Science.gov

Sample records for strong lensing tests

  1. Cosmological test using strong gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Yuan, C. C.; Wang, F. Y.

    2015-09-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.

  2. Strong gravitational lensing statistics as a test of cosmogonic scenarios

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.

    1994-01-01

    Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the

  3. Testing the Standard Model of Cosmology with Strong Lensing Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew; Oguri, M.; Gladders, M. D.; Sharon, K.; Koester, B.; Gralla, M.; Garcia, C. J.; Barrientos, F.; Carrasco, M.

    2012-01-01

    Galaxy cluster strong lenses are powerful probes of cosmology, large scale structure, and the high-z universe. They are also, however, extremely rare, and their value has historically been limited as a result of the dearth of known cluster lenses. We present results using a new, well-defined sample of hundreds of galaxy-cluster-scale strong lenses that were identified in the Sloan Digital Sky Survey (SDSS) and the Red-Sequence Cluster Survey 2 (RCS2). We use strong lens model constraints on the matter distribution in the cores of dozens of lensing clusters, and combine these measurements at small radius with multiple mass observables on virial radius scales to empirically recover the mass-concentration relation for clusters spanning more than an order of magnitude in mass. Contrary to previous claims based on small samples of clusters, we find that the mass-concentration relation is generally in good agreement with theoretical expectations for a strong lensing selected sample of clusters. We also use the ensemble statistics of a complete sample of hundreds of giant arcs to provide a new measurement of the abundance of clusters forming giant arcs in a well-defined cosmological volume, and we measure the redshift distribution of our giant arc sample. We find that the median redshift of bright (g < 24) giant arcs is z 2, which provides some relief of the previously claimed "giant arc problem", while simultaneously establishing that our large sample of giant arcs provides the observational community with hundreds of highly magnified galaxies at high redshift.

  4. TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS

    SciTech Connect

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E.; Wyithe, J. Stuart B.; Levan, Andrew J.

    2012-08-01

    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  5. Noise in Strong Lensing Cosmography

    NASA Astrophysics Data System (ADS)

    Dalal, Neal; Hennawi, Joseph F.; Bode, Paul

    2005-03-01

    Giant arcs in strong lensing galaxy clusters can provide a purely geometric determination of cosmological parameters, such as the dark energy density and equation of state. We investigate sources of noise in cosmography with giant arcs, focusing in particular on errors induced by density fluctuations along the line of sight and errors caused by modeling uncertainties. We estimate parameter errors in two independent ways, first by developing a Fisher matrix formalism for strong lensing parameters and next by directly ray-tracing through N-body simulations using a multiplane lensing code. We show that for reasonable power spectra, density fluctuations from large-scale structures produce >100% errors in cosmological parameters derived from any single sight line, precluding the use of individual clusters or ``golden lenses'' to derive accurate cosmological constraints. Modeling uncertainties can similarly lead to large errors, and we show that the use of parameterized mass models in fitting strong lensing clusters can significantly bias the inferred cosmological parameters. We lastly speculate on the means by which these errors may be corrected.

  6. Strong Gravitational Lensing with SNAP

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.; Koopmans, L. V. E.

    2001-12-01

    As currently configured, SNAP should cover an area of sky to sufficient depth to observe tens of thousands of strong (ie multiple-imaging) gravitational lenses. This could provide an unprecedented database for performing cosmography, studies of large scale structure and galactic structure.and should complement the weak lensing program which will concentrate on larger scales. The challenge will be to recognize multiple imaging efficiently in an unbiased way and to organize effective follow up so as to obtain spectroscopic redshifts and monitor variable sources, when appropriate. Experience with the CLASS radio survey and the CASTLES program will be invaluable as we transition from the detailed study of a few tens of strong lenses through the ACS ultra-deep, deep and wide surveys (which should yield hundreds of examples of multiple imaging) to the larger samples envisaged from SNAP. New approaches to data analysis will be needed and coordinated planning with other proposed large survey instruments, like SKA, will be essential.

  7. Strong Gravitational Lensing: Relativity in Action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2009-05-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  8. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  9. LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2016-09-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimisation of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the SLACS lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.

  10. Roulettes: a weak lensing formalism for strong lensing: I. Overview

    NASA Astrophysics Data System (ADS)

    Clarkson, Chris

    2016-08-01

    We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.

  11. The Strong Lensing Time Delay Challenge (2014)

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  12. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    SciTech Connect

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  13. Doubling strong lensing as a cosmological probe

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2016-10-01

    Strong gravitational lensing provides a geometric probe of cosmology in a unique manner through distance ratios involving the source and lens. This is well-known for the time delay distance derived from measured delays between lightcurves of the images of variable sources such as quasars. Recently, double source plane lens systems involving two constant sources lensed by the same foreground lens have been proposed as another probe, involving a different ratio of distances measured from the image positions and fairly insensitive to the lens modeling. Here we demonstrate that these two different sets of strong lensing distance ratios have strong complementarity in cosmological leverage. Unlike other probes, the double source distance ratio is actually more sensitive to the dark energy equation of state parameters w0 and wa than to the matter density Ωm, for low redshift lenses. Adding double source distance ratio measurements can improve the dark energy figure of merit by 40% for a sample of fewer than 100 low redshift systems, or even better for the optimal redshift distribution we derive.

  14. SARCS strong-lensing galaxy groups. II. Mass-concentration relation and strong-lensing bias

    NASA Astrophysics Data System (ADS)

    Foëx, G.; Motta, V.; Jullo, E.; Limousin, M.; Verdugo, T.

    2014-12-01

    Aims: Various studies have shown a lensing bias in the mass-concentration relation of cluster-scale structures that is the result of an alignment of the major axis and the line of sight. In this paper, we aim to study this lensing bias through the mass-concentration relation of galaxy groups, thus extending observational constraints to dark matter haloes of mass ~1013-1014 M⊙. Methods: Our work is based on the stacked weak-lensing analysis of a sample of 80 strong-lensing galaxy groups. By combining several lenses, we significantly increase the signal-to-noise ratio of the lensing signal, thus providing constraints on the mass profile that cannot be obtained for individual objects. The resulting shear profiles were fitted with various mass models, among them the Navarro-Frank-White (NFW) profile, which provides an estimate of the total mass and of the concentration of the composite galaxy groups. Results: The main results of our analysis are the following: (i) the lensing signal does not allow us to firmly distinguish between a simple singular isothermal sphere mass distribution and the expected NFW mass profile; (ii) we obtain an average concentration c200 = 8.6-1.3+2.1 that is much higher than the value expected from numerical simulations for the corresponding average mass M200 = 0.73-0.10+0.11 × 1014 M⊙; (iii) the combination of our results with those at larger mass scales gives a mass-concentration relation c(M) of more than two decades in mass, whose slope disagrees with predictions from numerical simulations using unbiased populations of dark matter haloes; (iv) our combined c(M) relation matches results from simulations that only used haloes with a large strong-lensing cross-section, that is, elongated with a major axis close to the line of sight; (v) for the simplest case of prolate haloes, we estimate a lower limit on the minor-to-major axis ratio a/c = 0.5 for the average SARCS galaxy group with a toy model. Conclusions: Our analysis based on galaxy

  15. Constraints on holographic cosmologies from strong lensing systems

    SciTech Connect

    Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica; Campo, Sergio del E-mail: alex.bonilla@uv.cl E-mail: sdelcamp@ucv.cl

    2013-11-01

    We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensing measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.

  16. The Multiply Imaged Strongly Lensed Supernova Refsdal

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick

    2016-01-01

    In 1964, Sjur Refsdal first considered the possibility that the light from a background supernova could traverse multiple paths around a strong gravitational lens towards us. He showed that the arrival times of the supernova's light would depend on the cosmic expansion rate, as well as the distribution of matter in the lens. I will discuss the discovery of the first such multiply imaged supernova, which exploded behind the MACS J1149.6+2223 galaxy cluster. We have obtained Hubble Space Telescope grism and ground-based spectra of the four images of the supernova, which form an Einstein Cross configuration around an elliptical cluster member. These spectra as well as rest-frame optical light curves have allowed us to learn about the properties of the peculiar core-collapse supernova explosion, and contain information about the lenses' matter distribution as well as their stellar populations. A delayed image of the supernova is expected close to the galaxy cluster center as early as Fall 2015, and will serve as an unprecedented probe of the potential of a massive galaxy cluster.

  17. Combined reconstruction of weak and strong lensing data with WSLAP

    NASA Astrophysics Data System (ADS)

    Diego, J. M.; Tegmark, M.; Protopapas, P.; Sandvik, H. B.

    2007-03-01

    We describe a method to estimate the mass distribution of a gravitational lens and the position of the sources from combined strong and weak lensing data. The algorithm combines weak and strong lensing data in a unified way producing a solution which is valid in both the weak and the strong lensing regimes. The method is non-parametric, allowing the mass to be located anywhere in the field of view. We study how the solution depends on the choice of basis used to represent the mass distribution. We find that combining weak and strong lensing information has two major advantages: it alleviates the need for priors and/or regularization schemes for the intrinsic size of the background galaxies (this assumption was needed in previous strong lensing algorithms) and it reduces (although does not remove) biases in the recovered mass in the outer regions where the strong lensing data are less sensitive. The code is implemented into a software package called Weak & Strong Lensing Analysis Package (WSLAP) which is publicly available at http://darwin.cfa.harvard.edu/SLAP/.

  18. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.

  19. Line-of-sight structure toward strong lensing galaxy clusters

    SciTech Connect

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren; Gladders, Michael D.; Oguri, Masamune

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines of sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.

  20. A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the {{R}h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ˜ 99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ˜ 200 strong gravitational lenses would be sufficient to rule out {{R}h}=ct at this level of accuracy, while ˜ 300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead {{R}h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the {{R}h}=ct universe eventually emerge as

  1. A comparison of cosmological models using strong gravitational lensing galaxies

    SciTech Connect

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng E-mail: jjwei@pmo.ac.cn E-mail: fmelia@email.arizona.edu E-mail: xfwu@pmo.ac.cn

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually

  2. Constraints on cosmological models from strong gravitational lensing systems

    SciTech Connect

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz E-mail: panyu@cqupt.edu.cn E-mail: godlowski@uni.opole.pl

    2012-03-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.

  3. Radio monitoring campaigns of six strongly lensed quasars

    NASA Astrophysics Data System (ADS)

    Rumbaugh, N.; Fassnacht, C. D.; McKean, J. P.; Koopmans, L. V. E.; Auger, M. W.; Suyu, S. H.

    2015-06-01

    We observed six strongly lensed, radio-loud quasars (MG 0414+0534, CLASS B0712+472, JVAS B1030+074, CLASS B1127+385, CLASS B1152+199, and JVAS B1938+666) in order to identify systems suitable for measuring cosmological parameters using time delays between their multiple images. These systems are in standard two- and four-image configurations, with B1938 having a faint secondary pair of images. Two separate monitoring campaigns were carried out using the Very Large Array (VLA) and upgraded VLA. Light curves were extracted for each individual lensed image and analysed for signs of intrinsic variability. While it was not possible to measure time delays from these data, χ2-based and structure function tests found evidence for variability in a majority of the light curves. B0712 and B1030 had particularly strong variations, exhibiting linear flux trends. These results suggest that most of these systems should be targeted with follow-up monitoring campaigns, especially B0712 and B1030. We estimate that we can measure time delays for these systems with precisions of 0.5-3.5 d using two more seasons of monitoring.

  4. Strong Gravitational Lensing: Blueprints for Galaxy-Cluster Core Reconstruction

    NASA Astrophysics Data System (ADS)

    Newbury, Peter Robert

    1998-11-01

    When rays of light pass by a massive object they are very slightly deflected towards the centre-of-mass of the object. If two or more diverging beams of light re-converge onto an serendipitous observer, this observer may see multiple, magnified images of the source of light. This process is known as gravitational lensing, and has been observed in several dozen spectacular cases. Based on the appearance of the lensed arcs of light, we attempt to 'invert' the lens to find the distribution of mass that will produce just such a configuration of lensed objects. In this thesis, we propose a two-stage inversion scheme. First, the distribution of mass on the deflector plane and the geometry of the source-deflector-observer optical system are established. This is done by numerically simulating the lensing of light past a parametric mass model, and interactively adjusting the handful of model parameters to match the positions of the simulated and observed lensed arcs. At the same time, this determines the magnification of the background source induced by the lensing process. The predicted magnification is then removed from the data to reveal the intrinsic, though still distorted, background distribution of light. After tracing each lensed ray back to the source plane, the data are recombined to produce a surface brightness distribution of the source. This two-stage inversion scheme produces a parametric model of the deflector and a pixelised rendering of the background source which together mimic the observed gravitationally lensed features. We test the viability of scheme itself on a well-studied collection of lensed objects in the galaxy-cluster MS 2137. Confident in the algorithm, we apply it second time to predict the distribution of mass in the galaxy-cluster MS 1455 responsible for an observed triplet of lensed arcs. Our predictions about the lens in MS 1455 make it particularly interesting, for a single background source is responsible for both tangential arcs and a

  5. Cosmological constraints from strong gravitational lensing in clusters of galaxies.

    PubMed

    Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo

    2010-08-20

    Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.

  6. Cosmological constraints from strong gravitational lensing in clusters of galaxies.

    PubMed

    Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo

    2010-08-20

    Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%. PMID:20724628

  7. Strong lensing in the Einstein-Straus solution

    NASA Astrophysics Data System (ADS)

    Schücker, Thomas

    2009-07-01

    We analyse strong lensing in the Einstein-Straus solution with positive cosmological constant. Our result confirms Rindler and Ishak's finding that a positive cosmological constant decreases the bending of light by an isolated spherical mass. In agreement with an analysis by Ishak et al., this decrease is found to be attenuated by a homogeneous mass distribution added around the spherical mass and by a recession of the observer. For concreteness we compare the theory to the light deflection of the lensed quasar SDSS J1004+4112.

  8. Strong gravitational lensing in a noncommutative black-hole spacetime

    SciTech Connect

    Ding Chikun; Kang Shuai; Chen Changyong; Chen Songbai; Jing Jiliang

    2011-04-15

    Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant {theta} by the astronomical instruments in the future.

  9. How to Measure Dark Energy with LSST's Strong Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Marshall, Philip J.; Treu, T.; Brunner, R. J.; Strong Lensing, LSST; Dark Energy Science Collaborations

    2013-01-01

    Strong gravitational lensing is sensitive to dark energy (DE) via the combinations of angular diameter distances that appear in model predictions of the lens strength. Lenses with variable sources offer the most promise: the corresponding time delay distance has recently been shown to be measurable to 5% precision. Large samples of lensed quasars and supernovae will allow internal degeneracy-breaking and so enable the most direct access to the DE parameters, while multiple source-plane, compound lens systems may provide an alternative, complementary, H0-free probe. Its wide field survey and high cadence will enable LSST to provide a sample of several thousand measured time delays, two orders of magnitude larger than the current sample, and allow an independent, competitive Stage IV DE parameter measurement to be made. However, practical problems to be solved include: lens detection (which may be very sensitive to image quality and deblender performance); image and lightcurve modelling (which could be both CPU and manual labor-intensive); obtaining and analyzing high resolution spectro-imaging follow-up data; and interpreting the whole sample of lenses in the context of the well-studied subset.

  10. Combining Strong and Weak Gravitational Lensing in Abell 1689

    NASA Astrophysics Data System (ADS)

    Limousin, Marceau; Richard, Johan; Jullo, Eric; Kneib, Jean-Paul; Fort, Bernard; Soucail, Geneviève; Elíasdóttir, Árdís; Natarajan, Priyamvada; Ellis, Richard S.; Smail, Ian; Czoske, Oliver; Smith, Graham P.; Hudelot, Patrick; Bardeau, Sébastien; Ebeling, Harald; Egami, Eiichi; Knudsen, Kirsten K.

    2007-10-01

    We present a reconstruction of the mass distribution of galaxy cluster Abell 1689 at z=0.18 using detected strong lensing features from deep ACS observations and extensive ground based spectroscopy. Earlier analyses have reported up to 32 multiply imaged systems in this cluster, of which only 3 were spectroscopically confirmed. In this work, we present a parametric strong lensing mass reconstruction using 34 multiply imaged systems of which 24 have newly determined spectroscopic redshifts, which is a major step forward in building a robust mass model. In turn, the new spectroscopic data allows a more secure identification of multiply imaged systems. The resultant mass model enables us to reliably predict the redshifts of additional multiply imaged systems for which no spectra are currently available, and to use the location of these systems to further constrain the mass model. Using our strong lensing mass model, we predict on larger scale a shear signal which is consistent with that inferred from our large scale weak lensing analysis derived using CFH12K wide field images. Thanks to a new method for reliably selecting a well defined background lensed galaxy population, we resolve the discrepancy found between the NFW concentration parameters derived from earlier strong and weak lensing analysis. The derived parameters for the best fit NFW profile is found to be c200=7.6+/-1.6 and r200=2.16+/-0.10 h-170 Mpc (corresponding to a 3D mass equal to M200=[1.32+/-0.2]×1015 h70 Msolar). The large number of new constraints incorporated in this work makes Abell 1689 the most reliably reconstructed cluster to date. This well calibrated mass model, which we here make publicly available, will enable us to exploit Abell 1689 efficiently as a gravitational telescope, as well as to potentially constrain cosmology. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des

  11. Strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir

    2014-06-01

    In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.

  12. Extensive light profile fitting of galaxy-scale strong lenses. Towards an automated lens detection method

    NASA Astrophysics Data System (ADS)

    Brault, F.; Gavazzi, R.

    2015-05-01

    Aims: We investigate the merits of a massive forward-modeling of ground-based optical imaging as a diagnostic for the strong lensing nature of early-type galaxies, in the light of which blurred and faint Einstein rings can hide. Methods: We simulated several thousand mock strong lenses under ground- and space-based conditions as arising from the deflection of an exponential disk by a foreground de Vaucouleurs light profile whose lensing potential is described by a singular isothermal ellipsoid. We then fitted for the lensed light distribution with sl_fit after subtracting the foreground light emission (ideal case) and also after fitting the deflector light with galfit. By setting thresholds in the output parameter space, we can determine the lensed or unlensed status of each system. We finally applied our strategy to a sample of 517 lens candidates in the CFHTLS data to test the consistency of our selection approach. Results: The efficiency of the fast modeling method at recovering the main lens parameters such as Einstein radius, total magnification, or total lensed flux is quite similar under CFHT and HST conditions when the deflector is perfectly subtracted (only possible in simulations), fostering a sharp distinction between good and poor candidates. Conversely, a substantial fraction of the lensed light is absorbed into the deflector model for a more realistic subtraction, which biases the subsequent fitting of the rings and then disturbs the selection process. We quantify completeness and purity of the lens-finding method in both cases. Conclusions: This suggests that the main limitation currently resides in the subtraction of the foreground light. Provided further enhancement of the latter, the direct forward-modeling of large numbers of galaxy-galaxy strong lenses thus appears tractable and might constitute a competitive lens finder in the next generation of wide-field imaging surveys.

  13. Strong lensing in the inner halo of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Saez, C.; Campusano, L. E.; Cypriano, E. S.; Sodré, L.; Kneib, J.-P.

    2016-08-01

    We present an axially symmetric formula to calculate the probability of finding gravitational arcs in galaxy clusters, being induced by their massive dark matter haloes, as a function of clusters redshifts and virial masses. The formula includes the ellipticity of the clusters dark matter potential by using a pseudo-elliptical approximation. The probabilities are calculated and compared for two dark matter halo profiles, the Navarro, Frenk and White (NFW) and the non-singular-isothermal-sphere (NSIS). We demonstrate the power of our formulation through a Kolmogorov-Smirnov (KS) test on the strong lensing statistics of an X-ray bright sample of low-redshift Abell clusters. This KS test allows us to establish limits on the values of the concentration parameter for the NFW profile (c_Δ) and the core radius for the NSIS profile (rc), which are related to the lowest cluster redshift (zcut) where strong arcs can be observed. For NFW dark matter profiles, we infer cluster haloes with concentrations that are consistent to those predicted by ΛCDM simulations. As for NSIS dark matter profiles, we find only upper limits for the clusters core radii and thus do not rule out a purely SIS model. For alternative mass profiles, our formulation provides constraints through zcut on the parameters that control the concentration of mass in the inner region of the clusters haloes. We find that zcut is expected to lie in the 0.0-0.2 redshift, highlighting the need to include very low-z clusters in samples to study the clusters mass profiles.

  14. Strong field gravitational lensing by a charged Galileon black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Shan-Shan; Xie, Yi

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  15. Model-independent characterisation of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Bartelmann, M.

    2016-05-01

    We develop a new approach to extracting model-independent information from observations of strong gravitational lenses. The approach is based on the generic properties of images near the fold and cusp catastrophes in caustics and critical curves. The observables we used are the relative image positions, the magnification ratios and ellipticities of extended images, and time delays between images with temporally varying intensity. We show how these observables constrain derivatives and ratios of derivatives of the lensing potential near a critical curve. Based on these measured properties of the lensing potential, classes of parametric lens models can then easily be restricted to the parameter values that are compatible with the measurements, thus allowing fast scans of a large variety of models. Applying our approach to a representative galaxy (JVAS B1422+231) and a galaxy-cluster lens (MACS J1149.5+2223), we show which model-independent information can be extracted in each case and demonstrate that the parameters obtained by our approach for known parametric lens models agree well with those found by detailed model fitting.

  16. Measuring angular diameter distances of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.

  17. Measuring angular diameter distances of strong gravitational lenses

    SciTech Connect

    Jee, I.; Komatsu, E.; Suyu, S.H. E-mail: komatsu@mpa-garching.mpg.de

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.

  18. Herschel-ATLAS: modelling the first strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Dye, S.; Negrello, M.; Hopwood, R.; Nightingale, J. W.; Bussmann, R. S.; Amber, S.; Bourne, N.; Cooray, A.; Dariush, A.; Dunne, L.; Eales, S. A.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S.; Valiante, E.; Smith, M.

    2014-05-01

    We have determined the mass density radial profiles of the first five strong gravitational lens systems discovered by the Herschel Astrophysical Terahertz Large Area Survey. We present an enhancement of the semilinear lens inversion method of Warren & Dye which allows simultaneous reconstruction of several different wavebands and apply this to dual-band imaging of the lenses acquired with the Hubble Space Telescope. The five systems analysed here have lens redshifts which span a range 0.22 ≤ z ≤ 0.94. Our findings are consistent with other studies by concluding that: (1) the logarithmic slope of the total mass density profile steepens with decreasing redshift; (2) the slope is positively correlated with the average total projected mass density of the lens contained within half the effective radius and negatively correlated with the effective radius; (3) the fraction of dark matter contained within half the effective radius increases with increasing effective radius and increases with redshift.

  19. Three Gravitational Lenses for the Price of One: Enhanced Strong Lensing Through Galaxy Clustering

    SciTech Connect

    Fassnacht, Chris D.; McKean, J.P.; Koopmans, L.V.E.; Treu, T.; Blandford, R.D.; Auger, M.W.; Jeltema, T.E.; Lubin, L.M.; Margoniner, V.E.; Wittman, D.; /UC, Davis /Kapteyn Astron. Inst., Groningen /UC, Santa Barbara /KIPAC, Menlo Park /Carnegie Inst. Observ.

    2006-04-03

    We report the serendipitous discovery of two strong gravitational lens candidates (ACS J160919+6532 and ACS J160910+6532) in deep images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, each less than 40'' from the previously known gravitational lens system CLASS B1608+656. The redshifts of both lens galaxies have been measured with Keck and Gemini: one is a member of a small galaxy group at z {approx} 0.63, which also includes the lensing galaxy in the B1608+656 system, and the second is a member of a foreground group at z {approx} 0.43. By measuring the effective radii and surface brightnesses of the two lens galaxies, we infer their velocity dispersions based on the passively evolving Fundamental Plane (FP) relation. Elliptical isothermal lens mass models are able to explain their image configurations within the lens hypothesis, with a velocity dispersion compatible with that estimated from the FP for a reasonable source-redshift range. Based on the large number of massive early-type galaxies in the field and the number-density of faint blue galaxies, the presence of two additional lens systems around CLASS B1608+656 is not unlikely in hindsight. Gravitational lens galaxies are predominantly early-type galaxies, which are clustered, and the lensed quasar host galaxies are also clustered. Therefore, obtaining deep high-resolution images of the fields around known strong lens systems is an excellent method of enhancing the probability of finding additional strong gravitational lens systems.

  20. Studying structure formation and evolution with strong-lensing galaxy groups

    NASA Astrophysics Data System (ADS)

    Foëx, Gaël; Motta, Veronica; Limousin, Marceau; Verdugo, Tomas; Gastaldello, Fabio

    2016-10-01

    We present the analysis of a sample of strong-lensing galaxy group candidates. Our main findings are: confirmation of group-scale systems, complex light distributions, presence of large-scale structures in their surroundings, and evidence of a strong-lensing bias in the mass-concentration relation. We also report the detection of the first 'Bullet group'.

  1. The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    SciTech Connect

    Shin, Min-Su; Strauss, Michael A.; Oguri, Masamune; Inada, Naohisa; Falco, Emilio E.; Broadhurst, Tom; Gunn, James E.

    2008-09-30

    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of {approx} 1.2 x 10{sup 12} M{sub {circle_dot}} and the corresponding mass to light ratio in the B-band is {approx} 26 M{sub {circle_dot}}/L{sub {circle_dot}} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.

  2. Resolving high energy emission of jets using strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna

    2014-11-01

    Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.

  3. 30 CFR 18.66 - Tests of windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of windows and lenses. 18.66 Section 18... Tests § 18.66 Tests of windows and lenses. (a) Impact tests. A 4-pound cylindrical weight with a 1-inch-diameter hemispherical striking surface shall be dropped (free fall) to strike the window or lens in...

  4. 30 CFR 18.66 - Tests of windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tests § 18.66 Tests of windows and lenses. (a) Impact tests. A 4-pound cylindrical weight with a 1-inch... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of windows and lenses. 18.66 Section 18... breakage the impact according to the following table: Lens diameter, (D), inches Height of fall, inches...

  5. Research and analysis on new test lenses for calibration of focimeters used for measuring contact lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Wang, Liru; Ma, Zhenya

    2006-11-01

    A focimeter is one of the basic ophthalmic instruments used in every optometric practice, and verification of the accuracy and calibration of the instrument are of the utmost importance. For many years the International Standardization for Organization requires that calibrations for all kinds of focimeters shall be accomplished by using test lenses described in ISO 9342:1996. These test lenses must be of high quality and of nominal back vertex power that is known with high accuracy. With the development of science and technology, ISO 9342 was revised in 2005. A new part ISO 9342-2 had been drafted for test lenses used to calibrate focimeters with contact lens measurement, and the original ISO 9342 was turned into the current ISO 9342-1, which could only be used to calibrate fociemters with spectacle lens measurement. As one of the standard drafters, the background for the newly published ISO 9342-2 is introduced in this study, and comparison between test lenses of ISO 9342-1 and ISO 9342-2 is made. Further, the influence of tolerance and uncertainty in design and production of standard test lenses of ISO 9342-2 is analyzed. The paraxial approximation is used to relate the lens parameters with back vertex power and to calculate the uncertainty budget. Moreover, one set of test lenses conforming to ISO 9342-2 is manufactured and experiments are done with it. Results show that test lenses described in ISO 9342-2 can correct the measurement errors of focimeters used for measuring contact lenses well, especially for spherical aberration, and the correction is more effective for spherical contact lenses with high back vertex power.

  6. Strong gravitational lensing of gravitational waves in Einstein Telescope

    SciTech Connect

    Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2013-10-01

    Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.

  7. SIZE BIAS AND DIFFERENTIAL LENSING OF STRONGLY LENSED, DUSTY GALAXIES IDENTIFIED IN WIDE-FIELD SURVEYS

    SciTech Connect

    Hezaveh, Yashar D.; Holder, Gilbert P.; Marrone, Daniel P.

    2012-12-10

    We address two selection effects that operate on samples of gravitationally lensed dusty galaxies identified in millimeter- and submillimeter-wavelength surveys. First, we point out the existence of a ''size bias'' in such samples: due to finite source effects, sources with higher observed fluxes are increasingly biased toward more compact objects. Second, we examine the effect of differential lensing in individual lens systems by modeling each source as a compact core embedded in an extended diffuse halo. Considering the ratio of magnifications in these two components, we find that at high overall magnifications, the compact component is amplified by a much larger factor than the diffuse component, but at intermediate magnifications ({approx}10) the probability of a larger magnification for the extended region is higher. Lens models determined from multi-frequency resolved imaging data are crucial to correct for this effect.

  8. Strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime

    SciTech Connect

    Chen, Songbai; Jing, Jiliang E-mail: jljing@hunnu.edu.cn

    2015-10-01

    We have investigated the strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime. We find that in the four-dimensional black hole spacetime the equation of motion of the photons depends not only on the coupling between photon and Weyl tensor, but also on the polarization direction of the photons. It is quite different from that in the case of the usual photon without coupling to Weyl tensor in which the equation of motion is independent of the polarization of the photon. Moreover, we find that the coupling and the polarization direction modify the properties of the photon sphere, the deflection angle, the coefficients in strong field lensing, and the observational gravitational lensing variables. Combining with the supermassive central object in our Galaxy, we estimated three observables in the strong gravitational lensing for the photons coupled to Weyl tensor.

  9. GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

    SciTech Connect

    Anguita, T.; Barrientos, L. F.; Gladders, M. D.; Faure, C.; Yee, H. K. C.; Gilbank, D. G.

    2012-04-01

    We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey. The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 {approx}< z {approx}< 0.5 surrounded by blue arcs or apparent multiple images of background sources. The catalog is a valuable complement to previous galaxy-galaxy lens catalogs as it samples an intermediate lens redshift range and is composed of bright sources and lenses that allow easy follow-up for detailed analysis. Mass and mass-to-light ratio estimates reveal that the lens galaxies are massive ( M-bar {approx} 5.5 Multiplication-Sign 10{sup 11} [M{sub Sun} h{sup -1}]) and rich in dark matter (M/L-bar{approx} 14 [M{sub Sun }/L{sub Sun ,B} h]). Even though a slight increasing trend in the mass-to-light ratio is observed from z = 0.2 to z = 0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.

  10. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    SciTech Connect

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.

