias and with scatter that is smaller than typical measurement uncertainties.

  5. A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

    SciTech Connect

    Magaña, Juan; Motta, V.; Cárdenas, Victor H.; Verdugo, T.; Jullo, Eric E-mail: veronica.motta@uv.cl E-mail: tomasverdugo@gmail.com

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

  6. A Magnified Glance into the Dark Sector: Probing Cosmological Models with Strong Lensing in A1689

    NASA Astrophysics Data System (ADS)

    Magaña, Juan; Motta, V.; Cárdenas, Víctor H.; Verdugo, T.; Jullo, Eric

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier-Polarski-Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

  7. Hubble Frontier Fields: systematic errors in strong lensing models of galaxy clusters - implications for cosmography

    NASA Astrophysics Data System (ADS)

    Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan

    2017-09-01

    Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.

  8. Characterizing strong lensing galaxy clusters using the Millennium-XXL and MOKA simulations

    NASA Astrophysics Data System (ADS)

    Giocoli, Carlo; Bonamigo, Mario; Limousin, Marceau; Meneghetti, Massimo; Moscardini, Lauro; Angulo, Raul E.; Despali, Giulia; Jullo, Eric

    2016-10-01

    In this paper, we investigate the strong lensing statistics in galaxyclusters. We extract dark matter haloes from the Millennium-XXL simulation, compute their Einstein radius distribution, and find a very good agreement with Monte Carlo predictions produced with the MOKA code. The distribution of the Einstein radii is well described by a lognormal distribution, with a considerable fraction of the largest systems boosted by different projection effects. We discuss the importance of substructures and triaxiality in shaping the size of the critical lines for cluster size haloes. We then model and interpret the different deviations, accounting for the presence of a Brightest Central Galaxy (BCG) and two different stellar mass density profiles. We present scaling relations between weak lensing quantities and the size of the Einstein radii. Finally, we discuss how sensible is the distribution of the Einstein radii on the cosmological parameters ΩM - σ8 finding that cosmologies with higher ΩM and σ8 possess a large sample of strong lensing clusters. The Einstein radius distribution may help distinguish Planck13 and WMAP7 cosmology at 3σ.

  9. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  10. Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2007-01-15

    In the present work we study numerically quasiequatorial lensing by the charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the strong deflection limit. In this approximation we compute the magnification and the positions of the relativistic images. The most outstanding effect is that the Kerr-Sen black hole caustics drift away from the optical axis and shift in the clockwise direction with respect to the Kerr caustics. The intersections of the critical curves on the equatorial plane as a function of the black hole angular momentum are found, and it is shown that they decrease with the increase of the parameter Q{sup 2}/M. All of the lensing quantities are compared to particular cases as Schwarzschild, Kerr, and Gibbons-Maeda black holes.

  11. The mass distribution of the strong lensing cluster SDSS J1531+3414

    SciTech Connect

    Sharon, Keren; Johnson, Traci L.; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Bayliss, Matthew B.; Florian, Michael K.; Dahle, Håkon

    2014-11-01

    We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z = 0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New Hubble Space Telescope observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the central region, and rule out that this emission is coming from a background source.

  12. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Man, Jingyun; Cheng, Hongbo E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  13. A relatively small change in sodium chloride concentration has a strong effect on adhesion of ocular bacteria to contact lenses.

    PubMed

    Cowell, B A; Willcox, M D; Schneider, R P

    1998-06-01

    Adhesion of bacteria to hydrogel lenses is thought to be an initial step of ocular colonization allowing evasion of normal host defences. The salt concentration of media is an important parameter controlling microbial adhesion. Salinity varies from 0.97% NaCl equivalents in the open eye to 0.89% in the closed eye state. In this study, the effect of sodium chloride in the concentration range of 0.8-1.0% (w/v) NaCl on adhesion of ocular bacteria to soft contact lenses was investigated using a static adhesion assay. Pseudomonas aeruginosa was found to adhere to lenses in significantly greater amounts than Serratia marcescens, Flavobacterium meningosepticum, Stenotrophomonas maltophilia and Staphylococcus intermedius. Increasing NaCl from 0.8% to 1.0% (w/v) increased adhesion of all bacteria tested. This adhesion was strong since the organisms could not be removed by washing in low ionic buffer. Adhesion of these organisms did not correlate with their cell surface properties as determined by bacterial adhesion to hydrocarbons (BATH) and retention on sepharose columns.

  14. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND HST/WFC3/ACS IMAGING

    SciTech Connect

    Zitrin, A.; Broadhurst, T.; Coe, D.; Postman, M.; Bradley, L.; Koekemoer, A.; Umetsu, K.; Benitez, N.; Molino, A.; Meneghetti, M.; Medezinski, E.; Zheng, W.; Ford, H.; Lemze, D.; Jouvel, S.; Lahav, O.; Merten, J.; Kelson, D.; Nonino, M.; Donahue, M.; and others

    2011-12-01

    We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 A, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27 multiple images of nine systems are used to tightly constrain the inner mass profile gradient, dlog {Sigma}/dlog r {approx_equal} -0.6 {+-} 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap ({approx}0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M{sub vir} = (5.37{sup +0.70}{sub -0.63} {+-} 0.26) Multiplication-Sign 10{sup 14} M{sub Sun} h{sup -1} and a relatively high concentration, c{sub vir} = 8.77{sup +0.44}{sub -0.42} {+-} 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r{sub E} {approx_equal} 16 {+-} 2'' (for z{sub s} = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters

  15. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    SciTech Connect

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  16. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  17. Direct measurement of lensing amplification in Abell S1063 using a strongly lensed high redshift HII galaxy

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Melnick, Jorge; Terlevich, Elena; Chávez, Ricardo; Telles, Eduardo; Bresolin, Fabio; Plionis, Manolis; Basilakos, Spyros; Fernández Arenas, David; González Morán, Ana Luisa; Díaz, Ángeles I.; Aretxaga, Itziar

    2016-08-01

    ID11 is an actively star-forming, extremely compact galaxy and Lyα emitter at z = 3.117 that is gravitationally magnified by a factor of ~17 by the cluster of galaxies Hubble Frontier Fields AS1063. The observed properties of this galaxy resemble those of low luminosity HII galaxies or giant HII regions such as 30 Doradus in the Large Magellanic Cloud. Using the tight correlation correlation between the Balmer-line luminosities and the width of the emission lines (typically L(Hβ) - σ(Hβ)), which are valid for HII galaxies and giant HII regions to estimate their total luminosity, we are able to measure the lensing amplification of ID11. We obtain an amplification of 23 ± 11 that is similar within errors to the value of ~17 estimated or predicted by the best lensing models of the massive cluster Abell S1063. We also compiled, from the literature, luminosities and velocity dispersions for a set of lensed compact star-forming regions. There is more scatter in the L-σ correlation for these lensed systems, but on the whole the results tend to support the lensing model estimates of the magnification. Our result indicates that the amplification can be independently measured using the L - σ relation in lensed giant HII regions or HII galaxies. It also supports the suggestion, even if lensing is model dependent, that the L - σ relation is valid for low luminosity high-z objects. Ad hoc observations of lensed star-forming systems are required to determine the lensing amplification accurately.

  18. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  19. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  20. Star formation histories, extinction, and dust properties of strongly lensed z ~ 1.5-3 star-forming galaxies from the Herschel Lensing Survey

    NASA Astrophysics Data System (ADS)

    Sklias, P.; Zamojski, M.; Schaerer, D.; Dessauges-Zavadsky, M.; Egami, E.; Rex, M.; Rawle, T.; Richard, J.; Boone, F.; Simpson, J. M.; Smail, I.; van der Werf, P.; Altieri, B.; Kneib, J. P.

    2014-01-01

    Context. Multi-wavelength, optical to IR/submm observations of strongly lensed galaxies identified by the Herschel Lensing Survey are used to determine the physical properties of high-redshift star-forming galaxies close to or below the detection limits of blank fields. Aims: We aim to constrain theIR stellar and dust content, and to determine star formation rates and histories, dust attenuation and extinction laws, and other related properties. Methods: We studied a sample of seven galaxies with spectroscopic redshifts z ~ 1.5-3 that have been detected with precision thanks to gravitational lensing, and whose spectral energy distribution (SED) has been determined from the rest-frame UV to the IR/mm domain. For comparison, our sample includes two previously well-studied lensed galaxies, MS1512-cB58 and the Cosmic Eye, for which we also provide updated Herschel measurements. We performed SED fits of the full photometry of each object, and of the optical and infrared parts separately, exploring various star formation histories, using different extinction laws, and exploring the effects of nebular emission. The IR luminosity, in particular, is predicted consistently from the stellar population model. The IR observations and emission line measurements, where available, are used as a posteriori constraints on the models. We also explored energy conserving models, that we created by using the observed IR/UV ratio to estimate the extinction. Results: Among the models we have tested, models with exponentially declining star-forming histories including nebular emission and assuming the Calzetti attenuation law best fit most of the observables. Models assuming constant or rising star formation histories predict in most cases too much IR luminosity. The SMC extinction law underpredicts the IR luminosity in most cases, except for two out of seven galaxies, where we cannot distinguish between different extinction laws. Our sample has a median lensing-corrected IR luminosity ~3

  1. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  2. DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5

    SciTech Connect

    Lin Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa

    2009-07-10

    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG), SDSS J120602.09+514229.5. This system, nicknamed the 'Clone', was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2 m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.''03 or 14.8 {+-} 0.1 h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12} h {sup -1} M{sub sun}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find a (unlensed) star formation rate (SFR) for the source galaxy of 32 h{sup -1} M {sub sun} yr{sup -1}, adopting a fiducial constant SFR model with an age of 100 Myr and E(B - V) = 0.25. With an apparent magnitude of r = 19.8, this system is among the very brightest lensed z {>=} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.

  3. Discovery of A Very Bright, Strongly-Lensed z=2 Galaxy in the SDSS DR5

    SciTech Connect

    Lin, Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H.Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa; /Wako, RIKEN

    2008-09-30

    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG). This system was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.03{double_prime} or 14.8 {+-} 0.1h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12}h{sup -1}M{sub {circle_dot}}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find an (unlensed) star formation rate for the source galaxy of 32 h{sup -1} M{sub {circle_dot}} hr{sup -1}, adopting a fiducial constant star formation rate model with an age of 100 Myr and E(B-V) = 0.25. With an apparent magnitude of r = 19.9, this system is among the very brightest lensed z {ge} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.

  4. STRONGLY LENSED JETS, TIME DELAYS, AND THE VALUE OF H {sub 0}

    SciTech Connect

    Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan; Dell'Antonio, Ian P.

    2015-01-20

    In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly lensed sources. It is a puzzle, then, that the values of H {sub 0} obtained with this method span a range from ∼50-100 km s{sup –1}Mpc{sup –1}. Quasars monitored to measure these time delays are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable-emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of the sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Therefore, we propose using the value of H {sub 0} known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We particularly advocate this method for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0.°1; lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H {sub 0}.

  5. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    SciTech Connect

    Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.; Bothwell, M.; Fassnacht, C. D.; Vieira, J. D.; Aguirre, J. E.; Aird, K. A.; Aravena, M.; De Breuck, C.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.

  6. Testing gravity with halo density profiles observed through gravitational lensing

    SciTech Connect

    Narikawa, Tatsuya; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2012-05-01

    We present a new test of the modified gravity endowed with the Vainshtein mechanism with the density profile of a galaxy cluster halo observed through gravitational lensing. A scalar degree of freedom in the galileon modified gravity is screened by the Vainshtein mechanism to recover Newtonian gravity in high-density regions, however it might not be completely hidden on the outer side of a cluster of galaxies. Then the modified gravity might yield an observational signature in a surface mass density of a cluster of galaxies measured through gravitational lensing, since the scalar field could contribute to the lensing potential. We investigate how the transition in the Vainshtein mechanism affects the surface mass density observed through gravitational lensing, assuming that the density profile of a cluster of galaxies follows the original Navarro-Frenk-White (NFW) profile, the generalized NFW profile and the Einasto profile. We compare the theoretical predictions with observational results of the surface mass density reported recently by other researchers. We obtain constraints on the amplitude and the typical scale of the transition in the Vainshtein mechanism in a subclass of the generalized galileon model.

  7. OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY

    SciTech Connect

    Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada

    2010-05-20

    Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, {sigma}{sub 8}, is constrained using observed clusters of galaxies, although current estimates of {sigma}{sub 8} from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 < z < 0.8, we find that the observed cluster concentration-mass relation can be used to reduce the M-T scatter by a factor of 6. Typically only relaxed clusters are used to estimate {sigma}{sub 8}, but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of {sigma}{sub 8} measurements from clusters are twofold: the errors on {sigma}{sub 8} are reduced and the cluster sample size is increased. Therefore, the statistics on {sigma}{sub 8} determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.

  8. Strong gravitational lensing in a charged squashed Kaluza-Klein Gödel black hole

    NASA Astrophysics Data System (ADS)

    Sadeghi, J.; Naji, J.; Vaez, H.

    2014-01-01

    In this Letter we investigate the strong gravitational lansing in a charged squashed Kaluza-Klein Gödel black hole. The deflection angle is considered by the logarithmic term proposed by Bozza et al. Then we study the variation of deflection angle and its parameters abar and bbar. We suppose that the supermassive black hole in the galaxy center can be considered by a charged squashed Kaluza-Klein black hole in a Gödel background. Then by the relations between lensing parameters and observables, we estimate the observables for different values of charge, extra dimension and Gödel parameters.

  9. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-forming Galaxies near Redshift z = 2

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Françoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A.

    2014-05-01

    We report on two regularly rotating galaxies at redshift z ≈ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ≈ 120 ± 7 km s-1 and a gas velocity dispersion of σ g < 23 km s-1 (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ≈ 79 ± 11 km s-1 and σ g <~ 4 km s-1 (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σ g = 92 ± 20 km s-1. Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. Herschel extreme lensing line observations: Dynamics of two strongly lensed star-forming galaxies near redshift z = 2

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Françoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A.

    2014-05-20

    We report on two regularly rotating galaxies at redshift z ≈ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ({sup S}0901{sup )} and SDSSJ120602.09+514229.5 ({sup t}he Clone{sup )} are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ≈ 120 ± 7 km s{sup –1} and a gas velocity dispersion of σ {sub g} < 23 km s{sup –1} (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ≈ 79 ± 11 km s{sup –1} and σ {sub g} ≲ 4 km s{sup –1} (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σ {sub g} = 92 ± 20 km s{sup –1}. Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  11. Two Accurate Time-delay Distances from Strong Lensing: Implications for Cosmology

    NASA Astrophysics Data System (ADS)

    Suyu, S. H.; Auger, M. W.; Hilbert, S.; Marshall, P. J.; Tewes, M.; Treu, T.; Fassnacht, C. D.; Koopmans, L. V. E.; Sluse, D.; Blandford, R. D.; Courbin, F.; Meylan, G.

    2013-04-01

    Strong gravitational lenses with measured time delays between the multiple images and models of the lens mass distribution allow a one-step determination of the time-delay distance, and thus a measure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131-1231 incorporating (1) the newly measured time delays from COSMOGRAIL, the COSmological MOnitoring of GRAvItational Lenses, (2) archival Hubble Space Telescope imaging of the lens system, (3) a new velocity-dispersion measurement of the lens galaxy of 323 ± 20 km s-1 based on Keck spectroscopy, and (4) a characterization of the line-of-sight structures via observations of the lens' environment and ray tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that takes into account all known systematic uncertainties. In combination with the Wilkinson Microwave Anisotropy Probe seven-year (WMAP7) data set in flat wCDM cosmology, our unblinded cosmological constraints for RXJ1131-1231 are H_0=80.0^{+5.8}_{-5.7} km s^{-1} Mpc^{-1}, Ωde = 0.79 ± 0.03, and w=-1.25^{+0.17}_{-0.21}. We find the results to be statistically consistent with those from the analysis of the gravitational lens B1608+656, permitting us to combine the inferences from these two lenses. The joint constraints from the two lenses and WMAP7 are H_0=75.2^{+4.4}_{-4.2} km s^{-1} Mpc^{-1}, Ω _de=0.76^{+0.02}_{-0.03}, and w = -1.14^{+0.17}_{-0.20} in flat wCDM, and H_0=73.1^{+2.4}_{-3.6} km s^{-1} Mpc^{-1}, Ω_{Λ}= 0.75^{+0.01}_{-0.02}, and Ω_k=0.003^{+0.005}_{-0.006} in open ΛCDM. Time-delay lenses constrain especially tightly the Hubble constant H 0 (5.7% and 4.0% respectively in wCDM and open ΛCDM) and curvature of the universe. The overall information content is similar to that of Baryon Acoustic Oscillation experiments. Thus, they complement well other cosmological probes

  12. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  13. Mass Distrubtion from Strong Gravitational Lensing of Merging Cluster Abell 2146

    NASA Astrophysics Data System (ADS)

    Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen

    2017-01-01

    The merging cluster Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky. In images from Chandra X-ray Observatory there are two distinct shock fronts in the intracluster medium. An unusual feature of one of the clusters is that the peak in the X-ray is leading the brightest cluster galaxy. The dark matter component is coincident with the brightest cluster galaxy (BCG). Shortly after first core passage one would typically expect the dark matter and BCG to lead the X-ray emitting plasma, however, that is not the case with Abell 2146. Strong lensing features were identified on images taken by the Hubble Space Telescope. These features were used as constraints on a lens model that maps the matter distribution of the system. We focus on the cluster Abell 2146-A to determine the dark matter centroid near BCG-A and the peak in the X-ray. The results from the strong lensing model indicate the X-ray cool core leads both the dark matter centroid and BCG-A. The dark matter centroid and BCG-A are separated by ≈ 2 kpc. The X-ray peak and dark matter centroid are separated by ≈ 30 kpc.

  14. Constraints on a φCDM model from strong gravitational lensing and updated Hubble parameter measurements

    SciTech Connect

    Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong E-mail: geng@phys.nthu.edu.tw E-mail: huangymei@gmail.com

    2015-02-01

    We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(φ) ∝ φ{sup −α} (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H{sub 0} is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.

  15. Testing the DGP model with gravitational lensing statistics

    NASA Astrophysics Data System (ADS)

    Zhu, Zong-Hong; Sereno, M.

    2008-09-01

    Aims: The self-accelerating braneworld model (DGP) appears to provide a simple alternative to the standard ΛCDM cosmology to explain the current cosmic acceleration, which is strongly indicated by measurements of type Ia supernovae, as well as other concordant observations. Methods: We investigate observational constraints on this scenario provided by gravitational-lensing statistics using the Cosmic Lens All-Sky Survey (CLASS) lensing sample. Results: We show that a substantial part of the parameter space of the DGP model agrees well with that of radio source gravitational lensing sample. Conclusions: In the flat case, Ω_K=0, the likelihood is maximized, L=L_max, for ΩM = 0.30-0.11+0.19. If we relax the prior on Ω_K, the likelihood peaks at Ω_M,Ωr_c ≃ 0.29, 0.12, slightly in the region of open models. The confidence contours are, however, elongated such that we are unable to discard any of the close, flat or open models.

  16. Weak Gravitational Lensing in Practice: Instrumentation, Systematics, and Null Tests

    NASA Astrophysics Data System (ADS)

    Bradshaw, Andrew

    2017-06-01

    Weak gravitational lensing has enormous potential for mapping the growth of large scale structure of our Universe by surveying the way distant galaxy images are slightly distorted by foreground gravitational potentials. However, in the scientific quest for sub-percent precision in cosmological measurements, a multitude of questions have been raised about particular systematic errors which could dominate the accuracy of weak lensing in the era of Stage IV experiments like the LSST. This thesis talk will discuss a few recently discovered instrumental & observational artifacts that have now been extensively measured using a novel benchtop simulation of LSST observing. In particular, systematics such as astrometric error patterns, pixelization biases, and the Brighter-Fatter effect will be discussed, as well as their estimated impact on cosmological parameters. Additionally, examples of these systematics and others will be shown using on-sky data, and the applicability of B-mode systematics null testing will be discussed.

  17. Connection between black-hole quasinormal modes and lensing in the strong deflection limit.

    PubMed

    Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G

    2010-06-25

    The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

  18. Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Lu, Wenbin

    2017-09-01

    Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (∼ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (∼ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ∼1 ms and a repetition rate (of detected bursts) of ∼0.05 per day of a single FRB source, non-uniform displacement ≳0.1–1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.

  19. Strong Gravitational Lensing as a Tool to Investigate the Structure of Jets at High Energies

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan

    2014-06-01

    The components of blazar jets that emit radiation span a factor of 1010 in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.

  20. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    SciTech Connect

    Chen Daming

    2008-01-15

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with {Omega}{sub b} = 0.04 and {Omega}{sub {Lambda}} = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function {mu}(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.

  1. Testing the Dark Energy with Gravitational Lensing Statistics

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Covone, Giovanni; Zhu, Zong-Hong

    2012-08-01

    We study the redshift distribution of two samples of early-type gravitational lenses, extracted from a larger collection of 122 systems, to constrain the cosmological constant in the ΛCDM model and the parameters of a set of alternative dark energy models (XCDM, Dvali-Gabadadze-Porrati, and Ricci dark energy models), in a spatially flat universe. The likelihood is maximized for ΩΛ = 0.70 ± 0.09 when considering the sample excluding the Sloan Lens ACS systems (known to be biased toward large image-separation lenses) and no-evolution, and ΩΛ = 0.81 ± 0.05 when limiting to gravitational lenses with image separation Δθ > 2'' and no-evolution. In both cases, results accounting for galaxy evolution are consistent within 1σ. The present test supports the accelerated expansion, by excluding the null hypothesis (i.e., ΩΛ = 0) at more than 4σ, regardless of the chosen sample and assumptions on the galaxy evolution. A comparison between competitive world models is performed by means of the Bayesian information criterion. This shows that the simplest cosmological constant model—that has only one free parameter—is still preferred by the available data on the redshift distribution of gravitational lenses. We perform an analysis of the possible systematic effects, finding that the systematic errors due to sample incompleteness, galaxy evolution, and model uncertainties approximately equal the statistical errors, with present-day data. We find that the largest sources of systemic errors are the dynamical normalization and the high-velocity cutoff factor, followed by the faint-end slope of the velocity dispersion function.

  2. TESTING THE DARK ENERGY WITH GRAVITATIONAL LENSING STATISTICS

    SciTech Connect

    Cao Shuo; Zhu Zonghong; Covone, Giovanni

    2012-08-10

    We study the redshift distribution of two samples of early-type gravitational lenses, extracted from a larger collection of 122 systems, to constrain the cosmological constant in the {Lambda}CDM model and the parameters of a set of alternative dark energy models (XCDM, Dvali-Gabadadze-Porrati, and Ricci dark energy models), in a spatially flat universe. The likelihood is maximized for {Omega}{sub {Lambda}} = 0.70 {+-} 0.09 when considering the sample excluding the Sloan Lens ACS systems (known to be biased toward large image-separation lenses) and no-evolution, and {Omega}{sub {Lambda}} = 0.81 {+-} 0.05 when limiting to gravitational lenses with image separation {Delta}{theta} > 2'' and no-evolution. In both cases, results accounting for galaxy evolution are consistent within 1{sigma}. The present test supports the accelerated expansion, by excluding the null hypothesis (i.e., {Omega}{sub {Lambda}} = 0) at more than 4{sigma}, regardless of the chosen sample and assumptions on the galaxy evolution. A comparison between competitive world models is performed by means of the Bayesian information criterion. This shows that the simplest cosmological constant model-that has only one free parameter-is still preferred by the available data on the redshift distribution of gravitational lenses. We perform an analysis of the possible systematic effects, finding that the systematic errors due to sample incompleteness, galaxy evolution, and model uncertainties approximately equal the statistical errors, with present-day data. We find that the largest sources of systemic errors are the dynamical normalization and the high-velocity cutoff factor, followed by the faint-end slope of the velocity dispersion function.

  3. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Suyu, Sherry H.; Oguri, Masamune; More, Surhud; Lee, Chien-Hsiu

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  4. Precise Stellar Masses at 1Strongly Lensed Galaxies Observed by HST

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Gladders, Michael; Sharon, Keren; Wuyts, Eva

    2012-12-01

    We propose IRAC imaging of 22 strong lensing fields to a depth complementary to upcoming HST Cycle 20 imaging. All but four of these fields have extant but shallow IRAC imaging; here we seek here the depth necessary to fully exploit the investment in HST imaging, and extensive ground-based spectroscopy. With this ensemble of data we will characterise the nature of star formation in galaxies at 1

  5. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime.

    PubMed

    McKay, Aaron; Kitzler, Ondrej; Mildren, Richard P

    2014-01-13

    We report an investigation into a double metal tungstate Raman laser when pumped at elevated average powers. Potassium gadolinium tungstate (KGW) was placed in an external cavity configured for second-Stokes output and pumped at pulse repetition rate of 38 kHz with up to 46 W of average power. For output powers above 3 W, we observe preferential excitation of Hermite-Gaussian transverse modes whose order in the X(1)(') principal direction of the thermal expansion tensor scales linearly with Raman power. We deduce that strong astigmatic thermal lensing is induced in the Raman crystal with a negative component in the X(1)(') direction. At maximum pump power, 8.3 W of output power was obtained at a conversion efficiency of 18%.

  6. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  7. THE GINI COEFFICIENT AS A TOOL FOR IMAGE FAMILY IDENITIFICATION IN STRONG LENSING SYSTEMS WITH MULTIPLE IMAGES

    SciTech Connect

    Florian, Michael K.; Gladders, Michael D.; Li, Nan; Sharon, Keren

    2016-01-10

    The sample of cosmological strong lensing systems has been steadily growing in recent years and with the advent of the next generation of space-based survey telescopes, the sample will reach into the thousands. The accuracy of strong lens models relies on robust identification of multiple image families of lensed galaxies. For the most massive lenses, often more than one background galaxy is magnified and multiply imaged, and even in the cases of only a single lensed source, identification of counter images is not always robust. Recently, we have shown that the Gini coefficient in space-telescope-quality imaging is a measurement of galaxy morphology that is relatively well-preserved by strong gravitational lensing. Here, we investigate its usefulness as a diagnostic for the purposes of image family identification and show that it can remove some of the degeneracies encountered when using color as the sole diagnostic, and can do so without the need for additional observations since whenever a color is available, two Gini coefficients are as well.

  8. A PCA-based automated finder for galaxy-scale strong lenses

    NASA Astrophysics Data System (ADS)

    Joseph, R.; Courbin, F.; Metcalf, R. B.; Giocoli, C.; Hartley, P.; Jackson, N.; Bellagamba, F.; Kneib, J.-P.; Koopmans, L.; Lemson, G.; Meneghetti, M.; Meylan, G.; Petkova, M.; Pires, S.

    2014-06-01

    We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.

  9. Generalised model-independent characterisation of strong gravitational lenses. I. Theoretical foundations

    NASA Astrophysics Data System (ADS)

    Wagner, J.

    2017-05-01

    We extend our model-independent approach for characterising strong gravitational lenses to its most general form to leading order and use the orientation angles of a set of multiple images with respect to their connection line(s) in addition to the relative distances between the images, their ellipticities, and time-delays. For two symmetric images that straddle the critical curve, the orientation angle additionally allows us to determine the slope of the critical curve and a second (reduced) flexion coefficient at the critical point on the connection line between the images. It also allows us to drop the symmetry assumption that the axis of largest image extension is orthogonal to the critical curve. For three images almost forming a giant arc, the degree of assumed image symmetry is also reduced to the most general case, describing image configurations for which the source need not be placed on the symmetry axis of the two folds that unite at the cusp. For a given set of multiple images, we set limits on the applicability of our approach, show which information can be obtained in cases of merging images, and analyse the accuracy achievable due to the Taylor expansion of the lensing potential for the fold case on a galaxy cluster scale Navarro-Frenk-White-profile, a fold and cusp case on a galaxy cluster scale singular isothermal ellipse, and compare the generalised approach with our previously published one. The position of the critical points is reconstructed with less than 5'' deviation for multiple images closer to the critical points than 30% of the (effective) Einstein radius. The slope of the critical curve at a fold and its shape in the vicinity of a cusp deviate less than 20% from the true values for distances of the images to the critical points less than 15% of the (effective) Einstein radius.

  10. THE SLOAN BRIGHT ARCS SURVEY: TEN STRONG GRAVITATIONAL LENSING CLUSTERS AND EVIDENCE OF OVERCONCENTRATION

    SciTech Connect

    Wiesner, Matthew P.; Lin, Huan; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Tucker, Douglas

    2012-12-10

    We describe 10 strong lensing galaxy clusters of redshift 0.26 {<=} z {<=} 0.56 that were found in the Sloan Digital Sky Survey. We present measurements of richness (N{sub 200}), mass (M{sub 200}), and velocity dispersion for the clusters. We find that in order to use the mass-richness relation from Johnston et al., which was established at mean redshift of 0.25, it is necessary to scale measured richness values up by 1.47. Using this scaling, we find richness values for these clusters to be in the range of 22 {<=} N{sub 200} {<=} 317 and mass values to be in the range of 1 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun} {<=} M{sub 200} {<=} 30 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun }. We also present measurements of Einstein radius, mass, and velocity dispersion for the lensing systems. The Einstein radii ({theta}{sub E}) are all relatively small, with 5.''4 {<=} {theta}{sub E} {<=} 13''. Finally, we consider if there is evidence that our clusters are more concentrated than {Lambda}CDM would predict. We find that six of our clusters do not show evidence of overconcentration, while four of our clusters do. We note a correlation between overconcentration and mass, as the four clusters showing evidence of overconcentration are all lower-mass clusters. For the four lowest mass clusters the average value of the concentration parameter c{sub 200} is 11.6, while for the six higher-mass clusters the average value of c{sub 200} is 4.4. {Lambda}CDM would place c{sub 200} between 3.4 and 5.7.