  11. Detecting dark matter substructure spectroscopically in strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Metcalf, R. Benton

    2003-03-01

    The cold dark matter (CDM) model for galaxy formation predicts that a significant fraction of mass in the dark matter haloes that surround L~L* galaxies is bound in substructures of mass 104-107 Msolar. The number of observable baryonic substructures (such as dwarf galaxies and globular clusters) falls short of these predictions by at least an order of magnitude. We present a method for searching for substructure in the haloes of gravitational lenses that produce multiple images of quasi-stellar objects (QSOs), such as four-image Einstein Cross lenses. Current methods based on broad-band flux ratios cannot cleanly distinguish between substructure, differential extinction, scattering in the radio by ionized regions in the lens galaxy, microlensing by stars and, most importantly, ambiguities in the host lens model. These difficulties may be overcome by utilizing the prediction that, when substructure is present, the magnification will be a function of source size. QSO broad-line and narrow-line emission regions are ~1 pc and >100 pc in size, respectively. The radio emission region is typically intermediate to these and the continuum emission region is much smaller. When narrow-line region (NLR) features are used as a normalization, the relative intensity and equivalent width of broad-line region (BLR) features will respectively reflect substructure-lensing and microlensing effects. Spectroscopic observations of just a few image pairs would probably be able to extract the desired substructure signature cleanly and distinguish it from microlensing - depending on the actual level of projected mass in substructure. In the rest-optical, the Hβ/[OIII] region is ideal, since the narrow wavelength range also largely eliminates differential reddening problems. In the rest-ultraviolet, the region longward of and including Lyα may also work. Simulations of Q2237+0305 are done as an example, to determine the level of substructure that is detectable in this way. Possible

  12. Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming

    2005-08-01

    We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from 0" to 10") is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev, & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS + NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profile (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.

  13. Constraining Horava-Lifshitz gravity by weak and strong gravitational lensing

    SciTech Connect

    Horvath, Zsolt; Gergely, Laszlo A.; Keresztes, Zoltan; Harko, Tiberiu; Lobo, Francisco S. N.

    2011-10-15

    We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Horava-Lifshitz gravity. In weak lensing, we show that there are three regimes, depending on the value of {lambda}=1/{omega}d{sup 2}, where {omega} is the Horava-Lifshitz parameter and d characterizes the lensing geometry. When {lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large {lambda}, the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of {lambda}, only the upper focused image is produced due to the existence of a maximal deflection angle {delta}{sub max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Horava-Lifshitz parameter compatible with present-day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.

  14. EFFECTS OF STRONG GRAVITATIONAL LENSING ON MILLIMETER-WAVE GALAXY NUMBER COUNTS

    SciTech Connect

    Hezaveh, Yashar D.; Holder, Gilbert P.

    2011-06-10

    We study the effects of strong lensing on the observed number counts of millimeter sources using a ray-tracing simulation and two number count models of unlensed sources. We employ a quantitative treatment of maximum attainable magnification factor depending on the physical size of the sources, also accounting for effects of lens halo ellipticity. We calculate predicted number counts and redshift distributions of millimeter galaxies including the effects of strong lensing and compare with the recent source count measurements of the South Pole Telescope (SPT). The predictions have large uncertainties, especially the details of the mass distribution in lens galaxies and the finite extent of sources, but the SPT observations are in good agreement with predictions. The sources detected by SPT are predicted to largely consist of strongly lensed galaxies at z > 2. The typical magnifications of these sources strongly depend on both the assumed unlensed source counts and the flux of the observed sources.

  15. Source-position transformation: an approximate invariance in strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Schneider, Peter; Sluse, Dominique

    2014-04-01

    The main obstacle that gravitational lensing has in determining accurate masses of deflectors, or in determining precise estimates for the Hubble constant, is the degeneracy of lensing observables with respect to the mass-sheet transformation (MST). The MST is a global modification of the mass distribution which leaves all image positions, shapes, and flux ratios invariant, but which changes the time delay. Here we show that another global transformation of lensing mass distributions exists which leaves image positions and flux ratios almost invariant, and of which the MST is a special case. As is the case for the MST, this new transformation only applies if one considers only those source components that are at the same distance from us. Whereas for axi-symmetric lenses this source position transformation exactly reproduces all strong lensing observables, it does so only approximately for more general lens situations. We provide crude estimates for the accuracy with which the transformed mass distribution can reproduce the same image positions as the original lens model, and present an illustrative example of its performance. This new invariance transformation is most likely the reason why the same strong lensing information can be accounted for with rather different mass models.

  16. THE CFHTLS-STRONG LENSING LEGACY SURVEY (SL2S): INVESTIGATING THE GROUP-SCALE LENSES WITH THE SARCS SAMPLE

    SciTech Connect

    More, A.; More, S.; Cabanac, R.; Alard, C.; Gavazzi, R.; Limousin, M.; Kneib, J-P.; Motta, V.

    2012-04-10

    We present the Strong Lensing Legacy Survey-ARCS (SARCS) sample compiled from the final T0006 data release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) covering a total non-overlapping area of 159 deg{sup 2}. We adopt a semi-automatic method to find gravitational arcs in the survey that makes use of an arc-finding algorithm. The candidate list is pruned by visual inspection and ranking to form the final SARCS sample. This list also includes some serendipitously discovered lens candidates which the automated algorithm did not detect. The SARCS sample consists of 127 lens candidates which span arc radii {approx}2''-18'' within the unmasked area of {approx}150 deg{sup 2}. Within the sample, 54 systems are promising lenses among which, we find 12 giant arcs (length-to-width ratio {>=}8). We also find two radial arc candidates in SL2SJ141447+544704. From our sample, we detect a systematic alignment of the giant arcs with the major axis of the baryonic component of the putative lens in concordance with previous studies. This alignment is also observed for all arcs in the sample and does not vary significantly with increasing arc radius. The mean values of the photometric redshift distributions of lenses corresponding to the giant arcs and all arcs sample are at z {approx} 0.6. Owing to the large area and depth of the CFHTLS, we find the largest sample of lenses probing mass scales that are intermediate to cluster and galaxy lenses for the first time. We compare the observed image separation distribution (ISD) of our arcs with theoretical models. A two-component density profile for the lenses which accounts for both the central galaxy and the dark matter component is required by the data to explain the observed ISD. Unfortunately, current levels of uncertainties and degeneracies accommodate models both with and without adiabatic contraction. We also show the effects of changing parameters of the model that predict the ISD and that a larger lens sample

  17. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  18. Strong gravitational lensing of gravitational waves from double compact binaries—perspectives for the Einstein Telescope

    SciTech Connect

    Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong; Piórkowska, Aleksandra E-mail: dingxuheng@mail.bnu.edu.cn E-mail: zhuzh@bnu.edu.cn

    2014-10-01

    Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previous paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.

  19. GREAT3: The Third Gravitational Lensing Accuracy Testing Challenge

    NASA Astrophysics Data System (ADS)

    Simet, Melanie; Mandelbaum, R.; Rowe, B.; Great3 Collaboration

    2014-01-01

    We describe the ongoing weak lensing community data challenge, GREAT3, and the associated open-source image simulation software, GalSim. The GREAT3 challenge tests the impact on weak lensing measurements of (a) realistic galaxy morphologies, (b) realistic uncertainty in the point-spread function estimation, and (c) the need to combine multiple exposures when estimating the galaxy shape. It includes simulated ground- and space-based data. The tests of realistic galaxy morphologies rely on a training set of galaxies from the Hubble Space Telescope, a subset of which has been publicly released for community use, with the remainder to be released at the end of the challenge. We describe some technical considerations for generating the challenge data and for testing weak lensing measurements with the next generation of weak lensing surveys, such as DES, HSC, KIDS, and Pan-STARRS.

  20. GREAT3: The Third Gravitational Lensing Accuracy Testing Challenge

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Rowe, B.; GREAT3 Collaboration

    2013-01-01

    We describe the upcoming weak lensing community data challenge, GREAT3, and the associated open-source image simulation software, GalSim. The GREAT3 challenge will test the impact on weak lensing measurements of (a) realistic galaxy morphologies, (b) realistic uncertainty in the point-spread function estimation, and (c) the need to combine multiple exposures when estimating the galaxy shape. It will include simulated ground- and space-based data, and the tests of realistic galaxy morphologies will rely on a training set of galaxies from the Hubble Space Telescope which will be publicly released at the start of the challenge. We describe some technical considerations for generating the challenge data and for testing weak lensing measurements with the next generation of weak lensing surveys, such as DES, HSC, KIDS, and Pan-STARRS.

  1. Strong deflection limit of black hole gravitational lensing with arbitrary source distances

    SciTech Connect

    Bozza, V.; Scarpetta, G.

    2007-10-15

    The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds {pi}, gravitational lensing can be analytically approximated by the so-called strong deflection limit. In this paper we remove the conventional assumption of sources very far from the black hole, considering the distance of the source as an additional parameter in the lensing problem to be treated exactly. We find expressions for critical curves, caustics, and all lensing observables valid for any position of the source up to the horizon. After analyzing the spherically symmetric case we focus on the Kerr black hole, for which we present an analytical 3-dimensional description of the higher order caustic tubes.

  2. Observational selection biases in time-delay strong lensing and their impact on cosmography

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Cunnington, Steven D.

    2016-11-01

    Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters inferred. Using an ellipsoidal power-law deflector population, we build a sample of double- and quadruple-image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quads, we find that this selection function can introduce a 3.5 per cent bias on the inferred time-delay distances if the properties of the input ensemble are (incorrectly) used as priors on the lens model. This bias remains at the 2.4 per cent level when high-resolution imaging of the quasar host is used to precisely infer the properties of individual lenses. We also investigate if the lines of sight for monitorable strong lenses are biased. The expectation value for the line-of-sight convergence is increased by 0.009 (0.004) for quads (doubles) implying a 0.9 per cent (0.4 per cent) bias on H0. We therefore conclude that whilst the properties of typical quasar lenses and their lines of sight do deviate from the global population, the total magnitude of this effect is likely to be a subdominant effect for current analyses, but has the potential to be a major systematic for samples of ˜25 or more lenses.

  3. Strong deflection limit lensing effects in the minimal geometric deformation and Casadio–Fabbri–Mazzacurati solutions

    NASA Astrophysics Data System (ADS)

    Cavalcanti, R. T.; Goncalves da Silva, A.; da Rocha, Roldão

    2016-11-01

    In this paper we apply the strong deflection limit approach to investigate the gravitational lensing phenomena beyond general relativity. This is accomplished by considering the lensing effects related to black hole solutions that emerge out of the domain of Einstein gravity, namely, the ones acquired from the method of geometric deformation and the Casadio–Fabbri–Mazzacurati (CFM) brane-world black holes. The lensing observables, for those brane-world black hole metrics, are compared with the standard ones for the Schwarzschild case. We prove that brane-world black holes could have significantly different observational signatures, compared to the Schwarzschild black hole, with terms containing the post-Newtonian parameter, for the case of the CFM, and terms with variable brane-world tension, for the method of geometric deformation.

  4. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    NASA Astrophysics Data System (ADS)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  5. Contradiction between strong lensing statistics and a feedback solution to the cusp/core problem

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming; McGaugh, Stacy

    2010-12-01

    Standard cosmology has many successes on large scales, but faces some fundamental difficulties on small, galactic scales. One such difficulty is the cusp/core problem. High resolution observations of the rotation curves for dark matter dominated low surface brightness (LSB) galaxies imply that galactic dark matter halos have a density profile with a flat central core, whereas N-body structure formation simulations predict a divergent (cuspy) density profile at the center. It has been proposed that this problem can be resolved by stellar feedback driving turbulent gas motion that erases the initial cusp. However, strong gravitational lensing prefers a cuspy density profile for galactic halos. In this paper, we use the most recent high resolution observations of the rotation curves of LSB galaxies to fit the core size as a function of halo mass, and compare the resultant lensing probability to the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). The lensing probabilities based on such density profiles are too low to match the observed lensing in CLASS/JVAS. High baryon densities in the galaxies that dominate the lensing statistics can reconcile this discrepancy, but only if they steepen the mass profile rather than making it more shallow. This places contradictory demands upon the effects of baryons on the central mass profiles of galaxies.

  6. Observation and Confirmation of Six Strong Lensing Systems in The Dark Energy Survey Science Verification Data

    SciTech Connect

    Nord, B.; et al.

    2015-12-09

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey (DES) data. Through visual inspection of data from the Science Verification (SV) season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-Object Spectrograph (GMOS) at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph (IMACS) at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: Three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 were either not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy cluster-scale lenses. The lensed sources range in redshift z ~ 0.80-3.2, and in i-band surface brightness i_{SB} ~ 23-25 mag/sq.-arcsec. (2" aperture). For each of the six systems, we estimate the Einstein radius and the enclosed mass, which have ranges ~ 5.0 - 8.6" and ~ 7.5 x 10^{12} - 6.4 x 10^{13} solar masses, respectively.

  7. The Structure of the Strongly Lensed Gamma-Ray Source B2 0218+35

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell’Antonio, Ian P.; Zitrin, Adi

    2016-04-01

    Strong gravitational lensing is a powerful tool for resolving the high-energy universe. We combine the temporal resolution of Fermi-LAT, the angular resolution of radio telescopes, and the independently and precisely known Hubble constant from the analysis by the Planck collaboration, to resolve the spatial origin of gamma-ray flares in the strongly lensed source B2 0218+35. The lensing model achieves 1 mas spatial resolution of the source at gamma-ray energies. The data imply that the gamma-ray flaring sites are separate from the radio core: the bright gamma-ray flare (MJD: 56160-56280) occurred 51+/- 8 pc from the 15 GHz radio core, toward the central engine. This displacement is significant at the ∼ 3σ level, and is limited primarily by the precision of the Hubble constant. B2 0218+35 is the first source where the position of the gamma-ray emitting region relative to the radio core can be resolved. We discuss the potential of an ensemble of strongly lensed high-energy sources for elucidating the physics of distant variable sources based on data from Chandra and SKA.

  8. CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc

    2016-04-01

    We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19≲ z≲ 0.69 selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10″-16‧). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200-2000 kpc h-1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration-mass (c-M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of c{| }z=0.34=3.95+/- 0.35 at M200c ≃ 14 × 1014 M⊙ and an intrinsic scatter of σ ({ln}{c}200{{c}})=0.13+/- 0.06, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h-1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), Einasto, and DARKexp models, whereas the single

  9. Simple Hartmann test data interpretation for ophthalmic lenses

    NASA Astrophysics Data System (ADS)

    Salas-Peimbert, Didia Patricia; Trujillo-Schiaffino, Gerardo; González-Silva, Jorge Alberto; Almazán-Cuellar, Saúl; Malacara-Doblado, Daniel

    2006-04-01

    This article describes a simple Hartmann test data interpretation that can be used to evaluate the performance of ophthalmic lenses. Considering each spot of the Hartmann pattern such as a single test ray, using simple ray tracing analysis, it is possible to calculate the power values from the lens under test at the point corresponding with each spot. The values obtained by this procedure are used to plot the power distribution map of the entire lens. We present the results obtained applying this method with single vision, bifocal, and progressive lenses.

  10. Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Kitamura, Takao; Nakajima, Koki; Asada, Hideki

    2014-09-01

    The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/rn fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n =1) and the Ellis wormhole (n =2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.

  11. Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Busti, V. C.; Alcaniz, J. S.

    2016-02-01

    We propose and perform a new test of the cosmic distance-duality relation (CDDR), DL(z) / DA(z) (1 + z)2 = 1, where DA is the angular diameter distance and DL is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=DA12/DA2 and D*=DL12/DL2, where the subscripts 1 and 2 correspond, respectively, to redshifts z1 and z2, are linked by D/D*=(1+z1)2 if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z1), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) simeq 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.

  12. Constraints on a phiCDM model from strong gravitational lensing and updated Hubble parameter measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong

    2015-02-01

    We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(phi) propto phi-α (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H0 is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.

  13. Strongly Lensed Jets, Time Delays, and the Value of H 0

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan

    2015-01-01

    In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly lensed sources. It is a puzzle, then, that the values of H 0 obtained with this method span a range from ~50-100 km s-1Mpc-1. Quasars monitored to measure these time delays are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable-emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of the sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Therefore, we propose using the value of H 0 known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We particularly advocate this method for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0.°1 lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H 0.

  14. PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D.

    2015-01-30

    We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.

  15. A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

    SciTech Connect

    Magaña, Juan; Motta, V.; Cárdenas, Victor H.; Verdugo, T.; Jullo, Eric E-mail: veronica.motta@uv.cl E-mail: tomasverdugo@gmail.com

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

  16. A framework for modeling line-of-sight effects in strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Keeton, Charles R.; McCully, C.; Wong, K. C.; Zabludoff, A. I.

    2014-01-01

    In strong gravitational lens systems, the light bending is usually dominated by one main galaxy but may be affected by other objects along the line of sight (LOS). Perturbers projected far from the lens can be approximated with convergence and shear, but perturbers projected closer to the lens create higher-order effects and need to be treated individually. We present a theoretical framework for multi-plane lensing that can handle an arbitrary combination of planes with shear/convergence and planes with higher-order terms. We test our framework first using simulations with a single perturber to study where the shear approximation is not valid and where non-linear effects are important. We show that perturbers behind the lens galaxy can be treated as an effective shear in the main lens plane, but perturbers in front of the lens cannot be mimicked by such a shear. Applying this to realistic fields, we find that our LOS framework can reproduce the fitted lens properties and the Hubble Constant, H0, without bias and with scatter that is smaller than typical measurement uncertainties.

  17. A Magnified Glance into the Dark Sector: Probing Cosmological Models with Strong Lensing in A1689

    NASA Astrophysics Data System (ADS)

    Magaña, Juan; Cárdenas, V. Motta ´ctor H., Vi; Verdugo, T.; Jullo, Eric

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

  18. Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing

    NASA Astrophysics Data System (ADS)

    Parry, W. G.; Grillo, C.; Mercurio, A.; Balestra, I.; Rosati, P.; Christensen, L.; Lombardi, M.; Caminha, G. B.; Nonino, M.; Koekemoer, A. M.; Umetsu, K.

    2016-05-01

    We present a strong lensing system, composed of four multiple images of a source at z = 2.387, created by two lens galaxies, G1 and G2, belonging to the galaxy cluster MACS J1115.9+0129 at z = 0.353. We use observations taken as part of the Cluster Lensing and Supernova survey with Hubble, and its spectroscopic follow-up programme at the Very Large Telescope, to estimate the total mass distributions of the two galaxies and the cluster through strong gravitational lensing models. We find that the total projected mass values within the half-light radii, Re, of the two lens galaxies are MT,G1(strong lensing systems will help us understand the influence that dark matter has on the structure and evolution of the inner regions of galaxies.

  19. Characterizing strong lensing galaxy clusters using the Millennium-XXL and MOKA simulations

    NASA Astrophysics Data System (ADS)

    Giocoli, Carlo; Bonamigo, Mario; Limousin, Marceau; Meneghetti, Massimo; Moscardini, Lauro; Angulo, Raul E.; Despali, Giulia; Jullo, Eric

    2016-10-01

    In this paper, we investigate the strong lensing statistics in galaxyclusters. We extract dark matter haloes from the Millennium-XXL simulation, compute their Einstein radius distribution, and find a very good agreement with Monte Carlo predictions produced with the MOKA code. The distribution of the Einstein radii is well described by a lognormal distribution, with a considerable fraction of the largest systems boosted by different projection effects. We discuss the importance of substructures and triaxiality in shaping the size of the critical lines for cluster size haloes. We then model and interpret the different deviations, accounting for the presence of a Brightest Central Galaxy (BCG) and two different stellar mass density profiles. We present scaling relations between weak lensing quantities and the size of the Einstein radii. Finally, we discuss how sensible is the distribution of the Einstein radii on the cosmological parameters ΩM - σ8 finding that cosmologies with higher ΩM and σ8 possess a large sample of strong lensing clusters. The Einstein radius distribution may help distinguish Planck13 and WMAP7 cosmology at 3σ.

  20. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  1. The mass distribution of the strong lensing cluster SDSS J1531+3414

    SciTech Connect

    Sharon, Keren; Johnson, Traci L.; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Bayliss, Matthew B.; Florian, Michael K.; Dahle, Håkon

    2014-11-01

    We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z = 0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New Hubble Space Telescope observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the central region, and rule out that this emission is coming from a background source.

  2. The Aspen Framework for Dark Matter Substructure Inference from Strong Gravitational Lensing Observations

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Cyr-Racine, Francis-Yan; Keeton, Charles R.

    2016-01-01

    The properties of the dark matter particle or particles lead to different small scale halo populations, distributions, and evolution over cosmic time. We introduce a new method for characterizing the properties of substructure within galaxies through the power spectrum of potential fluctuations, and demonstrate how complete sets of multiwavelength imaging and time domain observations can be processed directly to infer all facets of the strong gravitational lensing components and source properties, including the dark matter substructure power spectrum constraints. We are able to take advantage of analysis parallels with cosmic background radiation techniques, and furthermore demonstrate how this technique, dubbed The Aspen Framework, reduces to the long-standing approach of working with reduced or derived observable quantities in lensing.

  3. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Man, Jingyun; Cheng, Hongbo E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  4. Gemini/GMOS Spectroscopy of 26 Strong-lensing-selected Galaxy Cluster Cores

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Hennawi, Joseph F.; Gladders, Michael D.; Koester, Benjamin P.; Sharon, Keren; Dahle, Håkon; Oguri, Masamune

    2011-03-01

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N >= 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N >= 10 spectroscopic cluster members is M Vir = 7.84 × 1014 M sun h -1 0.7, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: The United States, The United Kingdom, Canada, Chile, Australia, Brazil, and Argentina, with supporting data collected at the Subaru Telescope, operated by the National Astronomical Observatory of Japan; the 2.5 m Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los

  5. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  6. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    SciTech Connect

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  7. Direct measurement of lensing amplification in Abell S1063 using a strongly lensed high redshift HII galaxy

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Melnick, Jorge; Terlevich, Elena; Chávez, Ricardo; Telles, Eduardo; Bresolin, Fabio; Plionis, Manolis; Basilakos, Spyros; Fernández Arenas, David; González Morán, Ana Luisa; Díaz, Ángeles I.; Aretxaga, Itziar

    2016-08-01

    ID11 is an actively star-forming, extremely compact galaxy and Lyα emitter at z = 3.117 that is gravitationally magnified by a factor of ~17 by the cluster of galaxies Hubble Frontier Fields AS1063. The observed properties of this galaxy resemble those of low luminosity HII galaxies or giant HII regions such as 30 Doradus in the Large Magellanic Cloud. Using the tight correlation correlation between the Balmer-line luminosities and the width of the emission lines (typically L(Hβ) - σ(Hβ)), which are valid for HII galaxies and giant HII regions to estimate their total luminosity, we are able to measure the lensing amplification of ID11. We obtain an amplification of 23 ± 11 that is similar within errors to the value of ~17 estimated or predicted by the best lensing models of the massive cluster Abell S1063. We also compiled, from the literature, luminosities and velocity dispersions for a set of lensed compact star-forming regions. There is more scatter in the L-σ correlation for these lensed systems, but on the whole the results tend to support the lensing model estimates of the magnification. Our result indicates that the amplification can be independently measured using the L - σ relation in lensed giant HII regions or HII galaxies. It also supports the suggestion, even if lensing is model dependent, that the L - σ relation is valid for low luminosity high-z objects. Ad hoc observations of lensed star-forming systems are required to determine the lensing amplification accurately.

  8. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Spaans, Marco; Strauss, Michael A.

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  9. Design, fabrication, and testing of Fresnel lenses for astrophysics applications

    NASA Astrophysics Data System (ADS)

    Lamb, David John

    1999-10-01

    prototype optical systems are tested for surface figure as well as optical performance to ensure that the fabricated optics coincide with the designed and modeled optics. The optical tests include standard resolution and image quality tests as well as illumination falloff and scattering tests. The results of the research indicate that the Fresnel lens system is a suitable candidate for the OWL optical system. The feasibility of fabricating double-sided Fresnel lenses on spherical substrates is demonstrated by the prototype optics, and methods for scaling the fabrication methods to larger diameter lenses are discussed. The validity of the computer models is proven by the test data, and the geometrical model is verified by computer modeled ray tracing data. The development and verification of the computer models are the most significant accomplishments of this dissertation. These models will be relied upon to predict the behavior of large optical components without the aid of full-scale prototypes which would be prohibitively costly to manufacture. Although this research is concerned with the use of Fresnel lenses in imaging applications, the principles developed here can be applied to Fresnel lenses used in non-imaging and concentration applications as well.

  10. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  11. DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5

    SciTech Connect

    Lin Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa

    2009-07-10

    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG), SDSS J120602.09+514229.5. This system, nicknamed the 'Clone', was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2 m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.''03 or 14.8 {+-} 0.1 h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12} h {sup -1} M{sub sun}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find a (unlensed) star formation rate (SFR) for the source galaxy of 32 h{sup -1} M {sub sun} yr{sup -1}, adopting a fiducial constant SFR model with an age of 100 Myr and E(B - V) = 0.25. With an apparent magnitude of r = 19.8, this system is among the very brightest lensed z {>=} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.

  12. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    SciTech Connect

    Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.; Bothwell, M.; Fassnacht, C. D.; Vieira, J. D.; Aguirre, J. E.; Aird, K. A.; Aravena, M.; De Breuck, C.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.

  13. STRONGLY LENSED JETS, TIME DELAYS, AND THE VALUE OF H {sub 0}

    SciTech Connect

    Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan; Dell'Antonio, Ian P.

    2015-01-20

    In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly lensed sources. It is a puzzle, then, that the values of H {sub 0} obtained with this method span a range from ∼50-100 km s{sup –1}Mpc{sup –1}. Quasars monitored to measure these time delays are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable-emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of the sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Therefore, we propose using the value of H {sub 0} known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We particularly advocate this method for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0.°1; lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H {sub 0}.

  14. Discovery of A Very Bright, Strongly-Lensed z=2 Galaxy in the SDSS DR5

    SciTech Connect

    Lin, Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H.Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa; /Wako, RIKEN

    2008-09-30

    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG). This system was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.03{double_prime} or 14.8 {+-} 0.1h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12}h{sup -1}M{sub {circle_dot}}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find an (unlensed) star formation rate for the source galaxy of 32 h{sup -1} M{sub {circle_dot}} hr{sup -1}, adopting a fiducial constant star formation rate model with an age of 100 Myr and E(B-V) = 0.25. With an apparent magnitude of r = 19.9, this system is among the very brightest lensed z {ge} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.

  15. OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY

    SciTech Connect

    Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada

    2010-05-20

    Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, {sigma}{sub 8}, is constrained using observed clusters of galaxies, although current estimates of {sigma}{sub 8} from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 < z < 0.8, we find that the observed cluster concentration-mass relation can be used to reduce the M-T scatter by a factor of 6. Typically only relaxed clusters are used to estimate {sigma}{sub 8}, but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of {sigma}{sub 8} measurements from clusters are twofold: the errors on {sigma}{sub 8} are reduced and the cluster sample size is increased. Therefore, the statistics on {sigma}{sub 8} determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.

  16. The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Rowe, Barnaby; Bosch, James; Chang, Chihway; Courbin, Frederic; Gill, Mandeep; Jarvis, Mike; Kannawadi, Arun; Kacprzak, Tomasz; Lackner, Claire; Leauthaud, Alexie; Miyatake, Hironao; Nakajima, Reiko; Rhodes, Jason; Simet, Melanie; Zuntz, Joe; Armstrong, Bob; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.; Gentile, Marc; Heymans, Catherine; Jurling, Alden S.; Kent, Stephen M.; Kirkby, David; Margala, Daniel; Massey, Richard; Melchior, Peter; Peterson, John; Roodman, Aaron; Schrabback, Tim

    2014-05-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.

  17. Herschel extreme lensing line observations: Dynamics of two strongly lensed star-forming galaxies near redshift z = 2

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Françoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A.

    2014-05-20

    We report on two regularly rotating galaxies at redshift z ≈ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ({sup S}0901{sup )} and SDSSJ120602.09+514229.5 ({sup t}he Clone{sup )} are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ≈ 120 ± 7 km s{sup –1} and a gas velocity dispersion of σ {sub g} < 23 km s{sup –1} (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ≈ 79 ± 11 km s{sup –1} and σ {sub g} ≲ 4 km s{sup –1} (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σ {sub g} = 92 ± 20 km s{sup –1}. Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  18. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-forming Galaxies near Redshift z = 2

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Françoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A.

    2014-05-01

    We report on two regularly rotating galaxies at redshift z ≈ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ≈ 120 ± 7 km s-1 and a gas velocity dispersion of σ g < 23 km s-1 (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ≈ 79 ± 11 km s-1 and σ g <~ 4 km s-1 (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σ g = 92 ± 20 km s-1. Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Optical performance test & analysis of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Choi, Junoh

    Cataract is a condition in the eye that if left untreated, could lead to blindness. One of the effective ways to treat cataract is the removal of the cataractous natural crystalline lens and implantation of an artificial lens called an intraocular lens(IOL). The designs of the IOLs have shown improvements over the years to further imitate natural human vision. A need for an objective testing and analysis tool for the latest IOLs grow with the advancements of the IOLs. In this dissertation, I present a system capable of objective test and analysis of the advanced IOLs. The system consists of (1) Model eye into which an IOL can be inserted to mimic conditions of the human eye. (2) Modulation Transfer Function measurement setup capable of through-focus test for depth of field studies and polychromatic test for study of effects of chromatization. (3) Use of Defocus Transfer Function to simulate depth of field characteristic of rotationally symmetric multifocal designs and extension of the function to polychromatic conditions. (4) Several target imaging experiments for comparison of stray light artifacts and simulation using a non-sequential ray trace package.

  20. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  1. Systematic or signal? How dark matter misalignments can bias strong lensing models of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, D.; Kneib, J. P.; Jauzac, M.

    2016-05-01

    We explore how assuming that mass traces light in strong gravitational lensing models can lead to systematic errors in the predicted position of multiple images. Using a model based on the galaxy cluster MACS J0416 (z = 0.397) from the Hubble Frontier Fields, we split each galactic halo into a baryonic and dark matter component. We then shift the dark matter halo such that it no longer aligns with the baryonic halo and investigate how this affects the resulting position of multiple images. We find for physically motivated misalignments in dark halo position, ellipticity, position angle and density profile that multiple images can move on average by more than 0.2 arcsec with individual images moving greater than 1 arcsec. We finally estimate the full error induced by assuming that light traces mass and find that this assumption leads to an expected rms error of 0.5 arcsec, almost the entire error budget observed in the Frontier Fields. Given the large potential contribution from the assumption that light traces mass to the error budget in mass reconstructions, we predict that it should be possible to make a first significant detection and characterization of dark halo misalignments in the Hubble Frontier Fields with strong lensing. Finally, we find that it may be possible to detect ˜1 kpc offsets between dark matter and baryons, the smoking gun for self-interacting dark matter, should the correct alignment of multiple images be observed.

  2. Constraints on the identity of the dark matter from strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Li, Ran; Frenk, Carlos S.; Cole, Shaun; Gao, Liang; Bose, Sownak; Hellwing, Wojciech A.

    2016-07-01

    The cold dark matter (CDM) cosmological model unambiguously predicts that a large number of haloes should survive as subhaloes when they are accreted into a larger halo. The CDM model would be ruled out if such substructures were shown not to exist. By contrast, if the dark matter consists of Warm Dark Matter (WDM) particles, then below a threshold mass that depends on the particle mass far fewer substructures would be present. Finding subhaloes below a certain mass would then rule out warm particle masses below some value. Strong gravitational lensing provides a clean method to measure the subhalo mass function through distortions in the structure of Einstein rings and giant arcs. Using mock lensing observations constructed from high-resolution N-body simulations, we show that measurements of approximately 100 strong lens systems with a detection limit of Mlow = 107 h-1 M⊙ would clearly distinguish CDM from WDM in the case where this consists of 7 keV sterile neutrinos such as those that might be responsible for the 3.5 keV X-ray emission line recently detected in galaxies and clusters.

  3. Constraints on a φCDM model from strong gravitational lensing and updated Hubble parameter measurements

    SciTech Connect

    Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong E-mail: geng@phys.nthu.edu.tw E-mail: huangymei@gmail.com

    2015-02-01

    We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(φ) ∝ φ{sup −α} (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H{sub 0} is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.

  4. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    SciTech Connect

    Chen Daming

    2008-01-15

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with {Omega}{sub b} = 0.04 and {Omega}{sub {Lambda}} = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function {mu}(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.

  5. Strong Gravitational Lensing as a Tool to Investigate the Structure of Jets at High Energies

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan

    2014-06-01

    The components of blazar jets that emit radiation span a factor of 1010 in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.

  6. Strong gravitational lensing as a tool to investigate the structure of jets at high energies

    SciTech Connect

    Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan; Dell'antonio, Ian P.

    2014-06-20

    The components of blazar jets that emit radiation span a factor of 10{sup 10} in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.

  7. Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.

    2014-07-01

    We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.

  8. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  9. TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY

    SciTech Connect

    Suyu, S. H.; Treu, T.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Marshall, P. J.; Tewes, M.; Courbin, F.; Meylan, G.; Fassnacht, C. D.; Koopmans, L. V. E.; Sluse, D.

    2013-04-01

    Strong gravitational lenses with measured time delays between the multiple images and models of the lens mass distribution allow a one-step determination of the time-delay distance, and thus a measure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131-1231 incorporating (1) the newly measured time delays from COSMOGRAIL, the COSmological MOnitoring of GRAvItational Lenses, (2) archival Hubble Space Telescope imaging of the lens system, (3) a new velocity-dispersion measurement of the lens galaxy of 323 {+-} 20 km s{sup -1} based on Keck spectroscopy, and (4) a characterization of the line-of-sight structures via observations of the lens' environment and ray tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that takes into account all known systematic uncertainties. In combination with the Wilkinson Microwave Anisotropy Probe seven-year (WMAP7) data set in flat wCDM cosmology, our unblinded cosmological constraints for RXJ1131-1231 are H{sub 0}=80.0{sup +5.8}{sub -5.7} km s{sup -1} Mpc{sup -1}, {Omega}{sub de} = 0.79 {+-} 0.03, and w=-1.25{sup +0.17}{sub -0.21}. We find the results to be statistically consistent with those from the analysis of the gravitational lens B1608+656, permitting us to combine the inferences from these two lenses. The joint constraints from the two lenses and WMAP7 are H{sub 0}=75.2{sup +4.4}{sub -4.2} km s{sup -1} Mpc{sup -1}, {Omega}{sub de}=0.76{sup +0.02}{sub -0.03}, and w = -1.14{sup +0.17}{sub -0.20} in flat wCDM, and H{sub 0}=73.1{sup +2.4}{sub -3.6} km s{sup -1} Mpc{sup -1}, {Omega}{sub {Lambda}}=0.75{sup +0.01}{sub -0.02}, and {Omega}{sub k}=0.003{sup +0.005}{sub -0.006} in open {Lambda}CDM. Time-delay lenses constrain especially tightly the Hubble constant H{sub 0} (5.7% and 4.0% respectively in wCDM and open {Lambda}CDM) and curvature of the

  10. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z Almost-Equal-To 11 GALAXY

    SciTech Connect

    Coe, Dan; Postman, Marc; Bradley, Larry; Koekemoer, Anton; Zitrin, Adi; Carrasco, Mauricio; Shu, Xinwen; Zheng, Wei; Ford, Holland; Rodney, Steven A.; Bouwens, Rychard; Broadhurst, Tom; Host, Ole; Jouvel, Stephanie; Moustakas, Leonidas A.; Moustakas, John; Van der Wel, Arjen; Donahue, Megan; Benitez, Narciso; and others

    2013-01-01

    We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7{sup +0.6} {sub -0.4} (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2{sigma}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of {approx}80, 7, and 2, with the brighter two observed at {approx}26th magnitude AB ({approx}0.15 {mu}Jy) in the WFC3/IR F160W filter ({approx}1.4-1.7 {mu}m) where they are detected at {approx}>12{sigma}. All three images are also confidently detected at {approx}>6{sigma} in F140W ({approx}1.2-1.6 {mu}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters ({approx}0.2-1.4 {mu}m), and lacking bright detections in Spitzer/IRAC 3.6 {mu}m and 4.5 {mu}m imaging ({approx}3.2-5.0 {mu}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z {approx} 10.8 and MACS1149-JD at z {approx} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {approx}> 10 suggested by field searches.

  11. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  12. Search and Analysis of Galaxy-Scale Strong Gravitational Lenses in Cosmological Surveys

    NASA Astrophysics Data System (ADS)

    Brault, F.

    2013-11-01

    This article focuses on the development of a novel detector of strong galaxy-galaxy lenses based on the massive modelling of candidates in wide-field ground-based imaging data. Indeed, not only are these events rare in the Universe, but they are at the same time very valuable to understand galaxy formation and evolution in a cosmological context. We use parametric models, which are optimized by MCMC in a bayesian framework, so that we know the distribution of errors. We first generate several training samples : a hundred lenses simulated in HST and CFHT conditions, along with 325 observed lens candidates resulting from a series of preselections on the CFHTLS-Wide galaxies, and that we classify according to their credibility. The whole challenge in designing this detector lies in a subtle balance between the quality of models and the execution time. We massively run the modelling on our samples, beginning with ideal application conditions that we make more complex by stages so as to get closer to the observation conditions and save time. We show that a 7-parameter model assuming a spherical source can recover the Einstein radius from the CFHT simulations with a precision of 7%. We apply a mask to the input data that noticeably enhances the robustness of the models facing environment problems, with a median convergence time of 4 minutes that could be easily reduced by a factor of 10 with more direct optimization techniques. From our results, we define selection contours in the parameter space, resulting in a completeness of 38% and a purity of 55% for the sample of 51 candidates accepted by our robot among the 325 preselected systems.

  13. Magnification relations for Kerr lensing and testing cosmic censorship

    SciTech Connect

    Werner, M. C.; Petters, A. O.

    2007-09-15

    A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely, the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m>1 indicates a naked singularity, a most interesting application would be a test of the cosmic censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.

  14. Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6

    NASA Astrophysics Data System (ADS)

    Bradley, L. D.; Bouwens, R. J.; Ford, H. C.; Illingworth, G. D.; Jee, M. J.; Benítez, N.; Broadhurst, T. J.; Franx, M.; Frye, B. L.; Infante, L.; Motta, V.; Rosati, P.; White, R. L.; Zheng, W.

    2008-05-01

    Using Hubble Space Telescope (HST) and Spitzer IRAC imaging, we report the discovery of a very bright strongly lensed Lyman break galaxy (LBG) candidate at z ~ 7.6 in the field of the massive galaxy cluster Abell 1689 (z = 0.18). The galaxy candidate, which we refer to as A1689-zD1, shows a strong z850 - J110 break of at least 2.2 mag and is completely undetected (<1 σ) in HST Advanced Camera for Surveys (ACS) g475, r625, i775, and z850 data. These properties, combined with the very blue J110 - H160 and H160 - [ 4.5 μ m ] colors, are exactly the properties of an z ~ 7.6 LBG, and can only be reasonably fit by a star-forming galaxy at z = 7.6 +/- 0.4 (χ2ν = 1.1). Attempts to reproduce these properties with a model galaxy at z < 4 yield particularly poor fits (χ2ν >= 25). A1689-zD1 has an observed (lensed) magnitude of 24.7 AB (8 σ) in the NICMOS H160 band and is ~1.3 mag brighter than the brightest known z850-dropout galaxy. When corrected for the cluster magnification of ~9.3 at z ~ 7.6, the candidate has an intrinsic magnitude of H160 = 27.1 AB, or about an L* galaxy at z ~ 7.6. The source-plane deprojection shows that the star formation is occurring in compact knots of size lesssim300 pc. The best-fit stellar population synthesis models yield a median redshift of 7.6, stellar masses (1.6-3.9) × 109 M⊙, stellar ages 45-320 Myr, star formation rates lesssim7.6 M⊙ yr-1, and low reddening with AV <= 0.3. These properties are generally similar to those of LBGs found at z ~ 5-6. The inferred stellar ages suggest a formation redshift of z ~ 8-10 (tlesssim 0.63 Gyr). A1689-zD1 is the brightest observed, highly reliable z > 7.0 galaxy candidate found to date. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. Based on observations made with the Spitzer Space Telescope, which is

  15. DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62

    SciTech Connect

    Wong, Kenneth C.; Suyu, Sherry H.; Tran, Kim-Vy H.; Papovich, Casey J.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Koekemoer, Anton M.; Brodwin, Mark; Gonzalez, Anthony H.; Kacprzak, Glenn G.; Rudnick, Gregory H.; Halkola, Aleksi

    2014-07-10

    We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182–05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z {sub S} = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ{sub E}=0.38{sub −0.01}{sup +0.02} arcsec (3.2{sub −0.1}{sup +0.2} kpc) and the total enclosed mass is M {sub tot}(<θ{sub E})=1.8{sub −0.1}{sup +0.2}×10{sup 11} M{sub ⊙}. We estimate that the cluster environment contributes ∼10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θ{sub E} is f{sub DM}{sup Chab}=0.3{sub −0.3}{sup +0.1}, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f{sub DM}{sup Salp}=−0.3{sub −0.5}{sup +0.2}). The total magnification of the source is μ{sub tot}=2.1{sub −0.3}{sup +0.4}. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source.

  16. Observation and Confirmation of Six Strong-lensing Systems in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D’Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; The DES Collaboration

    2016-08-01

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80–3.2 and in i-band surface brightness i SB ˜ 23–25 mag arcsec‑2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″–9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  17. Observation and Confirmation of Six Strong-lensing Systems in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D'Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration

    2016-08-01

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80-3.2 and in i-band surface brightness i SB ˜ 23-25 mag arcsec-2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″-9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. A multiwavelength strong lensing analysis of baryons and dark matter in the dynamically active cluster AC 114

    NASA Astrophysics Data System (ADS)

    Sereno, M.; Lubini, M.; Jetzer, Ph.

    2010-07-01

    Context. Strong lensing studies can provide detailed mass maps of the inner regions even in dynamically active galaxy clusters. Aims: We illustrate the important role of a proper modelling of the intracluster medium, i.e., the main baryonic component. We demonstrate that the addition of a new contribution accounting for the gas can increase the statistical significance of the lensing model. Methods: We propose a parametric method for strong lensing analyses that exploits multiwavelength observations. The mass model accounts for cluster-sized dark matter halos, galaxies (whose stellar mass can be obtained from optical analyses), and the intracluster medium. The gas distribution is fitted to lensing data exploiting prior knowledge from X-ray observations. This gives an unbiased insight into each matter component and allows us to study the dynamical status of a cluster. The method was applied to AC 114, an irregular X-ray cluster. Results: We find positive evidence of dynamical activity, the dark matter distribution being shifted and rotated with respect to the gas. On the other hand, the dark matter follows the galaxy density in terms of both shape and orientation, illustrating the collisionless nature of dark matter. The inner region (≲250 kpc) is underluminous in optical bands, whereas the gas fraction (~20 ± 5%) slightly exceeds typical values. Evidence of lensing and X-ray suggests that the cluster develops in the plane of the sky and is not affected by the lensing over-concentration bias. Despite the dynamical activity, the matter distribution seems to agree with predictions of N-body simulations. An universal cusped profile provides a good description of either the overall or the dark matter distribution, whereas theoretical scaling relations seem to be accurately fitted.

  19. Shape profiles and orientation bias for weak and strong lensing cluster halos

    SciTech Connect

    Groener, A. M.; Goldberg, D. M.

    2014-11-10

    We study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimation of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of three-dimensional concentrations (c {sub 200}) and isodensity shape on weak and strong lensing scales. We find this difference to be ∼18% (∼9%) for low- (medium-)mass cluster halos with intrinsically low concentrations (c {sub 200} = 1-3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ∼30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download.

  20. CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly magnified by galaxy cluster members

    SciTech Connect

    Grillo, C.; Christensen, L.; Gobat, R.; Balestra, I.; Nonino, M.; Biviano, A.; Mercurio, A.; Rosati, P.; Vanzella, E.; Graves, G.; Lemze, D.; Ford, H.; Bartelmann, M.; Benitez, N.; Bradley, L.; Coe, D.; Broadhurst, T.; Donahue, M.; and others

    2014-05-01

    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for

  1. Experiment design for through-focus testing of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Millán, María. S.; Alba-Bueno, Francisco; Vega, Fidel

    2013-11-01

    Eye models to test intraocular lenses (IOLs) in an optical bench are commonly designed in agreement with the ISO 11979-2 and 11979-9 standard requirements. However, modifications to the ISO eye model have been proposed to test IOLs in conditions closer to real human eye. Wavefront analysis and aberration characterization, wavelength dependence, efficiency, off-axis performance and imaging degradation under certain amount of misalignment can thus be measured in vitro. The main parts of the system to test IOLs are: the illumination system and object test, the eye model including the IOL immersed in a wet cell and a microscope assembled to a sensor that magnifies and captures the aerial image of the object formed by the eye model. A problem concerning the simultaneous variation of defocus and magnification arises when using the microscope to capture out-of-focus images in a through-focus study. Using the eye model, we study the problem of implementing a through-focus measurement of the imaging quality of an IOL. We find a solution based on geometrical optics and compare it with other proposals reported in the literature. The effects on the measurement of the Modulation Transfer Function and the Point Spread Function are predicted. Experimental results are obtained and discussed.

  2. SHELS: TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS

    SciTech Connect

    Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Ramella, Massimo E-mail: mkurtz@cfa.harvard.ed E-mail: ian@het.brown.ed

    2010-02-01

    Weak-lensing surveys are emerging as an important tool for the construction of 'mass-selected' clusters of galaxies. We evaluate both the efficiency and completeness of a weak-lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak-lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R <= 20.6 in the 4 deg{sup 2} DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z approx< 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four of the 12 convergence peaks with signal to noise >=3.5 correspond to clusters of galaxies with M approx> 1.7 x 10{sup 14} M{sub sun}. Four of the eight massive clusters in SHELS are detected in the weak-lensing map yielding a completeness of approx50%. We examine the seven known extended cluster X-ray sources in the DLS field: three can be detected in the weak-lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.

  3. A new window of exploration in the mass spectrum: strong lensing by galaxy groups in the SL2S

    NASA Astrophysics Data System (ADS)

    Limousin, M.; Cabanac, R.; Gavazzi, R.; Kneib, J.-P.; Motta, V.; Richard, J.; Thanjavur, K.; Foex, G.; Pello, R.; Crampton, D.; Faure, C.; Fort, B.; Jullo, E.; Marshall, P.; Mellier, Y.; More, A.; Soucail, G.; Suyu, S.; Swinbank, M.; Sygnet, J.-F.; Tu, H.; Valls-Gabaud, D.; Verdugo, T.; Willis, J.

    2009-08-01

    The existence of strong lensing systems with Einstein radii covering the full mass spectrum, from ˜ 1-2 arcsec (produced by galaxy scale dark matter haloes) to >10 arcsec (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Einstein radii around 1-2 arcsec and above 10 arcsec have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Einstein radii in the range 3 arcsec-8 arcsec (or image separations in the range 6 arcsec-16 arcsec), i.e. systems produced by galaxy group scale dark matter haloes. This group sample spans a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 1013-1014 M⊙, a crucial range for understanding the transition between galaxies and galaxy clusters, and a range that have not been extensively probed with lensing techniques. These systems constitute a subsample of the Strong Lensing Legacy Survey (SL2S), which aims to discover strong lensing systems in the Canada France Hawaii Telescope Legacy Survey (CFHTLS). The sample is based on a search over 100 square degrees, implying a number density of ~0.13 groups per square degree. Our analysis is based on multi-colour CFHTLS images complemented with Hubble Space Telescope imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5 arcsec and 8 arcsec. On larger scales, strong lens centres coincide with peaks of light distribution, suggesting that light traces mass. Most of the luminosity maps have complicated shapes, implying that these intermediate mass structures may be dynamically young. A weak lensing signal is detected for 6 groups and upper limits are provided for 6 others. Fitting the reduced shear with a Singular Isothermal Sphere, we

  4. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    SciTech Connect

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Hakon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard

    2013-07-20

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.

  5. SHARP - II. Mass structure in strong lenses is not necessarily dark matter substructure: a flux ratio anomaly from an edge-on disc in B1555+375

    NASA Astrophysics Data System (ADS)

    Hsueh, J.-W.; Fassnacht, C. D.; Vegetti, S.; McKean, J. P.; Spingola, C.; Auger, M. W.; Koopmans, L. V. E.; Lagattuta, D. J.

    2016-11-01

    Gravitational lens flux-ratio anomalies provide a powerful technique for measuring dark matter substructure in distant galaxies. However, before using these flux-ratio anomalies to test galaxy formation models, it is imperative to ascertain that the given anomalies are indeed due to the presence of dark matter substructure and not due to some other component of the lensing galaxy halo or to propagation effects. Here we present the case of CLASS~B1555+375, which has a strong radio-wavelength flux-ratio anomaly. Our high-resolution near-infrared Keck~II adaptive optics imaging and archival Hubble Space Telescope data reveal the lensing galaxy in this system to have a clear edge-on disc component that crosses directly over the pair of images that exhibit the flux-ratio anomaly. We find that simple models that include the disc can reproduce the cm-wavelength flux-ratio anomaly without requiring additional dark matter substructure. Although further studies are required, our results suggest the assumption that all flux-ratio anomalies are due to a population of dark matter sub-haloes may be incorrect, and analyses that do not account for the full complexity of the lens macro-model may overestimate the substructure mass fraction in massive lensing galaxies.

  6. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z~2

    SciTech Connect

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; /Fermilab

    2009-06-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 {angstrom}, including robust detections of fainter lines such as H{gamma}, [S II]{lambda}6717,6732, and in one instance [Ne III]{lambda}3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured H{alpha} luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between {approx}0.4 and {approx}1.5 of the solar oxygen abundance. Dynamical masses were computed from the H{alpha} velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z {approx} 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/H{beta} versus [N II]/H{alpha} that is offset from the locations of z {approx} 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II

  7. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; De Zotti, G.; Dunne, L.; Michałowski, M. J.; Oteo, I.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Riechers, D. A.; Scott, D.; and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  8. Superconducting Focusing Lenses for the SSR1 Cryomodule of PXIE Test Stand at Fermilab

    SciTech Connect

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-01-01

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. This report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.

  9. The BOSS Emission-line Lens Survey. III. Strong Lensing of Lyα Emitters by Individual Galaxies

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Bolton, Adam S.; Kochanek, Christopher S.; Oguri, Masamune; Pérez-Fournon, Ismael; Zheng, Zheng; Mao, Shude; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Marques-Chaves, Rui; Ménard, Brice

    2016-06-01

    We introduce the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-Line Lens Survey GALaxy-Lyα EmitteR sYstems (BELLS GALLERY) Survey, which is a Hubble Space Telescope program to image a sample of galaxy-scale strong gravitational lens candidate systems with high-redshift Lyα emitters (LAEs) as the background sources. The goal of the BELLS GALLERY Survey is to illuminate dark substructures in galaxy-scale halos by exploiting the small-scale clumpiness of rest-frame far-UV emission in lensed LAEs, and to thereby constrain the slope and normalization of the substructure-mass function. In this paper, we describe in detail the spectroscopic strong-lens selection technique, which is based on methods adopted in the previous Sloan Lens ACS (SLACS) Survey, BELLS, and SLACS for the Masses Survey. We present the BELLS GALLERY sample of the 21 highest-quality galaxy-LAE candidates selected from ≈ 1.4× {10}6 galaxy spectra in the BOSS of the Sloan Digital Sky Survey III. These systems consist of massive galaxies at redshifts of approximately 0.5 strongly lensing LAEs at redshifts from 2-3. The compact nature of LAEs makes them an ideal probe of dark substructures, with a substructure-mass sensitivity that is unprecedented in other optical strong-lens samples. The magnification effect from lensing will also reveal the structure of LAEs below 100 pc scales, providing a detailed look at the sites of the most concentrated unobscured star formation in the universe. The source code used for candidate selection is available for download as a part of this release.

  10. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38 Tests to determine adequacy of windows and lenses. Impact tests. A 4-pound cylindrical weight with a one... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine adequacy of windows...

  11. Geometrical approach to strong gravitational lensing in f(R) gravity

    SciTech Connect

    Nzioki, Anne Marie; Goswami, Rituparno; Dunsby, Peter K. S.; Carloni, Sante

    2011-01-15

    We present a framework for the study of lensing in spherically symmetric spacetimes within the context of f(R) gravity. Equations for the propagation of null geodesics, together with an expression for the bending angle, are derived for any f(R) theory and then applied to an exact spherically symmetric solution of R{sup n} gravity. We find that for this case more bending is expected for R{sup n} gravity theories in comparison to general relativity and is dependent on the value of n and the value of the distance of closest approach of the incident null geodesic.

  12. Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.

    PubMed

    Milgrom, Mordehai

    2013-07-26

    The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0. PMID:23931350

  13. IDCS J1426.5+3508: COSMOLOGICAL IMPLICATIONS OF A MASSIVE, STRONG LENSING CLUSTER AT z = 1.75

    SciTech Connect

    Gonzalez, Anthony H.; Fedeli, Cosimo; Mancone, Conor; Stanford, S. Adam; Zeimann, Greg; Brodwin, Mark; Dey, Arjun; Eisenhardt, Peter R. M.; Stern, Daniel

    2012-07-10

    The galaxy cluster IDCS J1426.5+3508 at z = 1.75 is the most massive galaxy cluster yet discovered at z > 1.4 and the first cluster at this epoch for which the Sunyaev-Zel'Dovich effect has been observed. In this paper, we report on the discovery with Hubble Space Telescope imaging of a giant arc associated with this cluster. The curvature of the arc suggests that the lensing mass is nearly coincident with the brightest cluster galaxy, and the color is consistent with the arc being a star-forming galaxy. We compare the constraint on M{sub 200} based upon strong lensing with Sunyaev-Zel'Dovich results, finding that the two are consistent if the redshift of the arc is z {approx}> 3. Finally, we explore the cosmological implications of this system, considering the likelihood of the existence of a strongly lensing galaxy cluster at this epoch in a {Lambda}CDM universe. While the existence of the cluster itself can potentially be accommodated if one considers the entire volume covered at this redshift by all current high-redshift cluster surveys, the existence of this strongly lensed galaxy greatly exacerbates the long-standing giant arc problem. For standard {Lambda}CDM structure formation and observed background field galaxy counts this lens system should not exist. Specifically, there should be no giant arcs in the entire sky as bright in F814W as the observed arc for clusters at z {>=} 1.75, and only {approx}0.3 as bright in F160W as the observed arc. If we relax the redshift constraint to consider all clusters at z {>=} 1.5, the expected number of giant arcs rises to {approx}15 in F160W, but the number of giant arcs of this brightness in F814W remains zero. These arc statistic results are independent of the mass of IDCS J1426.5+3508. We consider possible explanations for this discrepancy.

  14. Strong and Weak Lensing United III: Measuring the Mass Distribution of the Merging Galaxy Cluster 1E0657-56

    SciTech Connect

    Bradac, Marusa; Clowe, Douglas; Gonzalez, Anthony H.; Marshall, Phil; Forman, William; Jones, Christine; Markevitch, Maxim; Randall, Scott; Schrabback, Tim; Zaritsky, Dennis; /KIPAC, Menlo Park /Bonn, Inst. Astrophys. /Arizona U., Astron. Dept. - Steward Observ. /Florida U. /Harvard-Smithsonian Ctr. Astrophys.

    2006-09-27

    The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.

  15. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z {approx} 2.4 IN THE COSMOS/UltraVISTA FIELD

    SciTech Connect

    Muzzin, Adam; Labbe, Ivo; Franx, Marijn; Holt, J.; Szomoru, Daniel; Van de Sande, Jesse; Van Dokkum, Pieter; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Dunlop, James; Caputi, K. I.; Fynbo, J. P. U.; Milvang-Jensen, Bo; Le Fevre, Olivier; McCracken, Henry J.

    2012-12-20

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger

  16. Analytic solutions for Navarro-Frenk-White lens models in the strong lensing regime for low characteristic convergences

    NASA Astrophysics Data System (ADS)

    Dúmet-Montoya, H. S.; Caminha, G. B.; Makler, M.

    2013-12-01

    Context. The Navarro-Frenk-White (NFW) density profile is often used to model gravitational lenses. For κs ≲ 0.1 (where κs is a parameter that defines the normalization of the NFW lens potential) - corresponding to galaxy and galaxy group mass scales - high numerical precision is required to accurately compute several quantities in the strong lensing regime. Aims: We obtain analytic solutions for several lensing quantities for circular NFW models and their elliptical (ENFW) and pseudo-elliptical (PNFW) extensions, on the typical scales where gravitational arcs are expected to be formed, in the κs ≲ 0.1 limit, by establishing their domain of validity. Methods: We approximate the deflection angle of the circular NFW model and derive analytic expressions for the convergence and shear for the PNFW and ENFW models. We obtain the constant distortion curves (including the tangential critical curve), which are used to define the domain of validity of the approximations, by employing a figure-of-merit to compare with the exact numerical solutions. We compute the deformation cross section as a further check of the validity of the approximations. Results: We derive analytic solutions for iso-convergence contours and constant distortion curves for the models considered here. We also obtain the deformation cross section, which is given in closed form for the circular NFW model and in terms of a one-dimensional integral for the elliptical ones. In addition, we provide a simple expression for the ellipticity of the iso-convergence contours of the pseudo-elliptical models and the connection of characteristic convergences among the PNFW and ENFW models. Conclusions: We conclude that the set of solutions derived here is generally accurate for κs ≲ 0.1. For low ellipticities, values up to κs ≃ 0.18 are allowed. On the other hand, the mapping among PNFW and the ENFW models is valid up to κs ≃ 0.4. The solutions derived in this work can be used to speed up numerical

  17. Strong-Lensing Analysis of A1689 from Deep Advanced Camera Images

    NASA Astrophysics Data System (ADS)

    Broadhurst, Tom; Benítez, Narciso; Coe, Dan; Sharon, Keren; Zekser, Kerry; White, Rick; Ford, Holland; Bouwens, Rychard; Blakeslee, John; Clampin, Marc; Cross, Nick; Franx, Marijn; Frye, Brenda; Hartig, George; Illingworth, Garth; Infante, Leopoldo; Menanteau, Felipe; Meurer, Gerhardt; Postman, Marc; Ardila, D. R.; Bartko, F.; Brown, R. A.; Burrows, C. J.; Cheng, E. S.; Feldman, P. D.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Herranz, D.; Holden, B.; Homeier, N.; Krist, J. E.; Lesser, M. P.; Martel, A. R.; Miley, G. K.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Steindling, S.; Tran, H. D.; Tsvetanov, Z. I.; Zheng, W.

    2005-03-01

    We analyze deep multicolor Advanced Camera images of the largest known gravitational lens, A1689. Radial and tangential arcs delineate the critical curves in unprecedented detail, and many small counterimages are found near the center of mass. We construct a flexible light deflection field to predict the appearance and positions of counterimages. The model is refined as new counterimages are identified and incorporated to improve the model, yielding a total of 106 images of 30 multiply lensed background galaxies, spanning a wide redshift range, 1.0lensing constrains only projected quantities. Regarding cosmology, we clearly detect the purely geometric increase of bend angles with redshift. The dependence on the cosmological parameters is weak owing to the proximity of A1689, z=0.18, constraining the locus, ΩM+ΩΛ<=1.2. This consistency with standard cosmology provides independent support for our model, because the redshift information is not required to derive an accurate mass map. Similarly, the relative fluxes of the multiple images are reproduced well by our best-fitting lens model.

  18. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests to determine adequacy of windows and... Tests to determine adequacy of windows and lenses. Impact tests. A 4-pound cylindrical weight with a one-inch diameter hemispherical striking surface will be dropped (free fall) to strike the window or...

  19. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests to determine adequacy of windows and... Tests to determine adequacy of windows and lenses. Impact tests. A 4-pound cylindrical weight with a one... in its mounting or the equivalent thereof at or near the center. At least three out of four...

  20. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements §...

  1. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements §...

  2. Gravitational lens models based on submillimeter array imaging of Herschel -selected strongly lensed sub-millimeter galaxies at z > 1.5

    SciTech Connect

    Bussmann, R. S.; Gurwell, M. A.; Pérez-Fournon, I.; Amber, S.; Calanog, J.; De Bernardis, F.; Wardlow, J.; Dannerbauer, H.; Harris, A. I.; Krips, M.; Lapi, A.; Maiolino, R.; Omont, A.; Riechers, D.; Baker, A. J.; Birkinshaw, M.; Bock, J.; and others

    2013-12-10

    Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub-)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S {sub 500} > 100 mJy, 21 are strongly lensed (i.e., multiply imaged), 4 are moderately lensed (i.e., singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r {sub half}) and far-infrared luminosities (L {sub FIR}) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z {sub lens} > 0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500 μm flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L {sub FIR} (median L {sub FIR} = 7.9 × 10{sup 12} L {sub ☉}) and two decades in FIR luminosity surface density (median Σ{sub FIR} = 6.0 × 10{sup 11} L {sub ☉} kpc{sup –2}). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift.

  3. Direct Observation of Cosmic Strings Via Their Strong Gravitational Lensing Effect. 1. Predictions for High Resolution Imaging Surveys

    SciTech Connect

    Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; Morganson, Eric; Dubath, Florian; /Santa Barbara, KITP

    2007-11-14

    We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.