  11. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  12. VLT/Magellan Spectroscopy of 29 Strong Lensing Selected Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Carrasco, Mauricio; Barrientos, L. Felipe; Anguita, Timo; García-Vergara, Cristina; Bayliss, Matthew; Gladders, Michael; Gilbank, David; Yee, H. K. C.; West, Michael

    2017-01-01

    We present an extensive spectroscopic follow-up campaign of 29 strong lensing (SL) selected galaxy clusters discovered primarily in the Second Red-Sequence Cluster Survey (RCS-2). Our spectroscopic analysis yields redshifts for 52 gravitational arcs present in the core of our galaxy clusters, which correspond to 35 distinct background sources that are clearly distorted by the gravitational potential of these clusters. These lensed galaxies span a wide redshift range of 0.8 ≤ z ≤ 2.9, with a median redshift of zs = 1.8 ± 0.1. We also measure reliable redshifts for 1004 cluster members, allowing us to obtain robust velocity dispersion measurements for 23 of these clusters, which we then use to determine their dynamical masses by using a simulation-based σDM ‑ M200 scaling relation. The redshift and mass ranges covered by our SL sample are 0.22 ≤ z ≤ 1.01 and 5× {10}13≤slant {M}200/{h}70-1 {M}ȯ ≤slant 1.9× {10}15, respectively. We analyze and quantify some possible effects that might bias our mass estimates, such as the presence of substructure, the region where cluster members are selected for spectroscopic follow-up, the final number of confirmed members, and line-of-sight effects. We find that 10 clusters of our sample with Nmem ≳ 20 show signs of dynamical substructure. However, the velocity data of only one system is inconsistent with a uni-modal distribution. We therefore assume that the substructures are only marginal and not of comparable size to the clusters themselves. Consequently, our velocity dispersion and mass estimates can be used as priors for SL mass reconstruction studies and also represent an important step toward a better understanding of the properties of the SL galaxy cluster population.

  13. Search and Analysis of Galaxy-Scale Strong Gravitational Lenses in Cosmological Surveys

    NASA Astrophysics Data System (ADS)

    Brault, F.

    2013-11-01

    This article focuses on the development of a novel detector of strong galaxy-galaxy lenses based on the massive modelling of candidates in wide-field ground-based imaging data. Indeed, not only are these events rare in the Universe, but they are at the same time very valuable to understand galaxy formation and evolution in a cosmological context. We use parametric models, which are optimized by MCMC in a bayesian framework, so that we know the distribution of errors. We first generate several training samples : a hundred lenses simulated in HST and CFHT conditions, along with 325 observed lens candidates resulting from a series of preselections on the CFHTLS-Wide galaxies, and that we classify according to their credibility. The whole challenge in designing this detector lies in a subtle balance between the quality of models and the execution time. We massively run the modelling on our samples, beginning with ideal application conditions that we make more complex by stages so as to get closer to the observation conditions and save time. We show that a 7-parameter model assuming a spherical source can recover the Einstein radius from the CFHT simulations with a precision of 7%. We apply a mask to the input data that noticeably enhances the robustness of the models facing environment problems, with a median convergence time of 4 minutes that could be easily reduced by a factor of 10 with more direct optimization techniques. From our results, we define selection contours in the parameter space, resulting in a completeness of 38% and a purity of 55% for the sample of 51 candidates accepted by our robot among the 325 preselected systems.

  14. Towards the Ronchi test for gravitational lenses: the gravitoronchigram

    NASA Astrophysics Data System (ADS)

    Bretón, Nora; de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Alejandro Juárez-Reyes, Salvador; Julián-Macías, Israel; Montiel, Ariadna; Ortega-Vidals, Paula; Román-Hernández, Edwin; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Sosa-Sánchez, Citlalli Teresa; Suárez-Xique, Román

    2017-06-01

    The aim of this work is to present a Ronchi test for a gravitational lens. To this end, we use the geometrical optics point of view of the Ronchi test and the definition of the exact lens equation without reference to a background space-time to introduce the analog of the ideal ronchigram, which we named the gravitoronchigram. We first present the ideal ronchigram for an axicon lens and then using the space-time perspective of the lensing phenomenon we obtain analytical equations of the ideal gravitoronchigram for the Schwarzschild lens in the thin lens approximation and in an exact way. Finally, because the caustic associated with the deflected light by the axicon and the Schwarzschild lenses is a line along the optical axis we conjecture the generation of a gravitoBessel beam by illuminating the Schwarzschild lens with a point light source analogous to that generated by an axicon lens. That is, a particular example of the so-called non-diffracting light fields.

  15. Applications of Strong Gravitational Lensing: Utilizing Nature's Telescope for the Study of Intermediate to High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bandara, H. M. Kaushala T.

    2012-06-01

    This dissertation presents a detailed analysis of the galaxy-scale strong gravitational lenses discovered by the Sloan Lens ACS (SLACS) survey, with the aim of providing new insight into the processes that affect the evolution of galaxies at intermediate and high redshift. First, we present evidence for a relationship between the supermassive black hole mass and the total gravitational mass of the host galaxy, by utilizing the fact that gravitational lensing allows us to accurately measure the inner mass density profile of early-type lens galaxies and their total masses within an aperture. These results confirm that the properties of the bulge component of early-type galaxies and the resulting supermassive black hole are fundamentally regulated by the properties of the dark matter halo. We then utilize the lensing magnification for a detailed study of the photometric properties (luminosity, size and shape) of SLACS background sources and determine the evolution of the disk galaxy luminosity-size relation since z ˜ 1. A comparison of the observed SLACS luminosity-size relation to theoretical simulations provides strong evidence for mass-dependent evolution of disk galaxies since z ˜ 1. Furthermore, a comparison of the SLACS luminosity-size relation to that of a non-lensing, broad-band imaging survey shows that one can probe a galaxy population that is ˜ 2 magnitudes deeper by utilizing the lensing magnification. We continue the detailed study of SLACS background sources by combining the lensing magnification with diffraction-limited integral field spectroscopy to derive two-dimensional kinematic, star formation rate and metallicity distributions of gravitationally lensed galaxies at z > 0.78. Integral field spectroscopic observations of the Halpha emission line properties of a SLACS source galaxy (SDSS J0252+0039), at z = 0.98, show that the lensing magnification and adaptive optics advantages can be effectively combined to derive spatially resolved kinematics

  16. Magnification relations for Kerr lensing and testing cosmic censorship

    SciTech Connect

    Werner, M. C.; Petters, A. O.

    2007-09-15

    A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely, the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m>1 indicates a naked singularity, a most interesting application would be a test of the cosmic censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.

  17. DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62

    SciTech Connect

    Wong, Kenneth C.; Suyu, Sherry H.; Tran, Kim-Vy H.; Papovich, Casey J.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Koekemoer, Anton M.; Brodwin, Mark; Gonzalez, Anthony H.; Kacprzak, Glenn G.; Rudnick, Gregory H.; Halkola, Aleksi

    2014-07-10

    We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182–05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z {sub S} = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ{sub E}=0.38{sub −0.01}{sup +0.02} arcsec (3.2{sub −0.1}{sup +0.2} kpc) and the total enclosed mass is M {sub tot}(<θ{sub E})=1.8{sub −0.1}{sup +0.2}×10{sup 11} M{sub ⊙}. We estimate that the cluster environment contributes ∼10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θ{sub E} is f{sub DM}{sup Chab}=0.3{sub −0.3}{sup +0.1}, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f{sub DM}{sup Salp}=−0.3{sub −0.5}{sup +0.2}). The total magnification of the source is μ{sub tot}=2.1{sub −0.3}{sup +0.4}. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source.

  18. Hubble and Spitzer Follow-up for Two Strongly Lensed LBGs: (II) Lens Potential Reconstruction and Analysis

    NASA Astrophysics Data System (ADS)

    Allam, Sahar S.; Tucker, D. L.; SDSS Bright Arcs Search Team

    2009-05-01

    We present new lens reconstruction models based on HST WFPC2 and NICMOS imaging of two strongly lensed Lyman Break Galaxies LBGs that were recently discovered. These two LBGs -- the "8 O'Clock Arc" (Allam et al. 2007) and the "SDSS J1206+5142 Arc" (Lin et al. 2008)-- are currently the brightest known LBGs, roughly 3 times brighter than the former record-holder,MS1512-cB58 (a.k.a. "cB58"). Based on the lens reconstructions and detailed SED modeling, we will discuss the properties of these two newly discovered lensed LBGs.

  19. Quantifying the Impact of Cosmological Parameter Uncertainties on Strong-lensing Models with an Eye Toward the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Sharon, Keren; Johnson, Traci

    2015-03-01

    We test the effects of varying the cosmological parameter values used in the strong lens modeling process for the six Hubble Frontier Field (HFF) galaxy clusters. The standard procedure for generating high-fidelity strong lens models includes careful consideration of uncertainties in the output models that result from varying model parameters within the bounds of available data constraints. It is not, however, common practice to account for the effects of cosmological parameter value uncertainties. The convention is to instead use a single fiducial “concordance cosmology” and generate lens models assuming zero uncertainty in cosmological parameter values. We find that the magnification maps of the individual HFF clusters vary significantly when lens models are computed using different cosmological parameter values taken from recent literature constraints from space- and ground-based experiments. Specifically, the magnification maps have average variances across the best-fit models computed using different cosmologies that are comparable in magnitude to—and as much as 2.5× larger than—the model-fitting uncertainties in each best-fit model. We also find that estimates of the mass profiles of the cluster cores themselves vary only slightly when different input cosmological parameters are used. We conclude that cosmological parameter uncertainty is a non-negligible source of uncertainty in lens model products for the HFF clusters and that it is important that current and future work that relies on precision strong-lensing models take care to account for this additional source of uncertainty.

  20. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE PAGES

    Nord, B.; Buckley-Geer, E.; Lin, H.; ...

    2016-08-05

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec–2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 1012 to 6 × 1013 M ⊙, respectively.« less

  1. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    SciTech Connect

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; da S. Pereira, M. Elidaiana; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Kind, M. Carrasco; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; D’Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.

    2016-08-05

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec–2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 1012 to 6 × 1013 M , respectively.

  2. Observation and Confirmation of Six Strong-lensing Systems in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D'Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration

    2016-08-01

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80-3.2 and in i-band surface brightness i SB ˜ 23-25 mag arcsec-2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″-9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    SciTech Connect

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; da S. Pereira, M. Elidaiana; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Kind, M. Carrasco; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; D’Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.

    2016-08-05

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec–2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 1012 to 6 × 1013 M , respectively.

  4. Strong gravitational lensing by an electrically charged black hole in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Miyamoto, Umpei

    2015-08-01

    We systematically examine the properties of null geodesics around an electrically charged, asymptotically flat black hole in Eddington-inspired Born-Infeld gravity, varying the electric charge of the black hole and the coupling constant in the theory. We find that the radius of the unstable circular orbit for a massless particle decreases with the coupling constant, if the value of the electrical charge is fixed. Additionally, we consider the strong gravitational lensing around such a black hole. We show that the deflection angle, the position angle of the relativistic images, and the magnification due to the light bending in strong gravitational field are quite sensitive to the parameters determining the black hole solution. Thus, through the accurate observations associated with the strong gravitational lensing, it might be possible to reveal the gravitational theory in a strong field regime.

  5. Shape profiles and orientation bias for weak and strong lensing cluster halos

    SciTech Connect

    Groener, A. M.; Goldberg, D. M.

    2014-11-10

    We study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimation of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of three-dimensional concentrations (c {sub 200}) and isodensity shape on weak and strong lensing scales. We find this difference to be ∼18% (∼9%) for low- (medium-)mass cluster halos with intrinsically low concentrations (c {sub 200} = 1-3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ∼30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download.

  6. CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly magnified by galaxy cluster members

    SciTech Connect

    Grillo, C.; Christensen, L.; Gobat, R.; Balestra, I.; Nonino, M.; Biviano, A.; Mercurio, A.; Rosati, P.; Vanzella, E.; Graves, G.; Lemze, D.; Ford, H.; Bartelmann, M.; Benitez, N.; Bradley, L.; Coe, D.; Broadhurst, T.; Donahue, M.; and others

    2014-05-01

    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for

  7. VizieR Online Data Catalog: Spectroscopy of strong lensing galaxy clusters (Carrasco+, 2017)

    NASA Astrophysics Data System (ADS)

    Carrasco, M.; Barrientos, L. F.; Anguita, T.; Garcia-Vergara, C.; Bayliss, M.; Gladders, M.; Gilbank, D.; Yee, H. K. C.; West, M.

    2017-07-01

    The cluster sample presented here is a subset of a larger sample of more than one hundred strong lensing (SL)-selected clusters that have been identified primarily in Second Red-Sequence Cluster Survey (RCS-2; Gilbank+ 2011AJ....141...94G) imaging data. The median seeing of the RCS-2 survey is ~0.7". We supplement the RCS-2 SL-selected cluster sample with a few systems chosen to fill R.A. gaps that were similarly selected from the Sloan Digital Sky Survey (SDSS, see II/294). We performed a comprehensive spectroscopic follow-up of 29 SL-selected galaxy clusters primarily from the Red-Sequence Cluster Survey Giant Arc (RCSGA; Bayliss 2012ApJ...744..156B; M. D. Gladders et al. 2016, in preparation); 7 of these clusters were previously unpublished. The cluster sample is presented in Table 1. Most of the imaging data presented here have been obtained from the RCS-2 survey. They were collected in queue-scheduled mode with MegaCam at the 3.6m Canada-France-Hawaii Telescope (CFHT), between the semesters 2003A and 2007B inclusive. We have also obtained pre-imaging of our clusters in B, R, and I bands, with the Focal Reducer and low dispersion Spectrograph 2 (FORS2) at the ESO 8.2m Very Large Telescope (VLT), in queue mode. The FORS2/VLT observations were carried out between 2006 October and 2010 March using the Multi-object spectroscopy. We have also performed spectroscopic observations with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the 6.5m Magellan (Baade) telescope at LCO. The IMACS/Magellan observations were collected during six different runs between 2008 June and 2011 March. (4 data files).

  8. Null screens type Hartmann to test simple lenses

    NASA Astrophysics Data System (ADS)

    Castillo-Santiago, Gabriel; Castán-Ricaño, Diana; Gozález-Galindo, Alfredo; Avendaño-Alejo, Maximino; Díaz-Uribe, Rufino

    2015-08-01

    In order to evaluate either qualitative or quantitatively the shape of fast plano-convex aspheric lenses, a method to design null screens type Hartmann is proposed. The null screens are formed with non-uniform spots, which allows to have uniform images at detection's plane. The screens are printed on a foil sheet and placed in front of the lens under test, they are illuminated with a collimated monochromatic beam propagating along the optical axis, in such a way that through the process of refraction will form a uniform spot patterns which are recorded at a predefined plane of detection. Finally, processing properly its image recorded we could be able to get a quantitative evaluation of the lens under test. The designs of these null screens are based on the equations of the caustic surface produced by refraction. A preliminary test for a fast plano-convex aspheric lens with F=# = 0:8 is presented in this work. This method could also be applied to alignment of optical systems.

  9. Design, fabrication and test of miniature plastic panomorph lenses with 180° field of view

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Roulet, Patrice

    2014-12-01

    We present two miniature all plastic megapixel panomorph lenses for consumer electronics (total track length (TTL) of 6.56 mm) and mobile devices (TTL of 3.80 mm) showing the unique challenges from specification, design, manufacturing and testing phases of these new generation of miniature 180° FoV wide-angle lenses.

  10. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    SciTech Connect

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Hakon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard

    2013-07-20

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.

  11. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  12. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Tests to determine adequacy of windows and lenses. Impact tests. A 4-pound cylindrical weight with a one... in its mounting or the equivalent thereof at or near the center. At least three out of four samples...

  13. Precise Strong Lensing Mass Modeling of Four Hubble Frontier Field Clusters and a Sample of Magnified High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Kawamata, Ryota; Oguri, Masamune; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Ouchi, Masami

    2016-03-01

    We conduct precise strong lensing mass modeling of four Hubble Frontier Field (HFF) clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full-depth HFF images, and conduct mass modeling using the glafic software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed SN Ia HFF14Tom for Abell 2744 and positional constraints from the multiple images S1-S4 of the lensed supernova SN Refsdal for MACS J1149.6+2223. We find that our best-fitting mass models reproduce the observed image positions with rms errors of ˜0.″4, which are smaller than rms errors in previous mass modeling that adopted similar numbers of multiple images. Our model predicts a new image of SN Refsdal with a relative time delay and magnification that are fully consistent with a recent detection of reappearance. We then construct catalogs of z ˜ 6-9 dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains ˜120 galaxies at z ≳ 6, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of MUV ˜ -15 to -14. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the Space Telescope Science Institute website (https://archive.stsci.edu/prepds/frontier/lensmodels/).

  14. H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction

    NASA Astrophysics Data System (ADS)

    Ding, Xuheng; Liao, Kai; Treu, Tommaso; Suyu, Sherry H.; Chen, Geoff C.-F.; Auger, Matthew W.; Marshall, Philip J.; Agnello, Adriano; Courbin, Frederic; Nierenberg, Anna M.; Rusu, Cristian E.; Sluse, Dominique; Sonnenfeld, Alessandro; Wong, Kenneth C.

    2017-03-01

    The empirical correlation between the mass of a supermassive black hole (M_BH) and its host galaxy properties is widely considered to be an evidence of their co-evolution. A powerful way to test the co-evolution scenario and learn about the feedback processes linking galaxies and nuclear activity is to measure these correlations as a function of redshift. Unfortunately, currently M_BH can only be estimated in active galaxies at cosmological distances. At these distances, bright active galactic nuclei (AGNs) can outshine the host galaxy, making it extremely difficult to measure the host's luminosity. Strongly lensed AGNs provide in principle a great opportunity to improve the sensitivity and accuracy of the host galaxy luminosity measurements as the host galaxy is magnified and more easily separated from the point source, provided the lens model is sufficiently accurate. In order to measure the M_BH-L correlation with strong lensing, it is necessary to ensure that the lens modelling is accurate, and that the host galaxy luminosity can be recovered to at least a precision and accuracy better than that of the typical M_BH measurement. We carry out extensive and realistic simulations of deep Hubble Space Telescope observations of lensed AGNs obtained by our collaboration. We show that the host galaxy luminosity can be recovered with better accuracy and precision than the typical uncertainty in M_BH(∼0.5 dex) for hosts as faint as 2-4 mag dimmer than the AGN itself. Our simulations will be used to estimate bias and uncertainties in the actual measurements to be presented in a future paper.

  15. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    SciTech Connect

    Sapone, Domenico; Amendola, Luca

    2010-11-15

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c{sub s} < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  16. A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog

    SciTech Connect

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; Momcheva, Ivelina G.; Williams, Kurtis A.; Keeton, Charles R.

    2016-12-16

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ zgrp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < zgrp < 0.6. The groups have radial velocity dispersions of 60 ≤ σgrp ≤ 1200 km s–1 with a median of 350 km s–1. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σgrp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σgrp ≥ 500 km s–1) group or group candidate projected within 2' of the lens.

  17. A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: the Group Catalog

    NASA Astrophysics Data System (ADS)

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; Momcheva, Ivelina G.; Williams, Kurtis A.; Keeton, Charles R.

    2016-12-01

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s-1 with a median of 350 km s-1. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ˜85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s-1) group or group candidate projected within 2‧ of the lens.

  18. A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog

    DOE PAGES

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; ...

    2016-12-16

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ zgrp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < zgrp < 0.6. The groups have radial velocity dispersions of 60 ≤ σgrp ≤ 1200 km s–1 with a median of 350 km s–1. We also discover a supergroup in field B0712+472more » at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σgrp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σgrp ≥ 500 km s–1) group or group candidate projected within 2' of the lens.« less

  19. No evidence for the evolution of mass density power-law index γ from strong gravitational lensing observation

    NASA Astrophysics Data System (ADS)

    Cui, Jing-Lei; Li, Hai-Li; Zhang, Xin

    2017-08-01

    In this paper, we consider the singular isothermal sphere lensing model that has a spherically symmetric power-law mass dis- tribution ρtot(r) r-γ. We investigate whether the mass density power-law index γ is cosmologically evolutionary by using the strong gravitational lensing (SGL) observation, in combination with other cosmological observations. We also check whether the constraint result of γ is affected by the cosmological model, by considering several simple dynamical dark energy models. We find that the constraint on γ is mainly decided by the SGL observation and independent of the cosmological model, and we find no evidence for the evolution of γ from the SGL observation.

  20. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z~2

    SciTech Connect

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; /Fermilab

    2009-06-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 {angstrom}, including robust detections of fainter lines such as H{gamma}, [S II]{lambda}6717,6732, and in one instance [Ne III]{lambda}3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured H{alpha} luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between {approx}0.4 and {approx}1.5 of the solar oxygen abundance. Dynamical masses were computed from the H{alpha} velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z {approx} 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/H{beta} versus [N II]/H{alpha} that is offset from the locations of z {approx} 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II

  1. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; De Zotti, G.; Dunne, L.; Michałowski, M. J.; Oteo, I.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Riechers, D. A.; Scott, D.; and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  2. Herschel *-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Negrello, M.; Hopwood, R.; Dye, S.; Cunha, E. da; Serjeant, S.; Fritz, J.; Rowlands, K.; Fleuren, S.; Bussmann, R. S.; Cooray, A.; Dannerbauer, H.; Gonzalez-Nuevo, J.; Lapi, A.; Omont, A.; Amber, S.; Auld, R.; Baes, M.; Buttiglione, S.; Cava, A.; Danese, L.; Dariush, A.; De Zotti, G.; Dunne, L.; Eales, S.; Ibar, E.; Ivison, R. J.; Kim, S.; Leeuw, L.; Maddox, S.; Michałowski, M. J.; Massardi, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Smith, D. J. B.; Sutherland, W.; Temi, P.; Wardlow, J.

    2014-05-01

    We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ˜ 400-2000 M⊙ yr-1, with ˜(6-25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ˜100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ˜ 1.5-3) of the cosmic star formation history of the Universe.

  3. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    SciTech Connect

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.

  4. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE PAGES

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  5. A strong-lensing elliptical galaxy in the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.

    2017-01-01

    I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.

  6. Geometrical approach to strong gravitational lensing in f(R) gravity

    SciTech Connect

    Nzioki, Anne Marie; Goswami, Rituparno; Dunsby, Peter K. S.; Carloni, Sante

    2011-01-15

    We present a framework for the study of lensing in spherically symmetric spacetimes within the context of f(R) gravity. Equations for the propagation of null geodesics, together with an expression for the bending angle, are derived for any f(R) theory and then applied to an exact spherically symmetric solution of R{sup n} gravity. We find that for this case more bending is expected for R{sup n} gravity theories in comparison to general relativity and is dependent on the value of n and the value of the distance of closest approach of the incident null geodesic.

  7. IDCS J1426.5+3508: COSMOLOGICAL IMPLICATIONS OF A MASSIVE, STRONG LENSING CLUSTER AT z = 1.75

    SciTech Connect

    Gonzalez, Anthony H.; Fedeli, Cosimo; Mancone, Conor; Stanford, S. Adam; Zeimann, Greg; Brodwin, Mark; Dey, Arjun; Eisenhardt, Peter R. M.; Stern, Daniel

    2012-07-10

    The galaxy cluster IDCS J1426.5+3508 at z = 1.75 is the most massive galaxy cluster yet discovered at z > 1.4 and the first cluster at this epoch for which the Sunyaev-Zel'Dovich effect has been observed. In this paper, we report on the discovery with Hubble Space Telescope imaging of a giant arc associated with this cluster. The curvature of the arc suggests that the lensing mass is nearly coincident with the brightest cluster galaxy, and the color is consistent with the arc being a star-forming galaxy. We compare the constraint on M{sub 200} based upon strong lensing with Sunyaev-Zel'Dovich results, finding that the two are consistent if the redshift of the arc is z {approx}> 3. Finally, we explore the cosmological implications of this system, considering the likelihood of the existence of a strongly lensing galaxy cluster at this epoch in a {Lambda}CDM universe. While the existence of the cluster itself can potentially be accommodated if one considers the entire volume covered at this redshift by all current high-redshift cluster surveys, the existence of this strongly lensed galaxy greatly exacerbates the long-standing giant arc problem. For standard {Lambda}CDM structure formation and observed background field galaxy counts this lens system should not exist. Specifically, there should be no giant arcs in the entire sky as bright in F814W as the observed arc for clusters at z {>=} 1.75, and only {approx}0.3 as bright in F160W as the observed arc. If we relax the redshift constraint to consider all clusters at z {>=} 1.5, the expected number of giant arcs rises to {approx}15 in F160W, but the number of giant arcs of this brightness in F814W remains zero. These arc statistic results are independent of the mass of IDCS J1426.5+3508. We consider possible explanations for this discrepancy.

  8. Testing Gravity with GLAST: GRBs Lensed by Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Klimek, Matthew; Keeton, C. R.

    2007-05-01

    In the Randall-Sundrum model of branework gravity, very low mass (<10-18 Msun) primordial black holes could persist to the present day. Keeton & Petters have calculated the gravitational lensing effects of such primordial braneworld black holes. Although the direct lensing effects are too small to be observed, the time delay between images produces interference fringes in the energy spectrum at wavelengths which will be accessible to GLAST in gamma ray bursts. This phenomenon is dubbed "attolensing." Assuming such primordial black holes comprise some fraction of the dark matter, we calculate the probability of observing attolensing of a GRB. The most significant contributions to the probability come from black holes outside of the solar system but within the Galaxy; the attolensing probability is on the same order as that of microlensing. We also simulate GLAST observations of attolensed GRBs to demonstrate with what confidence GLAST would be able to detect such an event.

  9. Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.

    PubMed

    Milgrom, Mordehai

    2013-07-26

    The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0.

  10. Strong and Weak Lensing United III: Measuring the Mass Distribution of the Merging Galaxy Cluster 1E0657-56

    SciTech Connect

    Bradac, Marusa; Clowe, Douglas; Gonzalez, Anthony H.; Marshall, Phil; Forman, William; Jones, Christine; Markevitch, Maxim; Randall, Scott; Schrabback, Tim; Zaritsky, Dennis; /KIPAC, Menlo Park /Bonn, Inst. Astrophys. /Arizona U., Astron. Dept. - Steward Observ. /Florida U. /Harvard-Smithsonian Ctr. Astrophys.

    2006-09-27

    The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.

  11. Pressure testing of ophthalmic safety lenses: the effects on different materials.

    PubMed

    Dain, S J

    1988-07-01

    The procedure of applying pressure to a lens until fracture occurs and the use of the fracture pressure as a measure of lens strength has been proposed as a quantitative alternative to the drop ball test. The fracture pressure or pressure resistance of untempered, thermally tempered, and chemically tempered glass lenses and CR39 lenses were compared. The results for the glass lenses were consistent with workplace experience and previous studies using the drop ball test. The results for glass and CR39 lenses showed the reverse to what was expected. In order to investigate the basis of this difference, a second procedure was followed in which the annulus supporting the lens and the steel ball applying the pressure to the lens were systematically changed. Glass lenses showed a highly statistically significant change in fracture pressure with decreasing ball size and a small but statistically significant change with annulus size. CR39 lenses showed no statistically significant change in fracture pressure with changing ball size but a highly statistically significant increase in fracture pressure with increasing annulus size. The mechanism of fracture is known to differ in the glass and plastics materials and it is concluded that this method should not be used to compare the performance of different materials.

  12. The evolution of early-type galaxies: a strong lensing perspective

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Gavazzi, Raphael; Suyu, Sherry; Nipoti, Carlo; Auger, Matthew; Team 1

    2015-01-01

    Early-type galaxies are believed to grow as a result of mergers, but the details of this process are still largely unknown. Do the mergers involve galaxies of comparable mass (major) or are they dominated by small systems (minor)? Is there dissipation (wet) or not (dry)? Different processes leave different signatures on the mass structure of early-type galaxies. Gravitational lensing provides a unique way to detect these signatures. The SL2S project measured the evolution of the mass profile of massive early-type galaxies during the last 7 billion years, including constraints on the mean density slope, dark matter fraction, inner dark matter slope and stellar IMF. Based on collected data, we find that theoretical models for the evolution of early-type galaxies through dry mergers alone are unable to reproduce the observed trends. Additional physical processes, likely related to baryonic physics, are necessary to match the entire set of observables.

  13. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z {approx} 2.4 IN THE COSMOS/UltraVISTA FIELD

    SciTech Connect

    Muzzin, Adam; Labbe, Ivo; Franx, Marijn; Holt, J.; Szomoru, Daniel; Van de Sande, Jesse; Van Dokkum, Pieter; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Dunlop, James; Caputi, K. I.; Fynbo, J. P. U.; Milvang-Jensen, Bo; Le Fevre, Olivier; McCracken, Henry J.

    2012-12-20

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger

  14. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    SciTech Connect

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Breuck, C. de; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Rotermund, K. M.; Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A.; Fassnacht, C. D.; Gonzalez, A. H.; Ma, J.; González-López, J.; Hezaveh, Y.; Malkan, M.; and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  15. The influence of the matter along the line of sight and in the lens environment on the strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jaroszynski, M.; Kostrzewa-Rutkowska, Z.

    2014-04-01

    We investigate the influence of the matter along the line of sight and in the lens environment on the image configurations, relative time delays, and the resulting models of strong gravitational lensing. The distribution of matter in space and properties of gravitationally bound haloes are based on the Millennium Simulation. In our numerical experiments we consider isolated lens in a uniform universe model and the same lens surrounded by close neighbours and/or objects close to the line of sight which gives four different descriptions of the light propagation. We compare the results of the lens modelling which neglects effects of the environment and line of sight, when applied to image configurations resulting from approaches partially or fully taking into account these effects. We show that for a source at the redshift z ≈ 2 the effects are indeed important and may prevent successful fitting of lens models in a substantial part of simulated image configurations, especially when the relative time delays are taken into account. To have good constraints on the models we limit ourselves to configurations of four images. We consider 80 lenses and large number of source positions in each case. The influence of the lens neighbourhood and the line of sight introduces the spread into the fitted values of the deflection angles which translates into the spread in the lens velocity dispersion of ˜4 per cent. Similarly for the lens axis ratio we get the spread of ˜10 per cent and for the Hubble's constant of ˜6 per cent. When averaged over all lenses and all image configurations considered, the median fitted values of the parameters (including the Hubble's constant) do not differ more than 1 per cent from their values used in simulations.

  16. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements §...

  17. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  18. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  19. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  20. Gravitational lens models based on submillimeter array imaging of Herschel -selected strongly lensed sub-millimeter galaxies at z > 1.5

    SciTech Connect

    Bussmann, R. S.; Gurwell, M. A.; Pérez-Fournon, I.; Amber, S.; Calanog, J.; De Bernardis, F.; Wardlow, J.; Dannerbauer, H.; Harris, A. I.; Krips, M.; Lapi, A.; Maiolino, R.; Omont, A.; Riechers, D.; Baker, A. J.; Birkinshaw, M.; Bock, J.; and others

    2013-12-10

    Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub-)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S {sub 500} > 100 mJy, 21 are strongly lensed (i.e., multiply imaged), 4 are moderately lensed (i.e., singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r {sub half}) and far-infrared luminosities (L {sub FIR}) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z {sub lens} > 0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500 μm flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L {sub FIR} (median L {sub FIR} = 7.9 × 10{sup 12} L {sub ☉}) and two decades in FIR luminosity surface density (median Σ{sub FIR} = 6.0 × 10{sup 11} L {sub ☉} kpc{sup –2}). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift.

  1. Direct Observation of Cosmic Strings Via Their Strong Gravitational Lensing Effect. 1. Predictions for High Resolution Imaging Surveys

    SciTech Connect

    Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; Morganson, Eric; Dubath, Florian; /Santa Barbara, KITP

    2007-11-14

    We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.

  2. GREEN BANK TELESCOPE ZPECTROMETER CO(1-0) OBSERVATIONS OF THE STRONGLY LENSED SUBMILLIMETER GALAXIES FROM THE HERSCHEL ATLAS

    SciTech Connect

    Frayer, D. T.; Maddalena, R.; Harris, A. I.; Baker, A. J.; Ivison, R. J.; Smail, Ian; Negrello, M.; Aretxaga, I.; Baes, M.; Birkinshaw, M.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Cooray, A.; Dannerbauer, H.

    2011-01-10

    The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate high-redshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 {+-} 0.001 and z = 2.625 {+-} 0.001, and measure molecular gas masses of (1-3) x10{sup 10} M{sub sun}, corrected for lens amplification and assuming a conversion factor of {alpha} = 0.8 M{sub sun}( K km s{sup -1} pc{sup 2}){sup -1}. We find typical L(IR)/L'(CO) ratios of 120 {+-} 40 and 140 {+-} 50 L{sub sun}( K km s{sup -1} pc{sup 2}){sup -1}, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration.

  3. Green Bank Telescope Zpectrometer CO(1-0) Observations of the Strongly Lensed Submillimeter Galaxies from the Herschel ATLAS

    NASA Astrophysics Data System (ADS)

    Frayer, D. T.; Harris, A. I.; Baker, A. J.; Ivison, R. J.; Smail, Ian; Negrello, M.; Maddalena, R.; Aretxaga, I.; Baes, M.; Birkinshaw, M.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Dariush, A.; De Zotti, G.; Dunlop, J. S.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.; Hopwood, R.; Hughes, D. H.; Ibar, E.; Jarvis, M. J.; Lagache, G.; Leeuw, L. L.; Lopez-Caniego, M.; Maddox, S.; Michałowski, M. J.; Omont, A.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Scott, D.; Serjeant, S.; Smith, D. J. B.; Swinbank, A. M.; Temi, P.; Thompson, M. A.; Valtchanov, I.; van der Werf, P. P.; Verma, A.

    2011-01-01

    The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate high-redshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 ± 0.001 and z = 2.625 ± 0.001, and measure molecular gas masses of (1-3) ×1010 M sun, corrected for lens amplification and assuming a conversion factor of α = 0.8 M sun( K km s-1 pc2)-1. We find typical L(IR)/L'(CO) ratios of 120 ± 40 and 140 ± 50 L sun( K km s-1 pc2)-1, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration.

  4. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658.

    PubMed

    Reis, R C; Reynolds, M T; Miller, J M; Walton, D J

    2014-03-13

    The co-evolution of a supermassive black hole with its host galaxy through cosmic time is encoded in its spin. At z > 2, supermassive black holes are thought to grow mostly by merger-driven accretion leading to high spin. It is not known, however, whether below z ≈ 1 these black holes continue to grow by coherent accretion or in a chaotic manner, though clear differences are predicted in their spin evolution. An established method of measuring the spin of black holes is through the study of relativistic reflection features from the inner accretion disk. Owing to their greater distances from Earth, there has hitherto been no significant detection of relativistic reflection features in a moderate-redshift quasar. Here we report an analysis of archival X-ray data together with a deep observation of a gravitationally lensed quasar at z = 0.658. The emission originates within three or fewer gravitational radii from the black hole, implying a spin parameter (a measure of how fast the black hole is rotating) of a = 0.87(+0.08)(-0.15) at the 3σ confidence level and a > 0.66 at the 5σ level. The high spin found here is indicative of growth by coherent accretion for this black hole, and suggests that black-hole growth at 0.5 ≤ z ≤ 1 occurs principally by coherent rather than chaotic accretion episodes.

  5. Observation of H2O in a strongly lensed Herschel-ATLAS source at z = 2.3

    NASA Astrophysics Data System (ADS)

    Omont, A.; Neri, R.; Cox, P.; Lupu, R.; Guélin, M.; van der Werf, P.; Weiß, A.; Ivison, R.; Negrello, M.; Leeuw, L.; Lehnert, M.; Smail, I.; Verma, A.; Baker, A. J.; Beelen, A.; Aguirre, J. E.; Baes, M.; Bertoldi, F.; Clements, D. L.; Cooray, A.; Coppin, K.; Dannerbauer, H.; de Zotti, G.; Dye, S.; Fiolet, N.; Frayer, D.; Gavazzi, R.; Hughes, D.; Jarvis, M.; Krips, M.; Michałowski, M. J.; Murphy, E. J.; Riechers, D.; Serjeant, S.; Swinbank, A. M.; Temi, P.; Vaccari, M.; Vieira, J. D.; Auld, R.; Buttiglione, B.; Cava, A.; Dariush, A.; Dunne, L.; Eales, S. A.; Fritz, J.; Gomez, H.; Ibar, E.; Maddox, S.; Pascale, E.; Pohlen, M.; Rigby, E.; Smith, D. J. B.; Bock, J.; Bradford, C. M.; Glenn, J.; Scott, K. S.; Zmuidzinas, J.

    2011-06-01

    The Herschel survey, H-ATLAS, with its large areal coverage, has recently discovered a number of bright, strongly lensed high-z submillimeter galaxies. The strong magnification makes it possible to study molecular species other than CO, which are otherwise difficult to observe in high-z galaxies. Among the lensed galaxies already identified by H-ATLAS, the source J090302.9-014127B (SDP.17b) at z = 2.305 is remarkable because of its excitation conditions and a tentative detection of the H2O 202-111 emission line (Lupu et al. 2010, ApJ, submitted). We report observations of this line in SDP.17b using the IRAM interferometer equipped with its new 277-371 GHz receivers. The H2O line is detected at a redshift of z = 2.3049 ± 0.0006, with a flux of 7.8 ± 0.5 Jy km s-1 and a FWHM of 250 ± 60 km s-1. The new flux is 2.4 times weaker than the previous tentative detection, although both remain marginally consistent within 1.6σ. The intrinsic line luminosity and ratio of H2O(202 - 111)/CO(8 - 7) are comparable with those of the nearby starburst/enshrouded-AGN Mrk 231, and the ratio I(H2O)/LFIR is even higher, suggesting that SDP.17b could also host a luminous AGN. The detection of a strong H2O 202 - 111 line in SDP.17b implies an efficient excitation mechanism of the water levels that must occur in very dense and warm interstellar gas probably similar to Mrk 231. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. An ion-optical bench for testing ion source lenses

    NASA Astrophysics Data System (ADS)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  7. J0454-0309: evidence of a strong lensing fossil group falling into a poor galaxy cluster

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Suyu, S.; Schrabback, T.; Hildebrandt, H.; Erben, T.; Halkola, A.

    2010-05-01

    Aims: We have discovered a strong lensing fossil group (J0454) projected near the well-studied cluster MS0451-0305. Using the large amount of available archival data, we compare J0454 to normal groups and clusters. A highly asymmetric image configuration of the strong lens enables us to study the substructure of the system. Methods: We used multicolour Subaru/Suprime-Cam and CFHT/Megaprime imaging, together with Keck spectroscopy to identify member galaxies. A VLT/FORS2 spectrum was taken to determine the redshifts of the brightest elliptical and the lensed arc. Using HST/ACS images, we determined the group's weak lensing signal and modelled the strong lens system. This is the first time that a fossil group is analysed with lensing methods. The X-ray luminosity and temperature were derived from XMM-Newton data. Results: J0454 is located at z = 0.26, with a gap of 2.5 mag between the brightest and second brightest galaxies within half the virial radius. Outside a radius of 1.5 Mpc, we find two filaments extending over 4 Mpc, and within we identify 31 members spectroscopically and 33 via the red sequence with i < 22 mag. They segregate into spirals (σ_v = 590 km s-1) and a central concentration of ellipticals (σ_v = 480 km s-1), establishing a morphology-density relation. Weak lensing and cluster richness relations yield consistent values of r200 = 810-850 kpc and M200 = (0.75-0.90) × 1014 M_⊙. The brightest group galaxy (BGG) is inconsistent with the dynamic centre of J0454. It strongly lenses a galaxy at z = 2.1 ± 0.3, and we model the lens with a pseudo-isothermal elliptical mass distribution. A high external shear, and a discrepancy between the Einstein radius and the weak lensing velocity dispersion requires that the BGG must be offset from J0454's dark halo centre by at least 90-130 kpc. The X-ray halo is offset by 24 ± 16 kpc from the BGG, shows no signs of a cooling flow and can be fit by a single β-model. With LX = (1.4 ± 0.2) × 1043 erg s-1 J0454

  8. Test of general relativity and measurement of the lense-thirring effect with two earth satellites

    PubMed

    Ciufolini; Pavlis; Chieppa; Fernandes-Vieira; Perez-Mercader

    1998-03-27

    The Lense-Thirring effect, a tiny perturbation of the orbit of a particle caused by the spin of the attracting body, was accurately measured with the use of the data of two laser-ranged satellites, LAGEOS and LAGEOS II, and the Earth gravitational model EGM-96. The parameter &mgr;, which measures the strength of the Lense-Thirring effect, was found to be 1.1 +/- 0.2; general relativity predicts &mgr; identical with 1. This result represents an accurate test and measurement of one of the fundamental predictions of general relativity, that the spin of a body changes the geometry of the universe by generating space-time curvature.

  9. Testing PSF Interpolation in Weak Lensing with Real Data

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2017-04-01

    Reconstruction of the point-spread function (PSF) is a critical process in weak lensing measurement. We develop a real-data based and galaxy-oriented pipeline to compare the performances of various PSF reconstruction schemes. Making use of a large amount of the CFHTLenS data, the performances of three classes of interpolating schemes—polynomial, Kriging, and Shepard—are evaluated. We find that polynomial interpolations with optimal orders and domains perform the best. We quantify the effect of the residual PSF reconstruction error on shear recovery in terms of the multiplicative and additive biases, and their spatial correlations using the shear measurement method of Zhang et al. We find that the impact of PSF reconstruction uncertainty on the shear–shear correlation can be significantly reduced by cross correlating the shear estimators from different exposures. It takes only 0.2 stars (S/N ≳ 100) per square arcmin on each exposure to reach the best performance of PSF interpolation, a requirement that is satisfied in most of the CFHTlenS data.

  10. First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements

    NASA Astrophysics Data System (ADS)

    Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.

    2017-04-01

    Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ∼180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.

  11. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    SciTech Connect

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel; Medeiros, Lia; Sadowski, Aleksander; Narayan, Ramesh

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  12. Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits

    SciTech Connect

    Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.

    2007-04-15

    We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.

  13. Optical testing of long cylindrical lenses by means of scanning deflectometry

    NASA Astrophysics Data System (ADS)

    van Amstel, Willem D.; van de Goor, Peter F.; Horijon, Jef L.; Nuyens, Peter G. J. M.

    2000-11-01

    We present an extremely simple and powerful test set-up for measuring the position and the focal line straightness (lateral) and flatness (longitudinal) of cylindrical lenses, in particular of very long cylindrical lenses. Measurement results are presented for 330 mm and 650 mm long plano- convex cylindrical lenses with a focal length f approximately equals 48 mm, showing that a (lateral) straightness measurement accuracy of about +/- 1 micrometers is achieved easily with a set-up using not much more than a laser, a simple beam deflector from a barcode scanner, a PSD (position-sensitive photo diode) with associated electronics and a translation stage. A fully automated cylindrical lens test set-up version, using a PC for control and data processing will be explained. For the 330 mm long cylindrical lenses, the lateral straightness showed better than between 3 and 10 micrometers (peak to peak) and the longitudinal flatness between 20 and 80 micrometers (peak to peak) without corrective bending. It will be demonstrated that the aberration coefficients, as measured by this physical ray tracing approach, are in accordance with the results from numerical simulation by means of a commercially available ray-tracing program.

  14. Strong and weak lensing united: II. The cluster mass distribution of the most X-ray luminous cluster RX J1347.5-1145

    SciTech Connect

    Bradač, M.; Erben, T.; Schneider, P.; Hildebrandt, H.; Lombardi, M.; Schirmer, M.; Miralles, J. -M.; Clowe, D.; Schindler, S.

    2005-07-01

    We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145 , the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(<360 h -1 kpc)= (1.2± 0.3) x 1015 M. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.

  15. THE SLOAN BRIGHT ARCS SURVEY: DISCOVERY OF SEVEN NEW STRONGLY LENSED GALAXIES FROM z = 0.66-2.94

    SciTech Connect

    Kubo, Jeffrey M.; Allam, Sahar S.; Drabek, Emily; Lin, Huan; Tucker, Douglas; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Soares-Santos, Marcelle; Hao Jiangang; Kubik, Donna; Annis, James; Frieman, Joshua A.; Wiesner, Matthew; West, Anderson

    2010-12-01

    We report the discovery of seven new, very bright gravitational lens systems from our ongoing gravitational lens search, the Sloan Bright Arcs Survey (SBAS). Two of the systems are confirmed to have high source redshifts z = 2.19 and z = 2.94. Three other systems lie at intermediate redshift with z = 1.33, 1.82, 1.93 and two systems are at low redshift z = 0.66, 0.86. The lensed source galaxies in all of these systems are bright, with i-band magnitudes ranging from 19.73 to 22.06. We present the spectrum of each of the source galaxies in these systems along with estimates of the Einstein radius for each system. The foreground lens in most systems is identified by a red sequence based cluster finder as a galaxy group; one system is identified as a moderately rich cluster. In total, SBAS has now discovered 19 strong lens systems in the SDSS imaging data, 8 of which are among the highest surface brightness z {approx_equal} 2-3 galaxies known.

  16. A Stellar Velocity Dispersion for a Strongly-lensed, Intermediate-mass Quiescent Galaxy at z=2.8

    NASA Astrophysics Data System (ADS)

    Hill, Allison. R.; Muzzin, Adam; Franx, Marijn; van de Sande, Jesse

    2016-03-01

    Measuring stellar velocity dispersions of quiescent galaxies beyond z˜ 2 is observationally challenging. Such measurements require near-infrared spectra with a continuum detection of at least moderate signal to noise, often necessitating long integrations. In this paper, we present deep X-Shooter spectroscopy of one of only two known gravitationally lensed massive quiescent galaxies at z\\gt 2. This galaxy is quadruply imaged, with the brightest images magnified by a factor of ˜5. The total exposure time of our data is 9.8 hr on-source; however, the magnification, and the slit placement encompassing two images, provides a total equivalent exposure time of 215 hr. From this deep spectrum we measure a redshift of ({z}{spec}=2.756+/- 0.001), making this one of the highest redshift quiescent galaxies that is spectroscopically confirmed. We simultaneously fit both the spectroscopic and photometric data to determine stellar population parameters and conclude that this galaxy is relatively young ({560}-80+100 {Myr}), of intermediate mass ({log} {M}*/{M}⊙ ={10.59}-0.05+0.04), consistent with low dust content ({A}V={0.20}-0.20+0.26), and has quenched only relatively recently. This recent quenching is confirmed by strong Balmer absorption, particularly Hδ (H{δ }A={6.66}-0.92+0.96). Remarkably, this proves that at least some intermediate-mass galaxies have already quenched as early as z˜ 2.8. Additionally, we have measured a velocity dispersion of (σ =187+/- 43 {km} {{{s}}}-1), making this the highest-redshift quiescent galaxy with a dispersion measurement. We confirm that this galaxy falls on the same mass fundamental plane (MFP) as galaxies at z = 2.2, consistent with little to no evolution in the MFP up to z = 2.8. Overall this galaxy is proof of the existence of intermediate-mass quenched galaxies in the distant universe, and that lensing is a powerful tool for determining their properties with improved accuracy.

  17. Bright Strongly Lensed Galaxies at Redshift z ~ 6-7 behind the Clusters Abell 1703 and CL0024+16

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Bradley, L. D.; Bouwens, R. J.; Ford, H. C.; Illingworth, G. D.; Benítez, N.; Broadhurst, T.; Frye, B.; Infante, L.; Jee, M. J.; Motta, V.; Shu, X. W.; Zitrin, A.

    2009-06-01

    We report on the discovery of three bright, strongly lensed objects behind Abell 1703 and CL0024+16 from a dropout search over 25 arcmin2 of deep NICMOS data, with deep ACS optical coverage. They are undetected in the deep ACS images below 8500 Å and have clear detections in the J and H bands. Fits to the ACS, NICMOS, and IRAC data yield robust photometric redshifts in the range z ~ 6-7 and largely rule out the possibility that they are low-redshift interlopers. All three objects are extended, and resolved into a pair of bright knots. The bright i-band dropout in Abell 1703 has an H-band AB magnitude of 23.9, which makes it one of the brightest known galaxy candidates at z > 5.5. Our model fits suggest a young, massive galaxy only ~60 million years old with a mass of ~1010 M sun. The dropout galaxy candidates behind CL0024+16 are separated by 2farcs5 (~2 kpc in the source plane), and have H-band AB magnitudes of 25.0 and 25.6. Lensing models of CL0024+16 suggest that the objects have comparable intrinsic magnitudes of AB ~27.3, approximately one magnitude fainter than L* at z ~ 6.5. Their similar redshifts, spectral energy distribution, and luminosities, coupled with their very close proximity on the sky, suggest that they are spatially associated, and plausibly are physically bound. Combining this sample with two previously reported, similarly magnified galaxy candidates at z ~ 6-8, we find that complex systems with dual nuclei may be a common feature of high-redshift galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities of Research in Astronomy, Inc., under NASA contract NAS5-26555, and at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle

  18. Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi

    2017-01-01

    We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ∼ 1.3× {10}11 {M}ȯ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.

  19. Testing physical models for dipolar asymmetry: From temperature to k space to lensing

    NASA Astrophysics Data System (ADS)

    Zibin, J. P.; Contreras, D.

    2017-03-01

    One of the most intriguing hints of a departure from the standard cosmological model is a large-scale dipolar power asymmetry in the cosmic microwave background (CMB). If not a statistical fluke, its origins must lie in the modulation of the position-space fluctuations via a physical mechanism, which requires the observation of new modes to confirm or refute. We introduce an approach to describe such a modulation in k space and calculate its effects on the CMB temperature and lensing. We fit the k -space modulation parameters to Planck 2015 temperature data and show that CMB lensing will not provide us with enough independent information to confirm or refute such a mechanism. However, our approach elucidates some poorly understood aspects of the asymmetry, in particular that it is weakly constrained. Also, it will be particularly useful in predicting the effectiveness of polarization in testing a physical modulation.

  20. Development and testing of high concentration flat-plate Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Shvarts, M. Z.; Soluyanov, A. A.

    2009-08-01

    In the work, stages of designing, optimizing, manufacturing and testing the circular flat-plate Fresnel lenses (FLs) for photovoltaic modules with multi-junction solar cells (SCs) are presented. A mathematical model based on ray tracing has been developed for optimizing lenses design parameters and calculating their optical-power characteristics (OPCs). In searching the optimum combination of the lens aperture, its focal distance and refracting profile parameters, the optimization criterion was the maximum of the average sunlight concentration at high optical efficiency in the focal spot of minimum size. Analysis of OPCs of circular Fresnel lenses with conical (the generatrix of surface is a straight line) and curvilinear (the generatrix of surface is a curved line) refracting surfaces has been carried out. Fresnel lens specimens were fabricated and a control of their profile parameters has been done. Experimental lens OPCs have been obtained with use of newly developed optical test bench. A degree of the effect of the light flux and Fresnel lens geometrical imperfections on validity of the experimental data interpretation has been determined. To establish the lens optical efficiency values at standard irradiance conditions, the correction of the calculation model was done. Also, the effect of temperature on the lens optical efficiency is studied.

  1. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  2. Hubble and Spitzer Follow-up for Two Strongly Lensed LBGs: (I) Optical-to-Mid-IR Photometry and Mid-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tucker, Douglas Lee; Allam, S. S.; SDSS Bright Arcs Search Team

    2009-05-01

    We present the HST and Spitzer photometry and Spitzer spectroscopy of two strongly lensed Lyman Break Galaxies LBGs that were recently discovered. These two LBGs -- the "8 O'Clock Arc" (Allam et al. 2007) and the "SDSS J1206+5142 Arc" (Lin et al. 2008)-- are currently the brightest known LBGs, roughly 3 times brighter than the former record-holder, MS1512-cB58 (a.k.a. "cB58").

  3. Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS

    NASA Astrophysics Data System (ADS)

    Valtchanov, I.; Virdee, J.; Ivison, R. J.; Swinyard, B.; van der Werf, P.; Rigopoulou, D.; da Cunha, E.; Lupu, R.; Benford, D. J.; Riechers, D.; Smail, Ian; Jarvis, M.; Pearson, C.; Gomez, H.; Hopwood, R.; Altieri, B.; Birkinshaw, M.; Coia, D.; Conversi, L.; Cooray, A.; de Zotti, G.; Dunne, L.; Frayer, D.; Leeuw, L.; Marston, A.; Negrello, M.; Portal, M. Sanchez; Scott, D.; Thompson, M. A.; Vaccari, M.; Baes, M.; Clements, D.; Michałowski, M. J.; Dannerbauer, H.; Serjeant, S.; Auld, R.; Buttiglione, S.; Cava, A.; Dariush, A.; Dye, S.; Eales, S.; Fritz, J.; Ibar, E.; Maddox, S.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Smith, D. J. B.; Temi, P.; Carpenter, J.; Bolatto, A.; Gurwell, M.; Vieira, J. D.

    2011-08-01

    We present Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) and radio follow-up observations of two Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)-detected strongly lensed distant galaxies. In one of the targeted galaxies H-ATLAS J090311.6+003906 (SDP.81), we detect [O III] 88 μm and [C II] 158 μm lines at a signal-to-noise ratio of ˜5. We do not have any positive line identification in the other fainter target H-ATLAS J091305.0-005343 (SDP.130). Currently, SDP.81 is the faintest submillimetre galaxy with positive line detections with the FTS, with continuum flux just below 200 mJy in the 200-600 μm wavelength range. The derived redshift of SDP.81 from the two detections is z = 3.043 ± 0.012, in agreement with ground-based CO measurements. This is the first detection by Herschel of the [O III] 88 μm line in a galaxy at redshift higher than 0.05. Comparing the observed lines and line ratios with a grid of photodissociation region (PDR) models with different physical conditions, we derive the PDR cloud density n ≈ 2000 cm-3 and the far-ultraviolet ionizing radiation field G0≈ 200 (in units of the Habing field - the local Galactic interstellar radiation field of 1.6 × 10-6 W m-2). Using the CO-derived molecular mass and the PDR properties, we estimate the effective radius of the emitting region to be 500-700 pc. These characteristics are typical for star-forming, high-redshift galaxies. The radio observations indicate that SDP.81 deviates significantly from the local far-infrared/radio (FIR/radio) correlation, which hints that some fraction of the radio emission is coming from an active galactic nucleus (AGN). The constraints on the source size from millimetre-wave observations put a very conservative upper limit of the possible AGN contribution to less than 33 per cent. These indications, together with the high [O III]/FIR ratio and the upper limit of [O I] 63 μm/[C II] 158 μm, suggest that

  4. Formalism for testing theories of gravity using lensing by compact objects. III. Braneworld gravity

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2006-05-15

    Braneworld gravity is a model that endows physical space with an extra dimension. In the type II Randall-Sundrum braneworld gravity model, the extra dimension modifies the spacetime geometry around black holes, and changes predictions for the formation and survival of primordial black holes. We develop a comprehensive analytical formalism for far-field black hole lensing in this model, using invariant quantities to compute all the geometric optics lensing observables: bending angle, image position, magnification, centroid, and time delay. We then make the first analysis of wave optics in braneworld lensing, working in the semiclassical limit. Through quantitative examples we show that wave optics offers the only realistic way to observe braneworld effects in black hole lensing. We point out that if primordial braneworld black holes exist, have mass M , and contribute a fraction f{sub bh} of the dark matter, then roughly {approx}3x10{sup 5}xf{sub bh}(M /10{sup -18}M{sub {center_dot}}){sup -1} of them lie within our Solar System. These objects, which we call 'attolenses', would produce interference fringes in the energy spectra of gamma-ray bursts at energies E{approx}100(M /10{sup -18}M{sub {center_dot}}){sup -1} MeV (which will soon be accessible with the GLAST satellite). Primordial braneworld black holes spread throughout the Universe could produce similar interference effects. If they contribute a fraction {omega} of the total energy density, the probability that gamma-ray bursts are 'attolensed' is at least {approx}0.1{omega} . If observed, attolensing interference fringes would yield a simple upper limit on M . Detection of a primordial black hole with M < or approx. 10{sup -19}M{sub {center_dot}} would challenge general relativity and favor the braneworld model. Further work on lensing tests of braneworld gravity must proceed into the physical optics regime, which awaits a description of the full spacetime geometry around braneworld black holes.

  5. PBL: Particle-Based Lensing for Gravitational Lensing Mass Reconstructions of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Deb, Sanghamitra; Goldberg, David M.; Ramdass, Vede J.

    2011-02-01

    We present Particle-Based Lensing (PBL), a new technique for gravitational lensing mass reconstructions of galaxy clusters. Traditionally, most methods have employed either a finite inversion or gridding to turn observational lensed galaxy ellipticities into an estimate of the surface mass density of a galaxy cluster. We approach the problem from a different perspective, motivated by the success of multi-scale analysis in smoothed particle hydrodynamics. In PBL, we treat each of the lensed galaxies as a particle and then reconstruct the potential by smoothing over a local kernel with variable smoothing scale. In this way, we can tune a reconstruction to produce constant signal-noise throughout, and maximally exploit regions of high information density. PBL is designed to include all lensing observables, including multiple image positions and fluxes from strong lensing, as well as weak lensing signals including shear and flexion. In this paper, however, we describe a shear-only reconstruction, and apply the method to several test cases, including simulated lensing clusters, as well as the well-studied ``Bullet Cluster'' (1E0657-56). In the former cases, we show that PBL is better able to identify cusps and substructures than are grid-based reconstructions, and in the latter case, we show that PBL is able to identify substructure in the Bullet Cluster without even exploiting strong lensing measurements.

  6. Reconstruction of Cluster Masses Using Particle Based Lensing. I. Application to Weak Lensing

    NASA Astrophysics Data System (ADS)

    Deb, Sanghamitra; Goldberg, David M.; Ramdass, Vede J.

    2008-11-01

    We present Particle Based Lensing (PBL), a new technique for gravitational lensing mass reconstructions of galaxy clusters. Traditionally, most methods have employed either a finite inversion or gridding to turn observational lensed galaxy ellipticities into an estimate of the surface mass density of a galaxy cluster. We approach the problem from a different perspective, motivated by the success of multiscale analysis in smoothed particle hydrodynamics. In PBL we treat each of the lensed galaxies as a particle and then reconstruct the potential by smoothing over a local kernel with variable smoothing scale. In this way, we can tune a reconstruction to produce a constant signal-to-noise ratio throughout and maximally exploit regions of high information density. PBL is designed to include all lensing observables, including multiple image positions and fluxes from strong lensing, as well as weak-lensing signals including shear and flexion. In this paper, however, we describe a shear-only reconstruction and apply the method to several test cases, including simulated lensing clusters, as well as the well-studied "Bullet Cluster" (1E 0657-56). In the former cases, we show that PBL is better able to identify cusps and substructures than are grid-based reconstructions, and in the latter case, we show that PBL is able to identify substructure in the Bullet Cluster without even exploiting strong-lensing measurements. We also make our codes publicly available.

  7. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.

    2016-03-01

    Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an

  8. Resolving the High-energy Universe with Strong Gravitational Lensing: The Case of PKS 1830-211

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan

    2015-08-01

    Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ˜1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.

  9. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel

    2017-08-01

    We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  10. Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2005-11-15

    We are developing a general, unified, and rigorous analytical framework for using gravitational lensing by compact objects to test different theories of gravity beyond the weak-deflection limit. In this paper we present the formalism for computing corrections to lensing observables for static, spherically symmetric gravity theories in which the corrections to the weak-deflection limit can be expanded as a Taylor series in one parameter, namely, the gravitational radius of the lens object. We take care to derive coordinate-independent expressions and compute quantities that are directly observable. We compute series expansions for the observables that are accurate to second order in the ratio {epsilon}={theta} /{theta}{sub E} of the angle subtended by the lens's gravitational radius to the weak-deflection Einstein radius, which scales with mass as {epsilon}{proportional_to}M {sup 1/2}. The positions, magnifications, and time delays of the individual images have corrections at both first and second order in {epsilon}, as does the differential time delay between the two images. Interestingly, we find that the first-order corrections to the total magnification and centroid position vanish in all gravity theories that agree with general relativity in the weak-deflection limit, but they can remain nonzero in modified theories that disagree with general relativity in the weak-deflection limit. For the Reissner-Nordstroem metric and a related metric from heterotic string theory, our formalism reveals an intriguing connection between lensing observables and the condition for having a naked singularity, which could provide an observational method for testing the existence of such objects. We apply our formalism to the galactic black hole and predict that the corrections to the image positions are at the level of 10 {mu}arc s (microarcseconds), while the correction to the time delay is a few hundredths of a second. These corrections would be measurable today if a pulsar were

  11. Molecular Gas Kinematics and Star Formation Properties of the Strongly-lensed Quasar Host Galaxy RXS J1131–1231

    NASA Astrophysics Data System (ADS)

    Leung, T. K. Daisy; Riechers, Dominik A.; Pavesi, Riccardo

    2017-02-01

    We report observations of CO(J = 2 → 1) and {CO}(J=3\\to 2) line emission toward the quadruply-lensed quasar RXS J1131‑1231 at z = 0.654 obtained using the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Our lens modeling shows that the asymmetry in the double-horned CO(J = 2 → 1) line profile is mainly a result of differential lensing, where the magnification factor varies from ∼3 to ∼9 across different kinematic components. The intrinsically symmetric line profile and a smooth source-plane velocity gradient suggest that the host galaxy is an extended rotating disk, with a CO size of {R}{CO}∼ 6 kpc and a dynamical mass of {M}{dyn}∼ 8× {10}10 M ⊙. We also find a secondary CO-emitting source near RXS J1131‑1231, the location of which is consistent with the optically-faint companion reported in previous studies. The lensing-corrected molecular gas masses are M gas = (1.4 ± 0.3) × 1010 M ⊙ and (2.0 ± 0.1) × 109 M ⊙ for RXS J1131‑1231 and the companion, respectively. We find a lensing-corrected stellar mass of M * = (3 ± 1) × 1010 M ⊙ and a star formation rate of SFRFIR = (120 ± 63) M ⊙ yr‑1, corresponding to a specific SFR and star formation efficiency comparable to z ∼ 1 disk galaxies not hosting quasars. The implied gas mass fraction of ∼18 ± 4% is consistent with the previously observed cosmic decline since z ∼ 2. We thus find no evidence for quenching of star formation in RXS J1131‑1231. This agrees with our finding of an elevated {M}{BH}/{M}{bulge} ratio of >0.27{}-0.08+0.11% compared to the local value, suggesting that the bulk of its black hole mass is largely in place while its stellar bulge is still assembling.