  4. GREEN BANK TELESCOPE ZPECTROMETER CO(1-0) OBSERVATIONS OF THE STRONGLY LENSED SUBMILLIMETER GALAXIES FROM THE HERSCHEL ATLAS

    SciTech Connect

    Frayer, D. T.; Maddalena, R.; Harris, A. I.; Baker, A. J.; Ivison, R. J.; Smail, Ian; Negrello, M.; Aretxaga, I.; Baes, M.; Birkinshaw, M.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Cooray, A.; Dannerbauer, H.

    2011-01-10

    The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate high-redshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 {+-} 0.001 and z = 2.625 {+-} 0.001, and measure molecular gas masses of (1-3) x10{sup 10} M{sub sun}, corrected for lens amplification and assuming a conversion factor of {alpha} = 0.8 M{sub sun}( K km s{sup -1} pc{sup 2}){sup -1}. We find typical L(IR)/L'(CO) ratios of 120 {+-} 40 and 140 {+-} 50 L{sub sun}( K km s{sup -1} pc{sup 2}){sup -1}, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration.

  5. [C II] emission in z ˜ 6 strongly lensed, star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Knudsen, Kirsten K.; Richard, Johan; Kneib, Jean-Paul; Jauzac, Mathilde; Clément, Benjamin; Drouart, Guillaume; Egami, Eiichi; Lindroos, Lukas

    2016-10-01

    The far-infrared fine-structure line [C II] at 1900.5 GHz is known to be one of the brightest cooling lines in local galaxies, and therefore it has been suggested to be an efficient tracer for star formation in very high redshift galaxies. However, recent results for galaxies at z > 6 have yielded numerous non-detections in star-forming galaxies, except for quasars and submillimetre galaxies. We report the results of ALMA observations of two lensed, star-forming galaxies at z = 6.029 and z = 6.703. The galaxy A383-5.1 (star formation rate [SFR] of 3.2 M⊙ yr-1 and magnification of μ = 11.4 ± 1.9) shows a line detection with L_[C II] = 8.9× 106 L⊙, making it the lowest L_[C II] detection at z > 6. For MS0451-H (SFR = 0.4 M⊙ yr-1 and μ = 100 ± 20) we provide an upper limit of L_[C II] < 3× 105 L⊙, which is 1 dex below the local SFR-L_[C II] relations. The results are consistent with predictions for low-metallicity galaxies at z > 6; however, other effects could also play a role in terms of decreasing L[CII]. The detection of A383-5.1 is encouraging and suggests that detections are possible, but much fainter than initially predicted.

  6. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658.

    PubMed

    Reis, R C; Reynolds, M T; Miller, J M; Walton, D J

    2014-03-13

    The co-evolution of a supermassive black hole with its host galaxy through cosmic time is encoded in its spin. At z > 2, supermassive black holes are thought to grow mostly by merger-driven accretion leading to high spin. It is not known, however, whether below z ≈ 1 these black holes continue to grow by coherent accretion or in a chaotic manner, though clear differences are predicted in their spin evolution. An established method of measuring the spin of black holes is through the study of relativistic reflection features from the inner accretion disk. Owing to their greater distances from Earth, there has hitherto been no significant detection of relativistic reflection features in a moderate-redshift quasar. Here we report an analysis of archival X-ray data together with a deep observation of a gravitationally lensed quasar at z = 0.658. The emission originates within three or fewer gravitational radii from the black hole, implying a spin parameter (a measure of how fast the black hole is rotating) of a = 0.87(+0.08)(-0.15) at the 3σ confidence level and a > 0.66 at the 5σ level. The high spin found here is indicative of growth by coherent accretion for this black hole, and suggests that black-hole growth at 0.5 ≤ z ≤ 1 occurs principally by coherent rather than chaotic accretion episodes.

  7. J0454-0309: evidence of a strong lensing fossil group falling into a poor galaxy cluster

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Suyu, S.; Schrabback, T.; Hildebrandt, H.; Erben, T.; Halkola, A.

    2010-05-01

    Aims: We have discovered a strong lensing fossil group (J0454) projected near the well-studied cluster MS0451-0305. Using the large amount of available archival data, we compare J0454 to normal groups and clusters. A highly asymmetric image configuration of the strong lens enables us to study the substructure of the system. Methods: We used multicolour Subaru/Suprime-Cam and CFHT/Megaprime imaging, together with Keck spectroscopy to identify member galaxies. A VLT/FORS2 spectrum was taken to determine the redshifts of the brightest elliptical and the lensed arc. Using HST/ACS images, we determined the group's weak lensing signal and modelled the strong lens system. This is the first time that a fossil group is analysed with lensing methods. The X-ray luminosity and temperature were derived from XMM-Newton data. Results: J0454 is located at z = 0.26, with a gap of 2.5 mag between the brightest and second brightest galaxies within half the virial radius. Outside a radius of 1.5 Mpc, we find two filaments extending over 4 Mpc, and within we identify 31 members spectroscopically and 33 via the red sequence with i < 22 mag. They segregate into spirals (σ_v = 590 km s-1) and a central concentration of ellipticals (σ_v = 480 km s-1), establishing a morphology-density relation. Weak lensing and cluster richness relations yield consistent values of r200 = 810-850 kpc and M200 = (0.75-0.90) × 1014 M_⊙. The brightest group galaxy (BGG) is inconsistent with the dynamic centre of J0454. It strongly lenses a galaxy at z = 2.1 ± 0.3, and we model the lens with a pseudo-isothermal elliptical mass distribution. A high external shear, and a discrepancy between the Einstein radius and the weak lensing velocity dispersion requires that the BGG must be offset from J0454's dark halo centre by at least 90-130 kpc. The X-ray halo is offset by 24 ± 16 kpc from the BGG, shows no signs of a cooling flow and can be fit by a single β-model. With LX = (1.4 ± 0.2) × 1043 erg s-1 J0454

  8. Fabrication of Compound Refractive X-ray Lenses Using LIGA Process and Performance Tests

    SciTech Connect

    Lee, Jin Pyoung; Kim, Guk Bae; Kim, Jong Hyun; Chang, Suk Sang; Lee, Sang Joon

    2007-01-19

    Recent advances of X-ray microscopy technology enable the visualization of some micro/nano-scale objects which optical microscopy and electron microscopy cannot be used to observe. The X-ray microscopy can be applied to observe the internal structure of a thicker sample than the electron microscopy can, and its spatial resolution is higher than that of the optical microscopy. Moreover, it has a powerful element specific imaging ability. For further improving the X-ray microscope, it is indispensable to make X-ray optics for focusing X-rays more effectively. Recently, various X-ray lenses such as diffraction lenses of FZP(Fresnel zone plate) and spatter-sliced FZT, total reflection lenses of K-B(Kirkpatrick-Baez) mirror and Wolter mirror, and refractive lens of CRL(compound refractive lens) were introduced. Compared with the other types of lenses, CRL is easy to fabricate and handle. In this study, we designed and fabricated various types of CRLs using LIGA(LIthographie, Galvanoformung, Abformtechnik) process, and used PMMA(Poly(methyl methacrylate)) material as the material of CRL. Their performances are tested with varying parameters such as parabolic/kinoform shape, radius of curvature, wall thickness between adjacent lenses, and width of lenses. The performance tests were carried out by using a simple synchrotron X-ray imaging method. The tests results revealed that hard x-rays could be condensed well by the CRL of PMMA material at the focal point we expect We captured sample images one-dimensionally magnified by CRLs. Furthermore, we found which parameter is more effective for enhancing focus efficiency and which parameter should be considered more carefully in the fabrication process of LIGA.

  9. TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS: A SUBARU FIELD

    SciTech Connect

    Kurtz, Michael J.; Geller, Margaret J.; Fabricant, Daniel G.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: yousuke.utsumi@nao.ac.jp E-mail: ian@het.brown.edu

    2012-05-10

    We use a dense redshift survey in the foreground of the Subaru GTO2deg{sup 2} weak-lensing field (centered at {alpha}{sub 2000} = 16{sup h}04{sup m}44{sup s}; {delta}{sub 2000} = 43 Degree-Sign 11'24'') to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.

  10. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    SciTech Connect

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel; Medeiros, Lia; Sadowski, Aleksander; Narayan, Ramesh

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  11. Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits

    SciTech Connect

    Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.

    2007-04-15

    We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.

  12. Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wong, K. C.; Harko, T.; Cheng, K. S.; Gergely, L. Á.

    2012-08-01

    The higher-dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies spacetime geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric braneworld metrics. We find that the lensing profile in the braneworld scenario is distinguishable from dark matter lensing, despite both the braneworld scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions, light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid, we further find a critical radius below which braneworld effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.

  13. A Stellar Velocity Dispersion for a Strongly-lensed, Intermediate-mass Quiescent Galaxy at z=2.8

    NASA Astrophysics Data System (ADS)

    Hill, Allison. R.; Muzzin, Adam; Franx, Marijn; van de Sande, Jesse

    2016-03-01

    Measuring stellar velocity dispersions of quiescent galaxies beyond z˜ 2 is observationally challenging. Such measurements require near-infrared spectra with a continuum detection of at least moderate signal to noise, often necessitating long integrations. In this paper, we present deep X-Shooter spectroscopy of one of only two known gravitationally lensed massive quiescent galaxies at z\\gt 2. This galaxy is quadruply imaged, with the brightest images magnified by a factor of ˜5. The total exposure time of our data is 9.8 hr on-source; however, the magnification, and the slit placement encompassing two images, provides a total equivalent exposure time of 215 hr. From this deep spectrum we measure a redshift of ({z}{spec}=2.756+/- 0.001), making this one of the highest redshift quiescent galaxies that is spectroscopically confirmed. We simultaneously fit both the spectroscopic and photometric data to determine stellar population parameters and conclude that this galaxy is relatively young ({560}-80+100 {Myr}), of intermediate mass ({log} {M}*/{M}⊙ ={10.59}-0.05+0.04), consistent with low dust content ({A}V={0.20}-0.20+0.26), and has quenched only relatively recently. This recent quenching is confirmed by strong Balmer absorption, particularly Hδ (H{δ }A={6.66}-0.92+0.96). Remarkably, this proves that at least some intermediate-mass galaxies have already quenched as early as z˜ 2.8. Additionally, we have measured a velocity dispersion of (σ =187+/- 43 {km} {{{s}}}-1), making this the highest-redshift quiescent galaxy with a dispersion measurement. We confirm that this galaxy falls on the same mass fundamental plane (MFP) as galaxies at z = 2.2, consistent with little to no evolution in the MFP up to z = 2.8. Overall this galaxy is proof of the existence of intermediate-mass quenched galaxies in the distant universe, and that lensing is a powerful tool for determining their properties with improved accuracy.

  14. CMB Lensing Cross Correlations

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey

    2014-03-01

    A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.

  15. 30 CFR 18.66 - Tests of windows and lenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... withdrawal of the samples from the oven they will be immersed in water having a temperature between 15 °C... mounting, or the equivalent thereof, at or near the center. Three of four samples shall withstand without... alternate methods at the discretion of MSHA. (b) Thermal-shock tests. Four samples of the window or...

  16. 30 CFR 18.66 - Tests of windows and lenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... withdrawal of the samples from the oven they will be immersed in water having a temperature between 15 °C... mounting, or the equivalent thereof, at or near the center. Three of four samples shall withstand without... alternate methods at the discretion of MSHA. (b) Thermal-shock tests. Four samples of the window or...

  17. 30 CFR 18.66 - Tests of windows and lenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... withdrawal of the samples from the oven they will be immersed in water having a temperature between 15 °C... mounting, or the equivalent thereof, at or near the center. Three of four samples shall withstand without... alternate methods at the discretion of MSHA. (b) Thermal-shock tests. Four samples of the window or...

  18. The Shear Testing Programme - I. Weak lensing analysis of simulated ground-based observations

    NASA Astrophysics Data System (ADS)

    Heymans, Catherine; Van Waerbeke, Ludovic; Bacon, David; Berge, Joel; Bernstein, Gary; Bertin, Emmanuel; Bridle, Sarah; Brown, Michael L.; Clowe, Douglas; Dahle, Håkon; Erben, Thomas; Gray, Meghan; Hetterscheidt, Marco; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Kuijken, Konrad; Margoniner, Vera; Massey, Richard; Mellier, Yannick; Nakajima, Reiko; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Wittman, David

    2006-05-01

    The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide-field surveys. In this first STEP paper, we present the results of a blind analysis of simulated ground-based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7 per cent. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or underestimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground-based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires & Broadhurst method (KSB+) to aid the improvement of future KSB+ analyses.

  19. A HIGHLY ELONGATED PROMINENT LENS AT z = 0.87: FIRST STRONG-LENSING ANALYSIS OF EL GORDO

    SciTech Connect

    Zitrin, Adi; Menanteau, Felipe; Hughes, John P.; Coe, Dan; Barrientos, L. Felipe; Infante, Leopoldo; Mandelbaum, Rachel

    2013-06-10

    We present the first strong-lensing (SL) analysis of the galaxy cluster ACT-CL J0102-4915 (El Gordo), in recent HST/ACS images, revealing a prominent strong lens at a redshift of z = 0.87. This finding adds to the already-established unique properties of El Gordo: it is the most massive, hot, X-ray luminous, and bright Sunyaev-Zeldovich effect cluster at z {approx}> 0.6, and the only {sup b}ullet{sup -}like merging cluster known at these redshifts. The lens consists of two merging massive clumps, where, for a source redshift of z{sub s} {approx} 2, each clump exhibits only a small, separate critical area, with a total area of 0.69 {+-} 0.11{open_square}' over the two clumps. For a higher source redshift, z{sub s} {approx} 4, the critical curves of the two clumps merge together into one bigger and very elongated lens (axis ratio {approx_equal} 5.5), enclosing an effective area of 1.44 {+-} 0.22{open_square}'. The critical curves continue expanding with increasing redshift so that for high-redshift sources (z{sub s} {approx}> 9) they enclose an area of {approx}1.91 {+-} 0.30{open_square}' (effective {theta}{sub e} {approx_equal} 46.''8 {+-} 3.''7) and a mass of 6.09 {+-} 1.04 Multiplication-Sign 10{sup 14} M{sub Sun }. According to our model, the area of high magnification ({mu} > 10) for such high-redshift sources is {approx_equal}1.2{open_square}', and the area with {mu} > 5 is {approx_equal}2.3{open_square}', making El Gordo a compelling target for studying the high-redshift universe. We obtain a strong lower limit on the total mass of El Gordo, {approx}> 1.7 Multiplication-Sign 10{sup 15} M{sub Sun} from the SL regime alone, suggesting a total mass of roughly M{sub 200} {approx} 2.3 Multiplication-Sign 10{sup 15} M{sub Sun }. Our results should be revisited when additional spectroscopic and HST imaging data are available.

  20. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  1. Molecular gas content in strongly lensed z ~ 1.5-3 star-forming galaxies with low infrared luminosities

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, M.; Zamojski, M.; Schaerer, D.; Combes, F.; Egami, E.; Swinbank, A. M.; Richard, J.; Sklias, P.; Rawle, T. D.; Rex, M.; Kneib, J.-P.; Boone, F.; Blain, A.

    2015-05-01

    To extend the molecular gas measurements to more typical star-forming galaxies (SFGs) with star formation rates SFR< 40 M⊙ yr-1 and stellar masses M∗< 2.5 × 1010M⊙ at z ~ 1.5-3, we have observed CO emission with the IRAM Plateau de Bure Interferometer and the IRAM 30 m telescope for five strongly lensed galaxies, selected from the Herschel Lensing Survey. These observations are combined with a compilation of CO measurements from the literature. From this, we infer the CO luminosity correction factors r2,1 = 0.81 ± 0.20 and r3,1 = 0.57 ± 0.15 for the J = 2 and J = 3 CO transitions, respectively, valid for SFGs at z> 1. The combined sample of CO-detected SFGs at z> 1 shows a large spread in star formation efficiency (SFE) with a dispersion of 0.33 dex, such that the SFE extends well beyond the low values of local spirals and overlaps the distribution of z> 1 submm galaxies. We find that the spread in SFE (or equivalently in molecular gas depletion timescale) is due to the variations of several physical parameters, primarily the specific star formation rate, and also stellar mass and redshift. The dependence of SFE on the offset from the main sequence and the compactness of the starburst is less clear. The possible increase of the molecular gas depletion timescale with stellar mass, now revealed by low M∗ SFGs at z> 1 and also observed at z = 0, contrasts with the generally acknowledged constant molecular gas depletion timescale and refutes the linearity of the Kennicutt-Schmidt relation. A net rise of the molecular gas fraction (fgas) is observed from z ~ 0.2 to z ~ 1.2, followed by a very mild increase toward higher redshifts, as found in earlier studies. At each redshift the molecular gas fraction shows a large dispersion, mainly due to the dependence of fgas on stellar mass, producing a gradient of increasing fgas with decreasing M∗. We provide the first measurement of the molecular gas fraction of z> 1 SFGs at the low-M∗ end between 109.4

  2. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.

    2016-03-01

    Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an

  3. Resolving the High-energy Universe with Strong Gravitational Lensing: The Case of PKS 1830–211

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell’Antonio, Ian P.; Benbow, Wystan

    2015-08-01

    Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830–211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ∼1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.

  4. Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case

    NASA Astrophysics Data System (ADS)

    Keeton, Charles R.; Petters, A. O.

    2005-11-01

    We are developing a general, unified, and rigorous analytical framework for using gravitational lensing by compact objects to test different theories of gravity beyond the weak-deflection limit. In this paper we present the formalism for computing corrections to lensing observables for static, spherically symmetric gravity theories in which the corrections to the weak-deflection limit can be expanded as a Taylor series in one parameter, namely, the gravitational radius of the lens object. We take care to derive coordinate-independent expressions and compute quantities that are directly observable. We compute series expansions for the observables that are accurate to second order in the ratio ɛ=ϑ•/ϑE of the angle subtended by the lens’s gravitational radius to the weak-deflection Einstein radius, which scales with mass as ɛ∝M1/2•. The positions, magnifications, and time delays of the individual images have corrections at both first and second order in ɛ, as does the differential time delay between the two images. Interestingly, we find that the first-order corrections to the total magnification and centroid position vanish in all gravity theories that agree with general relativity in the weak-deflection limit, but they can remain nonzero in modified theories that disagree with general relativity in the weak-deflection limit. For the Reissner-Nordström metric and a related metric from heterotic string theory, our formalism reveals an intriguing connection between lensing observables and the condition for having a naked singularity, which could provide an observational method for testing the existence of such objects. We apply our formalism to the galactic black hole and predict that the corrections to the image positions are at the level of 10 μarc s (microarcseconds), while the correction to the time delay is a few hundredths of a second. These corrections would be measurable today if a pulsar were found to be lensed by the galactic black hole, and

  5. Hubble Space Telescope Observations of a Spectacular New Strong-Lensing Galaxy Cluster: MACS J1149.5+2223 at z = 0.544

    NASA Astrophysics Data System (ADS)

    Smith, Graham P.; Ebeling, Harald; Limousin, Marceau; Kneib, Jean-Paul; Swinbank, A. M.; Ma, Cheng-Jiun; Jauzac, Mathilde; Richard, Johan; Jullo, Eric; Sand, David J.; Edge, Alastair C.; Smail, Ian

    2009-12-01

    We present Advanced Camera for Surveys observations of MACS J1149.5+2223, an X-ray luminous galaxy cluster at z = 0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z = 1.491, the four images of which are gravitationally magnified by 8 lsim μ lsim 23. We identify this as an L sstarf (MB sime -20.7), disk-dominated (B/T lsim 0.5) galaxy, forming stars at ~6 M sun yr-1. We use a robust sample of multiply imaged galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N halo = 4)/P(N halo < 4) >= 1012 where N halo is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R <= 500 kpc, are measured to be M tot = (6.7 ± 0.4) × 1014 M sun and f sub = 0.25 ± 0.12, respectively. Our model also rules out recent claims of a flat density profile at gsim7σ confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply imaged galaxies when modeling strong-lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems.

  6. HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544

    SciTech Connect

    Smith, Graham P.; Ebeling, Harald; Ma, Cheng-Jiun; Limousin, Marceau; Kneib, Jean-Paul; Jauzac, Mathilde; Swinbank, A. M.; Richard, Johan; Edge, Alastair C.; Smail, Ian; Jullo, Eric; Sand, David J.

    2009-12-20

    We present Advanced Camera for Surveys observations of MACS J1149.5+2223, an X-ray luminous galaxy cluster at z = 0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z = 1.491, the four images of which are gravitationally magnified by 8 approx< mu approx< 23. We identify this as an L* (M{sub B} approx = -20.7), disk-dominated (B/T approx< 0.5) galaxy, forming stars at approx6 M{sub sun} yr{sup -1}. We use a robust sample of multiply imaged galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N{sub halo} = 4)/P(N{sub halo} < 4) >= 10{sup 12} where N{sub halo} is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R <= 500 kpc, are measured to be M{sub tot} = (6.7 +- 0.4) x 10{sup 14} M{sub sun} and f{sub sub} = 0.25 +- 0.12, respectively. Our model also rules out recent claims of a flat density profile at approx>7sigma confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply imaged galaxies when modeling strong-lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems.

  7. Fabrication and x-ray testing of true kinoform lenses with high efficiencies

    NASA Astrophysics Data System (ADS)

    Keskinbora, Kahraman; Sanli, Umut T.; Grévent, Corinne; Schütz, Gisela

    2015-09-01

    Kinoform lenses are focusing optics with a 100 % theoretical focusing efficiency. Up to date, the actual continuous 3D surface relief profiles of X-ray kinoform lenses could only be approximately fabricated. Now, we have come up with an effective ion beam lithography fabrication strategy producing first-ever imaging-quality circularly symmetric kinoform lenses which demonstrated reasonably high focusing efficiencies. Here, we will discuss the potential of the fabrication method and the utility of kinoform lenses enabled by it. Special emphases will be placed on materials development including selection and design, efficiency considerations for various energies and possible applications.

  8. The Shear Testing Programme 2: Factors affecting high-precision weak-lensing analyses

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Heymans, Catherine; Bergé, Joel; Bernstein, Gary; Bridle, Sarah; Clowe, Douglas; Dahle, Håkon; Ellis, Richard; Erben, Thomas; Hetterscheidt, Marco; High, F. William; Hirata, Christopher; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Johnston, David; Kuijken, Konrad; Margoniner, Vera; Mandelbaum, Rachel; Mellier, Yannick; Nakajima, Reiko; Paulin-Henriksson, Stephane; Peeples, Molly; Roat, Chris; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Schirmer, Mischa; Seljak, Uroš; Semboloni, Elisabetta; van Waerbeke, Ludovic

    2007-03-01

    The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of

  9. Strong lensing analysis of PLCK G004.5-19.5, a Planck-discovered cluster hosting a radio relic at z = 0.52

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Menanteau, Felipe; Hughes, John P.; Carrasco, Mauricio; Barrientos, L. Felipe

    2014-02-01

    Context. The recent discovery of a large number of galaxy clusters using the Sunyaev-Zel'dovich (SZ) effect has opened a new era on the study of the most massive clusters in the Universe. Multiwavelength analyses are required to understand the properties of these new sets of clusters, which are a sensitive probe of cosmology. Aims: We aim for a multiwavelength characterization of PLCK G004.5-19.5, one of the most massive X-ray validated SZ effect-selected galaxy clusters discovered by the Planck satellite. Methods: We have observed PLCK G004.5-19.5 with GMOS on the 8.1 m-Gemini South Telescope for optical imaging and spectroscopy, and performed a strong lensing analysis. We also searched for associated radio emission in published catalogs. Results: An analysis of the optical images confirms that this is a massive cluster, with a dominant central galaxy and an accompanying red sequence of galaxies, plus a 14″-long strong lensing arc. Longslit spectroscopy of six cluster members shows that the cluster is at z = 0.516 ± 0.002. We also targeted the strongly lensed arc, and found zarc = 1.601. We use LensTool to carry out a strong lensing analysis, from which we measure a median Einstein radius θE(zs = 1.6) ≃ 30″ and estimate an enclosed mass ME = 2.45-0.47+0.45 × 1014 M⊙. By extrapolating a Navarro-Frenk-White profile, we find a total mass M500SL = 4.0-1.0+2.1 × 1014 M⊙. We also include a constraint on the mass from previous X-ray observations, which yields a slightly higher mass, M500SL+X = 6.7-1.3+2.6 × 1014 M⊙, consistent with the value from strong lensing alone. Intermediate-resolution radio images from the TIFR GMRT Sky Survey at 150 MHz reveal that PLCK G004.5-19.5 hosts a powerful radio relic on scales ≲500 kpc. Emission at the same location is also detected in low-resolution images at 843 MHz and 1.4 GHz. This is one of the higher redshift radio relics known to date. Based on observations obtained at the Gemini Observatory, which is operated

  10. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

    NASA Astrophysics Data System (ADS)

    Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.

    2016-08-01

    It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10'- 40'(corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10'and 20', with a best-fit χ2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10'. Above 20'a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.

  11. Combining strong lensing and dynamics in galaxy clusters: integrating MAMPOSSt within LENSTOOL. I. Application on SL2S J02140-0535

    NASA Astrophysics Data System (ADS)

    Verdugo, T.; Limousin, M.; Motta, V.; Mamon, G. A.; Foëx, G.; Gastaldello, F.; Jullo, E.; Biviano, A.; Rojas, K.; Muñoz, R. P.; Cabanac, R.; Magaña, J.; Fernández-Trincado, J. G.; Adame, L.; De Leo, M. A.

    2016-10-01

    Context. The mass distribution in galaxy clusters and groups is an important cosmological probe. It has become clear in recent years that mass profiles are best recovered when combining complementary probes of the gravitational potential. Strong lensing (SL) is very accurate in the inner regions, but other probes are required to constrain the mass distribution in the outer regions, such as weak lensing or studies of dynamics. Aims: We constrain the mass distribution of a cluster showing gravitational arcs by combining a strong lensing method with a dynamical method using the velocities of its 24 member galaxies. Methods: We present a new framework in which we simultaneously fit SL and dynamical data. The SL analysis is based on the LENSTOOL software and the dynamical analysis uses the MAMPOSSt code, which we integrated into LENSTOOL. After describing the implementation of this new tool, we applied it to the galaxy group SL2S J02140-0535 (zspec = 0.44), which we had previously studied. We used new VLT/FORS2 spectroscopy of multiple images and group members, as well as shallow X-ray data from XMM. Results: We confirm that the observed lensing features in SL2S J02140-0535 belong to different background sources. One of these sources is located at zspec = 1.017 ± 0.001, whereas the other source is located at zspec = 1.628 ± 0.001. With the analysis of our new and our previously reported spectroscopic data, we find 24 secure members for SL2S J02140-0535. Both data sets are well reproduced by a single NFW mass profile; the dark matter halo coincides with the peak of the light distribution, with scale radius, concentration, and mass equal to rs = 82+44-17 kpc, c200 = 10.0+1.7-2.5, and M200 = 1.0+0.5-0.2 × 1014 M⊙ respectively. These parameters are better constrained when we fit SL and dynamical information simultaneously. The mass contours of our best model agrees with the direction defined by the luminosity contours and the X-ray emission of SL2S J02140-0535. The

  12. Design of lenses to project the image of a pupil in optical testing interferometers.

    PubMed

    Malacara, Z; Malacara, D

    1995-02-01

    When an optical surface or lens in an interferometer (Twyman-Green or Fizeau interferometer) is tested, the wave front at the pupil of the element being tested does not have the same shape as at the observation plane, because this shape changes along its propagation trajectory if the wave front is not flat or spherical. An imaging lens must then be used, as reported many times in the literature, to project the image of the pupil of the system being tested over the observation plane. This lens is especially necessary if the deviation of the wave front from sphericity is large, as in the case of testing paraboloidal or hyperboloidal surfaces. We show that the wave front at both positions does not need to have the same shape. The only condition is that the interferograms at both places be identical, which is a different condition. This leads to some considerations that should be taken into account in the optical design of such lenses.

  13. Strong-lensing analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and Einstein radii

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi; Broadhurst, Tom; Barkana, Rennan; Rephaeli, Yoel; Benítez, Narciso

    2011-01-01

    We present the results of a strong-lensing analysis of a complete sample of 12 very luminous X-ray clusters at z > 0.5 using HST/ACS images. Our modelling technique has uncovered some of the largest known critical curves outlined by many accurately predicted sets of multiple images. The distribution of Einstein radii has a median value of ≃28 arcsec (for a source redshift of zs˜ 2), twice as large as other lower z samples, and extends to 55 arcsec for MACS J0717.5+3745, with an impressive enclosed Einstein mass of 7.4 × 1014 M⊙. We find that nine clusters cover a very large area (>2.5 arcmin2) of high magnification (μ > 10×) for a source redshift of zs˜ 8, providing primary targets for accessing the first stars and galaxies. We compare our results with theoretical predictions of the standard Λ cold dark matter (ΛCDM) model which we show systematically fall short of our measured Einstein radii by a factor of ≃1.4, after accounting for the effect of lensing projection. Nevertheless, a revised analysis, once arc redshifts become available, and similar analyses of larger samples, is needed in order to establish more precisely the level of discrepancy with ΛCDM predictions.

  14. Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ˜200 multiple images

    NASA Astrophysics Data System (ADS)

    Jauzac, M.; Clément, B.; Limousin, M.; Richard, J.; Jullo, E.; Ebeling, H.; Atek, H.; Kneib, J.-P.; Knowles, K.; Natarajan, P.; Eckert, D.; Egami, E.; Massey, R.; Rexroth, M.

    2014-09-01

    We present a high-precision mass model of the galaxy cluster MACSJ0416.1-2403, based on a strong-gravitational-lensing analysis of the recently acquired Hubble Space Telescope Frontier Fields (HFF) imaging data. Taking advantage of the unprecedented depth provided by HST/Advanced Camera for Survey observations in three passbands, we identify 51 new multiply imaged galaxies, quadrupling the previous census and bringing the grand total to 68, comprising 194 individual lensed images. Having selected a subset of the 57 most securely identified multiply imaged galaxies, we use the LENSTOOL software package to constrain a lens model comprised of two cluster-scale dark-matter haloes and 98 galaxy-scale haloes. Our best-fitting model predicts image positions with an rms error of 0.68 arcsec, which constitutes an improvement of almost a factor of 2 over previous, pre-HFF models of this cluster. We find the total projected mass inside a 200 kpc aperture to be (1.60 ± 0.01) × 1014 M⊙, a measurement that offers a three-fold improvement in precision, reaching the per cent level for the first time in any cluster. Finally, we quantify the increase in precision of the derived gravitational magnification of high-redshift galaxies and find an improvement by a factor of ˜2.5 in the statistical uncertainty. Our findings impressively confirm that HFF imaging has indeed opened the domain of high-precision mass measurements for massive clusters of galaxies.