  12. The 8 O'Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data

    SciTech Connect

    Allam, Sahar S.; Tucker, Douglas L.; Lin, Huan; Diehl, H.Thomas; Annis, James; Buckley-Geer, Elizabeth J.; Frieman, Joshua A.; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2006-11-01

    We report on the serendipitous discovery of the brightest Lyman Break Galaxy (LBG) currently known, a galaxy at z = 2.73 that is being strongly lensed by the z = 0.38 Luminous Red Galaxy (LRG) SDSS J002240.91+143110.4. The arc of this gravitational lens system, which we have dubbed the ''8 o'clock arc'' due to its time of discovery, was initially identified in the imaging data of the Sloan Digital Sky Survey Data Release 4 (SDSS DR4); followup observations on the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system and led to the identification of the arc's spectrum as that of an LBG. The arc has a spectrum and a redshift remarkably similar to those of the previous record-holder for brightest LBG (MS 1512-cB58, a.k.a ''cB58''), but, with an estimated total magnitude of (g,r,i) = (20.0,19.2,19.0) and surface brightness of ({mu}{sub g}, {mu}{sub r}, {mu}{sub i}) = (23.3, 22.5, 22.3) mag arcsec{sup -2}, the 8 o'clock arc is thrice as bright. The 8 o'clock arc, which consists of three lensed images of the LBG, is 162{sup o}(9.6'') long and has a length-to-width ratio of 6:1. A fourth image of the LBG--a counter-image--can also be identified in the ARC 3.5m g-band images. A simple lens model for the system assuming a singular isothermal ellipsoid potential yields an Einstein radius of {theta}{sub Ein} = 2.91'' {+-} 0.14'', a total mass for the lensing LRG (within the 10.6 {+-} 0.5 h{sup -1} kpc enclosed by the lensed images) of 1.04 x 10{sup 12} h{sup -1} M{sub {circle_dot}}, and a magnification factor for the LBG of 12.3{sub -3.6}{sup +15}. The LBG itself is intrinsically quite luminous ({approx} 6 x L{sub *}) and shows indications of massive recent star formation, perhaps as high as 160 h{sup -1} M{sub {circle_dot}} yr{sup -1}.

  13. HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544

    SciTech Connect

    Smith, Graham P.; Ebeling, Harald; Ma, Cheng-Jiun; Limousin, Marceau; Kneib, Jean-Paul; Jauzac, Mathilde; Swinbank, A. M.; Richard, Johan; Edge, Alastair C.; Smail, Ian; Jullo, Eric; Sand, David J.

    2009-12-20

    We present Advanced Camera for Surveys observations of MACS J1149.5+2223, an X-ray luminous galaxy cluster at z = 0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z = 1.491, the four images of which are gravitationally magnified by 8 approx< mu approx< 23. We identify this as an L* (M{sub B} approx = -20.7), disk-dominated (B/T approx< 0.5) galaxy, forming stars at approx6 M{sub sun} yr{sup -1}. We use a robust sample of multiply imaged galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N{sub halo} = 4)/P(N{sub halo} < 4) >= 10{sup 12} where N{sub halo} is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R <= 500 kpc, are measured to be M{sub tot} = (6.7 +- 0.4) x 10{sup 14} M{sub sun} and f{sub sub} = 0.25 +- 0.12, respectively. Our model also rules out recent claims of a flat density profile at approx>7sigma confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply imaged galaxies when modeling strong-lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems.

  14. Strong lensing analysis of PLCK G004.5-19.5, a Planck-discovered cluster hosting a radio relic at z = 0.52

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Menanteau, Felipe; Hughes, John P.; Carrasco, Mauricio; Barrientos, L. Felipe

    2014-02-01

    Context. The recent discovery of a large number of galaxy clusters using the Sunyaev-Zel'dovich (SZ) effect has opened a new era on the study of the most massive clusters in the Universe. Multiwavelength analyses are required to understand the properties of these new sets of clusters, which are a sensitive probe of cosmology. Aims: We aim for a multiwavelength characterization of PLCK G004.5-19.5, one of the most massive X-ray validated SZ effect-selected galaxy clusters discovered by the Planck satellite. Methods: We have observed PLCK G004.5-19.5 with GMOS on the 8.1 m-Gemini South Telescope for optical imaging and spectroscopy, and performed a strong lensing analysis. We also searched for associated radio emission in published catalogs. Results: An analysis of the optical images confirms that this is a massive cluster, with a dominant central galaxy and an accompanying red sequence of galaxies, plus a 14″-long strong lensing arc. Longslit spectroscopy of six cluster members shows that the cluster is at z = 0.516 ± 0.002. We also targeted the strongly lensed arc, and found zarc = 1.601. We use LensTool to carry out a strong lensing analysis, from which we measure a median Einstein radius θE(zs = 1.6) ≃ 30″ and estimate an enclosed mass ME = 2.45-0.47+0.45 × 1014 M⊙. By extrapolating a Navarro-Frenk-White profile, we find a total mass M500SL = 4.0-1.0+2.1 × 1014 M⊙. We also include a constraint on the mass from previous X-ray observations, which yields a slightly higher mass, M500SL+X = 6.7-1.3+2.6 × 1014 M⊙, consistent with the value from strong lensing alone. Intermediate-resolution radio images from the TIFR GMRT Sky Survey at 150 MHz reveal that PLCK G004.5-19.5 hosts a powerful radio relic on scales ≲500 kpc. Emission at the same location is also detected in low-resolution images at 843 MHz and 1.4 GHz. This is one of the higher redshift radio relics known to date. Based on observations obtained at the Gemini Observatory, which is operated

  15. Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ˜180 multiple images

    NASA Astrophysics Data System (ADS)

    Jauzac, M.; Richard, J.; Jullo, E.; Clément, B.; Limousin, M.; Kneib, J.-P.; Ebeling, H.; Natarajan, P.; Rodney, S.; Atek, H.; Massey, R.; Eckert, D.; Egami, E.; Rexroth, M.

    2015-09-01

    We present a high-precision mass model of galaxy cluster Abell 2744, based on a strong gravitational-lensing analysis of the Hubble Space Telescope Frontier Fields (HFF) imaging data, which now include both Advanced Camera for Surveys and Wide Field Camera 3 observations to the final depth. Taking advantage of the unprecedented depth of the visible and near-infrared data, we identify 34 new multiply imaged galaxies, bringing the total to 61, comprising 181 individual lensed images. In the process, we correct previous erroneous identifications and positions of multiple systems in the northern part of the cluster core. With the LENSTOOL software and the new sets of multiple images, we model the cluster using two cluster-scale dark matter haloes plus galaxy-scale haloes for the cluster members. Our best-fitting model predicts image positions with an rms error of 0.79 arcsec, which constitutes an improvement by almost a factor of 2 over previous parametric models of this cluster. We measure the total projected mass inside a 200 kpc aperture as (2.162 ± 0.005) × 1014 M⊙, thus reaching 1 per cent level precision for the second time, following the recent HFF measurement of MACSJ0416.1-2403. Importantly, the higher quality of the mass model translates into an overall improvement by a factor of 4 of the derived magnification factor. Together with our previous HFF gravitational lensing analysis, this work demonstrates that the HFF data enables high-precision mass measurements for massive galaxy clusters and the derivation of robust magnification maps to probe the early Universe.

  16. Exploration and comparison of in vitro eye irritation tests with the ISO standard in vivo rabbit test for the evaluation of the ocular irritancy of contact lenses.

    PubMed

    Yun, Jun-Won; Hailian, Quan; Na, Yirang; Kang, Byeong-Cheol; Yoon, Jung-Hee; Cho, Eun-Young; Lee, Miri; Kim, Da-Eun; Bae, SeungJin; Seok, Seung Hyeok; Lim, Kyung-Min

    2016-12-01

    In an effort to explore the use of alternative methods to animal testing for the evaluation of the ocular irritancy of medical devices, we evaluated representative contact lenses with the bovine corneal opacity and permeability test (BCOP) and an in vitro eye irritation test using the three-dimensionally-reconstructed human corneal epithelium (RhCE) models, EpiOcular™ and MCTT HCE™. In addition, we compared the obtained results with the ISO standard in vivo rabbit eye irritation test (ISO10993-10). Along with the positive controls (benzalkonium chloride, BAK, 0.02, 0.2, and 1%), the extracts of 4 representative contact lenses (soft, disposable, hard, and colored lenses) and 2 reference lenses (dye-eluting and BAK-coated lenses) were tested. All the lenses, except for the BAK-coated lens, were determined non-irritants in all test methods, while the positive controls yielded relevant results. More importantly, BCOP, EpiOcular™, and MCTT HCE™ yielded a consistent decision for all the tested samples, with the exception of 0.2% BAK in BCOP, for which no prediction could be made. Overall, all the in vitro tests correlated well with the in vivo rabbit eye irritation test, and furthermore, the combination of in vitro tests as a tiered testing strategy was able to produce results similar to those seen in vivo. These observations suggest that such methods can be used as alternative assays to replace the conventional in vivo test method in the evaluation of the ocular irritancy of ophthalmic medical devices, although further study is necessary. Copyright © 2016. Published by Elsevier Ltd.

  17. Combining strong lensing and dynamics in galaxy clusters: integrating MAMPOSSt within LENSTOOL. I. Application on SL2S J02140-0535

    NASA Astrophysics Data System (ADS)

    Verdugo, T.; Limousin, M.; Motta, V.; Mamon, G. A.; Foëx, G.; Gastaldello, F.; Jullo, E.; Biviano, A.; Rojas, K.; Muñoz, R. P.; Cabanac, R.; Magaña, J.; Fernández-Trincado, J. G.; Adame, L.; De Leo, M. A.

    2016-10-01

    Context. The mass distribution in galaxy clusters and groups is an important cosmological probe. It has become clear in recent years that mass profiles are best recovered when combining complementary probes of the gravitational potential. Strong lensing (SL) is very accurate in the inner regions, but other probes are required to constrain the mass distribution in the outer regions, such as weak lensing or studies of dynamics. Aims: We constrain the mass distribution of a cluster showing gravitational arcs by combining a strong lensing method with a dynamical method using the velocities of its 24 member galaxies. Methods: We present a new framework in which we simultaneously fit SL and dynamical data. The SL analysis is based on the LENSTOOL software and the dynamical analysis uses the MAMPOSSt code, which we integrated into LENSTOOL. After describing the implementation of this new tool, we applied it to the galaxy group SL2S J02140-0535 (zspec = 0.44), which we had previously studied. We used new VLT/FORS2 spectroscopy of multiple images and group members, as well as shallow X-ray data from XMM. Results: We confirm that the observed lensing features in SL2S J02140-0535 belong to different background sources. One of these sources is located at zspec = 1.017 ± 0.001, whereas the other source is located at zspec = 1.628 ± 0.001. With the analysis of our new and our previously reported spectroscopic data, we find 24 secure members for SL2S J02140-0535. Both data sets are well reproduced by a single NFW mass profile; the dark matter halo coincides with the peak of the light distribution, with scale radius, concentration, and mass equal to rs = 82+44-17 kpc, c200 = 10.0+1.7-2.5, and M200 = 1.0+0.5-0.2 × 1014 M⊙ respectively. These parameters are better constrained when we fit SL and dynamical information simultaneously. The mass contours of our best model agrees with the direction defined by the luminosity contours and the X-ray emission of SL2S J02140-0535. The

  18. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

    NASA Astrophysics Data System (ADS)

    Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.

    2017-04-01

    It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the counts-in-cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modelled by a lognormal PDF convolved with Poisson noise at angular scales from 10 to 40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modelled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fitting χ2/dof of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07, respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check, we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.

  19. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

    SciTech Connect

    Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.

    2016-08-30

    It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10-40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.

  20. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

    DOE PAGES

    Clerkin, L.; Kirk, D.; Manera, M.; ...

    2016-08-30

    It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirmmore » that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10-40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.« less

  1. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

    SciTech Connect

    Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.

    2016-08-30

    It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10-40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.

  2. Design of lenses to project the image of a pupil in optical testing interferometers.

    PubMed

    Malacara, Z; Malacara, D

    1995-02-01

    When an optical surface or lens in an interferometer (Twyman-Green or Fizeau interferometer) is tested, the wave front at the pupil of the element being tested does not have the same shape as at the observation plane, because this shape changes along its propagation trajectory if the wave front is not flat or spherical. An imaging lens must then be used, as reported many times in the literature, to project the image of the pupil of the system being tested over the observation plane. This lens is especially necessary if the deviation of the wave front from sphericity is large, as in the case of testing paraboloidal or hyperboloidal surfaces. We show that the wave front at both positions does not need to have the same shape. The only condition is that the interferograms at both places be identical, which is a different condition. This leads to some considerations that should be taken into account in the optical design of such lenses.

  3. RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Joudaki, Shahab; Heymans, Catherine; Choi, Ami; Erben, Thomas; Harnois-Deraps, Joachim; Hildebrandt, Hendrik; Joachimi, Benjamin; Nakajima, Reiko; van Waerbeke, Ludovic; Viola, Massimo

    2016-03-01

    The unknown nature of `dark energy' motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy-galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada-France-Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the `gravitational slip' statistic EG, which we estimate as 0.48 ± 0.10 at z = 0.32 and 0.30 ± 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann-Robertson-Walker metric in a Universe dominated by a cosmological constant, which are EG = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.

  4. Galaxy evolution from strong-lensing statistics: the differential evolution of the velocity dispersion function in concord with the Λ cold dark matter paradigm

    NASA Astrophysics Data System (ADS)

    Chae, Kyu-Hyun

    2010-03-01

    We study galaxy evolution from z = 1 to 0 as a function of velocity dispersion σ for galaxies with σ >~ 95kms-1 based on the measured and Monte Carlo realized local velocity dispersion functions (VDFs) of galaxies and the revised statistical properties of 30 strongly lensed sources from the Cosmic Lens All-Sky Survey, the PMN-NVSS Extragalactic Lens Survey and the Hubble Space Telescope Snapshot survey. We assume that the total (luminous plus dark) mass profile of a galaxy is isothermal in the optical region for 0 <= z <= 1 as suggested by mass modelling of lensing galaxies. This study is the first to investigate the evolution of the VDF shape as well as the overall number density. It is also the first to study the evolution of the total and the late-type VDFs in addition to the early-type VDF. For the evolutionary behaviours of the VDFs, we find that: (1) the number density of massive (mostly early-type) galaxies with σ >~ 200kms-1 evolves differentially in the way that the number density evolution is greater at a higher velocity dispersion; (2) the number density of intermediate- and low-mass early-type galaxies (95kms-1 <~ σ <~ 200kms-1) is nearly constant and (3) the late-type VDF transformed from the Monte Carlo realized circular velocity function is consistent with no evolution in its shape or integrated number density consistent with galaxy survey results. These evolutionary behaviours of the VDFs are strikingly similar to those of the dark halo mass function (DMF) from N-body simulations and the stellar mass function (SMF) predicted by recent semi-analytic models of galaxy formation under the current Λ cold dark matter hierarchical structure formation paradigm. Interestingly, the VDF evolutions appear to be qualitatively different from `stellar-mass-downsizing' evolutions obtained by many galaxy surveys. The co-evolution of the DMF, the VDF and the SMF is investigated in quantitative detail based on up-to-date theoretical and observational results in a

  5. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long

    2017-04-01

    We present a new model-independent strategy for testing the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ˜0.057 or ˜0.041 (1σ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  6. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Carlson, K.; McGee, M. W.; Nobrega, L. E.; Romanov, A. L.; Ruan, J.; Valishev, A.; Noll, D.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  7. The strong Bell inequalities: A proposed experimental test

    NASA Technical Reports Server (NTRS)

    Fry, Edward S.

    1994-01-01

    All previous experimental tests of Bell inequalities have required additional assumptions. The strong Bell inequalities (i.e. those requiring no additional assumptions) have never been tested. An experiment has been designed that can, for the first time, provide a definitive test of the strong Bell inequalities. Not only will the detector efficiency loophole be closed; but the locality condition will also be rigorously enforced. The experiment involves producing two Hg-199 atoms by a resonant Raman dissociation of a mercury dimer ((199)Hg2) that is in an electronic and nuclear spin singlet state. Bell inequalities can be tested by measuring angular momentum correlations between the spin one-half nuclei of the two Hg-199 atoms. The method used to make these latter measurements will be described.

  8. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity

    SciTech Connect

    Song, Yong-Seon; Zhao Gongbo; Bacon, David; Koyama, Kazuya; Nichol, Robert C.; Pogosian, Levon

    2011-10-15

    We explore the complementarity of weak lensing and galaxy peculiar velocity measurements to better constrain modifications to General Relativity. We find no evidence for deviations from General Relativity on cosmological scales from a combination of peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital Sky Survey) with weak lensing measurements (from the Canadian France Hawaii Telescope Legacy Survey). We provide a Fisher error forecast for a Euclid-like space-based survey including both lensing and peculiar velocity measurements and show that the expected constraints on modified gravity will be at least an order of magnitude better than with present data, i.e. we will obtain {approx_equal}5% errors on the modified gravity parametrization described here. We also present a model-independent method for constraining modified gravity parameters using tomographic peculiar velocity information, and apply this methodology to the present data set.

  9. Lense-Thirring QPO model testing by QPO phenomena in GX339-4 2010 outburst

    NASA Astrophysics Data System (ADS)

    Gao, H. Q.; Qu, J. L.; Zhang, Z.; Zhou, J. N.

    2013-02-01

    Lense-Thirring QPO model is a promising model to explain QPO phenomena (Ingram et al. (2009)). In this model the QPO results from Lense-Thirring precession of a optical translucent inner hot flow in a truncated disc geometry. Now we check this model with different types QPO (see (Belloni et al. (2011)) for a recent review) of black hole transient (BHT) GX 339-4 2010 outburst and suggest type C QPOs are mainly coincident with this model prediction while type B QPOs are not.

  10. Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Miyatake, Hironao; More, Surhud; Ho, Shirley; Mandelbaum, Rachel

    2017-03-01

    We measure a combination of gravitational lensing, galaxy clustering and redshift-space distortions (RSDs) called EG. The quantity EG probes both parts of metric potential and is insensitive to galaxy bias and σ8. These properties make it an attractive statistic to test lambda cold dark matter, general relativity and its alternate theories. We have combined CMASS Data Release 11 with CFHTLenS and recent measurements of β from RSD analysis, and find EG(z = 0.57) = 0.42 ± 0.056, a 13 per cent measurement in agreement with the prediction of general relativity EG(z = 0.57) = 0.396 ± 0.011 using the Planck 2015 cosmological parameters. We have corrected our measurement for various observational and theoretical systematics. Our measurement is consistent with the first measurement of EG using cosmic microwave background lensing in place of galaxy lensing at small scales, but shows 2.8σ tension when compared with their final results including large scales. This analysis with future surveys will provide improved statistical error and better control over systematics to test general relativity and its alternate theories.

  11. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...

  12. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...

  13. The Sloan Bright Arcs Survey : Discovery of Seven New Strongly Lensed Galaxies from $\\rm{z}=0.66-2.94$

    SciTech Connect

    Kubo, Jeffrey M.; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H.Thomas; Drabek, Emily; Frieman, Joshua A.; Hao, Jiangang; Kubik, Donna; Lin, Huan; Soares-Santos, Marcelle

    2010-10-01

    We report the discovery of seven new, very bright gravitational lens systems from our ongoing gravitational lens search, the Sloan Bright Arcs Survey (SBAS). Two of the systems are confirmed to have high source redshifts z = 2.19 and z = 2.94. Three other systems lie at intermediate redshift with z = 1.33, 1.82, 1.93 and two systems are at low redshift z = 0.66, 0.86. The lensed source galaxies in all of these systems are bright, with i-band magnitudes ranging from 19.73-22.06. We present the spectrum of each of the source galaxies in these systems along with estimates of the Einstein radius for each system. The foreground lens in most systems is identified by a red sequence based cluster finder as a galaxy group; one system is identified as a moderately rich cluster. In total the SBAS has now discovered nineteen strong lens systems in the SDSS imaging data, eight of which are among the highest surface brightness z {approx_equal} 2-3 galaxies known.

  14. Formalism for testing theories of gravity using lensing by compact objects. II. Probing post-post-Newtonian metrics

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2006-02-15

    We study gravitational lensing by compact objects in gravity theories that can be written in a post-post-Newtonian (PPN) framework: i.e., the metric is static and spherically symmetric, and can be written as a Taylor series in m /r, where m is the gravitational radius of the compact object. Working invariantly, we compute corrections to standard weak-deflection lensing observables at first and second order in the perturbation parameter {epsilon}={theta}/{theta}{sub E}, where {theta} is the angular gravitational radius and {theta}{sub E} is the angular Einstein ring radius of the lens. We show that the first-order corrections to the total magnification and centroid position vanish universally for gravity theories that can be written in the PPN framework. This arises from some surprising, fundamental relations among the lensing observables in PPN gravity models. We derive these relations for the image positions, magnifications, and time delays. A deep consequence is that any violation of the universal relations would signal the need for a gravity model outside the PPN framework (provided that some basic assumptions hold). In practical terms, the relations will guide observational programs to test general relativity, modified gravity theories, and possibly the cosmic censorship conjecture. We use the new relations to identify lensing observables that are accessible to current or near-future technology, and to find combinations of observables that are most useful for probing the spacetime metric. We give explicit applications to the galactic black hole, microlensing, and the binary pulsar J0737-3039.

  15. A 30 kpc Chain of "Beads on a String" Star Formation between Two Merging Early Type Galaxies in the Core of a Strong-lensing Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  16. Equations to estimate the wavefront surface in the Hartmann test for lenses: comparison between two wavefront estimations when the Hartmann screen is close to the test lens

    NASA Astrophysics Data System (ADS)

    Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; García-Márquez, Jorge; Gutiérrez-Hernández, D. Asael

    2016-03-01

    When testing lenses with Hartmann methods, a wave aberration function W is typically estimated. This W represents the deviations of the wavefront surface w with respect to an ideal wavefront E. In this test, the distance r from the observation screen to the second lens surface is considered, and, as in the case of W, by considering paraxial approximations, two estimations of w can be directly constructed from Hartmann test data without calculating W. We have compared these two estimations by taking into account small r values; a possible and suitable condition to measure some relatively high-power lenses. The importance of estimating w can be useful for improving some optical measurements as power map reconstructions.

  17. Testing the strong equivalence principle by radio ranging

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.; Shapiro, I. I.

    1984-01-01

    Planetary range data offer the most promising means to test the validity of the Strong Equivalence Principle (SEP). Analytical expressions for the perturbation in the 'range' expected from an SEP violation predicted by the 'variation-of-G' method and by the 'two-times' approach are derived and compared. The dominant term in both expressions is quadratic in time. Analysis of existing range data should allow a determination of the coefficient of this term with a one-standard-deviation uncertainty of about 1 part in 100 billion/yr.

  18. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D'Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.

    2017-07-01

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ˜ {10}14.2 {M}⊙ . We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile—with a free parameter for the inner density slope—we find that the break radius is {270}-76+48 kpc, and that the inner density falls with radius to the power -0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as {r}-1. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as {r}-0.8 and {r}-1.0) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.

  19. Discovery of a Very Bright and Intrinsically Very Luminous, Strongly Lensed Lyα Emitting Galaxy at z = 2.82 in the BOSS Emission-Line Lens Survey

    NASA Astrophysics Data System (ADS)

    Marques-Chaves, Rui; Pérez-Fournon, Ismael; Shu, Yiping; Martínez-Navajas, Paloma I.; Bolton, Adam S.; Kochanek, Christopher S.; Oguri, Masamune; Zheng, Zheng; Mao, Shude; Montero-Dorta, Antonio D.; Cornachione, Matthew A.; Brownstein, Joel R.

    2017-01-01

    We report the discovery of a very bright (r = 20.16), highly magnified, and yet intrinsically very luminous Lyα emitter (LAE) at z=2.82. This system comprises four images in the observer plane with a maximum separation of ∼ 6\\prime\\prime and it is lensed by a z=0.55 massive early-type galaxy. It was initially identified in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey for GALaxy-Lyα EmitteR sYstems survey, and follow-up imaging and spectroscopic observations using the Gran Telescopio Canarias and William Herschel Telescope confirmed the lensing nature of this system. A lens model using a singular isothermal ellipsoid in an external shear field reproduces the main features of the system quite well, yielding an Einstein radius of 2.″95 ± 0.″10, and a total magnification factor for the LAE of 8.8 ± 0.4. This LAE is one of the brightest and most luminous galaxy–galaxy strong lenses known. We present initial imaging and spectroscopy showing the basic physical and morphological properties of this lensed system. Based on observations made with the Gran Telescopio Canarias (GTC) and William Herschel Telescope (WHT), in the Spanish Observatorio del Roque de los Muchachos of the IAC, under Directors Discretionary Time (DDT programs IDs: GTC2016-054 and DDT2016-077).

  20. Types of Contact Lenses

    MedlinePlus

    ... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...

  1. [C II] and {sup 12}CO(1-0) emission maps in HLSJ091828.6+514223: A strongly lensed interacting system at z = 5.24

    SciTech Connect

    Rawle, T. D.; Altieri, B.; Egami, E.; Rex, M.; Clement, B.; Bussmann, R. S.; Gurwell, M.; Fazio, G. G.; Ivison, R. J.; Boone, F.; Combes, F.; Danielson, A. L. R.; Smail, I.; Swinbank, A. M.; Edge, A. C.; Richard, J.; Blain, A. W.; Dessauges-Zavadsky, M.; Jones, T.; Kneib, J.-P.; and others

    2014-03-01

    We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array {sup 12}CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple {sup 12}CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L {sub FIR(8–1000} {sub μm)} = (1.6 ± 0.1) × 10{sup 14} L {sub ☉} μ{sup –1}, where the total magnification μ{sub total} = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L {sub FIR,} {sub component} = (1.1 ± 0.2) × 10{sup 13} L {sub ☉}) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ∼ 500 km s{sup –1}) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.

  2. EVIDENCE OF VERY LOW METALLICITY AND HIGH IONIZATION STATE IN A STRONGLY LENSED, STAR-FORMING DWARF GALAXY AT z = 3.417

    SciTech Connect

    Amorín, R.; Grazian, A.; Castellano, M.; Pentericci, L.; Fontana, A.; Sommariva, V.; Merlin, E.; Van der Wel, A.; Maseda, M.

    2014-06-10

    We investigate the gas-phase metallicity and Lyman continuum (LyC) escape fraction of a strongly gravitationally lensed, extreme emission-line galaxy at z = 3.417, J1000+0221S, recently discovered by the CANDELS team. We derive ionization- and metallicity-sensitive emission-line ratios from H+K band Large Binocular Telescope (LBT)/LUCI medium resolution spectroscopy. J1000+0221S shows high ionization conditions, as evidenced by its enhanced [O III]/[O II] and [O III]/Hβ ratios. Strong-line methods based on the available line ratios suggest that J1000+0221S is an extremely metal-poor galaxy, with a metallicity of 12+log (O/H) < 7.44 (Z < 0.05 Z {sub ☉}), placing it among the most metal-poor star-forming galaxies at z ≳ 3 discovered so far. In combination with its low stellar mass (2 × 10{sup 8} M {sub ☉}) and high star formation rate (5 M {sub ☉} yr{sup –1}), the metallicity of J1000+0221S is consistent with the extrapolation of the mass-metallicity relation traced by Lyman-break galaxies at z ≳ 3 to low masses, but it is 0.55 dex lower than predicted by the fundamental metallicity relation at z ≲ 2.5. These observations suggest a rapidly growing galaxy, possibly fed by massive accretion of pristine gas. Additionally, deep LBT/LBC photometry in the UGR bands are used to derive a limit to the LyC escape fraction, thus allowing us to explore for the first time the regime of sub-L* galaxies at z > 3. We find a 1σ upper limit to the escape fraction of 23%, which adds a new observational constraint to recent theoretical models predicting that sub-L* galaxies at high-z have high escape fractions and thus are the responsible for the reionization of the universe.

  3. Artificial tear adsorption on soft contact lenses: methods to test surfactant efficacy.

    PubMed

    Rebeix, V; Sommer, F; Marchin, B; Baude, D; Tran, M D

    2000-06-01

    Spoilage is a primary factor in the biocompatibility of soft contact lenses (SCL) within the lacrimal fluid. Tears are a complex mixture of proteins, lipids, natural surfactants and salts. The spoilation process is due to a contribution of all these components and of the nature of SCL materials themselves. The aim of this study was to set up methods to observe and quantify lacrimal deposits and to select efficient surfactants for preventing protein deposits. The present study was performed on PMMA-NVP SCL. The behaviour of SCL in presence of tears was studied by means of an in vitro artificial tear model consisting of the main tears components and quantified by a colorimetric technique (BCA) performed directly on the lenses. The nature of the deposit was observed directly by atomic force microscopy (AFM) in a liquid medium showing the same adsorption trend noticed in the quantitative results and identifying specific adsorption sites. The assessment of surfactant adsorption was performed using Maron's method, as a mean to evaluate the affinity of surfactant to the surface, while the action of selected surfactants on pre-treated SCL was assessed using the BCA method. Promising results were obtained with these two different methods which can be used easily for the pre-selection of surfactants for further cleaning solution formulation studies.