  15. Test of relativistic gravity using microlensing of relativistically broadened lines in gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Neronov, A.; Vovk, Ie.

    2016-01-01

    We show that observation of the time-dependent effect of microlensing of relativistically broadened emission lines (such as e.g. the Fe K α line in x rays) in strongly lensed quasars could provide data on celestial mechanics of circular orbits in the direct vicinity of the horizon of supermassive black holes. This information can be extracted from the observation of evolution of the red/blue edge of the magnified line just before and just after the period of crossing of the innermost stable circular orbit by the microlensing caustic. The functional form of this evolution is insensitive to numerous astrophysical parameters of the accreting black hole and of the microlensing caustics network system (as opposed to the evolution of the full line spectrum). Measurement of the temporal evolution of the red/blue edge could provide a precision measurement of the radial dependence of the gravitational redshift and of velocity of the circular orbits, down to the innermost stable circular orbit. These measurements could be used to discriminate between general relativity and alternative models of the relativistic gravity in which the dynamics of photons and massive bodies orbiting the gravitating center is different from that of the geodesics in the Schwarzschild or Kerr space-times.

  16. Discovery of a Strongly Lensed Massive Quiescent Galaxy at z = 2.636: Spatially Resolved Spectroscopy and Indications of Rotation

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Belli, Sirio; Ellis, Richard S.

    2015-11-01

    We report the discovery of RG1M0150, a massive, recently quenched galaxy at z = 2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of {log}{M}*={11.49}-0.16+0.10 and a half-light radius of {R}e,{maj}=1.8+/- 0.4 {{kpc}}. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z\\gt 2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6{R}e-1.6{R}e, which are consistent with an age of 760 Myr. Gas emission in [N ii] broadly traces the spatial distribution of the stars and is coupled with weak Hα emission (log [N ii]/{{H}}α =0.6+/- 0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is {σ }e,{stars}=271+/- 41 km s{}-1. We detect rotation in the stellar absorption lines for the first time beyond z∼ 1. Using a two-integral Jeans model that accounts for observational effects, we measure a dynamical mass of {log}{M}{{dyn}}=11.24+/- 0.14 and V/σ =0.70+/- 0.21. This is a high degree of rotation considering the modest observed ellipticity of 0.12 ± 0.08, but it is consistent with predictions from dissipational merger simulations that produce compact remnants. The mass of RG1M0150 implies that it is likely to become a slowly rotating elliptical. If it is typical, this suggests that the progenitors of massive ellipticals retain significant net angular momentum after quenching which later declines, perhaps through accretion of satellites.

  17. Direct observation of cosmic strings via their strong gravitational lensing effect - II. Results from the HST/ACS image archive

    NASA Astrophysics Data System (ADS)

    Morganson, Eric; Marshall, Phil; Treu, Tommaso; Schrabback, Tim; Blandford, Roger D.

    2010-08-01

    We have searched 4.5deg2 of archival Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) images for cosmic strings, identifying close pairs of similar, faint galaxies and selecting groups whose alignment is consistent with gravitational lensing by a long, straight string. We find no evidence for cosmic strings in five large-area HST treasury surveys (covering a total of 2.22deg2) or in any of 346 multifilter guest observer images (1.18deg2). Assuming that simulations accurately predict the number of cosmic strings in the Universe, this non-detection allows us to place upper limits on the dimensionless Universal cosmic string tension of Gμ/c2 < 2.3 × 10-6 and cosmic string density of Ωs < 2.1 × 10-5 at the 95per cent confidence level (marginalizing over the other parameter in each case). We find four dubious cosmic string candidates in 318 single-filter guest observer images (1.08deg2), which we are unable to conclusively eliminate with existing data. The confirmation of any of these candidates as cosmic strings would imply Gμ/c2 ~ 10-6 and Ωs ~ 10-5. However, we estimate that there is at least a 92per cent chance that these string candidates are random alignments of galaxies. If we assume that these candidates are indeed false detections, our final limits on Gμ/c2 and Ωs fall to 6.5 × 10-7 and 7.3 × 10-6, respectively. Due to the extensive sky coverage of the HST/ACS image archive, the above limits are universal. They are quite sensitive to the number of fields being searched and could be further reduced by more than a factor of 2 using forthcoming HST data.

  18. Strong-lensing analysis of MACS J0717.5+3745 from Hubble Frontier Fields observations: How well can the mass distribution be constrained?

    NASA Astrophysics Data System (ADS)

    Limousin, M.; Richard, J.; Jullo, E.; Jauzac, M.; Ebeling, H.; Bonamigo, M.; Alavi, A.; Clément, B.; Giocoli, C.; Kneib, J.-P.; Verdugo, T.; Natarajan, P.; Siana, B.; Atek, H.; Rexroth, M.

    2016-04-01

    We present a strong-lensing analysis of MACSJ0717.5+3745 (hereafter MACS J0717), based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which have been spectroscopically confirmed. The total number of images comprised in these systems rises to 165, compared to 48 images in 16 systems before the HFF observations. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, and the subset of the 132 most secure multiple images to constrain a mass distribution composed of four large-scale mass components (spatially aligned with the four main light concentrations) and a multitude of galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of "peaky" non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well, in the sense that both models give comparable total rms. Although the total (smooth dark matter component plus galaxy-scale perturbers) mass distributions of both models are consistent, as are the integrated two-dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, emphasizing the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification. We show that the amplification difference between the two models is larger

  19. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Carlson, K.; McGee, M. W.; Nobrega, L. E.; Romanov, A. L.; Ruan, J.; Valishev, A.; Noll, D.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  20. The strong Bell inequalities: A proposed experimental test

    NASA Technical Reports Server (NTRS)

    Fry, Edward S.

    1994-01-01

    All previous experimental tests of Bell inequalities have required additional assumptions. The strong Bell inequalities (i.e. those requiring no additional assumptions) have never been tested. An experiment has been designed that can, for the first time, provide a definitive test of the strong Bell inequalities. Not only will the detector efficiency loophole be closed; but the locality condition will also be rigorously enforced. The experiment involves producing two Hg-199 atoms by a resonant Raman dissociation of a mercury dimer ((199)Hg2) that is in an electronic and nuclear spin singlet state. Bell inequalities can be tested by measuring angular momentum correlations between the spin one-half nuclei of the two Hg-199 atoms. The method used to make these latter measurements will be described.

  1. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity

    SciTech Connect

    Song, Yong-Seon; Zhao Gongbo; Bacon, David; Koyama, Kazuya; Nichol, Robert C.; Pogosian, Levon

    2011-10-15

    We explore the complementarity of weak lensing and galaxy peculiar velocity measurements to better constrain modifications to General Relativity. We find no evidence for deviations from General Relativity on cosmological scales from a combination of peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital Sky Survey) with weak lensing measurements (from the Canadian France Hawaii Telescope Legacy Survey). We provide a Fisher error forecast for a Euclid-like space-based survey including both lensing and peculiar velocity measurements and show that the expected constraints on modified gravity will be at least an order of magnitude better than with present data, i.e. we will obtain {approx_equal}5% errors on the modified gravity parametrization described here. We also present a model-independent method for constraining modified gravity parameters using tomographic peculiar velocity information, and apply this methodology to the present data set.

  2. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  3. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  4. Formalism for testing theories of gravity using lensing by compact objects. II. Probing post-post-Newtonian metrics

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2006-02-15

    We study gravitational lensing by compact objects in gravity theories that can be written in a post-post-Newtonian (PPN) framework: i.e., the metric is static and spherically symmetric, and can be written as a Taylor series in m /r, where m is the gravitational radius of the compact object. Working invariantly, we compute corrections to standard weak-deflection lensing observables at first and second order in the perturbation parameter {epsilon}={theta}/{theta}{sub E}, where {theta} is the angular gravitational radius and {theta}{sub E} is the angular Einstein ring radius of the lens. We show that the first-order corrections to the total magnification and centroid position vanish universally for gravity theories that can be written in the PPN framework. This arises from some surprising, fundamental relations among the lensing observables in PPN gravity models. We derive these relations for the image positions, magnifications, and time delays. A deep consequence is that any violation of the universal relations would signal the need for a gravity model outside the PPN framework (provided that some basic assumptions hold). In practical terms, the relations will guide observational programs to test general relativity, modified gravity theories, and possibly the cosmic censorship conjecture. We use the new relations to identify lensing observables that are accessible to current or near-future technology, and to find combinations of observables that are most useful for probing the spacetime metric. We give explicit applications to the galactic black hole, microlensing, and the binary pulsar J0737-3039.

  5. The Sloan Bright Arcs Survey : Discovery of Seven New Strongly Lensed Galaxies from $\\rm{z}=0.66-2.94$

    SciTech Connect

    Kubo, Jeffrey M.; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H.Thomas; Drabek, Emily; Frieman, Joshua A.; Hao, Jiangang; Kubik, Donna; Lin, Huan; Soares-Santos, Marcelle

    2010-10-01

    We report the discovery of seven new, very bright gravitational lens systems from our ongoing gravitational lens search, the Sloan Bright Arcs Survey (SBAS). Two of the systems are confirmed to have high source redshifts z = 2.19 and z = 2.94. Three other systems lie at intermediate redshift with z = 1.33, 1.82, 1.93 and two systems are at low redshift z = 0.66, 0.86. The lensed source galaxies in all of these systems are bright, with i-band magnitudes ranging from 19.73-22.06. We present the spectrum of each of the source galaxies in these systems along with estimates of the Einstein radius for each system. The foreground lens in most systems is identified by a red sequence based cluster finder as a galaxy group; one system is identified as a moderately rich cluster. In total the SBAS has now discovered nineteen strong lens systems in the SDSS imaging data, eight of which are among the highest surface brightness z {approx_equal} 2-3 galaxies known.

  6. Testing the strong equivalence principle by radio ranging

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.; Shapiro, I. I.

    1984-01-01

    Planetary range data offer the most promising means to test the validity of the Strong Equivalence Principle (SEP). Analytical expressions for the perturbation in the 'range' expected from an SEP violation predicted by the 'variation-of-G' method and by the 'two-times' approach are derived and compared. The dominant term in both expressions is quadratic in time. Analysis of existing range data should allow a determination of the coefficient of this term with a one-standard-deviation uncertainty of about 1 part in 100 billion/yr.

  7. Types of Contact Lenses

    MedlinePlus

    ... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...

  8. The Systematic Error Test for PSF Correction in Weak Gravitational Lensing Shear Measurement By the ERA Method By Idealizing PSF

    NASA Astrophysics Data System (ADS)

    Okura, Yuki; Futamase, Toshifumi

    2016-08-01

    We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematic error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.

  9. [C II] and {sup 12}CO(1-0) emission maps in HLSJ091828.6+514223: A strongly lensed interacting system at z = 5.24

    SciTech Connect

    Rawle, T. D.; Altieri, B.; Egami, E.; Rex, M.; Clement, B.; Bussmann, R. S.; Gurwell, M.; Fazio, G. G.; Ivison, R. J.; Boone, F.; Combes, F.; Danielson, A. L. R.; Smail, I.; Swinbank, A. M.; Edge, A. C.; Richard, J.; Blain, A. W.; Dessauges-Zavadsky, M.; Jones, T.; Kneib, J.-P.; and others

    2014-03-01

    We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array {sup 12}CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple {sup 12}CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L {sub FIR(8–1000} {sub μm)} = (1.6 ± 0.1) × 10{sup 14} L {sub ☉} μ{sup –1}, where the total magnification μ{sub total} = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L {sub FIR,} {sub component} = (1.1 ± 0.2) × 10{sup 13} L {sub ☉}) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ∼ 500 km s{sup –1}) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.

  10. EVIDENCE OF VERY LOW METALLICITY AND HIGH IONIZATION STATE IN A STRONGLY LENSED, STAR-FORMING DWARF GALAXY AT z = 3.417

    SciTech Connect

    Amorín, R.; Grazian, A.; Castellano, M.; Pentericci, L.; Fontana, A.; Sommariva, V.; Merlin, E.; Van der Wel, A.; Maseda, M.

    2014-06-10

    We investigate the gas-phase metallicity and Lyman continuum (LyC) escape fraction of a strongly gravitationally lensed, extreme emission-line galaxy at z = 3.417, J1000+0221S, recently discovered by the CANDELS team. We derive ionization- and metallicity-sensitive emission-line ratios from H+K band Large Binocular Telescope (LBT)/LUCI medium resolution spectroscopy. J1000+0221S shows high ionization conditions, as evidenced by its enhanced [O III]/[O II] and [O III]/Hβ ratios. Strong-line methods based on the available line ratios suggest that J1000+0221S is an extremely metal-poor galaxy, with a metallicity of 12+log (O/H) < 7.44 (Z < 0.05 Z {sub ☉}), placing it among the most metal-poor star-forming galaxies at z ≳ 3 discovered so far. In combination with its low stellar mass (2 × 10{sup 8} M {sub ☉}) and high star formation rate (5 M {sub ☉} yr{sup –1}), the metallicity of J1000+0221S is consistent with the extrapolation of the mass-metallicity relation traced by Lyman-break galaxies at z ≳ 3 to low masses, but it is 0.55 dex lower than predicted by the fundamental metallicity relation at z ≲ 2.5. These observations suggest a rapidly growing galaxy, possibly fed by massive accretion of pristine gas. Additionally, deep LBT/LBC photometry in the UGR bands are used to derive a limit to the LyC escape fraction, thus allowing us to explore for the first time the regime of sub-L* galaxies at z > 3. We find a 1σ upper limit to the escape fraction of 23%, which adds a new observational constraint to recent theoretical models predicting that sub-L* galaxies at high-z have high escape fractions and thus are the responsible for the reionization of the universe.

  11. EDITORIAL: Focus on Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh

    2007-11-01

    progressed rapidly. That cosmic shear is now regarded as a key element of major missions aimed at probing dark energy is a feat of scientific persuasion—a decade ago not many believed it was realistic to even detect this tiny shear signal, let alone measure it with the percent-level accuracy needed to advance dark energy measurements. If weak lensing measurements deliver on their promise, then, in combination with other imaging and spectroscopic probes, they may well impact fundamental physics and cosmology. For example they may find evidence for an evolving dark energy component or signatures of departures from general relativity. These exciting prospects rest on new optical surveys planned for the next five years which will image a thousand square degrees or more of the sky to redshifts ~1 (compared to about a hundred square degrees imaged currently). Further, through photometric redshifts based on galaxy colors, lensing tomography methods will be applied to learn about the three-dimensional distribution of dark matter. Lensing measurements in other wavelengths, such as planned 21-cm surveys and CMB lensing, would add valuable diversity to measurement techniques. The case for the next generation optical surveys from the ground and space is compelling as well: they will produce another order of magnitude in data quantity and deliver images with minimal distortions due to the atmosphere and telescope optics. The coming decade therefore has the potential for exciting discoveries in gravitational lensing. Focus on Gravitational Lensing Contents A Bayesian approach to strong lensing modelling of galaxy clusters E Jullo, J-P Kneib, M Limousin, Á Elíasdóttir, P J Marshall and T Verdugo Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance Masahiro Takada and Sarah Bridle How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test? Pedro R Capelo and Priyamvada Natarajan Dark energy constraints

  12. Weak lensing by voids in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2015-08-01

    We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.

  13. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    SciTech Connect

    Bertozzi, Carolyn R.

    2000-06-01

    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity, and

  14. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    , which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.

  15. Pulsar lensing geometry

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  16. Numerical tests of AdS/CFT at strong coupling

    SciTech Connect

    Berenstein, David; Cotta, Randel; Leonardi, Rodrigo

    2008-07-15

    We study various correlation functions (two- and three-point functions) in a large N matrix model of six commuting matrices with a numerical Monte Carlo algorithm. This is equivalent to a model of a gas of particles in six dimensions with a confining quadratic potential and logarithmic repulsions at finite temperature, where we are measuring the leading-order nongaussianities in the thermal fluctuations. This is a simplified model of the low-energy dynamics of N=4 SYM at strong coupling. We find strong evidence that the simplified matrix model matches with the dual gravitational description of three-point functions in the AdS/CFT correspondence.

  17. Testing a phenomenologically extended DGP model with upcoming weak lensing surveys

    SciTech Connect

    Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F. E-mail: diaferio@ph.unito.it

    2011-01-01

    A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼

  18. Testing a phenomenologically extended DGP model with upcoming weak lensing surveys

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F.

    2011-01-01

    A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale rc, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700lesssimllesssim3000; on the contrary, the two models differ at most by the 1σ uncertainty over the range 500lesssimllesssim3000 in the DES experiment and they are virtually indistinguishable.

  19. Lensing duct

    DOEpatents

    Beach, Raymond J. , Benett

    1994-01-01

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.

  20. Gravitational lenses, cosmology, and galaxy structure

    NASA Astrophysics Data System (ADS)

    Winn, J.

    2002-05-01

    Gravitational lenses can be used to study dark matter in galaxies and to measure the Hubble constant. The statistics of lensing can be used to measure the cosmological constant. I have been conducting a survey of the southern sky for new lenses at radio wavelengths, which has resulted in 4 confirmed lenses and 3 strong candidates that require further follow-up. I will describe the survey and the scientific results that have been obtained from the new lenses. I will also describe my other life as a science journalist.

  1. SPT 0538–50: Physical conditions in the interstellar medium of a strongly lensed dusty star-forming galaxy at z = 2.8

    SciTech Connect

    Bothwell, M. S.; Aguirre, J. E.; Chapman, S. C.; Marrone, D. P.; Vieira, J. D.; Bock, J. J.; Downes, T. P.; Ashby, M. L. N.; Aravena, M.; De Breuck, C.; Gullberg, B.; Benson, B. A.; Carlstrom, J. E.; Crawford, T. M.; Bradford, C. M.; Brodwin, M.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; and others

    2013-12-10

    We present observations of SPT-S J053816–5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538–50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538–50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538–50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 ± 4), we derive the intrinsic properties of SPT 0538–50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and—using molecular line fluxes—the excitation conditions within the interstellar medium. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538–50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch.

  2. Strong Iron Emission in Quasars: Testing a Thermal Model.

    NASA Astrophysics Data System (ADS)

    Cooper, Erin M.; Leighly, K.

    2012-01-01

    FeII emission poses a long-standing yet important problem in studies of quasar broad emission lines. FeII emission is a primary coolant of the broad-line region, a primary player in the set of emission line correlations known as Eigenvector 1, and it can yield information about metallicity in the early Universe. It is generally thought that UV FeII emission has the same shape in all quasars, varying only in equivalent width; however, Leighly et al. 2007 identified two characteristic shapes. Typical quasars exhibit FeII emission in the 2200-2600Å region. PHL 1811-like quasars exhibit additional FeII emission in the 2200-2600Å region and excess emission in the regions 2100-2200Å and 1950-2050Å. Leighly et al. hypothesized the difference in shape arises from differences in Fe excitation and ionization in these strong Fe emitters: the emission in typical spectra arises from low-excitation FeII, and in PHL 1811-like spectra the emission arises from additional high-excitation FeII and FeIII. We investigate the near-UV Fe emission in quasars by modeling strong iron emitters with templates generated using the atomic data in the Kurucz database. By grouping lines of similar upper energy level, we populate the levels according to the Boltzmann factor, as in a thermal gas. A preliminary fit of the strong iron emitter SDSS J124244.37+624659.1 shows the expected lower-excitation levels dominating the FeII emission. Analysis of the PHL 1811 spectrum shows the expected higher-excitation levels contributing to the FeII emission, and additional FeIII flux relative to the SDSS J124244.37+624659.1 spectrum. More analysis is needed to interpret the spectrum in the 2000-2300Å range, where the excess of flux presents a challenge to model. Additional results will include a larger sample of strong Fe emitting quasars of both types. This work is funded by NSF AST-0707703.

  3. A test of the flavor independence of strong interactions

    SciTech Connect

    Hildreth, M.D.

    1994-08-01

    The authors present a comparison of the strong couplings of b, c, and light (u, d, and s) quarks derived from multi-jet rates in flavor-tagged samples of hadronic Z{sup 0} decays recorded with the SLC Large Detector at the SLAC Linear Collider. By comparing the rates of 3-jet events in these three samples they have extracted (Preliminary) values of: {alpha}{sub s}(uds)/{alpha}{sub s}(all) = 0.96 {+-} 0.03(stat.) {+-} 0.04(syst.) {+-} 0.02(theory), {alpha}{sub s}(c)/{alpha}{sub s}(all) = 1.16 {+-} 0.11(stat.) {+-} 0.10(syst.) {+-} 0.07(theory), {alpha}{sub s}(b)/{alpha}{sub s}(all) = 0.98 {+-} 0.04(stat.) {+-} 0.08(syst.) {+-} 0.02(theory).

  4. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts

  5. Strong Loophole-Free Test of Local Realism.

    PubMed

    Shalm, Lynden K; Meyer-Scott, Evan; Christensen, Bradley G; Bierhorst, Peter; Wayne, Michael A; Stevens, Martin J; Gerrits, Thomas; Glancy, Scott; Hamel, Deny R; Allman, Michael S; Coakley, Kevin J; Dyer, Shellee D; Hodge, Carson; Lita, Adriana E; Verma, Varun B; Lambrocco, Camilla; Tortorici, Edward; Migdall, Alan L; Zhang, Yanbao; Kumor, Daniel R; Farr, William H; Marsili, Francesco; Shaw, Matthew D; Stern, Jeffrey A; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Jennewein, Thomas; Mitchell, Morgan W; Kwiat, Paul G; Bienfang, Joshua C; Mirin, Richard P; Knill, Emanuel; Nam, Sae Woo

    2015-12-18

    We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment. PMID:26722906

  6. Strong Loophole-Free Test of Local Realism.

    PubMed

    Shalm, Lynden K; Meyer-Scott, Evan; Christensen, Bradley G; Bierhorst, Peter; Wayne, Michael A; Stevens, Martin J; Gerrits, Thomas; Glancy, Scott; Hamel, Deny R; Allman, Michael S; Coakley, Kevin J; Dyer, Shellee D; Hodge, Carson; Lita, Adriana E; Verma, Varun B; Lambrocco, Camilla; Tortorici, Edward; Migdall, Alan L; Zhang, Yanbao; Kumor, Daniel R; Farr, William H; Marsili, Francesco; Shaw, Matthew D; Stern, Jeffrey A; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Jennewein, Thomas; Mitchell, Morgan W; Kwiat, Paul G; Bienfang, Joshua C; Mirin, Richard P; Knill, Emanuel; Nam, Sae Woo

    2015-12-18

    We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

  7. Optical testing of bifocal diffractive-refractive intraocular lenses using Shack-Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Gutman, A. S.; Shchesyuk, I. V.; Korolkov, V. P.

    2010-05-01

    Applicability of the Shack-Hartmann wavefront sensor for the bifocal diffractive-refractive intraocular lens testing is discussed. Measurement method based on quasi-continuous wavefront has been suggested. Light source requirements for testing of MIOL-Accord intraocular lens have been validated. The method has been realized in dioptrimeter including Shack-Hartman sensor and multi-wavelength coherent light source.

  8. Gravitational lenses and particle properties

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1986-01-01

    The potential of observations of gravitational lens systems for the determination of cosmological constants and for tests of the nature and distribution of dark matter is illustrated. The advantages and disadvantages of gravitational lenses as cosmological probes are evaluated.

  9. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  10. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  11. 3D printed diffractive terahertz lenses.

    PubMed

    Furlan, Walter D; Ferrando, Vicente; Monsoriu, Juan A; Zagrajek, Przemysław; Czerwińska, Elżbieta; Szustakowski, Mieczysław

    2016-04-15

    A 3D printer was used to realize custom-made diffractive THz lenses. After testing several materials, phase binary lenses with periodic and aperiodic radial profiles were designed and constructed in polyamide material to work at 0.625 THz. The nonconventional focusing properties of such lenses were assessed by computing and measuring their axial point spread function (PSF). Our results demonstrate that inexpensive 3D printed THz diffractive lenses can be reliably used in focusing and imaging THz systems. Diffractive THz lenses with unprecedented features, such as extended depth of focus or bifocalization, have been demonstrated. PMID:27082335

  12. Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Saha, P.; Murdin, P.

    2000-11-01

    Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...

  13. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  14. Gravitational lensing by black holes: The case of Sgr A*

    SciTech Connect

    Bozza, V.

    2014-01-14

    The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.

  15. Habitual wearers of colored lenses adapt more rapidly to the color changes the lenses produce.

    PubMed

    Engel, Stephen A; Wilkins, Arnold J; Mand, Shivraj; Helwig, Nathaniel E; Allen, Peter M

    2016-08-01

    The visual system continuously adapts to the environment, allowing it to perform optimally in a changing visual world. One large change occurs every time one takes off or puts on a pair of spectacles. It would be advantageous for the visual system to learn to adapt particularly rapidly to such large, commonly occurring events, but whether it can do so remains unknown. Here, we tested whether people who routinely wear spectacles with colored lenses increase how rapidly they adapt to the color shifts their lenses produce. Adaptation to a global color shift causes the appearance of a test color to change. We measured changes in the color that appeared "unique yellow", that is neither reddish nor greenish, as subjects donned and removed their spectacles. Nine habitual wearers and nine age-matched control subjects judged the color of a small monochromatic test light presented with a large, uniform, whitish surround every 5s. Red lenses shifted unique yellow to more reddish colors (longer wavelengths), and greenish lenses shifted it to more greenish colors (shorter wavelengths), consistent with adaptation "normalizing" the appearance of the world. In controls, the time course of this adaptation contained a large, rapid component and a smaller gradual one, in agreement with prior results. Critically, in habitual wearers the rapid component was significantly larger, and the gradual component significantly smaller than in controls. The total amount of adaptation was also larger in habitual wearers than in controls. These data suggest strongly that the visual system adapts with increasing rapidity and strength as environments are encountered repeatedly over time. An additional unexpected finding was that baseline unique yellow shifted in a direction opposite to that produced by the habitually worn lenses. Overall, our results represent one of the first formal reports that adjusting to putting on or taking off spectacles becomes easier over time, and may have important

  16. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  17. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    SciTech Connect

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  18. Glasses and Contact Lenses

    MedlinePlus

    ... Here's Help White House Lunch Recipes Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A Text Size What's ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...

  19. Galaxy cluster lensing masses in modified lensing potentials

    DOE PAGES

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less

  20. Galaxy cluster lensing masses in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentration and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.

  1. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  2. Learning unit: Thin lenses

    NASA Astrophysics Data System (ADS)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  3. Shallow-water wave lensing in coral reefs: a physical and biological case study.

    PubMed

    Veal, Cameron James; Carmi, Maya; Dishon, Gal; Sharon, Yoni; Michael, Kelvin; Tchernov, Dan; Hoegh-Guldberg, Ove; Fine, Maoz

    2010-12-15

    Wave lensing produces the highest level of transient solar irradiances found in nature, ranging in intensity over several orders of magnitude in just a few tens of milliseconds. Shallow coral reefs can be exposed to wave lensing during light-wind, clear-sky conditions, which have been implicated as a secondary cause of mass coral bleaching through light stress. Management strategies to protect small areas of high-value reef from wave-lensed light stress were tested using seawater irrigation sprinklers to negate wave lensing by breaking up the water surface. A series of field and tank experiments investigated the physical and photophysiological response of the shallow-water species Stylophora pistillata and Favites abdita to wave lensing and sprinkler conditions. Results show that the sprinkler treatment only slightly reduces the total downwelling photosynthetically active and ultraviolet irradiance (∼5.0%), whereas it dramatically reduces, by 460%, the irradiance variability caused by wave lensing. Despite this large reduction in variability and modest reduction in downwelling irradiance, there was no detectable difference in photophysiological response of the corals between control and sprinkler treatments under two thermal regimes of ambient (27°C) and heated treatment (31°C). This study suggests that shallow-water coral species are not negatively affected by the strong flashes that occur under wave-lensing conditions. PMID:21113012

  4. Characterization of sand lenses embedded in tills

    NASA Astrophysics Data System (ADS)

    Kessler, T. C.; Klint, K. E. S.; Nilsson, B.; Bjerg, P. L.

    2012-10-01

    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric parameters is defined to allow characterization of sand lenses. The proposed classification scheme uses a stringent terminology to distinguish several types of sand lenses based on the geometry. It includes sand layers, sand sheets, sand bodies, sand pockets and sand stringers. The methodology has been applied at the Kallerup field site in the Eastern part of Denmark. The site offers exposures in a number of till types that underwent different levels of glaciotectonic deformation. Sand lenses show high spatial variability and only weak uniformity in terms of extent and shape. Secondly, the genesis of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses in various glacial environments. Due to the complex and mutable appearance of sand lenses, geometric descriptions can reveal the deformation history and even give indications on the palaeo-glaciological conditions during the deposition of the surrounding tills. This information can support the understanding of till genesis and further inform till classifications. In this regard, structural heterogeneity such as sand lenses can supplement traditional directional element analysis

  5. The M31 pixel lensing plan campaign: MACHO lensing and self-lensing signals

    SciTech Connect

    Calchi Novati, S.; Scarpetta, G.; Bozza, V.; Bruni, I.; Gualandi, R.; Dall'Ora, M.; De Paolis, F.; Ingrosso, G.; Nucita, A.; Strafella, F.; Dominik, M.; Jetzer, Ph.; Mancini, L.; Safonova, M.; Subramaniam, A.; Sereno, M.; Gould, A.; Collaboration: PLAN Collaboration

    2014-03-10

    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' × 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both 'self lensing' and 'MACHO lensing' lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10{sup –2}) M {sub ☉} MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M {sub ☉} MACHOs.

  6. Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-detected Lyman-Break Galaxies at 6 ≲ z ≲ 10 behind Strong-lensing Clusters

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Bradač, Maruša; Lemaux, Brian C.; Ryan, R. E., Jr.; Hoag, Austin; Castellano, Marco; Amorín, Ricardo; Fontana, Adriano; Brammer, Gabriel B.; Cain, Benjamin; Lubin, L. M.; Merlin, Emiliano; Schmidt, Kasper B.; Schrabback, Tim; Treu, Tommaso; Gonzalez, Anthony H.; von der Linden, Anja; Knight, Robert I.

    2016-01-01

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ˜1.2-5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M1600 are between -21.2 and -18.9 mag, while their intrinsic stellar masses are between 2 × 108M⊙ and 2.9 × 109M⊙. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at zLyα = 6.76 (in RXJ 1347) and one at zLyα = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]-[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  7. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Astrophysics Data System (ADS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-09-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  8. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-01-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  9. Spherical aberration in electrically thin flat lenses.

    PubMed

    Ruphuy, Miguel; Ramahi, Omar M

    2016-08-01

    We analyze the spherical aberration of a new generation of lenses made of flat electrically thin inhomogeneous media. For such lenses, spherical aberration is analyzed quantitatively and qualitatively, and comparison is made to the classical gradient index rod. Both flat thin and thick lenses are made of gradient index materials, but the physical mechanisms and design equations are different. Using full-wave three-dimensional numerical simulation, we evaluate the spherical aberrations using the Maréchal criterion and show that the thin lens gives significantly better performance than the thick lens (rod). Additionally, based on ray tracing formulation, third-order analysis for longitudinal aberration and optical path difference are presented, showing strong overall performance of thin lenses in comparison to classical rod lenses. PMID:27505651

  10. The SNAP Strong Lens Survey

    SciTech Connect

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  11. Detection of stacked filament lensing between SDSS luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Miyatake, Hironao; Jain, Bhuvnesh; Takada, Masahiro

    2016-04-01

    We search for the lensing signal of massive filaments between 135 000 pairs of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey. We develop a new estimator that cleanly removes the much larger shear signal of the neighbouring LRG haloes, relying only on the assumption of spherical symmetry. We consider two models: a `thick'-filament model constructed from ray-tracing simulations for Λ cold dark matter model, and a `thin'-filament model which models the filament by a string of haloes along the line connecting the two LRGs. We show that the filament lensing signal is in nice agreement with the thick simulation filament, while strongly disfavouring the thin model. The magnitude of the lensing shear due to the filament is below 10-4. Employing the likelihood ratio test, we find a 4.5σ significance for the detection of the filament lensing signal, corresponding to a null hypothesis fluctuation probability of 3 × 10-6. We also carried out several null tests to verify that the residual shear signal from neighbouring LRGs and other shear systematics are minimized.

  12. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    SciTech Connect

    Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.; Florian, Michael; Baum, Stefi A.; O'Dea, Christopher P.; Cooke, Kevin C.; Bayliss, Matthew B.; Dahle, Håkon; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  13. Towards noiseless gravitational lensing simulations

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Chen, Ruizhu; Hilbert, Stefan; Abel, Tom

    2014-11-01

    The microphysical properties of the dark matter (DM) particle can, in principle, be constrained by the properties and abundance of substructures in galaxy clusters, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of these substructures, mainly because of the discreteness noise inherent to N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to provide lensing predictions with an arbitrarily low discreteness noise. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages and limitations of this method compared to the widely used density estimators based on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.

  14. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  15. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  16. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  17. Testing strong factorial invariance using three-level structural equation modeling

    PubMed Central

    Jak, Suzanne

    2014-01-01

    Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias) across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak et al. (2013) showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling. PMID:25120499

  18. Instrumental Behaviors Following Test Administration and Interpretation: Exploration Validity of the Strong Interest Inventory.

    ERIC Educational Resources Information Center

    Randahl, Gloria J.; And Others

    1993-01-01

    Conducted two-phase longitudinal study to explore power of Strong Interest Inventory (SII) for college students to facilitate career exploration activities such as talking to professionals and seeking vocational information. Experimental subjects (n=75) who participated in SII testing and group interpretation reported significantly more…

  19. [A test of the strong reciprocity model: relationship between cooperation and punishment].

    PubMed

    Li, Yang; Yamagishi, Toshio

    2014-04-01

    The strong reciprocity model of human cooperation (SRM) argues that strong reciprocators, who cooperate with others and punish non-cooperators, sustain within-group cooperation. However, the assumption that altruism and punishment are products of the same psychological mechanism of strong reciprocity has not been fully verified. Second-party punishment, for example as measured through rejection of unfair offers in the ultimatum game, has been demonstrated to have no relationship with cooperation in the prisoner's dilemma and other games. In this study, we tested the assumption of the SRM by comparing the participants' levels of cooperation in the prisoner's dilemma game and their inclination for punishment in a third-party punishment game. Non-student recruited from the general population (N = 182) participated in the study. The results show a weak but positive correlation between cooperation and third-party punishment, which is consistent with the SRM model.

  20. [A test of the strong reciprocity model: relationship between cooperation and punishment].

    PubMed

    Li, Yang; Yamagishi, Toshio

    2014-04-01

    The strong reciprocity model of human cooperation (SRM) argues that strong reciprocators, who cooperate with others and punish non-cooperators, sustain within-group cooperation. However, the assumption that altruism and punishment are products of the same psychological mechanism of strong reciprocity has not been fully verified. Second-party punishment, for example as measured through rejection of unfair offers in the ultimatum game, has been demonstrated to have no relationship with cooperation in the prisoner's dilemma and other games. In this study, we tested the assumption of the SRM by comparing the participants' levels of cooperation in the prisoner's dilemma game and their inclination for punishment in a third-party punishment game. Non-student recruited from the general population (N = 182) participated in the study. The results show a weak but positive correlation between cooperation and third-party punishment, which is consistent with the SRM model. PMID:24804436

  1. Lensed Type Ia supernovae as probes of cluster mass models

    NASA Astrophysics Data System (ADS)

    Nordin, J.; Rubin, D.; Richard, J.; Rykoff, E.; Aldering, G.; Amanullah, R.; Atek, H.; Barbary, K.; Deustua, S.; Fakhouri, H. K.; Fruchter, A. S.; Goobar, A.; Hook, I.; Hsiao, E. Y.; Huang, X.; Kneib, J.-P.; Lidman, C.; Meyers, J.; Perlmutter, S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Supernova Cosmology Project

    2014-05-01

    Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at ˜5σ significance (SN-L2). We conducted this as a blind study to avoid fine-tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of 0.09 ± 0.09stat ± 0.05sys mag. This impressive agreement suggests no tension between cluster mass models and high-redshift-standardized SNe Ia. However, the measured statistical dispersion of σμ = 0.21 mag appeared large compared to the dispersion expected based on statistical uncertainties (0.14). Further work with the SN and cluster lensing models, post-unblinding, reduced the measured dispersion to σμ = 0.12. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.

  2. Contour mapping of spectacle lenses.

    PubMed

    Liu, L

    1994-04-01

    The measurement of spectacle lenses by conventional focimeters and automated focimeters assesses only a small region of the lens, and only the power and related data at that point are indicated. In this paper, two methods based on optical Fourier filtering and optical correlation are suggested for contour-mapping the deviations of a spectacle lens over its whole aperture. The fringe pattern appearing on the lens image depicts vividly the characteristics of the tested lens. All the related data are qualitatively seen at a glance and can be calculated from the fringe distribution. Furthermore, the optical processing of the fringes by defocusing is described; thus, the fringes can be continuously changed by shifting the illuminating point source or mask. The shift indicates the spherical power needed to decrease or increase the lens fringes. In addition, a fringe-reading technique is suggested by counting the number of the fringes within a reticle ring. Therefore, the sphere power, cylinder power, cylinder axis, prism power, and prism orientation can be obtained from the reading of the fringes, the shift position, or their combination with a high accuracy. The methods are suitable not only to sphere, spherocylinder, and prism lenses but also to multifocus and progressive power lenses. The suggestion provides a practical way to measure spectacle lenses over the whole aperture. PMID:8047340

  3. Contact Lenses for Vision Correction

    MedlinePlus

    ... Contact Lenses Colored Contact Lenses Contact Lenses for Vision Correction Written by: Kierstan Boyd Reviewed by: Brenda ... on the surface of the eye. They correct vision like eyeglasses do and are safe when used ...

  4. Adherence of Staphylococcus epidermidis to intraocular lenses.

    PubMed Central

    Griffiths, P. G.; Elliot, T. S.; McTaggart, L.

    1989-01-01

    We have demonstrated, with an in vitro model, that Staphylococcus epidermidis is able to colonise intraocular lenses. Adherent organisms were quantitated by light microscopy, scanning electron microscopy, and viable counting. Bacterial adherence was associated with production of a polysaccharide glycocalyx. Organisms which were attached to the lenses were resistant to apparently bactericidal concentrations of antibiotics, as determined by conventional testing. We speculate on the role of colonisation in the pathogenesis of endophthalmitis. Images PMID:2751971

  5. Cosmology with Doppler lensing

    NASA Astrophysics Data System (ADS)

    Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy

    2014-09-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialized overdensities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3D potential maps of large volumes of the Universe using Doppler lensing.

  6. Learning through Different Lenses

    ERIC Educational Resources Information Center

    Jeweler, Sue; Barnes-Robinson, Linda

    2015-01-01

    When parents and teachers help gifted kids use the metaphor "learning through different lenses," amazing things happen: Horizons open up. Ideas are focused. Thoughts are magnified and clarified. They see the big picture. Metaphoric thinking offers new and exciting ways to see the world. Viewing the world through different lenses provides…

  7. One Episode, Two Lenses

    ERIC Educational Resources Information Center

    Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc

    2013-01-01

    A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…

  8. Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon

    SciTech Connect

    La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence; Mancusi, Davide; Iwata,Yoshiuki; Murakami, Takeshi

    2006-06-21

    Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.

  9. Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses

    PubMed Central

    Brezna, Wolfgang; Lux, Kirsten; Dragostinoff, Nikolaus; Krutzler, Christian; Plank, Nicole; Tobisch, Rainer; Boltz, Agnes; Garhöfer, Gerhard; Told, Reinhard; Witkowska, Katarzyna; Schmetterer, Leopold

    2016-01-01

    Purpose The visual performance of monofocal, bifocal, and trifocal intraocular lenses was evaluated by human individuals using a vision simulator device. This allowed investigation of the visual impression after cataract surgery, without the need actually to implant the lenses. Methods The randomized, double-masked, three-way cross-over study was conducted on 60 healthy male and female subjects aged between 18 and 35 years. Visual acuity (Early Treatment Diabetic Retinopathy Study; ETDRS) and contrast sensitivity tests (Pelli-Robson) under different lighting conditions (luminosities from 0.14–55 cd/m2, mesopic to photopic) were performed at different distances. Results Visual acuity tests showed no difference for corrected distance visual acuity data of bi- and trifocal lens prototypes (P = 0.851), but better results for the trifocal than for the bifocal lenses at distance corrected intermediate (P = 0.021) and distance corrected near visual acuity (P = 0.044). Contrast sensitivity showed no differences between bifocal and trifocal lenses at the distant (P = 0.984) and at the near position (P = 0.925), but better results for the trifocal lens at the intermediate position (P = 0.043). Visual acuity and contrast sensitivity showed a strong dependence on luminosity (P < 0.001). Conclusions At all investigated distances and all lighting conditions, the trifocal lens prototype often performed better, but never worse than the bifocal lens prototype. Translational Relevance The vision simulator can fill the gap between preclinical lens development and implantation studies by providing information of the perceived vision quality after cataract surgery without implantation. This can reduce implantation risks and promotes the development of new lens concepts due to the cost effective test procedure. PMID:27777828

  10. Optimizing SNAP for Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. W.; Ellis, R. S.; Massey, R. J.; Rhodes, J. D.; Lamoureux, J. I.; SNAP Collaboration

    2004-12-01

    The Supernova/Acceleration Probe (SNAP) satellite proposes to measure weak gravitational lensing in addition to type Ia supernovae. Its pixel scale has been set to 0.10 arcsec per pixel as established by the needs of supernova observations. To find the optimal pixel scale for accurate weak lensing measurements we conduct a tradeoff study in which, via simulations, we fix the suvey size in total pixels and vary the pixel scale. Our preliminary results show that with a smaller scale of about 0.08 arcsec per pixel we can minimize the contribution of intrinsic shear variance to the error on the power spectrum of mass density distortion. Currently we are testing the robustness of this figure as well as determining whether dithering yields analogous results.

  11. Multimodal characterization of contact lenses

    NASA Astrophysics Data System (ADS)

    Marcus, Michael A.; Compertore, David; Gibson, Donald S.; Herbrand, Matthew E.; Ignatovich, Filipp V.

    2015-10-01

    A table top instrument has been designed, constructed and tested to characterize all of the primary optical and physical properties of contact lenses. Measured optical properties include base power, cylinder power, cylindrical axis, prism, refractive index and wavefront aberrations. Measured physical properties include center thickness, lens diameter and lens sagittal depth. The instrument combines a Shack-Hartmann wavefront sensor (SHWS), a machine vision sensor, and a low coherence light interferometer (LCI) all coaxially aligned into a single tabletop unit. The unit includes a cuvette, mounted in a translatable sample chamber for holding the contact lens under test, and it can be configured to measure wet or dry contact lenses. During operation, the vision sensor measures the diameter of the lens, and locates the center of the lens. The lens is then aligned for other measurements. The vision sensor can also measure various alignment marks on the lens, as well as identify any alpha numerical features, which can be used to associate the lens orientation with the measured aberrations. The LCI measures the center thickness, sagittal depth and index of refraction of the contact lens. The base radius of curvature is then calculated using these measured parameters. The SHWS measures the lenses prescription power, including spherical, cylinder, prism, and higher order wavefront aberrations. NIST traceable calibration artifacts are used to calibrate the SHWS, machine vision and LCI modalities. Repeatability measurements on a contact lens in a saline solution are presented.

  12. Stress-Detection Lenses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.

  13. Inverting Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Newbury, P. R.; Spiteri, R. J.

    2002-02-01

    Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.

  14. Lense-Thirring Precession in the Astrophysical Context

    NASA Astrophysics Data System (ADS)

    Stella, Luigi; Possenti, Andrea

    2009-12-01

    This paper surveys some of the astrophysical environments in which the effects of Lense-Thirring precession and, more generally, frame dragging are expected to be important. We concentrate on phenomena that can probe in situ the very strong gravitational field and single out Lense-Thirring precession in the close vicinity of accreting neutron stars and black holes: these are the fast quasi periodic oscillations in the X-ray flux of accreting compact objects. We emphasise that the expected magnitude of Lense-Thirring/frame dragging effects in the regions where these signals originate are large and thus their detection does not pose a challenge; rather it is the interpretation of these phenomena that needs to be corroborated through deeper studies. Relativistic precession in the spin axis of radio pulsars hosted in binary systems hosting another neutron star has also been measured. The remarkable properties of the double pulsar PSR J0737-3039 has opened a new perspective for testing the predictions of general relativity also in relation to the precession of spinning bodies.

  15. Final report on repair procedure of strong ground motion data from underground nuclear tests

    SciTech Connect

    Tunnell, T.W.

    1995-04-01

    Certain difficulties arise when recording close-in around motion from underground nuclear explosions. Data quality can be compromised by a variety of factors, including electromagnetic pulse, noise spikes, direct current effect, and gauge clipping and gauge tilt. From March 1988 through September 1994, EG&G Energy Measurements repaired strong round-motion data (acceleration data) from underground nuclear tests for the Los Alamos National Laboratory using, an automated repair procedure. The automated repair determined and implemented the required repairs based on user input and a consistent set of criteria. A log was kept of each repair so that the repair procedure could be duplicated. This relaxed the requirement to save the repaired data. Developed for the VAX system, the procedure allowed the user to stack up a large number of repairs, plot the repaired data, and obtain hard copies. The plotted data could then be reviewed for a given test to determine the consistency of repair for a given underground test. This feature released the user to perform other tasks while the data were being repaired.

  16. Testing the strong equivalence principle with spacecraft ranging towards the nearby Lagrangian points

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe; De Marchi, Fabrizio

    2016-05-01

    General relativity is supported by great experimental evidence. Yet there is a lot of interest in precisely setting its limits with on going and future experiments. A question to answer is about the validity of the strong equivalence principle. Ground experiments and lunar laser ranging have provided the best upper limit on the Nordtvedt parameter σ [η ]=4.4 ×10-4 . With the future planetary mission BepiColombo, this parameter will be further improved by at least an order of magnitude. In this paper we envisage yet another possible testing environment with spacecraft ranging towards the nearby Sun-Earth collinear Lagrangian points. Neglecting errors in planetary masses and ephemerides, we forecast σ [η ]=6.4 (2.0 )×10-4 (5 yr integration time) via ranging towards L1 in a realistic (optimistic) scenario depending on current (future) range capabilities and knowledge of the Earth's ephemerides. A combined measurement, L1+L2, gives instead 4.8 (1.7 )×10-4. In the optimistic scenario a single measurement of one year would be enough to reach ≈3 ×10-4. All figures are comparable with lunar laser ranging, but worse than BepiColombo. Performances could be much improved if data were integrated over time and over the number of satellites flying around either of the two Lagrangian points. We point out that some systematics (gravitational perturbations of other planets or figure effects) are much more in control compared to other experiments. We do not advocate a specific mission to constrain the strong equivalence principle, but we do suggest analyzing ranging data of present and future spacecrafts flying around L1/L2 (one key mission is, for instance, LISA Pathfinder). This spacecraft ranging would be a new and complementary probe to constrain the strong equivalence principle in space.

  17. Applications of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    I derive the basic principles of gravitational lensing, and proceed to describe several astrophysical applications. First, invariants in gravitational lensing magnification are derived using techniques of multidimensional residue calculus, and illustrated with example calculations. Then I discuss how these invariant quantities may be useful for measuring the properties of lenses. Next, I discuss the use of astrometric microlensing for studying extrasolar planets. Finally, the use of lensing for the study of substructure in dark matter halos is presented, along with ramifications for the small-scale power spectrum of matter fluctuations. The strongest bounds to date are placed on the mass of the dark matter particle, as well as bounds on the neutrino mass and slope of the primordial power spectrum.

  18. Gravitational Lensing: Einstein's unfinished symphony

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Ellis, Richard S.

    2015-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.

  19. Evaporated As2S3 Luneburg lenses for LiNbO3:Ti optical waveguides

    NASA Technical Reports Server (NTRS)

    Busch, J. R.; Wood, V. E.; Kenan, R. P.; Verber, C. M.

    1981-01-01

    Luneburg lenses of good quality were formed on high index optical waveguides by evaporation of arsenic trisulfide glass through simple masks. Using only two thin circular aperture masks, lenses with focal spots of a few times the diffraction limited width at f/4 were obtained. These lenses were designed for and tested at both visible (633 nm) and infrared wavelengths. Procedures for the design, fabrication, and testing of lenses of this type are described.

  20. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  1. Zoom camera based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.; Suijver, J. F.; Deladi, S.; Helwegen, I.

    2007-01-01

    A 1.7× VGA zoom camera was designed based on two variable-focus liquid lenses and three plastic lenses. The strongly varying curvature of the liquid/liquid interface in the lens makes an achromatic design complicated. Special liquids with a rare combination of refractive index and Abbe number are required to prevent chromatic aberrations for all zoom levels and object positions. A set of acceptable liquids was obtained and used in a prototype that was constructed according to our design. First photos taken with the prototype show a proof of principle.

  2. Integral volumetric imaging using decentered elemental lenses.

    PubMed

    Sawada, Shimpei; Kakeya, Hideki

    2012-11-01

    This paper proposes a high resolution integral imaging system using a lens array composed of non-uniform decentered elemental lenses. One of the problems of integral imaging is the trade-off relationship between the resolution and the number of views. When the number of views is small, motion parallax becomes strongly discrete to maintain the viewing angle. In order to overcome this trade-off, the proposed method uses the elemental lenses whose size is smaller than that of the elemental images. To keep the images generated by the elemental lenses at constant depth, the lens array is designed so that the optical centers of elemental lenses may be located in the centers of elemental images, not in the centers of elemental lenses. To compensate optical distortion, new image rendering algorithm is developed so that undistorted 3D image may be presented with a non-uniform lens array. The proposed design of lens array can be applied to integral volumetric imaging, where display panels are layered to show volumetric images in the scheme of integral imaging.

  3. Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. G.; Bates, J. E.; Sun, J.; Perdew, J. P.

    2016-09-01

    The strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015), 10.1103/PhysRevLett.115.036402] obeys all 17 known exact constraints for meta-generalized-gradient approximations (meta-GGAs), and it includes some medium-range correlation effects. Long-range London dispersion interactions are still missing, but they can be accounted for via an appropriate correction scheme. In this study, we combine SCAN with an efficient London dispersion correction and show that lattice energies of simple organic crystals can be improved with the applied correction by 50%. The London-dispersion corrected SCAN meta-GGA outperforms all other tested London-dispersion corrected meta-GGAs for molecular geometries. Our method yields mean absolute deviations (MADs) for main group bond lengths that are consistently below 1 pm, rotational constants with MADs of 0.2%, and noncovalent distances with MADs below 1%. For a large database of general main group thermochemistry and kinetics (˜800 chemical species), one of the lowest weighted mean absolute deviations for long-range corrected meta-GGA functionals is achieved. Noncovalent interactions are of average quality, and hydrogen bonded systems in particular seem to suffer from overestimated polarization related to the self-interaction error of SCAN. We also discuss some consequences of numerical sensitivity encountered for meta-GGAs.

  4. A laboratory test of Mach's principle and strong-field relativistic gravity

    NASA Astrophysics Data System (ADS)

    Woodward, James F.

    1996-06-01

    A laboratory experiment that tests the validity of Mach's principle — the relativity and gravitational induction of inertia — and relativistic gravity in strong-field circumstances is described. It consists of looking for a stationary shift in the apparent weight of an object when a transient mass fluctuation is induced in one of its parts, that part then being subjected to a pulsed thrust. The transient mass fluctuation induced is of the order of a few tens of milligrams, and the stationary weight shift observed is several milligrams. Details of the apparatus used (capable of detecting an effect at the level of about a tenth of a milligram) are presented. Procedural protocols are laid out. The results obtained — signals some 10 to 15 times the standard error in magnitude — confirm to better than order of magnitude that the predicted effect is indeed present. The consequences of this confirmation of Mach's principle and relativistic gravity are briefly addressed. In particular, it is pointed out that in light of these results “radical timelessness” seems to be the correct way to understand reality and, from the practical point-of-view, it may prove possible to make traversable wormholes whenever we choose to devote sufficient resources to that end.

  5. Modeling fine-scale geological heterogeneity--examples of sand lenses in tills.

    PubMed

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio; Renard, Philippe; Nilsson, Bertel; Klint, Knud Erik; Bjerg, Poul Løgstrup

    2013-01-01

    Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments. PMID:23252428

  6. Weighing simulated galaxy clusters using lensing and X-ray

    NASA Astrophysics Data System (ADS)

    Meneghetti, M.; Rasia, E.; Merten, J.; Bellagamba, F.; Ettori, S.; Mazzotta, P.; Dolag, K.; Marri, S.

    2010-05-01

    Context. Among the methods employed to measure the mass of galaxy clusters, the techniques based on lensing and X-ray analyses are perhaps the most widely used; however, the comparison between these mass estimates is often difficult and, in several clusters, the results apparently inconsistent. Aims: We aim at investigating potential biases in lensing and X-ray methods to measure the cluster mass profiles. Methods: We performed realistic simulations of lensing and X-ray observations that were subsequently analyzed using observational techniques. The resulting mass estimates were compared with the input models. Three clusters obtained from state-of-the-art hydrodynamical simulations, each of which projected along three independent lines-of-sight, were used for this analysis. Results: We find that strong lensing models can be trusted over a limited region around the cluster core. Extrapolating the strong lensing mass models to outside the Einstein ring can lead to significant biases in the mass estimates, if the BCG is not modeled properly, for example. Weak-lensing mass measurements can be strongly affected by substructures, depending on the method implemented to convert the shear into a mass estimate. Using nonparametric methods which combine weak and strong lensing data, the projected masses within R200 can be constrained with a precision of ~10%. Deprojection of lensing masses increases the scatter around the true masses by more than a factor of two because of cluster triaxiality. X-ray mass measurements have much smaller scatter (about a factor of two less than the lensing masses), but they are generally biased toward low values between 5 and 10%. This bias is entirely ascribable to bulk motions in the gas of our simulated clusters. Using the lensing and the X-ray masses as proxies for the true and the hydrostatic equilibrium masses of the simulated clusters and by averaging over the cluster sample, we are able to measure the lack of hydrostatic equilibrium in

  7. Contact Lenses in the Laboratory.

    ERIC Educational Resources Information Center

    Kingston, David W.

    1981-01-01

    Summarizes results of a three-item questionnaire returned by 43 Michigan institutions expressing views on wearing contact lenses in chemical laboratories. Questions focused on eye protection, type of protection, and use of contact lenses. (SK)

  8. Radiation Blocking Lenses

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Biomedical Optical Company of America's (BOCA) suntiger lenses, similar in principle to natural filters in the eyes of hawks and eagles, bar 99 percent of potentially harmful wavelengths, while allowing visually useful colors of light (red, orange, green) to pass through. They also improve visual acuity, night vision and haze or fog visibility. The lenses evolved from work done by James B. Stephens and Dr. Charles G. Miller of the Jet Propulsion Laboratory. They developed a formula and produced a commercial welding curtain that absorbs, filters, and scatters light. This research led to protective glasses now used by dentists, workers in hazardous environments, CRT operators and skiers.

  9. A survey of consumers' attitudes towards online purchase of contact lenses in Japan.

    PubMed

    Nomura, Tatsuya; Hirayama, Yoshito; Iwashima, Hiroki; Sakaguchi, Shinichi

    2009-01-01

    A survey with 324 respondents was conducted to explore factors influencing Japanese consumers' intentions to use the internet for the purchase of contact lenses. Analysis of the results revealed four types of consumers: (a) those who were strongly against using contact lenses and as a result did not intend to use the internet for their purchase, (b) those who had positive attitudes towards use of the internet for purchasing contact lenses, (c) those who preferred the current situation of purchasing contact lenses without using the internet and (d) those who were not unfavourable to purchase contact lenses via the internet.

  10. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  11. Fresnel's Lighthouse Lenses

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  12. Obituary--rigid contact lenses.

    PubMed

    Efron, Nathan

    2010-10-01

    Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses--also referred to as 'rigid gas permeable' (RGP) lenses or 'gas permeable' (GP) lenses--would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens 'problem solver' function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace. PMID:20674469

  13. Education and Employment Status: A Test of the Strong Screening Hypothesis in Italy.

    ERIC Educational Resources Information Center

    Brown, Sarah; Sessions, John G.

    1999-01-01

    Applies comparative techniques originated by K. Wolpin and G. Psacharopulos to discriminate between the "weak" and "strong" screening hypotheses, employed to determine whether societal investment in upgrading or expanding education is justified. Controlling for sample selection, this study finds evidence for weak screening in the Italian labor…

  14. Tested Demonstrations: Comparison of Strong Acid and Weak Acid Titration Curves.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    A lecture demonstration is presented for comparing titration curves. A plot of pH vs volume of strong base is produced by connecting the external output of a pH meter to a strip recorder. Thus, pH is recorded as a function of time. (BB)

  15. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    SciTech Connect

    Virbhadra, K. S.; Keeton, C. R.

    2008-06-15

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.

  16. Chitah: Strong-gravitational-lens Hunter in Imaging Surveys

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-01

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada-France-Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius {r}{ein}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of ˜ 90% and a low false-positive rate of ˜ 3% show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with {r}{ein}≳ 0\\buildrel{\\prime\\prime}\\over{.} 5, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  17. Surface analysis of surface-passivated intraocular lenses.

    PubMed

    Koch, D D; Samuelson, S W; Dimonie, V

    1991-03-01

    We analyzed the surfaces of six different types of poly(methyl methacrylate) intraocular lenses using electron spectroscopy for chemical analysis (ESCA), static secondary ion mass spectroscopy (SIMS), and two techniques for determining surface energies. The tested lenses were (1) Ioptex lathe-cut surface-passivated, (2) Ioptex lathe-cut, (3) another manufacturer's lathe-cut, (4) cast-molded, (5) polyfluorocarbon-coated, and (6) polyvinylpyrrolidone-grafted. The ESCA testing revealed marked differences in the chemical composition of the surfaces of the polyfluorocarbon-coated and polyvinylpyrrolidone-grafted lenses compared to the other four. Minute amounts of silicon were present on the cast-molded and surface-passivated lenses. Static SIMS testing revealed the presence of siloxane contaminants on the three lathe-cut and the cast-molded lenses; a statistically smaller amount of siloxane was present on the surface-passivated lenses. Contact angle and surface energy analysis revealed statistically lower surface energies for the polyfluorocarbon-coated materials and statistically higher surface energies for the polyvinylpyrrolidone-grafted; we found no differences in the contact angles and surface energies among the surface-passivated, lathe-cut, and cast-molded lenses. PMID:2040969

  18. The effect of weak lensing on distance estimates from supernovae

    SciTech Connect

    Smith, Mathew; Maartens, Roy; Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D'Andrea, Chris B.; Clarkson, Chris; Bassett, Bruce A.; Cinabro, David; Finley, David A.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Olmstead, Matthew D.; Schneider, Donald P.; Shapiro, Charles; Sollerman, Jesper

    2014-01-01

    Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.

  19. Quasars and gravitational lenses.

    PubMed

    Turner, E L

    1984-03-23

    Despite the expenditure of large amounts of telescope time and other resources, most of the fundamental questions concerning quasi-stellar objects (quasars) remain unanswered. A complex phenomenology of radio, infrared, optical, and x-ray properties has accumulated but has not yielded even a satisfactory classification system. The large red shifts (distances) of quasars make them very valuable tools for studying cosmology and the properties of intervening matter in the Universe through observations of absorption lines and gravitational lenses.

  20. LINKING TESTS OF GRAVITY ON ALL SCALES: FROM THE STRONG-FIELD REGIME TO COSMOLOGY

    SciTech Connect

    Baker, Tessa; Psaltis, Dimitrios; Skordis, Constantinos E-mail: dpsaltis@email.arizona.edu

    2015-03-20

    The current effort to test general relativity (GR) employs multiple disparate formalisms for different observables, obscuring the relations between laboratory, astrophysical, and cosmological constraints. To remedy this situation, we develop a parameter space for comparing tests of gravity on all scales in the universe. In particular, we present new methods for linking cosmological large-scale structure, the cosmic microwave background, and gravitational waves with classic PPN tests of gravity. Diagrams of this gravitational parameter space reveal a noticeable untested regime. The untested window, which separates small-scale systems from the troubled cosmological regime, could potentially hide the onset of corrections to GR.

  1. Thermal lensing in optical fibers.

    PubMed

    Dong, Liang

    2016-08-22

    Average powers from fiber lasers have reached the point that a quantitative understanding of thermal lensing and its impact on transverse mode instability is becoming critical. Although thermal lensing is well known qualitatively, there is a general lack of a simple method for quantitative analysis. In this work, we first conduct a study of thermal lensing in optical fibers based on a perturbation technique. The perturbation technique becomes increasingly inaccurate as thermal lensing gets stronger. It, however, provides a basis for determining a normalization factor to use in a more accurate numerical study. A simple thermal lensing threshold condition is developed. The impact of thermal lensing on transverse mode instability is also studied. PMID:27557260

  2. Fitting gravitational lenses: truth or delusion

    NASA Astrophysics Data System (ADS)

    Evans, N. Wyn; Witt, Hans J.