  4. EDITORIAL: Focus on Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh

    2007-11-01

    progressed rapidly. That cosmic shear is now regarded as a key element of major missions aimed at probing dark energy is a feat of scientific persuasion—a decade ago not many believed it was realistic to even detect this tiny shear signal, let alone measure it with the percent-level accuracy needed to advance dark energy measurements. If weak lensing measurements deliver on their promise, then, in combination with other imaging and spectroscopic probes, they may well impact fundamental physics and cosmology. For example they may find evidence for an evolving dark energy component or signatures of departures from general relativity. These exciting prospects rest on new optical surveys planned for the next five years which will image a thousand square degrees or more of the sky to redshifts ~1 (compared to about a hundred square degrees imaged currently). Further, through photometric redshifts based on galaxy colors, lensing tomography methods will be applied to learn about the three-dimensional distribution of dark matter. Lensing measurements in other wavelengths, such as planned 21-cm surveys and CMB lensing, would add valuable diversity to measurement techniques. The case for the next generation optical surveys from the ground and space is compelling as well: they will produce another order of magnitude in data quantity and deliver images with minimal distortions due to the atmosphere and telescope optics. The coming decade therefore has the potential for exciting discoveries in gravitational lensing. Focus on Gravitational Lensing Contents A Bayesian approach to strong lensing modelling of galaxy clusters E Jullo, J-P Kneib, M Limousin, Á Elíasdóttir, P J Marshall and T Verdugo Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance Masahiro Takada and Sarah Bridle How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test? Pedro R Capelo and Priyamvada Natarajan Dark energy constraints

  5. Testing strong-field gravity with tidal Love numbers

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Franzin, Edgardo; Maselli, Andrea; Pani, Paolo; Raposo, Guilherme

    2017-04-01

    The tidal Love numbers (TLNs) encode the deformability of a self-gravitating object immersed in a tidal environment and depend significantly both on the object's internal structure and on the dynamics of the gravitational field. An intriguing result in classical general relativity is the vanishing of the TLNs of black holes. We extend this result in three ways, aiming at testing the nature of compact objects: (i) we compute the TLNs of exotic compact objects, including different families of boson stars, gravastars, wormholes, and other toy models for quantum corrections at the horizon scale. In the black-hole limit, we find a universal logarithmic dependence of the TLNs on the location of the surface. (ii) We compute the TLNs of black holes beyond vacuum general relativity, including Einstein-Maxwell, Brans-Dicke, and Chern-Simons gravity. (iii) We assess the ability of present and future gravitational-wave detectors to measure the TLNs of these objects, including the first analysis of TLNs with LISA. Both LIGO, ET, and LISA can impose interesting constraints on boson stars, while LISA is able to probe even extremely compact objects. We argue that the TLNs provide a smoking gun of new physics at the horizon scale and that future gravitational-wave measurements of the TLNs in a binary inspiral provide a novel way to test black holes and general relativity in the strong-field regime.

  6. Towards strong field tests of beyond Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo

    2017-03-01

    Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.

  7. Massive star clusters in high-redshift star-forming galaxies seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Tamburello, Valentina; Schaerer, Daniel; Mayer, Lucio; Richard, Johan; González, Pablo G. Pérez

    2017-03-01

    High-resolution imaging reveals clumpy morphologies among z = 1 - 3 galaxies. Most of these galaxies are dominated by disk rotation, which led to conclude that the observed clumps are generated from disk fragmentation due to gravitational instability. Despite the kpc-scale resolution attained by the most advanced facilities and numerical simulations, these clumps are barely resolved at z > 1. Thanks to the stretching and magnification power provided by gravitational lensing, we reach the sub-kpc resolving power to unveil their physics. From our literature compilation of data, we show that without lensing there is a bias toward clumps with high masses and sizes. The high-redshift clumps identified in lensed galaxies have stellar masses 2 orders of magnitude lower and a median size of 250 pc. They resemble local star clusters observed in the most intensively star-forming galaxies. The clump masses and sizes observed in lensed galaxies agree with new simulations, which show that the Toomre instability criterion overestimates the clump masses by a factor of 5 - 6.

  8. Weak lensing by voids in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2015-08-01

    We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.

  9. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    SciTech Connect

    Bertozzi, Carolyn R.

    2000-06-01

    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity, and

  10. CMB lensing and primordial squeezed non-gaussianity

    SciTech Connect

    Pearson, Ruth; Lewis, Antony; Regan, Donough E-mail: antony@cosmologist.info

    2012-03-01

    Squeezed primordial non-Gaussianity can strongly constrain early-universe physics, but it can only be observed on the CMB after it has been gravitationally lensed. We give a new simple non-perturbative prescription for accurately calculating the effect of lensing on any squeezed primordial bispectrum shape, and test it with simulations. We give the generalization to polarization bispectra, and discuss the effect of lensing on the trispectrum. We explain why neglecting the lensing smoothing effect does not significantly bias estimators of local primordial non-Gaussianity, even though the change in shape can be ∼>10%. We also show how τ{sub NL} trispectrum estimators can be well approximated by much simpler CMB temperature modulation estimators, and hence that there is potentially a ∼ 10–30% bias due to very large-scale lensing modes, depending on the range of modulation scales included. Including dipole sky modulations can halve the τ{sub NL} error bar if kinematic effects can be subtracted using known properties of the CMB temperature dipole. Lensing effects on the g{sub NL} trispectrum are small compared to the error bar. In appendices we give the general result for lensing of any primordial bispectrum, and show how any full-sky squeezed bispectrum can be decomposed into orthogonal modes of distinct angular dependence.

  11. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    , which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.

  12. IUE observations of PG 1115 + 080 - The He I Gunn-Peterson test and a search for the lensing galaxy

    NASA Technical Reports Server (NTRS)

    Tripp, Todd M.; Green, Richard F.; Bechtold, Jill

    1990-01-01

    Five observations of PG 1115 + 080 taken with the IUE SWP camera have been combined in order to carry out the He I Gunn-Peterson test and to search for a Lyman limit which could determine the redshift of the lens candidate reported by Christian et al. (1987). No Lyman-limit discontinuities are found, implying that the lensing galaxy does not intercept the line of sight or does not contain enough neutral hydrogen to be detected as a Lyman-limit edge. It is estimated that the lens column density for neutral hydrogen is 3 x 10 to the 16th/sq cm or less if it intercepts the line of sight.

  13. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity.

    PubMed

    Zhang, Pengjie; Liguori, Michele; Bean, Rachel; Dodelson, Scott

    2007-10-05

    The standard cosmology is based on general relativity (GR) and includes dark matter and dark energy and predicts a fixed relationship between the gravitational potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of gravity often make different predictions. We propose a set of measurements which can test this relationship, thereby distinguishing between dark energy or matter models and models in which gravity differs from GR. Planned surveys will be able to measure E(G), an observational quantity whose expectation value is equal to the ratio of the Laplacian of the Newtonian potentials to the peculiar velocity divergence, to percent accuracy. This will easily separate alternatives such as the cold dark matter model with a cosmological constant, Dvali-Gabadadze-Porrati, TeVeS, and f(R) gravity.

  14. Astrophysical Applications of Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Muñoz, Jose A.; Garzón, Francisco; Mahoney, Terence J.

    2016-10-01

    Contributors; Participants; Preface; Acknowledgements; 1. Lensing basics Sherry H. Suyu; 2. Exoplanet microlensing Andrew Gould; 3. Case studies of microlensing Veronica Motta and Emilio Falco; 4. Microlensing of quasars and AGN Joachim Wambsganss; 5. DM in clusters and large-scale structure Peter Schneider; 6. The future of strong lensing Chris Fassnacht; 7. Methods for strong lens modelling Charles Keeton; 8. Tutorial on inverse ray shooting Jorge Jimenez-Vicente.

  15. Shatter resistance of spectacle lenses.

    PubMed

    Vinger, P F; Parver, L; Alfaro, D V; Woods, T; Abrams, B S

    1997-01-08

    To evaluate the relative strength and shatter resistance of spectacle lenses currently used in sunglasses and dress, sports, and industrial eyewear. Seven lenses that met the US American National Standards Institute (ANSI) Z80 standards for dress glasses (made of high-index plastic, allyl resin plastic, heat tempered glass, chemically tempered glass, and polycarbonate, and with center thickness ranging from 1 mm to 2.2 mm) and 4 lenses that met ANSI Z87 standards for industrial safety eyewear (allyl resin plastic, heat-tempered glass, chemically tempered glass, and polycarbonate, all with 3.0-mm center thickness) were tested for impact resistance to 5 projectiles (air gun pellets, golf balls, tennis balls, lacrosse balls, and baseballs). Impact energy required to shatter spectacle lenses. Based on 348 lens impacts, dress and industrial lenses made from glass, allyl resin plastic, and high-index plastic shattered at impact energies less than those expected to be encountered from the test projectiles during their routine use. Polycarbonate lenses demonstrated resistance to impact for all tested projectiles exceeding the impact potential expected during routine use. Under the test conditions of this study, polycarbonate lenses demonstrated greater impact resistance than other commonly used spectacle lenses that conform to prevailing eyewear standards. These findings suggest that current ANSI Z80 and ANSI Z87 standards should be reevaluated.

  16. Pulsar lensing geometry

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  17. Numerical tests of AdS/CFT at strong coupling

    SciTech Connect

    Berenstein, David; Cotta, Randel; Leonardi, Rodrigo

    2008-07-15

    We study various correlation functions (two- and three-point functions) in a large N matrix model of six commuting matrices with a numerical Monte Carlo algorithm. This is equivalent to a model of a gas of particles in six dimensions with a confining quadratic potential and logarithmic repulsions at finite temperature, where we are measuring the leading-order nongaussianities in the thermal fluctuations. This is a simplified model of the low-energy dynamics of N=4 SYM at strong coupling. We find strong evidence that the simplified matrix model matches with the dual gravitational description of three-point functions in the AdS/CFT correspondence.

  18. Testing a phenomenologically extended DGP model with upcoming weak lensing surveys

    SciTech Connect

    Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F. E-mail: diaferio@ph.unito.it

    2011-01-01

    A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼

  19. Lensing duct

    DOEpatents

    Beach, Raymond J. , Benett

    1994-01-01

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.

  20. Lensing duct

    DOEpatents

    Beach, R.J.; Benett, W.J.

    1994-04-26

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.

  1. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE PAGES

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; ...

    2017-07-10

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  2. SPT 0538–50: Physical conditions in the interstellar medium of a strongly lensed dusty star-forming galaxy at z = 2.8

    SciTech Connect

    Bothwell, M. S.; Aguirre, J. E.; Chapman, S. C.; Marrone, D. P.; Vieira, J. D.; Bock, J. J.; Downes, T. P.; Ashby, M. L. N.; Aravena, M.; De Breuck, C.; Gullberg, B.; Benson, B. A.; Carlstrom, J. E.; Crawford, T. M.; Bradford, C. M.; Brodwin, M.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; and others

    2013-12-10

    We present observations of SPT-S J053816–5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538–50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538–50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538–50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 ± 4), we derive the intrinsic properties of SPT 0538–50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and—using molecular line fluxes—the excitation conditions within the interstellar medium. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538–50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch.

  3. Weak lensing and cosmology

    NASA Astrophysics Data System (ADS)

    Lombardi, Marco; Bertin, Giuseppe

    1999-02-01

    Recently, it has been shown that it is possible to reconstruct the projected mass distribution of a cluster from weak lensing provided that both the geometry of the universe and the probability distribution of galaxy redshifts are known; actually, when additional photometric data are taken to be available, the galaxy redshift distribution could be determined jointly with the cluster mass from the weak lensing analysis. In this paper we develop, in the spirit of a ``thought experiment,'' a method to constrain the geometry of the universe from weak lensing, provided that the redshifts of the source galaxies are measured. The quantitative limits and merits of the method are discussed analytically and with a set of simulations, in relation to point estimation, interval estimation, and test of hypotheses for homogeneous Friedmann-Lema\\^\\i tre models. The constraints turn out to be significant when a few thousand source galaxies are used.

  4. Gas dynamical imaging and dust properties of the strongly-lensed quasar host galaxy RXJ1131-1231 at z~0.65

    NASA Astrophysics Data System (ADS)

    Leung, Tsz Kuk Daisy; Riechers, Dominik; Pavesi, Riccardo

    2017-01-01

    Studies over the last two decades have revealed that the comoving star formation rate (SFR) and the black hole accretion rate densities have been steeply declining since z~2. Tracing the evolution of the cold molecular gas which fuels star formation and black hole accretion in galaxies at intermediate redshift (0.5lensed quasar RXJ1131-1231 at z~0.65 obtained using the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA), making this the first resolved CO study at intermediate redshift. We perform dynamical lens modeling of the CO emission in the visibility-plane using our code UVMCMCFIT (github.com/astro313/uvmcmcfit), finding that the asymmetry in its double-horned line profile is a result of differential lensing, with a magnification factor varying from ˜3 to ˜9 across different kinematic components. We recover an intrinsically symmetric line profile and a source-plane velocity gradient that suggest the presence of an extended, ~6kpc radius gas disk with a dynamical mass of ˜8×1010M⊙, a gas mass of ~1.5×1010M⊙, and a gas mass fraction of ˜19% in RXJ1131-1231. The modest gas fraction is consistent with the observed trend of decreasing molecular gas content in star-forming galaxies since z˜2. Based on our spectral energy distribution (SED) modeling, we find a lensing-corrected stellar mass of ˜3×1010M⊙ and a SFR of ~120 M⊙ yr-1, a rate comparable to those of local mergers and high-z disk galaxies. The CO source size, gas depletion timescale and star formation efficiency of RXJ1131-1231 suggest that its star formation is driven by global gravitational instabilities rather than merger interactions. We also find a black hole-to-bulge mass ratio of >0.27%, which is higher than those of local galaxies, suggesting

  5. Fresnel lenses for ultrasonic inspection

    NASA Technical Reports Server (NTRS)

    Kammerer, C. C.

    1980-01-01

    Ultrasonic Fresnel lenses are effective focusing elements with potential applications in ultrasonic "contact" testing for defects in materials. Ultrasonic beams focused on concave lenses are used successfully with immersion transducers, for which test object is immersed in water bath. However, for large objects, objects that are already installed, objects on production lines, and objects that can be damaged by water, contact testing is more practical than immersion.

  6. Strong Loophole-Free Test of Local Realism.

    PubMed

    Shalm, Lynden K; Meyer-Scott, Evan; Christensen, Bradley G; Bierhorst, Peter; Wayne, Michael A; Stevens, Martin J; Gerrits, Thomas; Glancy, Scott; Hamel, Deny R; Allman, Michael S; Coakley, Kevin J; Dyer, Shellee D; Hodge, Carson; Lita, Adriana E; Verma, Varun B; Lambrocco, Camilla; Tortorici, Edward; Migdall, Alan L; Zhang, Yanbao; Kumor, Daniel R; Farr, William H; Marsili, Francesco; Shaw, Matthew D; Stern, Jeffrey A; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Jennewein, Thomas; Mitchell, Morgan W; Kwiat, Paul G; Bienfang, Joshua C; Mirin, Richard P; Knill, Emanuel; Nam, Sae Woo

    2015-12-18

    We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

  7. Strong Loophole-Free Test of Local Realism*

    NASA Astrophysics Data System (ADS)

    Shalm, Lynden K.; Meyer-Scott, Evan; Christensen, Bradley G.; Bierhorst, Peter; Wayne, Michael A.; Stevens, Martin J.; Gerrits, Thomas; Glancy, Scott; Hamel, Deny R.; Allman, Michael S.; Coakley, Kevin J.; Dyer, Shellee D.; Hodge, Carson; Lita, Adriana E.; Verma, Varun B.; Lambrocco, Camilla; Tortorici, Edward; Migdall, Alan L.; Zhang, Yanbao; Kumor, Daniel R.; Farr, William H.; Marsili, Francesco; Shaw, Matthew D.; Stern, Jeffrey A.; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Jennewein, Thomas; Mitchell, Morgan W.; Kwiat, Paul G.; Bienfang, Joshua C.; Mirin, Richard P.; Knill, Emanuel; Nam, Sae Woo

    2015-12-01

    We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9 ×10-9 for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3 ×10-7. We therefore reject the hypothesis that local realism governs our experiment.

  8. Gravitational Lensing at Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy; Alloin, Danielle

    The study of gas and dust at high redshift gives an unbiased view of star formation in obscured objects as well as the chemical evolution history of galaxies. With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z > 1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z ~~1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0. 1, ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Now affiliated at: STScI ESA Space Telescope Division, 3700 San Martin Dr., Baltimore, MD 21218, USA

  9. Influence of gravitational lensing on gravitational radiation

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander F.

    In a paper by [Wang, Y., Stebbins, A., Turner, E.L. Gravitational lensing of gravitational waves from merging neutron star binaries. Phys. Rev. Lett. 77, 2875 2878, 1996] an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the geometrical optics approximation model for gravitational lensing and thus they gave an overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that a more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as [Wang, Y., Stebbins, A., Turner, E.L. Gravitational lensing of gravitational waves from merging neutron star binaries. Phys. Rev. Lett. 77, 2875 2878, 1996] concluded.

  10. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts

  11. Testing strong gravity with gravitational waves and Love numbers

    NASA Astrophysics Data System (ADS)

    Franzin, E.; Cardoso, V.; Pani, P.; Raposo, G.

    2017-05-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects.

  12. Probing the jet base of the blazar PKS 1830-211 from the chromatic variability of its lensed images. Serendipitous ALMA observations of a strong gamma-ray flare

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Muller, S.; Combes, F.; Aalto, S.; Beelen, A.; Darling, J.; Guélin, M.; Henkel, C.; Horellou, C.; Marcaide, J. M.; Martín, S.; Menten, K. M.; V-Trung, Dinh; Zwaan, M.

    2013-10-01

    The launching mechanism of the jets of active galactic nuclei is poorly constrained observationally, owing to the large distances to these objects and the very small scales (sub-parsec) involved. To better constrain theoretical models, it is especially important to get information from the region close to the physical base of the jet, where the plasma acceleration takes place. In this paper, we report multi-epoch and multifrequency continuum observations of the z = 2.5 blazar PKS 1830-211 with ALMA, serendipitously coincident with a strong γ-ray flare reported by Fermi-LAT. The blazar is lensed by a foreground z = 0.89 galaxy, with two bright images of the compact core separated by 1''. Our ALMA observations individually resolve these two images (although not any of their substructures), and we study the change in their relative flux ratio with time (four epochs spread over nearly three times the time delay between the two lensed images) and frequency (between 350 and 1050 GHz, rest frame of the blazar), during the γ-ray flare. In particular, we detect a remarkable frequency-dependent behavior of the flux ratio, which implies the presence of a chromatic structure in the blazar (i.e., a core-shift effect). We rule out the possibility of micro- and milli-lensing effects and propose instead a simple model of plasmon ejection in the blazar's jet to explain the time and frequency variability of the flux ratio. We suggest that PKS 1830-211 is likely to be one of the best sources to probe the activity at the base of a blazar's jet at submillimeter wavelengths, thanks to the peculiar geometry of the system. The implications of the core shift in absorption studies of the foreground z = 0.89 galaxy (e.g., constraints on the cosmological variations of fundamental constants) are discussed. Table 1 and Appendix A are available in electronic form at http://www.aanda.org

  13. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  14. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  15. Test-particle simulations in increasingly strong turbulence

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Gray, P. C.; Matthaeus, W. H.

    1995-01-01

    Quasi-linear theory supposes that the energy in resonant fluctuations is small compared to that in the mean magnetic field. This is evident in the fact that the zeroth-order particle trajectories are helices about a mean field B(sub o) that is spatially uniform over many correlation lengths. However, in the solar wind it is often the case that the fluctuating part of the field is comparable in magnitude to the mean part. It is generally expected that quasi-linear theory remains viable for particles that are in resonance with a region of the fluctuation spectrum having only small energy density, but even so, care must be taken when comparing simulations to theoretical predictions. We have performed a series of test-particle simulations to explore the evolution of ion distributions in turbulent situations with varying levels of magnetic fluctuations. As delta-B/B(sub o) is increased the distinctions among absolute pitch angle (defined relative to B(sub o)), local pitch angle (defined relative to B(x)), and magnetic moment become important, some of them exhibiting periodic sloshing unrelated to the nonadiabatic processes of interest. Comparing and contrasting the various runs illustrates the phenomena that must be considered when the premise underlying quasi-linear theory are relaxed.

  16. 3D printed diffractive terahertz lenses.

    PubMed

    Furlan, Walter D; Ferrando, Vicente; Monsoriu, Juan A; Zagrajek, Przemysław; Czerwińska, Elżbieta; Szustakowski, Mieczysław

    2016-04-15

    A 3D printer was used to realize custom-made diffractive THz lenses. After testing several materials, phase binary lenses with periodic and aperiodic radial profiles were designed and constructed in polyamide material to work at 0.625 THz. The nonconventional focusing properties of such lenses were assessed by computing and measuring their axial point spread function (PSF). Our results demonstrate that inexpensive 3D printed THz diffractive lenses can be reliably used in focusing and imaging THz systems. Diffractive THz lenses with unprecedented features, such as extended depth of focus or bifocalization, have been demonstrated.

  17. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  18. Gravitational lensing by black holes: The case of Sgr A*

    SciTech Connect

    Bozza, V.

    2014-01-14

    The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.

  19. Phakic Intraocular Lenses

    MedlinePlus

    ... Implants and Prosthetics Phakic Intraocular Lenses Phakic Intraocular Lenses Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Phakic intraocular lenses are new devices used to correct nearsightedness. These ...

  20. Habitual wearers of colored lenses adapt more rapidly to the color changes the lenses produce.

    PubMed

    Engel, Stephen A; Wilkins, Arnold J; Mand, Shivraj; Helwig, Nathaniel E; Allen, Peter M

    2016-08-01

    The visual system continuously adapts to the environment, allowing it to perform optimally in a changing visual world. One large change occurs every time one takes off or puts on a pair of spectacles. It would be advantageous for the visual system to learn to adapt particularly rapidly to such large, commonly occurring events, but whether it can do so remains unknown. Here, we tested whether people who routinely wear spectacles with colored lenses increase how rapidly they adapt to the color shifts their lenses produce. Adaptation to a global color shift causes the appearance of a test color to change. We measured changes in the color that appeared "unique yellow", that is neither reddish nor greenish, as subjects donned and removed their spectacles. Nine habitual wearers and nine age-matched control subjects judged the color of a small monochromatic test light presented with a large, uniform, whitish surround every 5s. Red lenses shifted unique yellow to more reddish colors (longer wavelengths), and greenish lenses shifted it to more greenish colors (shorter wavelengths), consistent with adaptation "normalizing" the appearance of the world. In controls, the time course of this adaptation contained a large, rapid component and a smaller gradual one, in agreement with prior results. Critically, in habitual wearers the rapid component was significantly larger, and the gradual component significantly smaller than in controls. The total amount of adaptation was also larger in habitual wearers than in controls. These data suggest strongly that the visual system adapts with increasing rapidity and strength as environments are encountered repeatedly over time. An additional unexpected finding was that baseline unique yellow shifted in a direction opposite to that produced by the habitually worn lenses. Overall, our results represent one of the first formal reports that adjusting to putting on or taking off spectacles becomes easier over time, and may have important

  1. Influence of multifocal intraocular lenses on standard automated perimetry test results.

    PubMed

    Aychoua, Nancy; Junoy Montolio, Francisco G; Jansonius, Nomdo M

    2013-04-01

    A multifocal intraocular lens (MFIOL) allows for spectacle independence after cataract surgery and is thus a seemingly attractive option. However, several optical limitations have been reported or can be hypothesized. To evaluate the influence of an MFIOL on standard automated perimetry (SAP) size III and size V test results. Cross-sectional case-control. The University Medical Center Groningen and the Nij Smellinghe Hospital Drachten, the Netherlands. Sixteen eyes of 16 patients with a diffractive MFIOL (median age, 64 years), 18 phakic eyes of 18 healthy individuals serving as controls (median age, 62 years), and 12 eyes of 12 patients with a monofocal IOL (median age, 64 years) were included. All participants underwent (1) SAP using a 30-2 grid and the Swedish Interactive Threshold Algorithm standard strategy with stimulus size III and (2) a full threshold test with stimulus size V. Primary outcome measures were the mean deviation (MD) for size III and the mean sensitivity (MS) for size V. Comparisons between groups were adjusted for age and pupil size. RESULTS For SAP size III, the average difference in MD between patients in the MFIOL group and phakic controls was -2.40 dB (P < .001) and between patients in the monofocal IOL group and phakic controls was -0.32 dB (P = .52). For SAP size V, the corresponding differences in MS were -1.61 dB (P = .002) and -0.80 dB (P = .09), respectively. The differences were essentially independent of eccentricity for both SAP size III and SAP size V. Patients with a diffractive MFIOL have a clinically relevant reduction of the visual sensitivity as assessed with SAP size III and size V. The reduction seems to be related to the multifocal design of the IOL rather than to pseudophakia. The reduction interferes with the assessment of common eye diseases such as glaucoma and comes on top of the decline of visual sensitivity due to normal aging or age-related eye diseases, thus potentially accelerating visual impairment.

  2. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  3. Contact Lenses for Vision Correction

    MedlinePlus

    ... Ophthalmologist Patient Stories Español Eye Health / Glasses & Contacts Contact Lenses Sections Contact Lenses for Vision Correction Contact ... to Know About Contact Lenses Colored Contact Lenses Contact Lenses for Vision Correction Leer en Español: Lentes ...

  4. Military Research with Contact Lenses

    DTIC Science & Technology

    1993-03-01

    numerous military laboratory-based and field tests of contact lenses are reviewed. Military contact lens research has a history of almost 50 years. In...research has a history of almost 50 years. In 1944, Jaeckle reported the results of his investigation of what were unspecified but are presumed to be... histories of more than 10 years. Bachman (1988, 1990) provided the results of a study of extended wear rigid and soft lenses fitted on 44 rotary-wing

  5. Telescopic lenses and driving.

    PubMed

    Keller, J T; Eskridge, J B

    1976-11-01

    In some states, persons with significantly reduced visual acuity are being licensed to drive while wearing telescopic spectacle lenses (TSL). In order to evaluate possible visual field limitations present with these devices, the peripheral visual fields of a group of normally sighted subjects were measured while they wore TSL. Severely restricted central fields and sizeable ring scotomas were present with all units tested. These result indicate that driving with TSL should be discouraged.

  6. [In vitro incubation of lenses. Model for testing substrate utilization of substances of the energy metabolism, demonstrated with bencyclane-hydrogen-fumarate (author's transl)].

    PubMed

    Hockwin, O; Korte, I; Breuer, R; Schmidt, G; Rast-Czyborra, F

    1978-08-16

    When bovine lens homogenate was treated with bencyclane-hydrogen-fumarate, the carbohydrate metabolism was activated. This may chiefly be due to the fumarate part of the substance. A 24 H In vitro incubation of whole bovine lenses in TC-199 with and without bencyclane-hydrogen-fumarate did not show the above effect. On the model of former investigations by J.E. Harris et al. we modified the test procedure by selecting the medium and the time of incubation so that the endogenous carbohydrates of the lens were consumed, thus creating new metabolic balances. This metabolic condition allows investigations intended to activate metabolic processes and to restore the steady state of metabolic parameters. We investigated the effect of bencyclane-hydrogen-fumarate using the same method and found that given certain conditions the lens recovers when incubated for 2 h in TC-199 (containing 1 g glucose/1) with addition of a 10(-4) M solution of bencyclane-hydrogen-fumarate. The ATP-content of these lenses in particular gives proof of this result. As already observed in former investigations on homogenates, this effect is probably due to metabolization of the fumarate part of the bencyclane-hydrogen-fumarate by the citric acid cycle. The method used explains the differences observed when using lens homogenates or whole lenses under the same experimental conditions.

  7. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    NASA Astrophysics Data System (ADS)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; da Costa, L. N.; Fausti Neto, A.; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration

    2017-09-01

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i-band limiting magnitude for extended objects (10σ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i-band limiting magnitude for extended objects (10σ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

  8. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    SciTech Connect

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  9. Galaxy-Galaxy Lensing in the DES Science Verification Data

    SciTech Connect

    Clampitt, J.; et al.

    2016-03-18

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic errors. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  10. Ion exchange tempering of glass ophthalmic lenses.

    PubMed

    Keeney, A H; Duerson, H L

    1975-08-01

    We performed low velocity drop-ball tests using 5/8-, 7/8-, and 1-inch diameter steel balls on ophthalmic crown glass lenses chemically tempered by the ion exchange process. Four representative dioptric strengths (+ 2.50 spherical, - 2.50 spherical, -2.50 cylindrical, and plano) were studied with the isolated lenses mounted, convex side up, on the American National Standards Institute Z80 test block. New ion exchange lenses exhibited a 100 to 350% greater capacity for attenuation of energy from low velocity, large size missiles than matched lenses of similar strength prepared by the conventional heat-treating and air-quenching process.

  11. Glasses and Contact Lenses

    MedlinePlus

    ... Real Lifesaver Kids Talk About: Coaches Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A What's in this ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...

  12. Detecting dark matter substructure with narrow line lensing

    NASA Astrophysics Data System (ADS)

    Nierenberg, Anna

    2014-10-01

    The abundance of low mass halos is one of the key predictions of LCDM and remains at apparent odds with observations of luminous structure. Strong gravitational lensing provides a straightforward means of testing this theory as it enables the detection of dark matter subhalos at cosmological distances, without requiring the structure to contain any baryons at all. The fluxes of strongly lensed, parsec scale sources in particular, are excellent probes as they are extremely sensitive to the presence of low mass subhalos, while still being extended enough to remain unaffected by microlensing by stars which is a dominant contaminant for smaller sources. Traditionally this field has been limited to the analysis of the small number of strongly lensed, radio-loud quasars. Quasar narrow-line emission offers an alternative to radio. It is also parsec scale and microlensing free, but has the benefit of detectable in a much larger sample of systems. This proposal will combine milliarcsecond astrometry, and percent level photometry attainable with WFC3 IR grism, in order to measure spatially resolved narrow line lensing in six new systems, which cannot be studied from the ground. We have demonstrated that data of this quality can be used to detect subhalos as small as a million solar masses. This proposal will double the sample of systems which can be used to detect dark, low mass substructure using flux ratio anomalies.

  13. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  14. Galaxy cluster lensing masses in modified lensing potentials

    DOE PAGES

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; ...

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less

  15. Galaxy cluster lensing masses in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentration and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.

  16. Galaxy cluster lensing masses in modified lensing potentials

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia

    2015-12-01

    We determine the concentration-mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro-Frenk-White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentration and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ˜(2-20) Mpc h-1 from the cluster centre, we find that the surrounding force profiles are enhanced by ˜20-40 per cent in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.

  17. Learning unit: Thin lenses

    NASA Astrophysics Data System (ADS)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  18. Shallow-water wave lensing in coral reefs: a physical and biological case study.

    PubMed

    Veal, Cameron James; Carmi, Maya; Dishon, Gal; Sharon, Yoni; Michael, Kelvin; Tchernov, Dan; Hoegh-Guldberg, Ove; Fine, Maoz

    2010-12-15

    Wave lensing produces the highest level of transient solar irradiances found in nature, ranging in intensity over several orders of magnitude in just a few tens of milliseconds. Shallow coral reefs can be exposed to wave lensing during light-wind, clear-sky conditions, which have been implicated as a secondary cause of mass coral bleaching through light stress. Management strategies to protect small areas of high-value reef from wave-lensed light stress were tested using seawater irrigation sprinklers to negate wave lensing by breaking up the water surface. A series of field and tank experiments investigated the physical and photophysiological response of the shallow-water species Stylophora pistillata and Favites abdita to wave lensing and sprinkler conditions. Results show that the sprinkler treatment only slightly reduces the total downwelling photosynthetically active and ultraviolet irradiance (∼5.0%), whereas it dramatically reduces, by 460%, the irradiance variability caused by wave lensing. Despite this large reduction in variability and modest reduction in downwelling irradiance, there was no detectable difference in photophysiological response of the corals between control and sprinkler treatments under two thermal regimes of ambient (27°C) and heated treatment (31°C). This study suggests that shallow-water coral species are not negatively affected by the strong flashes that occur under wave-lensing conditions.

  19. Probing Galaxy Clusters and Substructures using Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Choi, Miyoung; Nguyen, Hoang; King, Lindsay; Lee, Brandyn E.; McCarthy, Ian

    2017-01-01

    Gravitational lensing is one of the most promising methods of analyzing massive astronomical objects such as galaxy clusters. The weak gravitational lensing signal, which is called shear, is a measurement of the weak distortion of background galaxies in the linear regime of the lensing field. Shear analysis effectively estimates the main properties of galaxy clusters such as the mass and scale of the lensing system. The second order gravitational lensing signal, flexion, is dominant in the non-linear regime of the lensing field that bridges the strong and weak lensing regimes. It has also recently arisen as a robust method to detect substructures in galaxy clusters due to its sensitivity to the gradient of convergence and shear field. In this poster we propose that combining the shear and flexion analysis can give more information about the detailed structure of the lensing system.

  20. The M31 pixel lensing plan campaign: MACHO lensing and self-lensing signals

    SciTech Connect

    Calchi Novati, S.; Scarpetta, G.; Bozza, V.; Bruni, I.; Gualandi, R.; Dall'Ora, M.; De Paolis, F.; Ingrosso, G.; Nucita, A.; Strafella, F.; Dominik, M.; Jetzer, Ph.; Mancini, L.; Safonova, M.; Subramaniam, A.; Sereno, M.; Gould, A.; Collaboration: PLAN Collaboration

    2014-03-10

    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' × 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both 'self lensing' and 'MACHO lensing' lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10{sup –2}) M {sub ☉} MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M {sub ☉} MACHOs.

  1. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    SciTech Connect

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I.; Lemaux, Brian C.; Ryan, R. E. Jr.; Brammer, Gabriel B.; Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano; Schmidt, Kasper B.; Schrabback, Tim; Treu, Tommaso; Gonzalez, Anthony H.; Linden, Anja von der E-mail: astrokuang@gmail.com

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  2. Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-detected Lyman-Break Galaxies at 6 ≲ z ≲ 10 behind Strong-lensing Clusters

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Bradač, Maruša; Lemaux, Brian C.; Ryan, R. E., Jr.; Hoag, Austin; Castellano, Marco; Amorín, Ricardo; Fontana, Adriano; Brammer, Gabriel B.; Cain, Benjamin; Lubin, L. M.; Merlin, Emiliano; Schmidt, Kasper B.; Schrabback, Tim; Treu, Tommaso; Gonzalez, Anthony H.; von der Linden, Anja; Knight, Robert I.

    2016-01-01

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ˜1.2-5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M1600 are between -21.2 and -18.9 mag, while their intrinsic stellar masses are between 2 × 108M⊙ and 2.9 × 109M⊙. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at zLyα = 6.76 (in RXJ 1347) and one at zLyα = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]-[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  3. Spherical aberration in electrically thin flat lenses.

    PubMed

    Ruphuy, Miguel; Ramahi, Omar M

    2016-08-01

    We analyze the spherical aberration of a new generation of lenses made of flat electrically thin inhomogeneous media. For such lenses, spherical aberration is analyzed quantitatively and qualitatively, and comparison is made to the classical gradient index rod. Both flat thin and thick lenses are made of gradient index materials, but the physical mechanisms and design equations are different. Using full-wave three-dimensional numerical simulation, we evaluate the spherical aberrations using the Maréchal criterion and show that the thin lens gives significantly better performance than the thick lens (rod). Additionally, based on ray tracing formulation, third-order analysis for longitudinal aberration and optical path difference are presented, showing strong overall performance of thin lenses in comparison to classical rod lenses.

  4. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    NASA Technical Reports Server (NTRS)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  5. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model

    NASA Astrophysics Data System (ADS)

    Bonvin, V.; Courbin, F.; Suyu, S. H.; Marshall, P. J.; Rusu, C. E.; Sluse, D.; Tewes, M.; Wong, K. C.; Collett, T.; Fassnacht, C. D.; Treu, T.; Auger, M. W.; Hilbert, S.; Koopmans, L. V. E.; Meylan, G.; Rumbaugh, N.; Sonnenfeld, A.; Spiniello, C.

    2017-03-01

    We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435-1223 from 13-yr light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modelling of the main deflectors and line-of-sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE 0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat Λ cold dark matter (ΛCDM) with free matter and energy density, we find H0 =71.9^{+2.4}_{-3.0} {km s^{-1} Mpc^{-1}} and Ω _{Λ }=0.62^{+0.24}_{-0.35}. This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from TDSL and Planck are H0 = 69.2_{-2.2}^{+1.4} {km s^{-1} Mpc^{-1}}, Ω _{Λ }=0.70_{-0.01}^{+0.01} and Ω _k=0.003_{-0.006}^{+0.004} in open ΛCDM and H0 =79.0_{-4.2}^{+4.4} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.02} and w=-1.38_{-0.16}^{+0.14} in flat wCDM. In combination with Planck and baryon acoustic oscillation data, when relaxing the constraints on the numbers of relativistic species we find Neff = 3.34_{-0.21}^{+0.21} in NeffΛCDM and when relaxing the total mass of neutrinos we find Σmν ≤ 0.182 eV in mνΛCDM. Finally, in an open wCDM in combination with Planck and cosmic microwave background lensing, we find H0 =77.9_{-4.2}^{+5.0} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.03}, Ω _k=-0.003_{-0.004}^{+0.004} and w=-1.37_{-0.23}^{+0.18}.

  6. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-01-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  7. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-01-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  8. Feedback control of thermal lensing in a high optical power cavity.

    PubMed

    Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J

    2008-10-01

    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

  9. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    SciTech Connect

    Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.; Florian, Michael; Baum, Stefi A.; O'Dea, Christopher P.; Cooke, Kevin C.; Bayliss, Matthew B.; Dahle, Håkon; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  10. TOPICAL REVIEW Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias

    2010-12-01

    Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarizes the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarized.

  11. Towards noiseless gravitational lensing simulations

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Chen, Ruizhu; Hilbert, Stefan; Abel, Tom

    2014-11-01

    The microphysical properties of the dark matter (DM) particle can, in principle, be constrained by the properties and abundance of substructures in galaxy clusters, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of these substructures, mainly because of the discreteness noise inherent to N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to provide lensing predictions with an arbitrarily low discreteness noise. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages and limitations of this method compared to the widely used density estimators based on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.

  12. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  13. Contact Lenses on Submarines

    DTIC Science & Technology

    2014-09-26

    NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY SUBMARINE BASE, GROTON, CONN. REPORT NUMBER 1048 CONTACT LENSES ON SUBMARINES... CONTACT LENSES ON SUBMARINES by James F. Socks, CDR, MSC, USN NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY REPORT NUMBER 1048 NAVAL MEDICAL RESEARCH...DRSCHLAB Approved for public release; distribution unlimited SUMMARY PAGE PROBLEM To determine the feasibility of wearing contact lenses aboard

  14. Strong gravitational lensing in the radio domain

    NASA Astrophysics Data System (ADS)

    Berciano Alba, Alicia

    2009-11-01

    In het Universum kunnen zware objecten, zoals melkwegstelsels en clusters van melkwegstelsels, zich als gigantische vergrootglazen gedragen die verscheidene vergrootte en vervormde afbeeldingen van een bron kunnen produceren. Als dit effect optreed, worden deze objecten sterke zwaartekrachtlenzen genoemd en kunnen ze, in extreme gevallen, heldere uitgerekte afbeeldingen veroorzaken die "reuzebogen" worden genoemd. In dit proefschrift illustreren we drie verschillende toepassingen van dit fenomeen in de radiosterrenkunde: (i) de studie van een melkwegstelsel dat als zwaartekrachtlens fungeert, (ii) de studie van de interne structuur van een bron die verscheidene afbeeldingen heeft door het effect van zwaartekrachtlenzen en (iii) een statistische studie van "reuzebogen" veroorzaakt door clusters van melkwegstelsels. De eerste studie richt zich op het systeem B1600+434, waar een melkwegstelsel twee afbeeldingen produceert van het compacte centrale gebied van een achterliggend stelsel. Onze radiowaarnemingen hebben bevestigd dat de helderheid van een van de afbeeldingen varieert gedurende vier jaar als gevolg van de structuur van de zwaartekrachtlens. Het tweede bestudeerde opject is een uitgebreide bron die waargenomen is bij sub-mm golflengtes en die lijkt te zijn uitvergroot door zwaartekrachtlenzen. Radiowaarnemingen van dit systeem ondersteunen de hypothese dat een deel van de sub-mm straling wordt veroorzaakt door de botsing tussen 3 ver weg gelegen melkwegstelsels. Als laatste presenteren we de eerste voorspellingen voor het verwachtte aantal "reuzebogen" dat waarneembaar is bij radio en sub-mm golflengtes, door de structuur en evolutie van clusters van melkwegstelsels in detail te modelleren. De toekomst van de studie van meervoudige afbeeldingen als gevolg van zwaartekrachtlenzen wordt ook besproken. ... Zie: Samenvatting

  15. Investigations of galaxy clusters using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  16. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  17. An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2009-12-01

    We deal with the attempts to measure the Lense-Thirring effect with the Satellite Laser Ranging (SLR) technique applied to the existing LAGEOS and LAGEOS II terrestrial satellites and to the recently approved LARES spacecraft. According to general relativity, a central spinning body of mass M and angular momentum S like the Earth generates a gravitomagnetic field which induces small secular precessions of the orbit of a test particle geodesically moving around it. Extracting this signature from the data is a demanding task because of many classical orbital perturbations having the same pattern as the gravitomagnetic one, like those due to the centrifugal oblateness of the Earth which represents a major source of systematic bias. The first issue addressed here is: are the so far published evaluations of the systematic uncertainty induced by the bad knowledge of the even zonal harmonic coefficients J ℓ of the multipolar expansion of the Earth’s geopotential reliable and realistic? Our answer is negative. Indeed, if the differences Δ J ℓ among the even zonals estimated in different Earth’s gravity field global solutions from the dedicated GRACE mission are assumed for the uncertainties δ J ℓ instead of using their covariance sigmas σ_{J_{ell}} , it turns out that the systematic uncertainty δ μ in the Lense-Thirring test with the nodes Ω of LAGEOS and LAGEOS II may be up to 3 to 4 times larger than in the evaluations so far published (5-10%) based on the use of the sigmas of one model at a time separately. The second issue consists of the possibility of using a different approach in extracting the relativistic signature of interest from the LAGEOS-type data. The third issue is the possibility of reaching a realistic total accuracy of 1% with LAGEOS, LAGEOS II and LARES, which should be launched in November 2009 with a VEGA rocket. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be likely placed at an altitude of 1450 km. Thus

  18. Contact lenses for athletes.

    PubMed

    Spinell, M R

    1993-01-01

    The introduction and development of soft lenses and rigid gas-permeable lenses has ushered in a new era in fitting athletes with contact lenses. Many of the well-known disadvantages associated with polymethylmethacrylate (PMMA)-type lenses have been either eliminated or minimized. Fitting athletes with contact lenses must still be viewed with caution, however, since athletes' visual needs are usually much more demanding than those of the general public. An indiscriminate choice of lens design can adversely affect athletic performance and may even create a hazardous situation. An intelligent choice of lens can provide some subtle advantages that may improve athletic performance and provide the margin for victory.

  19. Broadband waveplate lenses.

    PubMed

    Tabiryan, Nelson V; Serak, Svetlana V; Nersisyan, Sarik R; Roberts, David E; Zeldovich, Boris Ya; Steeves, Diane M; Kimball, Brian R

    2016-04-04

    We report on lenses that operate over the visible wavelength band from 450 nm to beyond 700 nm, and other lenses that operate over a wide region in the near-infrared from 650 nm to beyond 1000 nm. Lenses were recorded in liquid crystal polymer layers only a few micrometers thick, using laser-based photoalignment and UV photopolymerization. Waveplate lenses allowed focusing and defocusing laser beams depending on the sign of the circularity of laser beam polarization. Diffraction efficiency of recorded waveplate lenses was up to 90% and contrast ratio was up to 500:1.

  20. New Physical Optics Method for Curvilinear Refractive Surfaces and its Verification in the Design and Testing of W-band Dual-Aspheric Lenses

    DTIC Science & Technology

    2013-10-01

    aspheric ( plano -convex) and (b) optimized dual- aspheric W-band PTFE lenses as needed for a non-paraxial system of Fig. 1 . . 10 3 Profiles of (a) full...is comparable with the given lens diameter Dc = 140mm. Following conventional solutions, non-paraxial lenses of plano -convex type are usually em...optimized by applying more advanced methods, e.g., full-wave approaches, etc. When considering plano -convex lenses by ray-tracing methods, we arrive at

  1. Testing strong factorial invariance using three-level structural equation modeling.

    PubMed

    Jak, Suzanne

    2014-01-01

    Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias) across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak et al. (2013) showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling.

  2. Testing strong factorial invariance using three-level structural equation modeling

    PubMed Central

    Jak, Suzanne

    2014-01-01

    Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias) across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak et al. (2013) showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling. PMID:25120499

  3. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars

    NASA Astrophysics Data System (ADS)

    Freire, Paulo C. C.; Kramer, Michael; Wex, Norbert

    2012-09-01

    In this paper, we review tests of the strong equivalence principle (SEP) derived from pulsar-white dwarf binary data. The extreme difference in the binding energy between both components and the precise measurement of the orbital motion provided by pulsar timing allow the only current precision SEP tests for strongly self-gravitating bodies. We start by highlighting why such tests are conceptually important. We then review previous work where limits on SEP violation are obtained with an ensemble of wide binary systems with small eccentricity orbits. Then, we propose a new SEP violation test based on the measurement of the variation of the orbital eccentricity (ė). This new method has the following advantages: (a) unlike previous methods it is not based on probabilistic considerations, (b) it can make a direct detection of SEP violation and (c) the measurement of ė is not contaminated by any known external effects, which implies that this SEP test is only restricted by the measurement precision of ė. In the final part of the review, we conceptually compare the SEP test with the test for dipolar radiation damping, a phenomenon closely related to SEP violation, and speculate on future prospects by new types of tests in globular clusters and future triple systems.

  4. Production of primordial helium and deuterium as a strong-field test of gravitation theory

    SciTech Connect

    Falik, D.; Opher, R.

    1981-01-01

    A fundamental weak-field test of a theory of gravitation is that it satisfies the Parametrized Post-Newtonian (PPN) parameters determined by solar system experiments. The production of primordial helium and deuterium in the big bang is a test of a gravitational theory in the strong-field approximation, and we suggest its use along with the PPN parameters. We apply this test to Rosen's bi-metric theory of gravitation. For a wide class of models of this theory we show that essentially no primordial helium or deuterium is produced.

  5. Lensed Type Ia supernovae as probes of cluster mass models

    NASA Astrophysics Data System (ADS)

    Nordin, J.; Rubin, D.; Richard, J.; Rykoff, E.; Aldering, G.; Amanullah, R.; Atek, H.; Barbary, K.; Deustua, S.; Fakhouri, H. K.; Fruchter, A. S.; Goobar, A.; Hook, I.; Hsiao, E. Y.; Huang, X.; Kneib, J.-P.; Lidman, C.; Meyers, J.; Perlmutter, S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Supernova Cosmology Project

    2014-05-01

    Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at ˜5σ significance (SN-L2). We conducted this as a blind study to avoid fine-tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of 0.09 ± 0.09stat ± 0.05sys mag. This impressive agreement suggests no tension between cluster mass models and high-redshift-standardized SNe Ia. However, the measured statistical dispersion of σμ = 0.21 mag appeared large compared to the dispersion expected based on statistical uncertainties (0.14). Further work with the SN and cluster lensing models, post-unblinding, reduced the measured dispersion to σμ = 0.12. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.

  6. Terahertz Brewster lenses.

    PubMed

    Wichmann, Matthias; Scherger, Benedikt; Schumann, Steffen; Lippert, Sina; Scheller, Maik; Busch, Stefan F; Jansen, Christian; Koch, Martin

    2011-12-05

    Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.

  7. Learning through Different Lenses

    ERIC Educational Resources Information Center

    Jeweler, Sue; Barnes-Robinson, Linda

    2015-01-01

    When parents and teachers help gifted kids use the metaphor "learning through different lenses," amazing things happen: Horizons open up. Ideas are focused. Thoughts are magnified and clarified. They see the big picture. Metaphoric thinking offers new and exciting ways to see the world. Viewing the world through different lenses provides…

  8. One Episode, Two Lenses

    ERIC Educational Resources Information Center

    Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc

    2013-01-01

    A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…

  9. Gravitational lensing in cosmology

    NASA Astrophysics Data System (ADS)

    Futamase, Toshifumi

    2015-02-01

    Gravitational lensing is a unique and direct probe of mass in the universe. It depends only on the law of gravity and does not depend on the dynamical state nor the composition of matter. Thus, it is used to study the distribution of the dark matter in the lensing object. Combined with the traditional observations such as optical and X-ray, it gives us useful informations of the structure formation in the universe. The lensing observables depend also on the global geometry as well as large scale structure of the universe. Therefore it is possible to withdraw useful constraints on the cosmological parameters once the distribution of lensing mass is accurately known. Since the first discovery of the lensing event by a galaxy in 1979, various kinds of lensing phenomena caused by star, galaxy, cluster of galaxies and large scale structure have been observed and are used to study mass distribution in various scales and cosmology. Thus, the gravitational lensing is now regarded as an indispensable research field in the observational cosmology. In this paper, we give an instructive introduction to gravitational lensing and its applications to cosmology.

  10. One Episode, Two Lenses

    ERIC Educational Resources Information Center

    Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc

    2013-01-01

    A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…

  11. Aspherics in spectacle lenses

    NASA Astrophysics Data System (ADS)

    Dürsteler, Juan Carlos

    2016-12-01

    A review of the use of aspherics in the last decades, understood in a broad sense as encompassing single-vision lenses with conicoid surfaces and free-form and progressive addition lenses (PALs) as well, is provided. The appearance of conicoid surfaces to correct aphakia and later to provide thinner and more aesthetically appealing plus lenses and the introduction of PALs and free-form surfaces have shaped the advances in spectacle lenses in the last three decades. This document basically considers the main target optical aberrations, the idiosyncrasy of single lenses for correction of refractive errors and the restrictions and particularities of PAL design and their links to science vision and perception.

  12. Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon

    SciTech Connect

    La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence; Mancusi, Davide; Iwata,Yoshiuki; Murakami, Takeshi

    2006-06-21

    Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.

  13. Multi-wavelength applications of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Fadely, Ross

    2010-12-01

    Using an array of multi-wavelength data, we examine a variety of astrophysical problems with gravitational lensing. First, we seek to understand the mass distribution of an early-type galaxy with an analysis of the lens Q0957+561. We dissect the lens galaxy into luminous and dark components, and model the environment using results from weak lensing. Combining constraints from newly-discovered lensed images and stellar population models, we find the lens has a density profile which is shallower than isothermal, unlike those of typical early-type galaxies. Finally, using the measured time delay between the quasar images we find the Hubble constant to be H 0 = 79.3+6.7-8.5 km s-1 Mpc-1 . One intriguing application of lensing is to exploit the lens magnification boost to study high-redshift objects in greater detail than otherwise possible. Here, we analyze the mid-infrared properties of two lensed z ˜ 2 star-forming galaxies, SDSS J120602.09+514229.5 and SDSS J090122.37+181432.3, using Spitzer /IRS spectra to study their rest-frame ˜ 5-12 μm emission. Both systems exhibit strong polycyclic aromatic hydrocarbon (PAH) features in the spectra, indicating strong star formation and the absence of significant AGN activity. For SDSS J090122.37+181432.3, this detection belies that inferred from optical measurements, indicating mid-IR spectroscopy provides key information needed to understand the properties of high-redshift star-forming galaxies. While lensing provides measurements of the macroscopic properties of lens systems, it can also shed light on small-scale structure of galaxies. To identify and understand lens substructure, we examine the multi-wavelength properties of flux ratios for six lenses. Variations of the flux ratios with wavelength can be used to study the lensed quasars and the small-scale mass distribution of lens galaxies. We detect strong multi-wavelength variations in the lenses HE 0435-1223 and SDSS 0806+2006. For HE 0435-1223, we study its

  14. Fast lenses made of plastic

    NASA Astrophysics Data System (ADS)

    Renner, O.

    1980-10-01

    The physical and technological requirements for manufacturing highly sensitive lenses from glass-plastic compounds were determined. Laboratory prototypes were produced. Their aspherical characteristics are elucidated. The calculation of optical properties (refractive index) for plastic materials is discussed. The measurement of spherical and aspherical surface topography is described. Lens behavior under climatic testing is treated. Results lead to the definition of a precise molding technique for plastic lens elements.

  15. Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses

    PubMed Central

    Brezna, Wolfgang; Lux, Kirsten; Dragostinoff, Nikolaus; Krutzler, Christian; Plank, Nicole; Tobisch, Rainer; Boltz, Agnes; Garhöfer, Gerhard; Told, Reinhard; Witkowska, Katarzyna; Schmetterer, Leopold

    2016-01-01

    Purpose The visual performance of monofocal, bifocal, and trifocal intraocular lenses was evaluated by human individuals using a vision simulator device. This allowed investigation of the visual impression after cataract surgery, without the need actually to implant the lenses. Methods The randomized, double-masked, three-way cross-over study was conducted on 60 healthy male and female subjects aged between 18 and 35 years. Visual acuity (Early Treatment Diabetic Retinopathy Study; ETDRS) and contrast sensitivity tests (Pelli-Robson) under different lighting conditions (luminosities from 0.14–55 cd/m2, mesopic to photopic) were performed at different distances. Results Visual acuity tests showed no difference for corrected distance visual acuity data of bi- and trifocal lens prototypes (P = 0.851), but better results for the trifocal than for the bifocal lenses at distance corrected intermediate (P = 0.021) and distance corrected near visual acuity (P = 0.044). Contrast sensitivity showed no differences between bifocal and trifocal lenses at the distant (P = 0.984) and at the near position (P = 0.925), but better results for the trifocal lens at the intermediate position (P = 0.043). Visual acuity and contrast sensitivity showed a strong dependence on luminosity (P < 0.001). Conclusions At all investigated distances and all lighting conditions, the trifocal lens prototype often performed better, but never worse than the bifocal lens prototype. Translational Relevance The vision simulator can fill the gap between preclinical lens development and implantation studies by providing information of the perceived vision quality after cataract surgery without implantation. This can reduce implantation risks and promotes the development of new lens concepts due to the cost effective test procedure. PMID:27777828

  16. The AIROPA software package: milestones for testing general relativity in the strong gravity regime with AO

    NASA Astrophysics Data System (ADS)

    Witzel, Gunther; Lu, Jessica R.; Ghez, Andrea M.; Martinez, Gregory D.; Fitzgerald, Michael P.; Britton, Matthew; Sitarski, Breann N.; Do, Tuan; Campbell, Randall D.; Service, Maxwell; Matthews, Keith; Morris, Mark R.; Becklin, E. E.; Wizinowich, Peter L.; Ragland, Sam; Doppmann, Greg; Neyman, Chris; Lyke, James; Kassis, Marc; Rizzi, Luca; Lilley, Scott; Rampy, Rachel

    2016-07-01

    General relativity can be tested in the strong gravity regime by monitoring stars orbiting the supermassive black hole at the Galactic Center with adaptive optics. However, the limiting source of uncertainty is the spatial PSF variability due to atmospheric anisoplanatism and instrumental aberrations. The Galactic Center Group at UCLA has completed a project developing algorithms to predict PSF variability for Keck AO images. We have created a new software package (AIROPA), based on modified versions of StarFinder and Arroyo, that takes atmospheric turbulence profiles, instrumental aberration maps, and images as inputs and delivers improved photometry and astrometry on crowded fields. This software package will be made publicly available soon.

  17. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    SciTech Connect

    Clampitt, J.; S?nchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-L?vy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2016-11-22

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  18. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE PAGES

    Clampitt, J.; S?nchez, C.; Kwan, J.; ...

    2016-11-22

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  19. Galaxy-galaxy lensing in the Dark Energy Survey science verification data

    DOE PAGES

    Clampitt, J.; Sánchez, C.; Kwan, J.; ...

    2016-11-22

    Here, we present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales 0.09 < R < 15 Mpc/h, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. Wemore » also obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. Our results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  20. Galaxy-galaxy lensing in the Dark Energy Survey science verification data

    SciTech Connect

    Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Prat, R. Miquel J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2016-11-22

    Here, we present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales 0.09 < R < 15 Mpc/h, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We also obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. Our results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  1. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2017-03-01

    We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  2. Test of Particle-Assisted Tunneling for Strongly Interacting Fermions in an Optical Superlattice

    NASA Astrophysics Data System (ADS)

    Goodman, Tim; Duan, Luming

    2008-05-01

    Fermions in an optical lattice near a wide Feshbach resonance are expected to be described by an effective Hamiltonian which is equivalent to the general Hubbard model (GHM), with particle-assisted tunneling rates resulting from the strong atomic interaction. [Phys. Rev. Lett. 95, 243202 (2005).] Here, we propose a scheme to unambiguously test the predictions of this effective Hamiltonian through manipulation of ultracold atoms in an inhomogeneous optical superlattice. The superlattice potential separates the lattice into an array of independent double wells, allowing an exact solution of the GHM which can be compared with experimental observations. In practical experimental configurations the presence of a global harmonic trap makes each double well slightly different, and the measured time-of-flight images involve signals that are averaged over all potential wells. In spite of this complication, we show that under appropriate manipulation of the lattice barrier and the! external magnetic field, one can reconstruct precisely the two-site dynamics from the time-of-flight images. This provides a quantitative testbed to compare theory with experiments in the strongly interacting region. The proposed measurement also allows us to infer the structure of the low energy Hilbert space, directly testing a key assumption in the derivation of the effective Hamiltonian, and it allows a complete empirical determination of all the parameters in the effective GHM, including the particle-assisted tunneling rates.

  3. Verifying and evaluating progressive addition lenses in clinical practice.

    PubMed

    Bell, G R

    2001-04-01

    Despite the fact that more than 50% of multifocal lenses dispensed in the United States are progressive addition lenses, adequate methods for clinical verification of these lenses have been lacking. Using automated lens meter techniques, the author describes a simplified method for verification of these complex lenses. Thirty pairs of progressive lenses were measured in a modified method using a Humphrey 330 Lens Analyzer. Fifteen pairs were "premium-quality" progressive lenses: fifteen pairs were "non-premium-quality" progressives. Five criteria were assessed on each lens: Distance Zone Width (DZW). Intermediate Zone Width (IZW), Near Zone Width (NZW), Drop Distance (DD), and Maximum Astigmatic Distortion (MAD). "Premium-quality" progressive lenses failed to demonstrate clear-cut superiority over "non-premium-quality" progressive lenses in the five specified criteria. Individual measurements indicate considerable product inconsistency affected every brand tested. Premium- and non-premium-quality progressive lenses demonstrated similar performance characteristics in this study. Zone size variation in these lenses was found to be considerable, a characteristic that seemed to cut across brand lines. The AO Compact lens seemed to demonstrate a shorter drop distance than other lenses, which does enhance its suitability for use with small frames. A comparison of the Essilor Natural PAL to the Younger Image lens showed little difference in the categories measured, although peripheral distortions seemed closer to the reading zone in the image. A comparison of the MAD of lenses in this study to lenses tested in 1986 indicates a considerable improvement has been made in that important characteristic.

  4. Stress-Detection Lenses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.

  5. The Theory of Multiscale Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Keeton, Charles

    2005-07-01

    Strong gravitational lensing probes the mass distributions of distant galaxies on scales from tens of kiloparsecs {dark matter halos and "macrolensing"} through parsecs {dark matter substructure and "millilensing"} all the way down to individual stars {"microlensing"}. Wonderful data are now available, thanks in large part to HST. However, the theoretical understanding of lensing on different scales is much less mature, which has complicated efforts to interpret the data. We have begun a comprehensive theoretical study of multiscale lensing, to develop a formalism that will enable us both to interpret existing data and to inspire and guide new observations. In this proposal, we specifically seek to develop the first code that simultaneously includes macro-, milli-, and microlensing. We will then use it to: {1} Find clear observational signatures that reveal the scale{s} being probed in data, and then resolve the debate about whether millilensing truly reveals Cold Dark Matter substructure. {2} Show how observations at different scales can constrain the mass function of stars in lens galaxies, and apply the method to existing HST data for seven distant galaxies. {3} Examine non-linearities that link micro-, milli-, and macrolensing, and use the combined analysis to open a new window on dark matter studies with strong lensing. We will also make the code available to the community as part of PI Keeton's public lensing software.

  6. How Strong and Weak Readers Perform on the Developmental Eye Movement Test (DEM): Norms for Latvian School-Aged Children

    ERIC Educational Resources Information Center

    Serdjukova, Jelena; Ekimane, Lasma; Valeinis, Janis; Skilters, Jurgis; Krumina, Gunta

    2017-01-01

    The aim of our study was to determine DEM test performance norms for school-aged children in Latvia, assess how DEM test results correlate with children's reading rates, compare test performance between strong and weak readers. A modified DEM test and a newly developed reading test were administered to 1487 children during a screening survey. Our…

  7. How Strong and Weak Readers Perform on the Developmental Eye Movement Test (DEM): Norms for Latvian School-Aged Children

    ERIC Educational Resources Information Center

    Serdjukova, Jelena; Ekimane, Lasma; Valeinis, Janis; Skilters, Jurgis; Krumina, Gunta

    2017-01-01

    The aim of our study was to determine DEM test performance norms for school-aged children in Latvia, assess how DEM test results correlate with children's reading rates, compare test performance between strong and weak readers. A modified DEM test and a newly developed reading test were administered to 1487 children during a screening survey. Our…

  8. X-ray multilens interferometer based on Si refractive lenses.

    PubMed

    Snigirev, A; Snigireva, I; Lyubomirskiy, M; Kohn, V; Yunkin, V; Kuznetsov, S

    2014-10-20

    We report a multilens X-ray interferometer consisting of six parallel arrays of planar compound refractive lenses, each of which creates a diffraction limited beam under coherent illumination. Overlapping such coherent beams produces an interference pattern demonstrating substantially strong longitudinal functional dependence. The interference fringe pattern produced by multilens interferometer was described by Talbot imaging formalism. Theoretical analysis of the interference pattern formation was carried out and corresponding computer simulations were performed. The proposed multilens interferometer was experimentally tested at ID06 ESRF beamline in the X-ray energy range from 10 to 30 keV. The experimentally recorded fractional Talbot images are in a good agreement with computer simulations.