    2003-11-01

    The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.

  3. A model for testing strong gravity via X-ray reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Nampalliwar, Sourabh; Cardenas-Avendano, Alejandro

    2016-07-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity. However, a direct observational evidence is still lacking. The X-ray radiation produced in the inner part of the accretion disk can be a powerful tool to test the Kerr nature of these objects. In this talk, we present a new model for testing the Kerr black hole hypothesis via X-ray reflection spectroscopy. We employ the formalism of the transfer function proposed by Cunningham 40 years ago. The transfer function acts as an integration kernel and takes into account all the relativistic effects. We have developed a code to compute transfer functions in arbitrary stationary and axisymmetric spacetimes. These transfer functions are tabulated in FITS files and combined with XILLVER. The result is best model that we can have today for testing black hole candidates via X-ray reflection spectroscopy.

  4. A Brief Test of the Tokyo Sokushin VSE-355G3 Strong Motion Velocity Seismometer

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Yokoi, Isamu

    2008-01-01

    The VSE-355G3 seismometer is a broadband seismometer (called a 'servo velocity meter' by Tokyo Sokushin) with a specified clip level of 2 m/s and a flat response to earth velocity from 0.008 Hertz (Hz) to 70 Hz. Mr. Yokoi and Mr. Kurahashi of Tokyo Sokushin shipped one instrument to the U. S. Geological Survey's Albuquerque Seismological Laboratory (ASL) for testing in early September 2007. They gave a presentation on this instrument and some of their other products to the authors and others on September 6, 2007. Testing of the VSE-355G3, Serial Number 70520, commenced on Friday, September 7, 2007.

  5. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  6. Testing What Has Been Taught: Helpful, High-Quality Assessments Start with a Strong Curriculum

    ERIC Educational Resources Information Center

    Hamilton, Laura S.

    2011-01-01

    In recent years, standardized, large-scale tests of student achievement have been given a central role in federal, state, and local efforts to improve K-12 education. Despite the widespread enthusiasm for assessment-based reforms, many of the current and proposed uses of large-scale assessments are based on unverified assumptions about the extent…

  7. Comparative study of some fiber-optic remote Raman probe designs. Part II: Tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes

    SciTech Connect

    Cooney, T.F.; Skinner, H.T.; Angel, S.M.

    1996-07-01

    We compare relative performances of flat-tipped, beveled (two-fiber and six-around-one), and single-lensed focused fiber-optic Raman probes and, where feasible, evaluate the utility of optical filters for reducing fiber background. The sensitivity profile of each probe is determined by measuring the relative intensity of light backscattered off a flat surface as a function of distance from the probe tip. The experimental results are compared with a simple light-cone-overlap model incorporating fiber numerical aperture, fiber and immersion medium refractive indices, separation between excitation and collection fibers, number of fibers, and fiber bevel angle and/or lens focal length. The model and sensitivity profiles are used to interpret the sampling regions for Raman spectra obtained by using each of the probes with a clear, transparent sample (single-crystal sparry calcite), a white, partially transparent sample (acetaminophen tablet), and a set of organic liquids of varying refractive index. The sensitivity of the tested commercial lensed probe drops off symmetrically about the focal point. For both solid samples, the intensity of fiber background follows a profile determined primarily by laser backscattering off the surface, whereas the sample Raman signal follows a profile dependent upon sampling depth. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  8. Omni-focal refractive focus correction technology as a substitute for bi/multi-focal intraocular lenses, contact lenses, and spectacles

    NASA Astrophysics Data System (ADS)

    Ben Yaish, Shai; Zlotnik, Alex; Raveh, Ido; Yehezkel, Oren; Belkin, Michael; Lahav, Karen; Zalevsky, Zeev

    2009-02-01

    We present novel technology for extension in depth of focus of imaging lenses for use in ophthalmic lenses correcting myopia, hyperopia with regular/irregular astigmatism and presbyopia. This technology produces continuous focus without appreciable loss of energy. It is incorporated as a coating or engraving on the surface for spectacles, contact or intraocular lenses. It was fabricated and tested in simulations and in clinical trials. From the various testing this technology seems to provide a satisfactory single-lens solution. Obtained performance is apparently better than those of existing multi/bifocal lenses and it is modular enough to provide solution to various ophthalmic applications.

  9. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  10. Testing the strong equivalence principle with the triple pulsar PSR J 0337 +1715

    NASA Astrophysics Data System (ADS)

    Shao, Lijing

    2016-04-01

    Three conceptually different masses appear in equations of motion for objects under gravity, namely, the inertial mass, mI , the passive gravitational mass, mP, and the active gravitational mass, mA. It is assumed that, for any objects, mI=mP=mA in the Newtonian gravity, and mI=mP in the Einsteinian gravity, oblivious to objects' sophisticated internal structure. Empirical examination of the equivalence probes deep into gravity theories. We study the possibility of carrying out new tests based on pulsar timing of the stellar triple system, PSR J 0337 +1715 . Various machine-precision three-body simulations are performed, from which, the equivalence-violating parameters are extracted with Markov chain Monte Carlo sampling that takes full correlations into account. We show that the difference in masses could be probed to 3 ×1 0-8 , improving the current constraints from lunar laser ranging on the post-Newtonian parameters that govern violations of mP=mI and mA=mP by thousands and millions, respectively. The test of mP=mA would represent the first test of Newton's third law with compact objects.

  11. Testing the case for the creation of a strongly interacting quark gluon plasma at RHIC

    NASA Astrophysics Data System (ADS)

    Adil, Azfar

    Recent data from the Relativistic Heavy Ion Collider (RHIC) has provided information regarding the creation of dense QCD matter in Heavy Ion Collisions (HIC). Two of the most puzzling issues raised are; (1) models using ideal hydrodynamics to describe bulk evolution have met with great success in reproducing data in HIC at RHIC, and (2) the recent data detailing the production of non-photonic electrons from heavy meson decays has shown a large quenching of heavy quark jets that is not explained by radiative energy loss calculations. These two surprising results lend credence to the claim that a Strongly Coupled Quark Gluon Plasma (sQGP) has been created at RHIC; with the strong coupling characteristics providing both the low viscosity needed by (1) and the large momentum transfers needed by (2). In order to properly quantify this, one needs to get a better understanding of the detailes of jet tomography so that one can truly adjudicate the need for sQGP creation. We consider the theoretical uncertainties stemming from the Poisson convolution assumption in energy loss calculations. We examine two different ways to account for the leakage of probabilities into unphysical regions and show that the evolution of the nuclear modification factor, RAA, with center of mass energy is sensitive to these differences. The success of ideal hydrodynamics in describing the evolution of bulk matter in the QGP phase is dependent on the choice of initial state that is fed into the evolution equations. The Participant Brodsk-Gunion-Kuhn initial conditions lead to a good agreement with the data while initial states inspired by Color Glass Condensate (CGC) models overestimate the data and seem to imply the need for viscous dissipative corrections to the dynamics. We propose 3D jet tomography as a probe to experimentally differentiate between the BGK and CGC initial state models. We find and induced non zero directed flow vl in the high p⊥ spectra in both BGK and CGC models that can be

  12. A preliminary improved test of the flavor independence of strong interactions

    SciTech Connect

    Abe, K.; Abe, K.; Akagi, T.; SLD Collaboration

    1997-06-01

    The authors present an improved comparison of the strong couplings of gluons to light (u, d, and s), c, and b quarks, determined from multijet rates in flavor-tagged samples of hadronic Z{sup 0} decays recorded with the SLC Large Detector at the SLAC Linear Collider between 1993 and 1995. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, c, and b quarks was made using the SLD precision tracking system, yielding tags with high purity and low bias against {ge} 3-jet final states. They find: {alpha}{sub s}{sup uds}/{alpha}{sub s}{sup all} = 0.997 {+-} 0.011(stat) {+-} 0.011(syst) {+-} 0.005(theory), {alpha}{sub s}{sup c}/{alpha}{sub s}{sup all} = 0.984 {+-} 0.042 {+-} 0.053 {+-} 0.022, {alpha}{sub s}{sup b}/{alpha}{sub s}{sup all} = 1.022 {+-} 0.019 {+-} 0.023 {+-} 0.012.

  13. Interferometric Plasmonic Lensing with Nanohole Arrays

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  14. Variable practice with lenses improves visuo-motor plasticity

    NASA Technical Reports Server (NTRS)

    Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.

    2001-01-01

    Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.

  15. Lithium Depletion is a Strong Test of Core-envelope Recoupling

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Pinsonneault, Marc H.

    2016-09-01

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the open cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.

  16. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  17. Galaxies as gravitational lenses.

    PubMed

    Barnothy, J; Barnothy, M F

    1968-10-18

    Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654

  18. RHIC electron lenses upgrades

    SciTech Connect

    Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  19. Three gravitationally lensed supernovae behind clash galaxy clusters

    SciTech Connect

    Patel, Brandon; McCully, Curtis; Jha, Saurabh W.; Holoien, Thomas W.-S.; Rodney, Steven A.; Jones, David O.; Graur, Or; Riess, Adam G.; Merten, Julian; Zitrin, Adi; Matheson, Thomas; Sako, Masao; Postman, Marc; Coe, Dan; Bradley, Larry; Bartelmann, Matthias; Balestra, Italo; Benítez, Narciso; Bouwens, Rychard; Broadhurst, Tom; and others

    2014-05-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  20. Where the world stands still: turnaround as a strong test of ΛCDM cosmology

    SciTech Connect

    Pavlidou, V.; Tomaras, T.N. E-mail: tomaras@physics.uoc.gr

    2014-09-01

    Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c{sup 2}){sup 1/3}, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.

  1. Strong correlation between the 6-minute walk test and accelerometry functional outcomes in boys with Duchenne muscular dystrophy.

    PubMed

    Davidson, Zoe E; Ryan, Monique M; Kornberg, Andrew J; Walker, Karen Z; Truby, Helen

    2015-03-01

    Accelerometry provides information on habitual physical capability that may be of value in the assessment of function in Duchenne muscular dystrophy. This preliminary investigation describes the relationship between community ambulation measured by the StepWatch activity monitor and the current standard of functional assessment, the 6-minute walk test, in ambulatory boys with Duchenne muscular dystrophy (n = 16) and healthy controls (n = 13). All participants completed a 6-minute walk test and wore the StepWatch™ monitor for 5 consecutive days. Both the 6-minute walk test and StepWatch accelerometry identified a decreased capacity for ambulation in boys with Duchenne compared to healthy controls. There were strong, significant correlations between 6-minute walk distance and all StepWatch parameters in affected boys only (r = 0.701-0.804). These data proffer intriguing observations that warrant further exploration. Specifically, accelerometry outcomes may compliment the 6-minute walk test in assessment of therapeutic interventions for Duchenne muscular dystrophy.

  2. Laminated Fresnel lenses

    SciTech Connect

    Jebens, R.W.

    1980-04-01

    A fabrication method for making plastic-on-glass laminated Fresnel lenses is discussed. These Fresnel lenses are for application in an RCA solar photovoltaic concentrator array now in the prototype stage of development. This laminated Fresnel lens fabrication method consists of making a Dow Corning J RTV silastic rubber mold of a master lens array. This mold is used to vacuum cast only the lens facets onto a low-iron tempered-glass substrate with an epoxy resin such as Hysol 0S 1000, a bisphenol-A resin with a flexibilizer that is anhydride cured. Cast acrylic Fresnel lens arrays commercialy available have potential cleaning and abrasion problems, have very large thermal expansion, and have dimensional uncertainties in their manufacture. The laminated lens is dimensionally stable with low thermal expansion, has good cleaning characteristics, and is very inexpensive in materials cost. The measured transmission of such a lens on low-iron glass is 80.4% compared with 85.1% for a cast acrylic lens, and the optical quality is good enough for application in the 100X to 200X concentration range. An approach to making large lens arrays (3 by 6 ft) on a commercial scale is explored.

  3. LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS

    SciTech Connect

    Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen

    2013-08-01

    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase ({approx}10%) in detected cluster number counts (due to a {approx}50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in {approx}2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a {approx}55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors.

  4. THE DISTRIBUTION OF DARK MATTER OVER THREE DECADES IN RADIUS IN THE LENSING CLUSTER ABELL 611

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Marshall, Philip J.; Sand, David J.; Richard, Johan; Capak, Peter; Miyazaki, Satoshi

    2009-12-01

    We present a detailed analysis of the baryonic and dark matter distribution in the lensing cluster Abell 611 (z = 0.288), with the goal of determining the dark matter profile over an unprecedented range of cluster-centric distance. By combining three complementary probes of the mass distribution, weak lensing from multi-color Subaru imaging, strong lensing constraints based on the identification of multiply imaged sources in Hubble Space Telescope images, and resolved stellar velocity dispersion measures for the brightest cluster galaxy secured using the Keck telescope, we extend the methodology for separating the dark and baryonic mass components introduced by Sand et al. Our resulting dark matter profile samples the cluster from approx3 kpc to 3.25 Mpc, thereby providing an excellent basis for comparisons with recent numerical models. We demonstrate that only by combining our three observational techniques can degeneracies in constraining the form of the dark matter profile be broken on scales crucial for detailed comparisons with numerical simulations. Our analysis reveals that a simple Navarro-Frenk-White (NFW) profile is an unacceptable fit to our data. We confirm earlier claims based on less extensive analyses of other clusters that the inner profile of the dark matter profile deviates significantly from the NFW form and find a inner logarithmic slope beta flatter than 0.3 (68%; where rho{sub DM} propor to r{sup -b}eta at small radii). In order to reconcile our data with cluster formation in a LAMBDACDM cosmology, we speculate that it may be necessary to revise our understanding of the nature of baryon-dark matter interactions in cluster cores. Comprehensive weak and strong lensing data, when coupled with kinematic information on the brightest cluster galaxy, can readily be applied to a larger sample of clusters to test the universality of these results.

  5. Precision photometric redshift calibration for galaxy-galaxy weak lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, R.; Seljak, U.; Hirata, C. M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Carollo, M.; Contini, T.; Cunha, C. E.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kneib, J.-P.; Knobel, C.; Koo, D. C.; Lamareille, F.; Le Fèvre, O.; Le Borgne, J.-F.; Lilly, S. J.; Maier, C.; Mainieri, V.; Mignoli, M.; Newman, J. A.; Oesch, P. A.; Perez-Montero, E.; Ricciardelli, E.; Scodeggio, M.; Silverman, J.; Tasca, L.

    2008-05-01

    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical errors. Based in part on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Programme 175.A-0839. E-mail: rmandelb@ias.edu (RM); seljak@itp.uzh.ch (US) ‡ Hubble Fellow.

  6. [Unusual complications after wearing hard and soft contact lenses].

    PubMed

    Roth, H W; Teuchert, J

    1990-01-01

    In a clinical long-term study over a period of 10 years with 3850 patients wearing hard and soft contact lenses, unusual reactions of the cornea and perilimbal conjunctiva have been observed in 3% of all cases. Mainly corneal abrasions, cracks, clouds and mosaics have been observed, which were analyzed as being rare contact lens complications. The causes were lack of proper maintenance of the contact lenses, such as mistakes in cleaning and disinfecting the lenses, mishandling or toxic and allergic reactions due to cleaning and disinfection solutions. Only exact ophthalmological monitoring of the anterior parts of the eye and laboratory tests on the worn lenses permit differentiation between primary eye diseases and contact lens-induced complications.

  7. New insights into peculiar thermonuclear supernovae and line of sight effects in gravitational lensing

    NASA Astrophysics Data System (ADS)

    McCully, Curtis

    Type Ia supernovae (SNe Ia) and gravitational lensing are important cosmological probes, but both are limited by theoretical, systematic uncertainties. One key uncertainty in distances derived using SNe Ia is our lack of understanding of the explosion mechanism for normal SNe Ia. We have studied peculiar type Iax supernovae that appear to be related to normal SNe Ia with the goal of understanding white dwarf explosions as a whole. In Chapter 2, using late-time Hubble Space Telescope (HST) observations of SN 2008A and SN 2005hk, both prototypical SNe Iax, we argue that these objects are pure deflagration explosions that do not unbind the white dwarf. In Chapter 3, we present observations of the type Iax SN 2012Z, one of the nearest ever discovered. Fortunately for us, its host galaxy, NGC 1309, was observed extensively with HST/ACS (to measure a Cepheid distance), giving us incredibly deep pre-explosion images of the site of SN 2012Z. We find that there is a source coincident with the position of the SN. We argue that the source is likely a helium star companion to the white dwarf that exploded. In galaxy-scale gravitational lenses, one of the largest systematic uncertainties arises due to other mass in the environment of the lens or along the line of sight (LOS). In Chapter 4, we develop an analytic framework to account for LOS effects. Our framework employs a hybrid approach treating a few perturbing galaxies as strong lenses, making it accurate, while treating the rest in the weak lensing approximation, making it also computationally efficient. In Chapter 5, we test our framework using simulations of realistic mass models. We suggest a method to characterize the strength of the LOS effects allowing us to systematically test when the weak lensing approximation is valid. We show that LOS effects are not equivalent to a single shear, but these non-linear effects are correctly captured by our framework. Our new methodology can be used to constrain cosmological

  8. Lensing and High-z Supernova Surveys

    NASA Astrophysics Data System (ADS)

    Holz, Daniel E.

    1998-10-01

    Gravitational lensing causes the distribution of observed brightnesses of standard candles at a given redshift to be highly non-Gaussian. The distribution is strongly, and asymmetrically, peaked at a value less than the expected value in a homogeneous Robertson-Walker universe. Therefore, given any small sample of observations in an inhomogeneous universe, the most likely observed luminosity is at flux values less than the Robertson-Walker value. This Letter explores the impact of this systematic error due to lensing upon surveys predicated on measuring standard candle brightnesses. We reanalyze recent results from the high-z supernova team (Riess and coworkers), both when most of the matter in the universe is in the form of compact objects (represented by the empty-beam expression, corresponding to the maximal case of lensing) and when the matter is continuously distributed in galaxies. We find that the best-fit model remains unchanged (at Ωm=0, ΩΛ=0.45), but the confidence contours change size and shape, becoming larger (and thus allowing a broader range of parameter space) and dropping toward higher values of matter density Ωm (or correspondingly, lower values of the cosmological constant ΩΛ). These effects are slight when the matter is continuously distributed. However, the effects become considerably more important if most of the matter is in compact objects. For example, neglecting lensing, the Ωm=0.5, ΩΛ=0.5 model is more than 2 σ away from the best fit. In the empty-beam analysis, this cosmology is at 1 σ.

  9. Lenses for JWST

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; Richard, Johan; Kneib, Jean-Paul; Repp, Andrew; Atek, Hakim; Egami, Eiichi; Windhorst, Rogier; Edge, Alastair

    2016-08-01

    JWST will dramatically advance our knowledge and understanding of the first generations of galaxies at z>10, their role in the re-ionization of the Universe, and the evolutionary processes that gave rise to the complexity and diversity of galaxies at the current epoch. As demonstrated by HST legacy projects like CLASH and the Hubble Frontier Fields, gravitational amplification by massive galaxy clusters can significantly extend the depth of the required observations. However, for JWST, reducing any diffuse background light will be just as crucial. We here propose Spitzer/IRAC observations of six massive cluster lenses, specifically selected as candidates for observation with JWST. By (a) quantifying the amount of intra-cluster light and (b) enabling us to improve our current lens models, the data resulting from the requested observations will be instrumental for the final selection of cluster targets that maximize the scientific returns of deep JWST observations.

  10. Gravitational lensing by gravastars

    NASA Astrophysics Data System (ADS)

    Kubo, Tomohiro; Sakai, Nobuyuki

    2016-04-01

    As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.

  11. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics. PMID:15705841

  12. Astrophysical Observations: Lensing and Eclipsing Einstein's Theories

    NASA Astrophysics Data System (ADS)

    Bennett, Charles L.

    2005-02-01

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  13. Gravitational lensing by self-dual black holes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Sahu, Satyabrata; Lochan, Kinjalk; Narasimha, D.

    2015-03-01

    We study gravitational lensing by a recently proposed black hole solution in loop quantum gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the "mass suppression" effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied, and a sample consistency relation is presented which could serve as a test of this model. We discuss that, though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for a billion solar mass black holes in other galaxies might be within reach of future relativistic lensing observations.

  14. Contact lenses in aviation: the Marine Corps experience.

    PubMed

    Mittelman, M H; Siegel, B; Still, D L

    1993-06-01

    In an attempt to limit safety and health risks, Naval Aeromedical Policy has historically prohibited the use of contact lenses in the Navy and Marine Corps Class 1 Aviation Personnel (pilots), approximately 18% of whom require spectacles. Recent technological advancements have rendered spectacles functionally incompatible with some mission-essential masks, goggles, and imaging devices, thus forcing a re-examination of existing policy. Recent U.S. Army and U.S. Air Force aviation studies favorably compare the performance of contact lenses to spectacles. In order to test the application of contact lenses in the unique U.S. Marine Corps aviation environment, encompassing shipboard, land-based, and forwardly-deployed units, 90 aviation personnel assigned to several deploying squadrons were evaluated for contact lenses; flex-wear disposable lenses were the primary modality of choice. Of the subjects, 68 (73%) were successfully fit and continued contact lens wear for a period of 16 months. Safety and health were not compromised, and job performance was favorably affected. No cases of ulcerative keratitis or vision loss were reported. The first U.S. Marine Corps aviation contact lens study supports the growing belief that contact lenses can be safely and effectively applied in the critical and hazardous aviation environment. PMID:8338502

  15. Ophthalmic halo reduced lenses design

    NASA Astrophysics Data System (ADS)

    Limon, Ofer; Zalevsky, Zeev

    2015-05-01

    The halo effect is a very problematic visual artifact occurring in extended depth of focus or multi-focal ophthalmic lenses such as e.g. intra-ocular (after cataract surgery) or contact lenses when used in dark illumination conditions. This artifact is generated due to surface structures added on top of those lenses in order to increase their depth of focus or to realize multiple focal lengths. In this paper we present novel solution that can resolve this major problem of ophthalmic lenses. The proposed solution involves modification to the surface structure that realizes the extended depth of focus. Our solution is fabricated and numerically and experimentally validated also in preliminary in-vivo trials.

  16. HIGH-z Lensed Galaxies

    NASA Astrophysics Data System (ADS)

    Pello, R.

    2006-08-01

    This talk reviews the main results recently obtained on the identification and study of very high-z galaxies using lensing clusters as natural gravitational telescopes. We present the last results of a deep near-IR survey of lensing clusters aimed at constraining the abundance of star-forming galaxies at z~6-12. Photometric selection criteria of optical-dropouts were specifically tuned to target star-forming galaxies in this redshift domain. These data were used to constrain the luminosity function of z>6 photometric candidates, and to derive an upper limit for the UV SFR density. The results obtained in lensing fields will be discussed and compared to deep blank-field findings. We also summarize the present state of the spectroscopic follow-up of photometric candidates in lensing clusters using VLT ISAAC and FORS, and the future observations planned with EMIR/GTC.

  17. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368

  18. The Thirring-Lense Effect

    NASA Astrophysics Data System (ADS)

    Embacher, Franz

    The Thirring-Lense effect is the phenomenon that an observer near a rotating mass, being in a state which is non-rotating with respect to the rest of the universe, experiences extra inertial forces, i.e. becomes dizzy. The first anticipation of the effect goes back to Ernst Mach; its first quantitative prediction on the basis of general relativity was given by Hans Thirring and Joseph Lense. Almost ninety years later, the effect seems to be experimentally verified.

  19. Tscherning ellipses and ray tracing in ophthalmic lenses.

    PubMed

    Malacara, Z; Malacara, D

    1985-07-01

    In this paper the exact shape of the solutions to the equations for lenses free of oblique astigmatism, as well as those free from curvature of field or peripheral focus error, are presented. These solutions, as expected, resemble the Tscherning ellipses, but strongly deformed.

  20. Antireflection coatings for submillimeter silicon lenses

    NASA Astrophysics Data System (ADS)

    Wheeler, Jordan D.; Koopman, Brian; Gallardo, Patricio; Maloney, Philip R.; Brugger, Spencer; Cortes-Medellin, German; Datta, Rahul; Dowell, C. Darren; Glenn, Jason; Golwala, Sunil; McKenney, Chris; McMahon, Jeffery J.; Munson, Charles D.; Niemack, Mike; Parshley, Stephen; Stacey, Gordon

    2014-07-01

    Low-loss lenses are required for submillimeter astronomical applications, such as instrumentation for CCAT, a 25 m diameter telescope to be built at an elevation of 18,400 ft in Chile. Silicon is a leading candidate for dielectric lenses due to its low transmission loss and high index of refraction; however, the latter can lead to large reflection losses. Additionally, large diameter lenses (up to 40 cm), with substantial curvature present a challenge for fabrication of antireflection coatings. Three anti-reflection coatings are considered: a deposited dielectric coating of Parylene C, fine mesh structures cut with a dicing saw, and thin etched silicon layers (fabricated with deep reactive ion etching) for bonding to lenses. Modeling, laboratory measurements, and practicalities of fabrication for the three coatings are presented and compared. Measurements of the Parylene C anti-reflection coating were found to be consistent with previous studies and can be expected to result in a 6% transmission loss for each interface from 0.787 to 0.908 THz. The thin etched silicon layers and fine mesh structure anti-reflection coatings were designed and fabricated on test silicon wafers and found to have reflection losses less than 1% at each interface from 0.787 to 0.908 THz. The thin etched silicon layers are our preferred method because of high transmission efficiency while having an intrinsically faster fabrication time than fine structures cut with dicing saws, though much work remains to adapt the etched approach to curved surfaces and optics < 4" in diameter unlike the diced coatings.

  1. A New Type of X-ray Condenser Lenses with Large Apertures Fabricated by Rolling of Structured Films

    SciTech Connect

    Simon, M.; Reznikova, E.; Nazmov, V.; Grund, T.; Last, A.

    2010-04-06

    In order to meet the demand for X-ray lenses with large apertures and, hence, photon flux, a new type of X-ray lenses has been developed: Rolled prismatic X-ray lenses feature a vast number of refracting surfaces to increase transparency and aperture, respectively. Prototypes of such lenses have been fabricated by molding and rolling of a structured polyimide film. In this work, rolled prismatic X-ray lenses are pictured, and results of first tests performed at the ANKA storage ring in Karlsruhe are presented.

  2. Large-acceptance diamond planar refractive lenses manufactured by laser cutting.

    PubMed

    Polikarpov, Maxim; Snigireva, Irina; Morse, John; Yunkin, Vyacheslav; Kuznetsov, Sergey; Snigirev, Anatoly

    2015-01-01

    For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements. Owing to the unsurpassed thermal properties of single-crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.

  3. The Angular Structure of Four-Image Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Turner, C. M.; Keeton, C. R.; Kochanek, C. S.

    2002-12-01

    Using four-image gravitational lenses in the CfA-Arizona Space Telescope Lens Survey, we probe the angular structure of lens galaxy mass distributions. The models show the lens potential is successfully constrained for four-image lenses. The largest contribution to shear perturbations is found outside of the lens' Einstein ring, which suggests a dramatic, outlying mass component. We find strong evidence that most lens galaxies have extended, flattened dark matter halos. CMT acknowledges support from the NSF/REU program at the University of Chicago's Department of Physics. CRK acknowledges support from a Hubble Fellowship grant, awarded through STScI.

  4. Micro-optofluidic Lenses: A review

    PubMed Central

    Nguyen, Nam-Trung

    2010-01-01

    This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369

  5. Observing cosmic string loops with gravitational lensing surveys

    SciTech Connect

    Mack, Katherine J.; Wesley, Daniel H.; King, Lindsay J.

    2007-12-15

    We show that the existence of cosmic strings can be strongly constrained by the next generation of gravitational lensing surveys at radio frequencies. We focus on cosmic string loops, which simulations suggest would be far more numerous than long (horizon-sized) strings. Using simple models of the loop population and minimal assumptions about the lensing cross section per loop, we estimate the optical depth to lensing and show that extant radio surveys such as CLASS have already ruled out a portion of the cosmic string model parameter space. Future radio interferometers, such as LOFAR and especially SKA, may constrain G{mu}/c{sup 2}<10{sup -9} in some regions of parameter space, outperforming current constraints from pulsar timing and the cosmic microwave backgound by up to two orders of magnitude. This method relies on direct detections of cosmic strings, and so is less sensitive to the theoretical uncertainties in string network evolution that weaken other constraints.

  6. Gravitational lensing by rotating naked singularities

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2008-10-15

    We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.

  7. Constraints on interacting dark energy from time delay lenses

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Cao, Shuo; Li, Li

    2016-10-01

    We use the time delay measurements between multiple images of lensed sources in 18 strongly gravitationally lensed (SGL) systems to put additional constraints on three phenomenological interaction models for dark energy (DE) and dark matter (DM). The compatibility among the fits on the three models seems to imply that the coupling between DE and DM is a small value close to zero, which is compatible with the previous results for constraining interacting DE parameters. We find that, among the three interacting DE models, the γmIDE model with the interaction term Q proportional to the energy density of DM provides relatively better fits to recent observations. However, the coincidence problem is still very severe in the framework of three interacting DE models, since the fitting results do not show any preference for a nonzero coupling between DE and DM. More importantly, we have studied the significance of the current strong lensing data in deriving the interacting information between dark sectors, which highlights the importance of strong lensing time delay measurements to provide additional observational fits on alternative cosmological models.

  8. Buoyancy of human and intraocular lenses in air and in aqueous humor.

    PubMed

    Renard, M; Delmelle, M; Galand, A

    1985-01-01

    The weights of seven human lenses in air and in aqueous humor were determined and compared to those of ten intraocular lens implants (IOLs). All IOLs tested were found to be significantly lighter than the human lenses in both air and in the aqueous humor.

  9. The Specificity of Colored Lenses as Visual Aids in Retinal Disease.

    ERIC Educational Resources Information Center

    Gawande, A.; And Others

    1992-01-01

    This study of the effects of lenses of different colors on the visual abilities and comfort of 20 patients with retinal disease found that, in home trials, the critical issue was density more than color. Office tests of visual acuity and contrast sensitivity with colored lenses did not predict subjective benefit. (Author/JDD)

  10. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.