  9. Optical performance of multifocal intraocular lenses.

    PubMed

    Holladay, J T; Van Dijk, H; Lang, A; Portney, V; Willis, T R; Sun, R; Oksman, H C

    1990-07-01

    The optical performance of one monofocal and five multifocal lenses was evaluated in the laboratory and photographically. The laboratory testing included determination of the modulation transfer function (MTF), through focus response (TFR), resolution efficiency, and Strehl ratio of each lens. The photographic testing included photographs of the Regan high contrast acuity chart at ten feet with clearest focus and 18 additional photographs in which the image was defocused using minus trial lenses in 0.25 diopter increments. A color photograph of the Kodak color chart was also taken using each lens. All testing was conducted using a 3 mm artificial pupil under ideal implant conditions with no decentration or tilt. The laboratory and photographic results demonstrate that all the multifocal lenses had a two- to three-fold increase in the depth of field with at least a 50% lower contrast in the retinal image. The photographic testing revealed a one to two line better resolution limit with the monofocal lens, which corresponded to the 12% to 41% better MTF cut-off value with the monofocal lens by laboratory testing. The measured resolution efficiencies of all six lenses were comparable. The color photographs revealed color mixing of adjacent colors with the multifocal lenses, whereas the colors appeared unchanged from the original with the monofocal lens.

  10. Stellar dynamics in the strong-lensing central galaxy of Abell 1201: a low stellar mass-to-light ratio, a large central compact mass and a standard dark matter halo

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.; Lucey, John R.; Edge, Alastair C.

    2017-10-01

    We analyse the stellar kinematics of the z = 0.169 brightest cluster galaxy in Abell 1201, using integral field observations acquired with the Multi-Unit Spectroscopic Explorer on the Very Large Telescope. This galaxy has a gravitationally lensed arc located at unusually small radius (∼5 kpc), allowing us to constrain the mass distribution using lensing and stellar dynamical information over the same radial range. We measure a velocity dispersion profile which is nearly flat at σ ≈ 285 km s-1 in the inner ∼5 kpc, and then rises steadily to σ ≈ 360 km s-1 at ∼30 kpc. We analyse the kinematics using axisymmetric Jeans models, finding that the data require both a significant dark matter halo (to fit the rising outer profile) and a compact central component, with mass Mcen ≈ 2.5 × 1010 M⊙ (to fit the flat σ in the inner regions). The latter component could represent a supermassive black hole, in which case it would be among the largest known to date. Alternatively Mcen could describe excess mass associated with a gradient in the stellar mass-to-light ratio. Imposing a standard Navarro-Frenk-White (NFW) dark matter density profile, we recover a stellar mass-to-light ratio ϒ, which is consistent with a Milky Way-like initial mass function (IMF). By anchoring the models using the lensing mass constraint, we break the degeneracy between ϒ and the inner slope γ of the dark matter profile, finding γ = 1.0 ± 0.1, consistent with the NFW form. We show that our results are quite sensitive to the treatment of the central mass in the models. Neglecting Mcen biases the results towards both a heavier-than-Salpeter IMF and a shallower-than-NFW dark matter slope (γ ≈ 0.5).

  11. Wingate Test is a Strong Predictor of 1500m Performance in Elite Speed Skaters.

    PubMed

    Hofman, Nico; Orie, Jac; Hoozemans, Marco J M; Foster, Carl; de Koning, Jos J

    2017-03-02

    Wingate test scores are strongly associated with anaerobic capacity in athletes involved in speed-endurance sports. In speed skating Wingate results are known to predict performance cross-sectionally, but have not been investigated relative to their ability to predict performance longitudinally. To investigate whether Wingate tests performed during summer training are predictive of 1500m speed skating performance the subsequent winter in elite speed skaters. Wingate test results from the summer training periods and 1500m performances during the subsequent winter were analyzed over a 3-year period, in 5 female and 8 male elite (Olympic, World Championship and World Cup medalists) speed skaters. Regression analyses using generalized estimating equations (GEE) were used to estimate the relationship between Wingate test variables and 1500m speed skating performance. Wingate peak power (PP) and mean power (MP) were used to predict 1500m time and 400m lap times. The results indicate that an improvement of 1 W/kg on PP and MP in women predict improvements of -0.75 s and -2.05 s, respectively, on 1500 m time (World Record 110.85 s). In men, improvement in PP and MP were associated with performance improvements of -0.92 s and -2.32 s on 1500 m time per 1 W/kg (World Record 101.04 s). These data indicate that Wingate test results achieved during the summer training period are a good predictor of improvements in 1500 m speed skating performance during the subsequent winter. For the smallest worthwhile improvement in 1500 m performance a gain in PP or MP of 2.1 and 1.4% (0.38 and 0.14 W/kg) for females and 1.2 and 0.9% (0.29 and 0.12 W/kg) for males is needed.

  12. Testing the strong equivalence principle with spacecraft ranging towards the nearby Lagrangian points

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe; De Marchi, Fabrizio

    2016-05-01

    General relativity is supported by great experimental evidence. Yet there is a lot of interest in precisely setting its limits with on going and future experiments. A question to answer is about the validity of the strong equivalence principle. Ground experiments and lunar laser ranging have provided the best upper limit on the Nordtvedt parameter σ [η ]=4.4 ×10-4 . With the future planetary mission BepiColombo, this parameter will be further improved by at least an order of magnitude. In this paper we envisage yet another possible testing environment with spacecraft ranging towards the nearby Sun-Earth collinear Lagrangian points. Neglecting errors in planetary masses and ephemerides, we forecast σ [η ]=6.4 (2.0 )×10-4 (5 yr integration time) via ranging towards L1 in a realistic (optimistic) scenario depending on current (future) range capabilities and knowledge of the Earth's ephemerides. A combined measurement, L1+L2, gives instead 4.8 (1.7 )×10-4. In the optimistic scenario a single measurement of one year would be enough to reach ≈3 ×10-4. All figures are comparable with lunar laser ranging, but worse than BepiColombo. Performances could be much improved if data were integrated over time and over the number of satellites flying around either of the two Lagrangian points. We point out that some systematics (gravitational perturbations of other planets or figure effects) are much more in control compared to other experiments. We do not advocate a specific mission to constrain the strong equivalence principle, but we do suggest analyzing ranging data of present and future spacecrafts flying around L1/L2 (one key mission is, for instance, LISA Pathfinder). This spacecraft ranging would be a new and complementary probe to constrain the strong equivalence principle in space.

  13. Final report on repair procedure of strong ground motion data from underground nuclear tests

    SciTech Connect

    Tunnell, T.W.

    1995-04-01

    Certain difficulties arise when recording close-in around motion from underground nuclear explosions. Data quality can be compromised by a variety of factors, including electromagnetic pulse, noise spikes, direct current effect, and gauge clipping and gauge tilt. From March 1988 through September 1994, EG&G Energy Measurements repaired strong round-motion data (acceleration data) from underground nuclear tests for the Los Alamos National Laboratory using, an automated repair procedure. The automated repair determined and implemented the required repairs based on user input and a consistent set of criteria. A log was kept of each repair so that the repair procedure could be duplicated. This relaxed the requirement to save the repaired data. Developed for the VAX system, the procedure allowed the user to stack up a large number of repairs, plot the repaired data, and obtain hard copies. The plotted data could then be reviewed for a given test to determine the consistency of repair for a given underground test. This feature released the user to perform other tasks while the data were being repaired.

  14. Testing a possible way of geometrization of the strong interaction by a Kaluza-Klein star

    NASA Astrophysics Data System (ADS)

    Karsai, Szilvia; Pósfay, Péter; Barnaföldi, Gergely Gábor; Lukács, Béla

    2016-10-01

    Geometrization of the fundamental interactions has been extensively studied during the century. The idea of introducing compactified spatial dimensions originated by Kaluza and Klein. Following their approach, several model were built representing quantum numbers (e.g. charges) as compactified space-time dimensions. Such geometrized theoretical descriptions of the fundamental interactions might lead us to get closer to the unification of the principle theories. Here, we apply a 3 + 1C + 1 dimensional theory, which contains one extra compactified spatial dimension 1C in connection with the flavor quantum number in Quantum Chromodynamics. Within our model the size of the 1C dimension is proportional to the inverse mass-difference of the first low-mass baryon states. We used this phenomena to apply in a compact star model — a natural laboratory for testing the theory of strong interaction and the gravitational theory in parallel. Our aim is to test the modification of the measurable macroscopical parameters of a compact Kaluza-Klein star by varying the size of the compactified extra dimension. Since larger the RC the smaller the mass difference between the first spokes of the Kaluza-Klein ladder resulting smaller-mass stars. Using the Tolman-Oppenheimer-Volkov equation, we investigate the M-R diagram and the dependence of the maximum mass of compact stars. Besides testing the validity of our model we compare our results to the existing observational data of pulsar properties for constraints.

  15. Testing a Possible way of Geometrization of the Strong Interaction by a Kaluza -- Klein Star

    NASA Astrophysics Data System (ADS)

    Karsai, Szilvia; Pósfay, Péter Barnaföldi, Gergely Gábor Lukács, Béla

    Geometrization of the fundamental interactions has been extensively studied during the century. The idea of introducing compactified spatial dimensions originated by Kaluza and Klein. Following their approach, several model were built representing quantum numbers (e.g. charges) as compactified space-time dimensions. Such geometrized theoretical descriptions of the fundamental interactions might lead us to get closer to the unification of the principle theories. Here, we apply a 3 + 1C + 1 dimensional theory, which contains one extra compactified spatial dimension 1C in connection with the flavor quantum number in Quantum Chromodynamics. Within our model the size of the 1C dimension is proportional to the inverse mass-difference of the first low-mass baryon states. We used this phenomena to apply in a compact star model -- a natural laboratory for testing the theory of strong interaction and the gravitational theory in parallel. Our aim is to test the modification of the measurable oscopical parameters of a compact Kaluza -- Klein star by varying the size of the compactified extra dimension. Since larger the RC the smaller the mass difference between the first spokes of the Kaluza -- Klein ladder resulting smaller-mass stars. Using the Tolman -- Oppenheimer -- Volkov equation, we investigate the M-R diagram and the dependence of the maximum mass of compact stars. Besides testing the validity of our model we compare our results to the existing observational data of pulsar properties for constraints.

  16. Soft contact lenses

    PubMed Central

    Sutherland, R. L.; VanLeeuwen, Wm. N.

    1972-01-01

    A series of 55 patients were fitted with a new type of hydrophilic soft contact lens. These were found more comfortable than hard contact lenses and they had a protective and pain-relieving action in cases of chronic corneal disease. Vision was not as good as with hard contact lenses and a greater potential danger of infection was found. They are preferred by many patients despite the noticeable thick edge and the difficulty of obtaining an identical replacement. PMID:5042887

  17. The effect of cleaning soft contact lenses. A scanning electron microscopic study.

    PubMed

    Fowler, S A; Allansmith, M R

    1981-08-01

    Scanning electron microscopy was used to investigate the effectiveness of surfactant and enzyme cleaners in removing coatings from soft contact lenses. We examined ten continuously worn lenses and 15 lenses worn and cleaned regularly for at six months. About 30% of the surface of continuously worn lenses cleaned with surfactant or enzyme was uncoated; smooth, matted coating covered the remainder. Continuously worn lenses cleaned with the combination surfactant and enzyme cleaner had similar deposits covering 50% of the surface. Lenses worn and cleaned regularly had more deposits after cleaning with surfactant or enzyme cleaner than after cleaning with combination cleaner. Approximately 25% of the surface of lenses cleaned with the combination was coated with deposits. The deposits on both types of lenses were about 30% less thick after use of the combination cleaner than with either single cleaner. The coating on worn contact lenses is not completely removed by any method we tested.

  18. Jet printing of convex and concave polymer micro-lenses.

    PubMed

    Blattmann, M; Ocker, M; Zappe, H; Seifert, A

    2015-09-21

    We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.

  19. Evaporated As2S3 Luneburg lenses for LiNbO3:Ti optical waveguides

    NASA Technical Reports Server (NTRS)

    Busch, J. R.; Wood, V. E.; Kenan, R. P.; Verber, C. M.

    1981-01-01

    Luneburg lenses of good quality were formed on high index optical waveguides by evaporation of arsenic trisulfide glass through simple masks. Using only two thin circular aperture masks, lenses with focal spots of a few times the diffraction limited width at f/4 were obtained. These lenses were designed for and tested at both visible (633 nm) and infrared wavelengths. Procedures for the design, fabrication, and testing of lenses of this type are described.

  20. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  1. Precision cosmology with weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.

    In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my

  2. Integral volumetric imaging using decentered elemental lenses.

    PubMed

    Sawada, Shimpei; Kakeya, Hideki

    2012-11-05

    This paper proposes a high resolution integral imaging system using a lens array composed of non-uniform decentered elemental lenses. One of the problems of integral imaging is the trade-off relationship between the resolution and the number of views. When the number of views is small, motion parallax becomes strongly discrete to maintain the viewing angle. In order to overcome this trade-off, the proposed method uses the elemental lenses whose size is smaller than that of the elemental images. To keep the images generated by the elemental lenses at constant depth, the lens array is designed so that the optical centers of elemental lenses may be located in the centers of elemental images, not in the centers of elemental lenses. To compensate optical distortion, new image rendering algorithm is developed so that undistorted 3D image may be presented with a non-uniform lens array. The proposed design of lens array can be applied to integral volumetric imaging, where display panels are layered to show volumetric images in the scheme of integral imaging.

  3. Thermal lensing in optical fibers.

    PubMed

    Dong, Liang

    2016-08-22

    Average powers from fiber lasers have reached the point that a quantitative understanding of thermal lensing and its impact on transverse mode instability is becoming critical. Although thermal lensing is well known qualitatively, there is a general lack of a simple method for quantitative analysis. In this work, we first conduct a study of thermal lensing in optical fibers based on a perturbation technique. The perturbation technique becomes increasingly inaccurate as thermal lensing gets stronger. It, however, provides a basis for determining a normalization factor to use in a more accurate numerical study. A simple thermal lensing threshold condition is developed. The impact of thermal lensing on transverse mode instability is also studied.

  4. Compatibility of Fresnel lenses and photovoltaic cells in concentrator modules

    SciTech Connect

    Stillwell, C.B.; Shafer, B.D.

    1981-01-01

    Test data are used to compare, for point focus photovoltaic concentrator modules, the relationship between Fresnel lens and module efficiency. The data shows that lenses designed for maximum optical efficiency may not produce the maximum module efficiency. Lenses designed with consideration for the photon flux distribution on the solar cell may improve module efficiency possibly at some loss in lens optical performance.

  5. Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. G.; Bates, J. E.; Sun, J.; Perdew, J. P.

    2016-09-01

    The strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015), 10.1103/PhysRevLett.115.036402] obeys all 17 known exact constraints for meta-generalized-gradient approximations (meta-GGAs), and it includes some medium-range correlation effects. Long-range London dispersion interactions are still missing, but they can be accounted for via an appropriate correction scheme. In this study, we combine SCAN with an efficient London dispersion correction and show that lattice energies of simple organic crystals can be improved with the applied correction by 50%. The London-dispersion corrected SCAN meta-GGA outperforms all other tested London-dispersion corrected meta-GGAs for molecular geometries. Our method yields mean absolute deviations (MADs) for main group bond lengths that are consistently below 1 pm, rotational constants with MADs of 0.2%, and noncovalent distances with MADs below 1%. For a large database of general main group thermochemistry and kinetics (˜800 chemical species), one of the lowest weighted mean absolute deviations for long-range corrected meta-GGA functionals is achieved. Noncovalent interactions are of average quality, and hydrogen bonded systems in particular seem to suffer from overestimated polarization related to the self-interaction error of SCAN. We also discuss some consequences of numerical sensitivity encountered for meta-GGAs.

  6. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al2O3·Si(OH)4), with ferrihydrite (Fe2O3·0.5H2O), have been shown to be associated with waste glassesmore » that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe)2O3·1.3-2Si(OH)4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH– (strong base) in the leachates, causes the Al2O3·nSiO2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  7. Spin Correlations of Strongly Interacting Massive Fermion Pairs as a Test of Bell's Inequality

    SciTech Connect

    Sakai, H.; Saito, T.; Kuboki, H.; Sasano, M.; Yako, K.; Ikeda, T.; Itoh, K.; Kawabata, T.; Maeda, Y.; Suda, K.; Uesaka, T.; Matsui, N.; Satou, Y.; Rangacharyulu, C.; Sekiguchi, K.; Tamii, A.

    2006-10-13

    We report the results of the first-time test of the local hidden variable theories (Bell-Clauser-Horne-Shimony-Holt) involving strongly interacting pairs of massive spin 1/2 hadrons from the decay of short-lived ({tau}<10{sup -21}sec) {sup 2}He spin-singlet state, populated in the nuclear reaction {sup 2}H+{sup 1}H{yields}{sup 2}He+n. The novel features of this experiment are (a) the use of an 'event body' detector of nearly 100% efficiency to prepare an unbiased sample and (b) a focal-plane polarimeter of full 2{pi} sr acceptance with a random 'post selection' of the reference axes. The spin-correlation function is deduced to be S{sub exp}({pi}/4)=2.83{+-}0.24{sub stat}{+-}0.07{sub sys}. This result is in agreement with nonlocal quantum mechanical prediction and it violates the Bell-CHSH inequality of vertical bar S vertical bar{<=}2 at a confidence level of 99.3%.

  8. Quantitative evaluation of performance of three-dimensional printed lenses

    NASA Astrophysics Data System (ADS)

    Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-08-01

    We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.

  9. Multi-wavelength probes of distant lensed galaxies

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen

    2012-08-01

    I summarise recent results on multi-wavelength properties of distant lensed galaxies, with a particular focus on Herschel. Submm surveys have already resulted in a breakthrough discovery of an extremely efficient selection technique for strong gravitational lenses. Benefitting from the gravitational magnification boost, blind mm-wave redshifts have been demonstrated on IRAM, SMA and GBT, and follow-up emission line detections have been made of water, [Oiii], [Cii] and other species, revealing the PDR/XDR/CRDR conditions. I also discuss HST imaging of submm lenses, lensed galaxy reconstruction, the prospects for ALMA and e-Merlin and the effects of differential magnification. Many emission line diagnostics are relatively unaffected by differential magnification, but SED-based estimates of bolometric fractions in lensed infrared galaxies are so unreliable as to be useless, unless a lens mass model is available to correct for differential amplification.

  10. Influence of Gravitational Lensing on Sources of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.

    In a recent paper by Wang, Turner and Stebbins (1996) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA.

  11. TESTING THE POSSIBLE INTRINSIC ORIGIN OF THE EXCESS VERY STRONG Mg II ABSORBERS ALONG GAMMA-RAY BURST LINES-OF-SIGHT

    SciTech Connect

    Cucchiara, A.; Jones, T.; Charlton, J. C.; Fox, D. B.; Einsig, D.; Narayanan, A. E-mail: tjones@astro.psu.edu E-mail: charlton@astro.psu.edu E-mail: anand@astro.wisc.edu

    2009-05-20

    The startling discovery by Prochter et al. that the frequency of very strong (W{sub r} (2796)>1 A) Mg II absorbers along gamma-ray burst (GRB) lines of sight ([dN/dz]{sub GRB} = 0.90) is more than three times the frequency along quasar lines of sight ([dN/dz]{sub QSO} = 0.24), over similar redshift ranges, has yet to be understood. In particular, explanations appealing to dust antibias in quasar samples, partial covering of the quasar sources, and gravitational-lensing amplification of the GRBs have all been carefully examined and found wanting. We therefore reconsider the possibility that the excess of very strong Mg II absorbers toward GRBs is intrinsic either to the GRBs themselves or to their immediate environment, and associated with bulk outflows with velocities as large as v {sub max} {approx} 0.3c. In order to examine this hypothesis, we accumulate a sample of 27 W{sub r} (2796)>1 A absorption systems found toward 81 quasars, and compare their properties to those of 8 W{sub r} (2796) > 1 A absorption systems found toward six GRBs; all systems have been observed at high spectral resolution (R = 45, 000) using the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. We make multiple comparisons of the absorber properties across the two populations, testing for differences in metallicity, ionization state, abundance patterns, dust abundance, kinematics, and phase structure. We find no significant differences between the two absorber populations using any of these metrics, implying that, if the excess of absorbers along GRB lines of sight are indeed intrinsic, they must be produced by a process which has strong similarities to the processes yielding strong Mg II systems associated with intervening galaxies. Although this may seem a priori unlikely, given the high outflow velocities required for any intrinsic model, we note that the same conclusion was reached, recently, with respect to the narrow absorption line systems seen in some quasars.

  12. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Wasserman, I.; Hessels, J. W. T.; Lazio, T. J. W.; Chatterjee, S.; Wharton, R. S.

    2017-06-01

    The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ˜1 Gpc luminosity distance. Caustics require the lens’ dispersion measure depth ({{DM}}{\\ell }), scale size (a), and distance from the source ({d}{sl}) to satisfy {{DM}}{\\ell }{d}{sl}/{a}2≳ 0.65 {{pc}}2 {{au}}-2 {{cm}}-3. Caustics produce strong magnifications (≲ {10}2) on short timescales (≲ hours to days) that appear as narrow spectral peaks (0.1-1 GHz). They also suppress the flux density in longer-duration (˜months) troughs. Multiply imaged bursts will arrive differentially by < 1 μ {{s}} to tens of ms with different apparent dispersion measures, δ {DM}˜ 1 pc cm-3. When differing by less than the burst width, interference effects in dynamic spectra will be seen. Larger arrival time perturbations may mask any underlying periodicity with period ≲ 1 {{s}}. Strong lensing requires sources smaller than {({Fresnel}{scale})}2/a, which includes compact objects such as neutron star magnetospheres but excludes active galactic nuclei. We discuss constraints on densities, magnetic fields, and locations of plasma lenses related to the conditions needed for lensing to occur. Much of the phenomenology of the repeating FRB source FRB 121102 can be accounted for in this picture, which can be tested by obtaining wideband spectra of bursts (from < 1 to 10 GHz and possibly higher) that will also help characterize the plasma environment near FRB sources. A rich variety of phenomena is expected from an ensemble of lenses near an FRB source.

  13. Modeling fine-scale geological heterogeneity--examples of sand lenses in tills.

    PubMed

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio; Renard, Philippe; Nilsson, Bertel; Klint, Knud Erik; Bjerg, Poul Løgstrup

    2013-01-01

    Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  14. Prediction Test for the Two Extremely Strong Solar Storms in October 2003

    NASA Astrophysics Data System (ADS)

    Xie, Yanqiong; Wei, Fengsi; Feng, Xueshang; Zhong, Dingkun

    2006-04-01

    In late October and early November 2003, a series of space weather hazard events erupted in solar-terrestrial space. Aiming at two intense storm (shock) events on 28 and 29 October, this paper presents a Two-Step method, which combines synoptic analysis of space weather `observing’ and quantitative prediction ‘palpating’, and uses it to test predictions. In the first step, ‘observing’, on the basis of observations of the source surface magnetic field, interplanetary scintillation (IPS) and ACE spacecraft, we find that the propagation of the shock waves is asymmetric and northward relative to the normal direction of their solar sources due to the large-scale configuration of the coronal magnetic fields, and the Earth is located near the direction of the fastest speed and greatest energy of the shocks. Being two fast ejection shock events, the fast explosion of extremely high temperature and strong magnetic field, and background solar wind velocity as high as 600 and 1000 km s-1, are also helpful to their rapid propagation. According to the synoptic analysis, the shock travel times can be estimated as 21 and 20 h, which are close to the observational results of 19.97 and 19.63 h, respectively. In the second step, ‘palpating’, we adopt a new membership function of the fast shock events for the ISF method. The predicted results here show that for the onset time of the geomagnetic disturbance, the relative errors between the observational and the predicted results are 1.8 and 6.7%, which are consistent with the estimated results of the first step; and for the magnetic disturbance magnitude, the relative errors between the observational and the predicted results are 4.1 and 3.1%, respectively. Furthermore, the comparison among the predicted results of our Two-Step method with those of five other prevailing methods shows that the Two-Step method is advantageous in predicting such strong shock event. It can predict not only shock arrival time, but also the

  15. Polyadic devil's lenses.

    PubMed

    Calatayud, Arnau; Monsoriu, Juan A; Mendoza-Yero, Omel; Furlan, Walter D

    2009-12-01

    Devil's lenses (DLs) were recently proposed as a new kind of kinoform lens in which the phase structure is characterized by the "devil's staircase" function. DLs are considered fractal lenses because they are constructed following the geometry of the triadic Cantor set and because they provide self-similar foci along the optical axis. Here, DLs are generalized allowing the inclusion of polyadic Cantor distributions in their design. The lacunarity of the selected polyadic fractal distribution is an additional design parameter. The results are coined polyadic DLs. Construction requirements and interrelations among the different parameters of these new fractal lenses are also presented. It is shown that the lacunarity parameter affects drastically the irradiance profile along the optical axis, appodizing higher-order foci, and these features are proved to improve the behavior of conventional DLs under polychromatic illumination.

  16. Contact Lenses in the Laboratory.

    ERIC Educational Resources Information Center

    Kingston, David W.

    1981-01-01

    Summarizes results of a three-item questionnaire returned by 43 Michigan institutions expressing views on wearing contact lenses in chemical laboratories. Questions focused on eye protection, type of protection, and use of contact lenses. (SK)

  17. Clinical evaluation of Acuvue contact lenses with UV blocking characteristics.

    PubMed

    Hickson-Curran, S B; Nason, R J; Becherer, P D; Davis, R A; Pfeifer, J; Stiegemeier, M J

    1997-08-01

    In response to increasing scientific evidence which indicates that ultraviolet radiation (UVR) is a potential threat to ocular health, Acuvue contact lenses (Vistakon, Johnson & Johnson Vision Products Inc., Jacksonville, Florida) have been developed which incorporate an ultraviolet (UV) blocker within the lens polymer. Data are presented for the first clinical evaluation of Acuvue lenses with UV blocking characteristics. A double-masked, multicenter, prospective clinical trial involving 94 subjects was conducted. The study followed a randomized, parallel group design and consisted of 3 months of daily wear with two-weekly lens replacement. Two thirds of the subjects (61) wore the test lenses (Acuvue with UV blocker) and the remaining subjects (33) wore conventional Acuvue lenses (without UV blocker). Biomicroscopic evaluations indicated that the performance of the test and control lenses was clinically similar. No clinically relevant differences between the test and control lenses were noted in the subjective assessments of vision, comfort, or handling. In addition, no differences were shown for surface deposition, lens durability, visual acuity, and subjective symptoms. The study findings indicate that the addition of a UV blocker to Acuvue contact lenses has been achieved without affecting daily wear clinical performance. Because there is increasing evidence to suggest that the ocular tissues may be damaged by UVR, it is prudent for eye care practitioners to prescribe contact lenses that offer the benefits of both regular replacement and UV protection.

  18. Gravitational lensing of gravitational wave

    NASA Astrophysics Data System (ADS)

    Kei Wong, Wang; Ng, Kwan Yeung

    2017-01-01

    Gravitational lensing phenomena are widespread in electromagnetic astrophysics, and in principle may also be uncovered with gravitational waves. We examine gravitational wave events lensed by elliptical galaxies in the limit of geometric optics, where we expect to see multiple signals from the same event with different arrival times and amplitudes. By using mass functions for compact binaries from population-synthesis simulations and a lensing probability calculated from Planck data, we estimate the rate of lensed signals for future gravitational wave missions.

  19. Radiation Blocking Lenses

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Biomedical Optical Company of America's (BOCA) suntiger lenses, similar in principle to natural filters in the eyes of hawks and eagles, bar 99 percent of potentially harmful wavelengths, while allowing visually useful colors of light (red, orange, green) to pass through. They also improve visual acuity, night vision and haze or fog visibility. The lenses evolved from work done by James B. Stephens and Dr. Charles G. Miller of the Jet Propulsion Laboratory. They developed a formula and produced a commercial welding curtain that absorbs, filters, and scatters light. This research led to protective glasses now used by dentists, workers in hazardous environments, CRT operators and skiers.

  20. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  1. Weak lensing corrections to tSZ-lensing cross correlation

    SciTech Connect

    Tröster, Tilman; Waerbeke, Ludovic Van E-mail: waerbeke@phas.ubc.ca

    2014-11-01

    The cross correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and gravitational lensing in wide field has recently been measured. It can be used to probe the distribution of the diffuse gas in large scale structure, as well as inform us about the missing baryons. As for any lensing-based quantity, higher order lensing effects can potentially affect the signal. Here, we extend previous higher order lensing calculations to the case of tSZ-lensing cross correlations. We derive terms analogous to corrections due to the Born approximation, lens-lens coupling, and reduced shear up to order ℓ ∼> 3000.

  2. Ciprofloxacin interaction with silicon-based and conventional hydrogel contact lenses.

    PubMed

    Karlgard, C C S; Jones, L W; Moresoli, C

    2003-04-01

    Hydrogel contact lenses can be used as bandage lenses to protect the corneal surface after injury. The use of novel silicon-based hydrogel lens materials as bandage lenses has not gained widespread acceptance. As a first step toward advocating their usefulness as bandage lenses, their interaction with ocular pharmaceuticals must be understood because topical agents are often administered in conjunction with bandage lenses. The in vitro uptake and release of ciprofloxacin from silicone-based hydrogel (SH) and conventional pHEMA-based (CH) hydrogel contact lenses was examined by spectrophotometric evaluation of the drug concentration in saline solution. The hydrogel contact lenses tested showed similar drug uptake (average 1800 microg/lens) but different levels of drug release. Multiphoton laser microscopy indicated that ciprofloxacin was distributed throughout the lens thickness, with higher levels of drug at the surface owing to drug precipitation. The drug adsorption onto the lenses was partially reversible. The SH lenses released a lower amount of drug than CH lenses (72 vs. 168 microg/lens). Ionic lenses released less drug than non-ionic lenses (127 vs. 151 microg/lens). The differences in ciprofloxacin uptake and release between SH and CH materials may not be clinically significant because the amount of drug released from all lenses would be above the MIC(90) of ciprofloxacin for common ocular pathogens. These results indicate that material properties have a significant impact on drug-lens interactions.

  3. Probing satellite haloes with weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Gillis, Bryan R.; Hudson, Michael J.; Hilbert, Stefan; Hartlap, Jan

    2013-02-01

    We demonstrate the possibility of detecting tidal stripping of dark matter subhaloes within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups using various models with different distributions of mass between galaxy and group haloes to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites' lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 1012-1015 M⊙.

  4. The Master Lens Database and The Orphan Lenses Project

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas

    2012-10-01

    Strong gravitational lenses are uniquely suited for the study of dark matter structure and substructure within massive halos of many scales, act as gravitational telescopes for distant faint objects, and can give powerful and competitive cosmological constraints. While hundreds of strong lenses are known to date, spanning five orders of magnitude in mass scale, thousands will be identified this decade. To fully exploit the power of these objects presently, and in the near future, we are creating the Master Lens Database. This is a clearinghouse of all known strong lens systems, with a sophisticated and modern database of uniformly measured and derived observational and lens-model derived quantities, using archival Hubble data across several instruments. This Database enables new science that can be done with a comprehensive sample of strong lenses. The operational goal of this proposal is to develop the process and the code to semi-automatically stage Hubble data of each system, create appropriate masks of the lensing objects and lensing features, and derive gravitational lens models, to provide a uniform and fairly comprehensive information set that is ingested into the Database. The scientific goal for this team is to use the properties of the ensemble of lenses to make a new study of the internal structure of lensing galaxies, and to identify new objects that show evidence of strong substructure lensing, for follow-up study. All data, scripts, masks, model setup files, and derived parameters, will be public, and free. The Database will be accessible online and through a sophisticated smartphone application, which will also be free.

  5. Rigid lenses: an overview.

    PubMed

    Bayshore, C A

    1979-03-01

    New gas permeable rigid contact lens materials, by allowing direct transmission of oxygen, provide significant advantages over PMMA. Edema resulting from oxygen deprivation with PMMA lenses is eliminated and comfort is increased. Three types of gas permeable materials are described: CAB, silicone, and a combination of CAB and silicone.

  6. Fresnel's Lighthouse Lenses

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  7. Fresnel's Lighthouse Lenses

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2007-12-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  8. Biocompatibility of Intraocular Lenses.

    PubMed

    Özyol, Pelin; Özyol, Erhan; Karel, Fatih

    2017-08-01

    The performance of an intraocular lens is determined by several factors such as the surgical technique, surgical complications, intraocular lens biomaterial and design, and host reaction to the lens. The factor indicating the biocompatibility of an intraocular lens is the behavior of inflammatory and lens epithelial cells. Hence, the biocompatibility of intraocular lens materials is assessed in terms of uveal biocompatibility, based on the inflammatory foreign-body reaction of the eye against the implant, and in terms of capsular biocompatibility, determined by the relationship of the intraocular lens with residual lens epithelial cells within the capsular bag. Insufficient biocompatibility of intraocular lens materials may result in different clinical entities such as anterior capsule opacification, posterior capsule opacification, and lens epithelial cell ongrowth. Intraocular lenses are increasingly implanted much earlier in life in cases such as refractive lens exchange or pediatric intraocular lens implantation after congenital cataract surgery, and these lenses are expected to exhibit maximum performance for many decades. The materials used in intraocular lens manufacture should, therefore, ensure long-term uveal and capsular biocompatibility. In this article, we review the currently available materials used in the manufacture of intraocular lenses, especially with regard to their uveal and capsular biocompatibility, and discuss efforts to improve the biocompatibility of intraocular lenses.

  9. Fresnel's Lighthouse Lenses

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  10. Rainwater lenses in wetlands

    NASA Astrophysics Data System (ADS)

    Dekker, S. C.; Schot, P. P.; Bootsma, M. C.

    2003-04-01

    In the Netherlands, drainage and groundwater abstraction in wetlands has lead to deterioration of fen vegetation through lowering of the phreatic level. This enables recharge of local, acid precipitation and the development of rainwater lenses which float on alkaline groundwater. These lenses prevent upward seeping of the groundwater reaching the fen root zone. In the nature reserve Ilperveld (The Netherlands), a ditch/trench system was dug for the purpose of creating run-off for acid rainwater in wet periods, and to enable neutral surface water in dry periods. Sods were removed to decrease the evapotranspiration. Knowledge of the form and behaviour of rainwater lenses in the root zone of wetlands is a prerequisite in fen restoration projects in order to design effective and cost-efficient measures. With a saturated-unsaturated solute transport model (HYDRUS-2D), numerical simulations were performed. Model results are compared with temporal and spatial measurements of electrical conductivity measured in the Ilperveld. Furthermore, results of temporal dynamics of rainwater lenses are shown as function of (i) the phreatic level, (ii) the number of drainage canals and (iii) the groundwater inflow fluxes.

  11. Disability glare in soft multifocal contact lenses.

    PubMed

    Wahl, Siegfried; Fornoff, Luise; Ochakovski, G Alex; Ohlendorf, Arne

    2017-10-07

    The study investigated the effect of the design of multifocal contact lenses on the sensitivity to contrast and disability glare. Contrast sensitivity was measured in 16 young adults (mean age: 25.5±2.5years) at a distance of 2m under two conditions: no-glare and glare. Two designs (Center Near and Center Distance) of the Biofinity soft contact lens were used to simulate correction for presbyopes, while a correction with single vision trial lenses and contact lenses acted as controls. The design of the used multifocal contact lenses had a significant influence on the log area under the curve of the contrast sensitivity function (AUC-CSF). Compared to the spectacle lens correction, the AUC-CSF was significantly reduced, in case CS was measured with the Center Near design lens, under the no-glare (p<0.001) and the glare condition (p: p<0.001). In case of the Center Distance design contact lens, the AUC-CSF was significantly smaller in case CS was tested under glare (p=0.001). Disability glare (DG) was depending on the spatial frequency and the design of the multifocal lens, while the Center Distance design produced higher amounts of DG (p<0.001), compared to the other used corrections. The optical design of a multifocal contact lenses has a significant impact on the contrast sensitivity as well as the disability glare. In order to dispense the best correction in terms of contact lenses, the sensitivity to contrast under no-glare and glare conditions should be tested a medium spatial frequencies. Copyright © 2017. Published by Elsevier Ltd.

  12. X-Ray Properties of Lensing-Selected Clusters

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel; Sharon, Keren; Bayliss, Matthew; McDonald, Michael; Gladders, Michael; Johnson, Traci; Dahle, Hakon; Rigby, Jane R.; Whitaker, Katherine E.; Florian, Michael; Wuyts, Eva

    2017-08-01

    I will present preliminary results from the Michigan Swift X-ray observations of clusters from the Sloan Giant Arcs Survey (SGAS). These clusters were lensing selected based on the presence of a giant arc visible from SDSS. I will characterize the morphology of the intracluster medium (ICM) of the clusters in the sample, and discuss the offset between the X-ray centroid, the mass centroid as determined by strong lensing analysis, and the BCG position. I will also present early-stage work on the scaling relation between the lensing mass and the X-ray luminosity.

  13. Obituary--rigid contact lenses.

    PubMed

    Efron, Nathan

    2010-10-01

    Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses--also referred to as 'rigid gas permeable' (RGP) lenses or 'gas permeable' (GP) lenses--would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens 'problem solver' function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace.

  14. Braneworld Black Hole Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Liang, Jun

    2017-04-01

    A class of braneworld black holes, which I called as Bronnikov-Melnikov-Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio-Fabbri-Mazzacurati (CFM) black holes. Supported by Natural Science Foundation of Education Department of Shannxi Provincial Government under Grant No. 15JK1077, and Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No. BJ12-02

  15. Tested Demonstrations: Comparison of Strong Acid and Weak Acid Titration Curves.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    A lecture demonstration is presented for comparing titration curves. A plot of pH vs volume of strong base is produced by connecting the external output of a pH meter to a strip recorder. Thus, pH is recorded as a function of time. (BB)

  16. Tested Demonstrations: Comparison of Strong Acid and Weak Acid Titration Curves.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    A lecture demonstration is presented for comparing titration curves. A plot of pH vs volume of strong base is produced by connecting the external output of a pH meter to a strip recorder. Thus, pH is recorded as a function of time. (BB)

  17. Regular Magnetic Black Hole Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Liang, Jun

    2017-05-01

    The Bronnikov regular magnetic black hole as a gravitational lens is studied. In nonlinear electrodynamics, photons do not follow null geodesics of background geometry, but move along null geodesics of a corresponding effective geometry. To study the Bronnikov regular magnetic black hole gravitational lensing in the strong deflection limit, the corresponding effective geometry should be obtained firstly. This is the most important and key step. We obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. The influence of the magnetic charge on the black hole gravitational lensing is also discussed. Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.

  18. Ocean Freshwater Lenses: Prevalence and Persistence

    NASA Astrophysics Data System (ADS)

    Schanze, Julian; Lagerloef, Gary; Schmitt, Raymond

    2017-04-01

    During the Salinity Processes in the Upper Ocean Regional Study II (SPURS-II), a novel dataset was collected from an underway system sampling seawater at the surface, 2m, 3m and 5m. The surface measurements are performed using a boom-mounted suction hose and a peristaltic pump, as well as a shipboard apparatus with multiple de-bubbling stages. The data collected during this cruise reveal approximately fifty freshwater lenses in the Intertropical Convergence Zone (ITCZ), sampled between August 15 and September 20 under several different wind- and precipitation-regimes. Preliminary analysis shows that that the persistence of oceanic freshwater lenses is strongly dependent on the evolution of wind speed as well as the total amount of precipitated water. The results are analyzed in a number of case studies of different types of freshwater lenses, in which the balance between precipitation and wind-driven mixing is elucidated. While the limited sample size restricts the validity of the findings to the SPURS-II region, centered around 125°W, 10°N, during the late boreal summer of 2016, it has important consequences for modelling of freshwater lenses and their impact on satellite retrievals of salinity.

  19. Cosmological model discrimination with weak lensing

    NASA Astrophysics Data System (ADS)

    Pires, S.; Starck, J.-L.; Amara, A.; Réfrégier, A.; Teyssier, R.

    2009-10-01

    Weak gravitational lensing provides a unique way of mapping directly the dark matter in the Universe. The majority of lensing analyses use the two-point statistics of the cosmic shear field to constrain the cosmological model, a method that is affected by degeneracies, such as that between σ8 and Ωm which are respectively the rms of the mass fluctuations on a scale of 8 Mpc/h and the matter density parameter, both at z = 0. However, the two-point statistics only measure the Gaussian properties of the field, and the weak lensing field is non-Gaussian. It has been shown that the estimation of non-Gaussian statistics for weak lensing data can improve the constraints on cosmological parameters. In this paper, we systematically compare a wide range of non-Gaussian estimators to determine which one provides tighter constraints on the cosmological parameters. These statistical methods include skewness, kurtosis, and the higher criticism test, in several sparse representations such as wavelet and curvelet; as well as the bispectrum, peak counting, and a newly introduced statistic called wavelet peak counting (WPC). Comparisons based on sparse representations indicate that the wavelet transform is the most sensitive to non-Gaussian cosmological structures. It also appears that the most helpful statistic for non-Gaussian characterization in weak lensing mass maps is the WPC. Finally, we show that the σ8 - Ωm degeneracy could be even better broken if the WPC estimation is performed on weak lensing mass maps filtered by the wavelet method, MRLens.

  20. Cosmological model discrimination from weak lensing data

    NASA Astrophysics Data System (ADS)

    Pires, S.; Starck, J.-L.; Amara, A.; Réfrégier, A.; Teyssier, R.

    2010-06-01

    Weak gravitational lensing provides a unique way of mapping directly the dark matter in the Universe. The majority of lensing analyses use the two-point statistics of the cosmic shear field to constrain the cosmological model, a method that is affected by degeneracies, such as that between σ8 and Ωm which are respectively the rms of the mass fluctuations on a scale of 8 Mpc/h and the matter density parameter, both at z = 0. However, the two-point statistics only measure the Gaussian properties of the field, and the weak lensing field is non-Gaussian. It has been shown that the estimation of non-Gaussian statistics for weak lensing data can improve the constraints on cosmological parameters. In this paper, we systematically compare a wide range of non-Gaussian estimators to determine which one provides tighter constraints on the cosmological parameters. These statistical methods include skewness, kurtosis, and the higher criticism test, in several sparse representations such as wavelet and curvelet; as well as the bispectrum, peak counting, and a newly introduced statistic called wavelet peak counting (WPC). Comparisons based on sparse representations indicate that the wavelet transform is the most sensitive to non-Gaussian cosmological structures. It also appears that the most helpful statistic for non-Gaussian characterization in weak lensing mass maps is the WPC. Finally, we show that the σ8-Ωm degeneracy could be even better broken if the WPC estimation is performed on weak lensing mass maps filtered by the wavelet method, MRLens.

  1. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    SciTech Connect

    Virbhadra, K. S.; Keeton, C. R.

    2008-06-15

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.

  2. Chitah: Strong-gravitational-lens Hunter in Imaging Surveys

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-01

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada-France-Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius {r}{ein}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of ˜ 90% and a low false-positive rate of ˜ 3% show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with {r}{ein}≳ 0\\buildrel{\\prime\\prime}\\over{.} 5, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  3. Chitah: Strong-gravitational-lens hunter in imaging surveys

    SciTech Connect

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  4. Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Kocherlakota, Prashant; Patil, Mandar; Bhattacharyya, Sudip; Joshi, Pankaj S.; Królak, Andrzej

    2017-04-01

    We study here the precession of the spin of a test gyroscope attached to a stationary observer in the Kerr spacetime, specifically, to distinguish a naked singularity (NS) from a black hole (BH). It was shown recently that for gyros attached to static observers, their precession frequency became arbitrarily large in the limit of approach to the ergosurface. For gyros attached to stationary observers that move with nonzero angular velocity Ω , this divergence at the ergosurface can be avoided. Specifically, for such gyros, the precession frequencies diverge on the event horizon of a BH, but are finite and regular for a NS everywhere except at the singularity itself. Therefore a genuine detection of the event horizon becomes possible in this case. We also show that for a near-extremal NS (1 Lense-Thirring (LT) precession or nodal plane precession frequency of the accretion disk around a BH and NS to show that clear distinctions exist for these configurations in terms of radial variation features. The LT precession in equatorial circular orbits increases on approaching a BH, whereas for NS it increases, attains a peak, and then decreases. Interestingly, for a*=1.089 , it decreases until it vanishes at a certain radius, and it acquires negative values for a*>1.089 for a certain range of r . For 1

  5. Real-time rendering method and performance evaluation of composable 3D lenses for interactive VR.

    PubMed

    Borst, Christoph W; Tiesel, Jan-Phillip; Best, Christopher M

    2010-01-01

    We present and evaluate a new approach for real-time rendering of composable 3D lenses for polygonal scenes. Such lenses, usually called "volumetric lenses," are an extension of 2D Magic Lenses to 3D volumes in which effects are applied to scene elements. Although the composition of 2D lenses is well known, 3D composition was long considered infeasible due to both geometric and semantic complexity. Nonetheless, for a scene with multiple interactive 3D lenses, the problem of intersecting lenses must be considered. Intersecting 3D lenses in meaningful ways supports new interfaces such as hierarchical 3D windows, 3D lenses for managing and composing visualization options, or interactive shader development by direct manipulation of lenses providing component effects. Our 3D volumetric lens approach differs from other approaches and is one of the first to address efficient composition of multiple lenses. It is well-suited to head-tracked VR environments because it requires no view-dependent generation of major data structures, allowing caching and reuse of full or partial results. A Composite Shader Factory module composes shader programs for rendering composite visual styles and geometry of intersection regions. Geometry is handled by Boolean combinations of region tests in fragment shaders, which allows both convex and nonconvex CSG volumes for lens shape. Efficiency is further addressed by a Region Analyzer module and by broad-phase culling. Finally, we consider the handling of order effects for composed 3D lenses.

  6. The effect of weak lensing on distance estimates from supernovae

    SciTech Connect

    Smith, Mathew; Maartens, Roy; Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D'Andrea, Chris B.; Clarkson, Chris; Bassett, Bruce A.; Cinabro, David; Finley, David A.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Olmstead, Matthew D.; Schneider, Donald P.; Shapiro, Charles; Sollerman, Jesper

    2014-01-01

    Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.

  7. The Search for Lensed Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  8. Tolerancing panoramic lenses

    NASA Astrophysics Data System (ADS)

    Parent, Jocelyn; Thibault, Simon

    2009-08-01

    Tolerancing a lens is a basic procedure in lens design. It consists in first defining an appropriate set of tolerances for the lens, then in adding compensators with their allowable ranges and finally in selecting an appropriate quality criterion (MTF, RMS spot size, wavefront error, boresight error...) for the given application. The procedure is straightforward for standard optical systems. However, it becomes more complex when tolerancing very wide angle lenses (larger than 150 degrees). With a large field of view, issues such as severe off-axis pupil shift, considerable distortion and low relative illumination must be addressed. The pupil shift affects the raytrace as some rays can no longer be traced properly. For high resolution imagers, particularly for robotic and security applications, the image footprint is most critical in order to limit or avoid complex calibration procedures. We studied various wide angle lenses and concluded that most of the distortion comes from the front surface of the lens. Consequently, any variation of the front surface will greatly affect the image footprint. In this paper, we study the effects on the image footprint of slightly modifying the front surface of four different lenses: a simple double-gauss for comparison, a fisheye lens, a catadioptric system (omnidirectional lens) and a Panomorph lens. We also present a method to analyze variations of the image footprint. Our analysis shows that for wide angle lenses, on which the entrance pupil is much smaller than the front surface, irregularities (amplitude, slope and location) are critical on both aspherical and spherical front surfaces to predict the image footprint variation for high resolution cameras. Finally, we present how the entrance pupil varies (location, size) with the field of view for these optical systems.

  9. LINKING TESTS OF GRAVITY ON ALL SCALES: FROM THE STRONG-FIELD REGIME TO COSMOLOGY

    SciTech Connect

    Baker, Tessa; Psaltis, Dimitrios; Skordis, Constantinos E-mail: dpsaltis@email.arizona.edu

    2015-03-20

    The current effort to test general relativity (GR) employs multiple disparate formalisms for different observables, obscuring the relations between laboratory, astrophysical, and cosmological constraints. To remedy this situation, we develop a parameter space for comparing tests of gravity on all scales in the universe. In particular, we present new methods for linking cosmological large-scale structure, the cosmic microwave background, and gravitational waves with classic PPN tests of gravity. Diagrams of this gravitational parameter space reveal a noticeable untested regime. The untested window, which separates small-scale systems from the troubled cosmological regime, could potentially hide the onset of corrections to GR.

  10. An evaluation of silicone-hydrogel lenses worn on a daily wear basis.

    PubMed

    Brennan, Noel A; Coles, M-L Chantal; Ang, John H-B

    2006-01-01

    To examine the clinical performance of two brands of silicone-hydrogel lenses when worn on a daily wear basis. Fifty-six subjects with no ocular disease were enrolled at multiple sites in Australasia. Contact lenses made from galyfilcon A or lotrafilcon A were randomly assigned to each eye of the subject and the lenses were worn on a daily wear basis for a period of two weeks. Subjects did not know the identity of the lenses they wore. Clinical data and patient responses to a questionnaire were gathered at an initial visit and after two weeks of wear. For both lenses, the degree of limbal hyperaemia and bulbar conjunctival hyperaemia decreased significantly over the two-week wearing period. The eyes wearing galyfilcon A lenses showed an increase in conjunctival staining compared to the baseline measures. On average, galyfilcon A lenses decentred more and moved less than the lotrafilcon A lenses. The lotrafilcon A lenses showed a greater loss of wettability, as judged by practitioner grading, than the galyfilcon A lenses over the two-week period. The subjective responses showed strong preference for the galyfilcon A lens across 26 of 27 questions relating to comfort, vision, handling, preference and other subjective outcomes. The results show that different silicone-hydrogel lenses have different performance characteristics on the eye, when worn on a daily wear basis. Striving for high oxygen transmissibility at the expense of other properties may lead to a range of undesirable performance characteristics.

  11. Detections of Planets in Binaries Through the Channel of Chang-Refsdal Gravitational Lensing Events

    NASA Astrophysics Data System (ADS)

    Han, Cheongho; Shin, In-Gu; Jung, Youn Kil

    2017-02-01

    Chang-Refsdal (C-R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C-R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C-R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C-R lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C-R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C-R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C-R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.

  12. Julius F. Neumueller Award Paper--1977. Static fracture resistance of Schott S-1005 lenses as a function of thickness.

    PubMed

    Scaief, A L; Wood, S A

    1978-01-01

    High-Lite S-1005 lenses (Schott Optical Company) of various center thicknesses were tested for static load fracture resistance. Chemically tempered High-Lite lenses of 1.7-mm center thickness were found to be equivalent in strength to 3.0-mm heat-tempered crown lenses; 1.34-mm chemically tempered High-Lite lenses were equivalent in strength to 2.07-mm heat-tempered crown lenses. These findings agree closely with earlier data on chemically tempered crown glass and therefore illustrate that chemically hardened lenses can be made significantly thinner than Z-80 specifications and still meet FDA strength requirements.

  13. Influence of gravitational lensing on gravitational radiation

    NASA Astrophysics Data System (ADS)

    Zakharov, A.

    In a paper by Wang, Turner and Stebbins (PRL, Phys. Rev. Lett. 77 (1996) p.2875) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA. Recently, the Galactic center was considered by Ruffa (ApJ, 1999) as a gravitational lens that focuses a gravitational wave energy to the Earth. The author used the wave optic approximation to solve this problem and concluded that amplification due to the gravitational lens focusing could be very huge. The conclusion is based on the perfect location of the gravitational wave source, namely the source lies very close to the line passing through the Earth and the gravitational lens (the Galactic Center), therefore the probability of the huge magnification of gravitational wave sources is negligible.

  14. Instrumented balance and walking assessments in persons with multiple sclerosis show strong test-retest reliability.

    PubMed

    Craig, Jordan J; Bruetsch, Adam P; Lynch, Sharon G; Horak, Fay B; Huisinga, Jessie M

    2017-05-22

    There is a need for objective movement assessment for clinical research trials aimed at improving gait and balance in persons with multiple sclerosis (PwMS). Wireless inertial sensors can accurately measure numerous walking and balance parameters but these measures require evaluation of reliability in PwMS. The current study determined the test-retest reliability of wireless inertial sensor measures obtained during an instrumented standing balance test and an instrumented Timed Up and Go test in PwMS. Fifteen PwMS and 15 healthy control subjects (HC) performed an instrumented standing balance and instrumented Timed Up and Go (TUG) test on two separate days. Ten instrumented standing balance measures and 18 instrumented TUG measures were computed from the wireless sensor data. Intraclass correlation coefficients (ICC) were calculated to determine test-retest reliability of all instrumented standing balance and instrumented TUG measures. Correlations were evaluated between the instrumented standing balance and instrumented TUG measures and self-reported walking and balance performance, fall history, and clinical disability. For both groups, ICCs for instrumented standing balance measures were best for spatio-temporal measures, while frequency measures were less reliable. All instrumented TUG measures exhibited good to excellent (ICCs > 0.60) test-retest reliability in PwMS and in HC. There were no correlations between self-report walking and balance scores and instrumented TUG or instrumented standing balance metrics, but there were correlations between instrumented TUG and instrumented standing balance metrics and fall history and clinical disability status. Measures from the instrumented standing balance and instrumented TUG tests exhibit good to excellent reliability, demonstrating their potential as objective assessments for clinical trials. A subset of the most reliable measures is recommended for measuring walking and balance in clinical settings.

  15. Magnifying prismatic lenses for vitrectomy.

    PubMed

    Ohji, M; Futamura, H; Sanger, D; Nakata, K; Hayashi, A; Kusaka, S; Tano, Y

    2001-01-01

    Viewing the fundus at higher magnification during vitrectomy makes surgical procedures much safer; however, the scope of magnification of the peripheral fundus has been limited. For better visualization of the periphery of the fundus, we have developed two new contact lenses called magnifying prismatic lenses. The magnifying 15 degrees and 30 degrees prismatic lenses are made of a glass with a high index of refraction (n = 1.883). The lenses have a convex upper surface to provide a magnified view of the peripheral fundus. These magnifying 15 degrees and 30 degrees prismatic lenses provide an approximately 2x magnified view of the peripheral fundus. They also provide a more extensive view of the peripheral fundus than a regular (plano-concave) prismatic lens when the eye is tilted. The magnifying prismatic lenses are useful for viewing into the peripheral fundus with higher magnification.

  16. Towards new tests of strong-field gravity with measurements of surface atomic line redshifts from neutron stars.

    PubMed

    DeDeo, Simon; Psaltis, Dimitrios

    2003-04-11

    In contrast to gravity in the weak-field regime, which has been subject to numerous experimental tests, gravity in the strong-field regime is largely unconstrained by observations. We show that gravity theories that pass solar system tests, but that diverge from general relativity in the strong-field regime, predict neutron stars with significantly different properties than their general relativistic counterparts. The range of redshfits of surface atomic lines predicted by such theories is significantly wider than the uncertainty introduced by our lack of knowledge of the equation of state of ultradense matter. Measurements of such lines with x-ray observatories can thus put new constraints on strong-field gravity.

  17. Vertical and Horizontal Jump Tests Are Strongly Associated With Competitive Performance in 100-m Dash Events.

    PubMed

    Loturco, Irineu; Pereira, Lucas A; Cal Abad, Cesar C; DʼAngelo, Ricardo A; Fernandes, Victor; Kitamura, Katia; Kobal, Ronaldo; Nakamura, Fabio Y

    2015-07-01

    Fourteen male elite sprinters performed short-distance sprints and jump tests until 18 days before 100-m dash competitions in track and field to determine if these tests are associated with 100-m sprint times. Testing comprised of squat jumps (SJ), countermovement jumps (CMJ), horizontal jumps (HJ), maximum mean propulsive power relative to body mass in loaded jump squats, and a flying start 50-m sprint. Moderate associations were found between speed tests and competitive 100-m times (r = 0.54, r = 0.61, and r = 0.66 for 10-, 30-, and 50-m, respectively, p ≤ 0.05). In addition, the maximum mean propulsive power relative to body mass was very largely correlated with 100-m sprinting performance (r = 0.75, p < 0.01). The correlations of SJ, CMJ, and HJ with actual 100-m sprinting times amounted to -0.82, -0.85, and -0.81, respectively. Because of their practicality, safeness, and relationship with the actual times obtained by top-level athletes in 100-m dash events, it is highly recommended that SJ, CMJ, and HJ be regularly incorporated into elite sprint-testing routines.

  18. Fitting gravitational lenses: truth or delusion

    NASA Astrophysics Data System (ADS)

    Evans, N. Wyn; Witt, Hans J.

    2003-11-01

    The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.

  19. A Brief Test of the Tokyo Sokushin VSE-355G3 Strong Motion Velocity Seismometer

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Yokoi, Isamu

    2008-01-01

    The VSE-355G3 seismometer is a broadband seismometer (called a 'servo velocity meter' by Tokyo Sokushin) with a specified clip level of 2 m/s and a flat response to earth velocity from 0.008 Hertz (Hz) to 70 Hz. Mr. Yokoi and Mr. Kurahashi of Tokyo Sokushin shipped one instrument to the U. S. Geological Survey's Albuquerque Seismological Laboratory (ASL) for testing in early September 2007. They gave a presentation on this instrument and some of their other products to the authors and others on September 6, 2007. Testing of the VSE-355G3, Serial Number 70520, commenced on Friday, September 7, 2007.

  20. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  1. Additive manufacturing of tunable lenses

    NASA Astrophysics Data System (ADS)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  2. Omni-focal refractive focus correction technology as a substitute for bi/multi-focal intraocular lenses, contact lenses, and spectacles

    NASA Astrophysics Data System (ADS)

    Ben Yaish, Shai; Zlotnik, Alex; Raveh, Ido; Yehezkel, Oren; Belkin, Michael; Lahav, Karen; Zalevsky, Zeev

    2009-02-01

    We present novel technology for extension in depth of focus of imaging lenses for use in ophthalmic lenses correcting myopia, hyperopia with regular/irregular astigmatism and presbyopia. This technology produces continuous focus without appreciable loss of energy. It is incorporated as a coating or engraving on the surface for spectacles, contact or intraocular lenses. It was fabricated and tested in simulations and in clinical trials. From the various testing this technology seems to provide a satisfactory single-lens solution. Obtained performance is apparently better than those of existing multi/bifocal lenses and it is modular enough to provide solution to various ophthalmic applications.

  3. Testing the strong equivalence principle with the triple pulsar PSR J 0337 +1715

    NASA Astrophysics Data System (ADS)

    Shao, Lijing

    2016-04-01

    Three conceptually different masses appear in equations of motion for objects under gravity, namely, the inertial mass, mI , the passive gravitational mass, mP, and the active gravitational mass, mA. It is assumed that, for any objects, mI=mP=mA in the Newtonian gravity, and mI=mP in the Einsteinian gravity, oblivious to objects' sophisticated internal structure. Empirical examination of the equivalence probes deep into gravity theories. We study the possibility of carrying out new tests based on pulsar timing of the stellar triple system, PSR J 0337 +1715 . Various machine-precision three-body simulations are performed, from which, the equivalence-violating parameters are extracted with Markov chain Monte Carlo sampling that takes full correlations into account. We show that the difference in masses could be probed to 3 ×1 0-8 , improving the current constraints from lunar laser ranging on the post-Newtonian parameters that govern violations of mP=mI and mA=mP by thousands and millions, respectively. The test of mP=mA would represent the first test of Newton's third law with compact objects.

  4. Natural wormholes as gravitational lenses

    SciTech Connect

    Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Forward Unlimited, P.O. Box 2783, Malibu, California 90265 Department of Physics and Astronomy, Butler University, Indianapolis, Indiana 46208 Physics Department, Washington University, St. Louis, Missouri 63130-4899 Physics Department, University of California at Irvine, Irvine, California 92717-4575 NASA Lewis Research Center, Mail Code 302-1, Cleveland, Ohio 44135-3191 )

    1995-03-15

    Once quantum mechanical effects are included, the hypotheses underlying the positive mass theorem of classical general relativity fail. As an example of the peculiarities attendant upon this observation, a wormhole mouth embedded in a region of high mass density might accrete mass, giving the other mouth a net [ital negative] mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHO's) of positive mass. While the analysis is discussed in terms of wormholes, the observational test proposed is more generally a search for compact negative mass objects of any origin. We recommend that MACHO search data be analyzed for GNACHO's.

  5. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  6. SPT Lensing Likelihood: South Pole Telescope CMB lensing likelihood code

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Peiris, Hiranya V.; Verde, Licia

    2014-11-01

    The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization requir