  11. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284

  12. Ultraviolet disinfection of contact lenses.

    PubMed

    Harris, M G; Fluss, L; Lem, A; Leong, H

    1993-10-01

    To evaluate the efficacy of ultraviolet (UV) radiation as a method of disinfecting contact lenses and their storage solutions, we contaminated soft lenses (Bausch & Lomb Optima 38), rigid gas permeable (RGP) lenses (Oxyflow F-30), and their storage solutions with three common bacteria. Escherichia coli (E.c.), Staphylococcus epidermis (S.e.), and Serratia marcescens (S.m.). The storage solutions used were saline solution and RGP conditioning solution. We determined the exposure times to 253.7-nm wavelength UV radiation necessary to disinfect the contact lenses and solutions. The decimal reduction values (D values) found for UV radiation were 10 to 200 hundred times shorter than reported for currently available disinfection systems. For E.c., sterilization was attained after 100 s of exposure. For S.e. and S.m., sterilization occurred after 300 s of exposure. Different contact lens solutions transmit UV radiation to various degrees, with saline solution passing more than 90% of the UV radiation. Thus, our results indicate that UV radiation is an effective and rapid method of disinfecting contact lenses and their storage solutions. PMID:8247487

  13. Ultraviolet disinfection of contact lenses.

    PubMed

    Harris, M G; Fluss, L; Lem, A; Leong, H

    1993-10-01

    To evaluate the efficacy of ultraviolet (UV) radiation as a method of disinfecting contact lenses and their storage solutions, we contaminated soft lenses (Bausch & Lomb Optima 38), rigid gas permeable (RGP) lenses (Oxyflow F-30), and their storage solutions with three common bacteria. Escherichia coli (E.c.), Staphylococcus epidermis (S.e.), and Serratia marcescens (S.m.). The storage solutions used were saline solution and RGP conditioning solution. We determined the exposure times to 253.7-nm wavelength UV radiation necessary to disinfect the contact lenses and solutions. The decimal reduction values (D values) found for UV radiation were 10 to 200 hundred times shorter than reported for currently available disinfection systems. For E.c., sterilization was attained after 100 s of exposure. For S.e. and S.m., sterilization occurred after 300 s of exposure. Different contact lens solutions transmit UV radiation to various degrees, with saline solution passing more than 90% of the UV radiation. Thus, our results indicate that UV radiation is an effective and rapid method of disinfecting contact lenses and their storage solutions.

  14. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576

  15. Weak lensing and cosmological investigation

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana

    2005-03-01

    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.

  16. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.

  17. CMB temperature lensing power reconstruction

    SciTech Connect

    Hanson, Duncan; Efstathiou, George; Challinor, Anthony; Bielewicz, Pawel

    2011-02-15

    We study the reconstruction of the lensing potential power spectrum from CMB temperature data, with an eye to the Planck experiment. We work with the optimal quadratic estimator of Okamoto and Hu, which we characterize thoroughly in an application to the reconstruction of the lensing power spectrum. We find that at multipoles L<250, our current understanding of this estimator is biased at the 15% level by beyond-gradient terms in the Taylor expansion of lensing effects. We present the full lensed trispectrum to fourth order in the lensing potential to explain this effect. We show that the low-L bias, as well as a previously known bias at high L, is relevant to the determination of cosmology and must be corrected for in order to avoid significant parameter errors. We also investigate the covariance of the reconstructed power, finding broad correlations of {approx_equal}0.1%. Finally, we discuss several small improvements which may be made to the optimal estimator to mitigate these problems.

  18. SDSS J094604.90+183541.8: A GRAVITATIONALLY LENSED QUASAR AT z = 4.8

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Bian Fuyan; Farnsworth, Kara; Hall, Patrick B.; Inada, Naohisa; Oguri, Masamune; Strauss, Michael A.; Schneider, Donald P.

    2010-08-15

    We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.

  19. RCSLenS: The Red Cluster Sequence Lensing Survey

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.; Choi, A.; Heymans, C.; Blake, C.; Erben, T.; Miller, L.; Nakajima, R.; van Waerbeke, L.; Viola, M.; Buddendiek, A.; Harnois-Déraps, J.; Hojjati, A.; Joachimi, B.; Joudaki, S.; Kitching, T. D.; Wolf, C.; Gwyn, S.; Johnson, N.; Kuijken, K.; Sheikhbahaee, Z.; Tudorica, A.; Yee, H. K. C.

    2016-08-01

    We present the Red-sequence Cluster Lensing Survey (RCSLenS), an application of the methods developed for the Canada France Hawaii Telescope Lensing Survey (CFHTLenS) to the ˜785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2 (RCS2). This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ˜ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin-2) distributed over 14 patches on the sky. Photometric redshifts based on 4-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through CADC at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.

  20. RCSLenS: The Red Cluster Sequence Lensing Survey

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.; Choi, A.; Heymans, C.; Blake, C.; Erben, T.; Miller, L.; Nakajima, R.; van Waerbeke, L.; Viola, M.; Buddendiek, A.; Harnois-Déraps, J.; Hojjati, A.; Joachimi, B.; Joudaki, S.; Kitching, T. D.; Wolf, C.; Gwyn, S.; Johnson, N.; Kuijken, K.; Sheikhbahaee, Z.; Tudorica, A.; Yee, H. K. C.

    2016-11-01

    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to the ˜785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ˜ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin-2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.

  1. Key Science with the Square Kilometer Array: Strong-field Tests of Gravity using Pulsars and Black Holes

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Kramer, M.; Backer, D. C.; Lazio, T. J. W.; Science Working Groupthe Square Kilometer Array Team

    2005-12-01

    A Galactic census of pulsars with the SKA will discover most of the active pulsars in the Galaxy beamed toward us. The sheer number of pulsars discovered, along with the exceptional timing precision the SKA can provide, will revolutionize the field of pulsar astrophysics and will enable significant tests of theories of gravity. Census discoveries will almost certainly include pulsar-black hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic center. These systems provide unique opportunties for probing the ultra-strong field limit of relativistic gravity and will complement future gravitational wave detections using LISA-like instruments. SKA measurements can be used to test the Cosmic Censorship Conjecture and the No-Hair theorem. The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision clocks on the sky that can be used as multiple arms of a cosmic gravitational wave detector, which can be used to detect and measure the stochastic cosmological gravitational wave background that is expected from a number of sources. In addition to gravitational tests, the large number of lines of sight will provide a detailed map of the Galaxy's electron density and magnetic fields and important information on the dynamics and evolutionary histories of neutron stars. The census will provide examples of nearly every possible outcome of the evolution of massive stars, including (as above) pulsar black-hole systems and sub-millisecond pulsars, if they exist. These objects will yield constraints on the equation of state of matter at super-nuclear densities. Masses of pulsars and their binary companions planets, white dwarfs, other neutron stars, and black holes will be determined to ˜ 1% for hundreds of objects. The SKA will also provide partial censuses of nearby galaxies through periodicity and giant-pulse detections, yielding important information on the intergalactic medium.

  2. The Future of Myopia Control Contact Lenses.

    PubMed

    Gifford, Paul; Gifford, Kate Louise

    2016-04-01

    The growing incidence of pediatric myopia worldwide has generated strong scientific interest in understanding factors leading to myopia development and progression. Although contact lenses (CLs) are prescribed primarily for refractive correction, there is burgeoning use of particular modalities for slowing progression of myopia following reported success in the literature. Standard soft and rigid CLs have been shown to have minimal or no effect for myopia control. Overall, orthokeratology and soft multifocal CLs have shown the most consistent performance for myopia control with the least side effects. However, their acceptance in both clinical and academic spheres is influenced by data limitations, required off-label usage, and a lack of clear understanding of their mechanisms for myopia control. Myopia development and progression seem to be multifactorial, with a complex interaction between genetics and environment influencing myopigenesis. The optical characteristics of the individual also play a role through variations in relative peripheral refraction, binocular vision function, and inherent higher-order aberrations that have been linked to different refractive states. Contact lenses provide the most viable opportunity to beneficially modify these factors through their close alignment with the eye and consistent wearing time. Contact lenses also have potential to provide a pharmacological delivery device and a possible feedback mechanism for modification of a visual environmental risk. An examination of current patents on myopia control provides a window to the future development of an ideal myopia-controlling CL, which would incorporate the broadest treatment of all currently understood myopigenic factors. This ideal lens must also satisfy safety and comfort aspects, along with overcoming practical issues around U.S. Food and Drug Administration approval, product supply, and availability to target populations. Translating the broad field of myopia research

  3. The Future of Myopia Control Contact Lenses.

    PubMed

    Gifford, Paul; Gifford, Kate Louise

    2016-04-01

    The growing incidence of pediatric myopia worldwide has generated strong scientific interest in understanding factors leading to myopia development and progression. Although contact lenses (CLs) are prescribed primarily for refractive correction, there is burgeoning use of particular modalities for slowing progression of myopia following reported success in the literature. Standard soft and rigid CLs have been shown to have minimal or no effect for myopia control. Overall, orthokeratology and soft multifocal CLs have shown the most consistent performance for myopia control with the least side effects. However, their acceptance in both clinical and academic spheres is influenced by data limitations, required off-label usage, and a lack of clear understanding of their mechanisms for myopia control. Myopia development and progression seem to be multifactorial, with a complex interaction between genetics and environment influencing myopigenesis. The optical characteristics of the individual also play a role through variations in relative peripheral refraction, binocular vision function, and inherent higher-order aberrations that have been linked to different refractive states. Contact lenses provide the most viable opportunity to beneficially modify these factors through their close alignment with the eye and consistent wearing time. Contact lenses also have potential to provide a pharmacological delivery device and a possible feedback mechanism for modification of a visual environmental risk. An examination of current patents on myopia control provides a window to the future development of an ideal myopia-controlling CL, which would incorporate the broadest treatment of all currently understood myopigenic factors. This ideal lens must also satisfy safety and comfort aspects, along with overcoming practical issues around U.S. Food and Drug Administration approval, product supply, and availability to target populations. Translating the broad field of myopia research

  4. Construction progress of the RHIC electron lenses

    SciTech Connect

    Fischer W.; Altinbas, Z.; Anerella, M.; Beebe, E.; et al

    2012-05-20

    In polarized proton operation the RHIC performance is limited by the head-on beam-beam effect. To overcome this limitation two electron lenses are under construction. We give an overview of the construction progress. Guns, collectors and the warm electron beam transport solenoids with their power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of the gun, collector and some of the instrumentation. The infrastructure is being prepared for installation, and simulations continue to optimize the performance.

  5. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  6. Intrinsic alignment contamination to CMB lensing-galaxy weak lensing correlations from tidal torquing

    NASA Astrophysics Data System (ADS)

    Larsen, Patricia; Challinor, Anthony

    2016-10-01

    Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently measured cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB) lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these types can be separated (e.g. using colour).

  7. Centration and coverage of hydrogel contact lenses.

    PubMed

    Wake, E; Tienda, J B; Uyekawa, P M; Mandell, R B

    1981-04-01

    Decentration of the AOsoft lenses and Bausch & Lomb Soflens occurs during wear. The extent of the decentration of 14 lenses on 36 eyes of 18 subjects was studied by means of a biomicroscope with a reticle mounted in the ocular. Unexpectedly, for the AOsoft vault IV lens greater decentration occurred than for flatter lenses. Corneal toricity showed no correlation with lens decentration. PMID:7282855

  8. Nanoplasmonic lenses for bacteria sorting (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangchao; Yanik, Ahmet A.

    2015-08-01

    We demonstrate that patches of two dimensional arrays of circular plasmonic nanoholes patterned on gold-titanium thin film enables subwavelength focusing of visible light in far field region. Efficient coupling of the light with the excited surface plasmon at metal dielectric interface results in strong light transmission. As a result, surface plasmon plays an important role in the far field focusing behavior of the nanohole-aperture patches device. Furthermore, the focal length of the focused beam was found to be predominantly dependent on the overall size of the patch, which is in good agreement with that calculated by Rayleigh-Sommerfield integral formula. The focused light beam can be utilized to separate bio-particles in the dynamic range from 0.1 μm to 1 μm through mainly overcoming the drag force induced by fluid flow. In our proposed model, focused light generated by our plasmonic lenses will push the larger bio-particles in size back to the source of fluid flow and allow the smaller particles to move towards the central aperture of the patch. Such a new kind of plasmonic lenses open up possibility of sorting bacterium-like particles with plasmonic nanolenses, and also represent a promising tool in the field of virology.

  9. N-body lensed CMB maps: lensing extraction and characterization

    NASA Astrophysics Data System (ADS)

    Antolini, Claudia; Fantaye, Yabebal; Martinelli, Matteo; Carbone, Carmelita; Baccigalupi, Carlo

    2014-02-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ΛCDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 μK-arcmin. The noise contribution in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at l simeq 1500. The recovered signal shows no visible departure from predictions of the weak lensing power within uncertainties, when considering TT and EB data singularly. In particular, the reconstruction precision reaches the level of a few percent in bins with Δl simeq 100 in the angular multiple interval 1000lesssimllesssim2000 for T, and about 10% for EB. Within the adopted specifications, polarisation data do represent a significant contribution to the lensing shear, which appear to faithfully trace the underlying N-body structure down to the smallest angular scales achievable with the present setup, validating at the same time the latter with respect to semi-analytical predictions from ΛCDM cosmology at the level of CMB lensing statistics. This work demonstrates the feasibility of CMB lensing studies based on large scale simulations of cosmological structure formation in the context of the current and future high resolution and sensitivity CMB experiment.

  10. N-body lensed CMB maps: lensing extraction and characterization

    SciTech Connect

    Antolini, Claudia; Martinelli, Matteo; Baccigalupi, Carlo; Fantaye, Yabebal; Carbone, Carmelita E-mail: y.t.fantaye@astro.uio.no E-mail: carmelita.carbone@brera.inaf.it

    2014-02-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ΛCDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 μK-arcmin. The noise contribution in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at ℓ ≅ 1500. The recovered signal shows no visible departure from predictions of the weak lensing power within uncertainties, when considering TT and EB data singularly. In particular, the reconstruction precision reaches the level of a few percent in bins with Δℓ ≅ 100 in the angular multiple interval 1000∼<ℓ∼<2000 for T, and about 10% for EB. Within the adopted specifications, polarisation data do represent a significant contribution to the lensing shear, which appear to faithfully trace the underlying N-body structure down to the smallest angular scales achievable with the present setup, validating at the same time the latter with respect to semi-analytical predictions from ΛCDM cosmology at the level of CMB lensing statistics. This work demonstrates the feasibility of CMB lensing studies based on large scale simulations of cosmological structure formation in the context of the current and future high resolution and sensitivity CMB experiment.

  11. Transmittance Variations Analysis in Sunglasses Lenses Post Sun Exposure

    NASA Astrophysics Data System (ADS)

    Loureiro, A. D.; Gomes, L. M.; Ventura, L.

    2016-07-01

    The hypothesis that sunglass ultraviolet (UV) protection can degrade with Sun exposure has never been proven experimentally. No sunglasses standards take into account UV transmittance changes after long Sun exposure. We selected 12 sunglass lenses and measured transmittance values from 280 nm to 780 nm. After 50 hours of exposure, new transmittance measurements were taken and transmittance variations inferior to 0.2% were observed. The exposition continues longer and more lenses will be tested to obtain conclusive results. We hope to obtain experimental data to confirm UV protection loss hypothesis and obtain a relation between Sun and solar simulator exposition

  12. Galaxy cluster center detection methods with weak lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. In this work, we test methods of centroid determination from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ˜ 500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. We also project the usefulness of this technique in future surveys.

  13. Extrusion of compound refractive x-ray lenses.

    SciTech Connect

    Young, K.; Khounsary, A.; Experimental Facilities Division; IIT

    2004-01-01

    Compound refractive lenses (CRLs) are arrays of lenses designed to focus x-rays. The advantage of a focused x-ray beam is improvement in imaging resolution for applications such as microscopy and tomography. CRLs are desirable due to their simple designs and ease in implementation and alignment. One method of fabricating CRLs is extrusion. Extrusion can be employed to produce, for example, aluminum CRLs for high-energy applications because many aluminum products are produced in this manner. Multiple lenses can be extruded in an array in a single run. This method is relatively cost effective compared to others methods of fabricating CRLs. Two generations of extruded aluminum CRLs have been manufactured to date with lens wall thicknesses of 200 and 100 {micro}m, respectively. The first-generation CRL yielded focusing and established the potential to produce high gain if reduced wall thicknesses could be achieved. Testing of the second generation is reported here.

  14. MUSE observations of the lensing cluster Abell 1689

    NASA Astrophysics Data System (ADS)

    Bina, D.; Pelló, R.; Richard, J.; Lewis, J.; Patrício, V.; Cantalupo, S.; Herenz, E. C.; Soto, K.; Weilbacher, P. M.; Bacon, R.; Vernet, J. D. R.; Wisotzki, L.; Clément, B.; Cuby, J. G.; Lagattuta, D. J.; Soucail, G.; Verhamme, A.

    2016-05-01

    Context. This paper presents the results obtained with the Multi Unit Spectroscopic Explorer (MUSE) for the core of the lensing cluster Abell 1689, as part of MUSE's commissioning at the ESO Very Large Telescope. Aims: Integral-field observations with MUSE provide a unique view of the central 1 × 1 arcmin2 region at intermediate spectral resolution in the visible domain, allowing us to conduct a complete census of both cluster galaxies and lensed background sources. Methods: We performed a spectroscopic analysis of all sources found in the MUSE data cube. Two hundred and eighty-two objects were systematically extracted from the cube based on a guided-and-manual approach. We also tested three different tools for the automated detection and extraction of line emitters. Cluster galaxies and lensed sources were identified based on their spectral features. We investigated the multiple-image configuration for all known sources in the field. Results: Previous to our survey, 28 different lensed galaxies displaying 46 multiple images were known in the MUSE field of view, most of them were detected through photometric redshifts and lensing considerations. Of these, we spectroscopically confirm 12 images based on their emission lines, corresponding to 7 different lensed galaxies between z = 0.95 and 5.0. In addition, 14 new galaxies have been spectroscopically identified in this area thanks to MUSE data, with redshifts ranging between 0.8 and 6.2. All background sources detected within the MUSE field of view correspond to multiple-imaged systems lensed by A1689. Seventeen sources in total are found at z ≥ 3 based on their Lyman-α emission, with Lyman-α luminosities ranging between 40.5 ≲ log (Lyα) ≲ 42.5 after correction for magnification. This sample is particularly sensitive to the slope of the luminosity function toward the faintest end. The density of sources obtained in this survey is consistent with a steep value of α ≤ -1.5, although this result still

  15. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera

  16. Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data

    SciTech Connect

    Hill, J. Colin; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    The nominal mission maps from the Planck satellite contain a wealth of information about secondary anisotropies in the cosmic microwave background (CMB), including those induced by the thermal Sunyaev-Zel'dovich (tSZ) effect and gravitational lensing. As both the tSZ and CMB lensing signals trace the large-scale matter density field, the anisotropies sourced by these processes are expected to be correlated. We report the first detection of this cross-correlation signal, which we measure at 6.2σ significance using the Planck data. We take advantage of Planck's multifrequency coverage to construct a tSZ map using internal linear combination techniques, which we subsequently cross-correlate with the publicly-released Planck CMB lensing potential map. The cross-correlation is subject to contamination from the cosmic infrared background (CIB), which is known to correlate strongly with CMB lensing. We correct for this contamination via cross-correlating our tSZ map with the Planck 857 GHz map and confirm the robustness of our measurement using several null tests. We interpret the signal using halo model calculations, which indicate that the tSZ-CMB lensing cross-correlation is a unique probe of the physics of intracluster gas in high-redshift, low-mass groups and clusters. Our results are consistent with extrapolations of existing gas physics models to this previously unexplored regime and show clear evidence for contributions from both the one- and two-halo terms, but no statistically significant evidence for contributions from diffuse, unbound gas outside of collapsed halos. We also show that the amplitude of the signal depends rather sensitively on the amplitude of fluctuations (σ{sub 8}) and the matter density (Ω{sub m}), scaling as σ{sub 8}{sup 6.1}Ω{sub m}{sup 1.5} at ℓ = 1000. We constrain the degenerate combination σ{sub 8}(Ω{sub m}/0.282){sup 0.26} = 0.824±0.029, a result that is in less tension with primordial CMB constraints than some recent t

  17. Gravitational Lenses in the Classroom

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2008-01-01

    It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…

  18. Optics Demonstrations Using Cylindrical Lenses

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  19. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  20. Irlen Lenses and Reading Difficulties.

    ERIC Educational Resources Information Center

    Hoyt, Creig S.

    1990-01-01

    The article reviews three studies (EC 600 064-066) evaluating the effectiveness of using Irlen tinted lenses with reading-disabled persons. The studies are individually critiqued, and recommendations are offered concerning the methodology of further research. Stressed is the need to determine whether a specific syndrome of scotopic sensitivity…

  1. Effect of yellow-tinted lenses on visual attributes related to sports activities.

    PubMed

    Kohmura, Yoshimitsu; Murakami, Shigeki; Aoki, Kazuhiro

    2013-03-01

    The purpose of this study was to clarify the effect of colored lenses on visual attributes related to sports activities. The subjects were 24 students (11 females, 13 males; average age 21.0 ±1.2 years) attending a sports university. Lenses of 5 colors were used: colorless, light yellow, dark yellow, light gray, and dark gray. For each lens, measurements were performed in a fixed order: contrast sensitivity, dynamic visual acuity, depth perception, hand-eye coordination and visual acuity and low-contrast visual acuity. The conditions for the measurements of visual acuity and low-contrast visual acuity were in the order of Evening, Evening+Glare, Day, and Day+Glare. There were no significant differences among lenses in dynamic visual acuity and depth perception. For hand-eye coordination, time was significantly shorter with colorless than dark gray lenses. Contrast sensitivity was significantly higher with colorless, light yellow, and light gray lenses than with dark yellow and dark gray lenses. The low-contrast visual acuity test in the Day+Glare condition showed no significant difference among the lenses. In the Evening condition, low-contrast visual acuity was significantly higher with colorless and light yellow lenses than with dark gray lenses, and in the Evening+Glare condition, low-contrast visual acuity was significantly higher with colorless lenses than with the other colors except light yellow. Under early evening conditions and during sports activities, light yellow lenses do not appear to have an adverse effect on visual attributes.

  2. Effect of Yellow-Tinted Lenses on Visual Attributes Related to Sports Activities

    PubMed Central

    Kohmura, Yoshimitsu; Murakami, Shigeki; Aoki, Kazuhiro

    2013-01-01

    The purpose of this study was to clarify the effect of colored lenses on visual attributes related to sports activities. The subjects were 24 students (11 females, 13 males; average age 21.0 ±1.2 years) attending a sports university. Lenses of 5 colors were used: colorless, light yellow, dark yellow, light gray, and dark gray. For each lens, measurements were performed in a fixed order: contrast sensitivity, dynamic visual acuity, depth perception, hand-eye coordination and visual acuity and low-contrast visual acuity. The conditions for the measurements of visual acuity and low-contrast visual acuity were in the order of Evening, Evening+Glare, Day, and Day+Glare. There were no significant differences among lenses in dynamic visual acuity and depth perception. For hand-eye coordination, time was significantly shorter with colorless than dark gray lenses. Contrast sensitivity was significantly higher with colorless, light yellow, and light gray lenses than with dark yellow and dark gray lenses. The low-contrast visual acuity test in the Day+Glare condition showed no significant difference among the lenses. In the Evening condition, low-contrast visual acuity was significantly higher with colorless and light yellow lenses than with dark gray lenses, and in the Evening+Glare condition, low-contrast visual acuity was significantly higher with colorless lenses than with the other colors except light yellow. Under early evening conditions and during sports activities, light yellow lenses do not appear to have an adverse effect on visual attributes. PMID:23717352

  3. Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings

    SciTech Connect

    Shlaer, Benjamin; Wyman, Mark

    2005-12-15

    The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.

  4. A Test of a Strong Ground Motion Prediction Methodology for the 7 September 1999, Mw=6.0 Athens Earthquake

    SciTech Connect

    Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G

    2004-08-06

    We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this magnitude earthquake in the particular source zone

  5. Magnified Weak Lensing Cross Correlation Tomography

    SciTech Connect

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is

  6. Weak Gravitational Lensing from Regular Bardeen Black Holes

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, Hossein; niad, Hassan

    2016-03-01

    In this article we study weak gravitational lensing of regular Bardeen black hole which has scalar charge g and mass m. We investigate the angular position and magnification of non-relativistic images in two cases depending on the presence or absence of photon sphere. Defining dimensionless charge parameter q= {g}/{2m} we seek to disappear photon sphere in the case of |q|>{24√5}/{125} for which the space time metric encounters strongly with naked singularities. We specify the basic parameters of lensing in terms of scalar charge by using the perturbative method and found that the parity of images is different in two cases: (a) The strongly naked singularities is present in the space time. (b) singularity of space time is weak or is eliminated (the black hole lens).

  7. Gravitational lensing analysis of the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik; Nakajima, Reiko; Erben, Thomas; de Jong, Jelte T. A.; Viola, Massimo; Choi, Ami; Hoekstra, Henk; Miller, Lance; van Uitert, Edo; Amon, Alexandra; Blake, Chris; Brouwer, Margot; Buddendiek, Axel; Conti, Ian Fenech; Eriksen, Martin; Grado, Aniello; Harnois-Déraps, Joachim; Helmich, Ewout; Herbonnet, Ricardo; Irisarri, Nancy; Kitching, Thomas; Klaes, Dominik; La Barbera, Francesco; Napolitano, Nicola; Radovich, Mario; Schneider, Peter; Sifón, Cristóbal; Sikkema, Gert; Simon, Patrick; Tudorica, Alexandru; Valentijn, Edwin; Verdoes Kleijn, Gijs; van Waerbeke, Ludovic

    2015-12-01

    The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the European Southern Observatory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 arcmin-2. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data quality and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.

  8. Gravitational lens equation for embedded lenses; magnification and ellipticity

    SciTech Connect

    Chen, B.; Kantowski, R.; Dai, X.

    2011-10-15

    We give the lens equation for light deflections caused by point mass condensations in an otherwise spatially homogeneous and flat universe. We assume the signal from a distant source is deflected by a single condensation before it reaches the observer. We call this deflector an embedded lens because the deflecting mass is part of the mean density. The embedded lens equation differs from the conventional lens equation because the deflector mass is not simply an addition to the cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to compare our results with standard linear lensing theory. We also compute analytic expressions for the lowest order corrections to image amplifications and distortions caused by incorporating the lensing mass into the mean. We use these results to estimate the effect of embedding on strong lensing magnifications and ellipticities and find only small effects, <1%, contrary to what we have found for time delays and for weak lensing, {approx}5%.

  9. Rigorous noise test and calibration check of strong-motion instrumentation at the Conrad Observatory in Austria.

    NASA Astrophysics Data System (ADS)

    Steiner, R.; Costa, G.; Lenhardt, W.; Horn, N.; Suhadolc, P.

    2012-04-01

    In the framework of the European InterregIV Italy/Austria project: "HAREIA - Historical and Recent Earthquakes in Italy and Austria" the Central Institute for Meteorology and Geodynamics (ZAMG) and Mathematic and Geosciences Department of University of Trieste (DMG) are upgrading the transfrontier seismic network of South-Eastern Alps with new 12 accelerometric stations to enhance the strong motion instrument density near the Austria/Italy border. Various public institutions of the provinces Alto Adige (Bolzano Province), Veneto (ARPAV) and Friuli Venezia Giulia (Regional Civil Defense) in Italy and in the Austrian province of Tyrol are involved in the project. The site selection was carried out to improve the present local network geometry thus meeting the needs of public Institutions in the involved regions. In Tyrol and Alto Adige some strategic buildings (hospitals and public buildings) have been selected, whereas in Veneto and Friuli Venezia Giulia the sites are in the free field, mainly located near villages. The instruments will be installed in an innovative box, designed by ZAMG, that provides electric and water isolation. The common choice regarding the instrument selection has been the new Kinemetrics Basalt ® accelerograph to guarantee homogeneity with the already installed instrumentation and compatibility with the software already in use at the different seismic institutions in the area. Prior to deployment the equipment was tested at the Conrad Observatory and a common set-up has been devised. The Conrad Observatory, seismically particularly quiet, permits to analyze both the sensor and the acquisition system noise. The instruments were connected to the network and the data sent in real-time to the ZAMG data center in Vienna and the DMG data center in Trieste. The data have been collected in the database and analyzed using signal processing modules PQLX and Matlab. The data analysis of the recordings at the ultra-quiet Conrad Observatory pointed out

  10. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  11. GLAMER - II. Multiple-plane gravitational lensing

    NASA Astrophysics Data System (ADS)

    Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo

    2014-12-01

    We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.

  12. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  13. Novel silicon lenses for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Kintz, Gregory; Stephanou, Philip; Petersen, Kurt

    2016-05-01

    The design, fabrication and performance of a novel silicon lens for Long Wave Infrared (LWIR) imaging are presented. The silicon lenses are planar in nature, and are created using standard wafer scale silicon micro-fabrication processes. The silicon batch processes are used to generate subwavelength structures that introduce spatially varying phase shifts in the incident light. We will show that the silicon lens designs can be extended to produce lenses of varying focal lengths and diameters, thus enabling IR imaging at significantly lower cost and reduced weight and form factor. An optical design program and a Finite-Difference Time-Domain (FDTD) simulation software tool are used to model the lens performance. The effects of polarization anisotropy are computed for the resultant subwavelength structures. Test samples with lenses with focal lengths in the range of 10 to 50 mm were fabricated. The test sample also included a prism structure, which is characterized by measuring the deflection of a CO2 laser beam and compared to theoretical beam deflection. The silicon lenses are used to produce an image on a VGA micro-bolometer array.

  14. Power measuring in ophthalmic lenses using lateral amplification

    NASA Astrophysics Data System (ADS)

    Mendoza-Villegas, Paloma G.; Trujillo-Schiaffino, Gerardo; Salas-Peimbert, Didia P.; Anguiano-Morales, Marcelino; Corral-Martinez, Luis F.

    2013-11-01

    Nowadays refractive errors in the human eye affect approximately 10% of world's population, decreasing vision acuity and life quality. However a simple common solution is the use of an adequate ophthalmic lens. Due to the importance of ophthalmic lenses, the best measurement equipment is required for testing, these days experimental and commercial apparatus are available but with the possibility of improvement. We present a method to measure spherical and cylindrical power in ophthalmic lenses. The system uses an equation obtained from lateral amplification concept and Gauss formula to make calculations. Also an experimental setup is presented for the measurement of ophthalmic lens from -20 diopters to 20 diopters in the case of spherical lenses, and from -6 diopters to 6 diopters in the case of cylindrical lenses. The setup contains a reference object, the lens to be tested and a digital camera connected to a computer with software designed in LabVIEW for the data processing. Satisfactory preliminary results were obtained according to ISO 8598.

  15. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    SciTech Connect

    Hezaveh, Yashar; Holder, Gilbert; Dalal, Neal; Kuhlen, Michael; Marrone, Daniel; Murray, Norman; Vieira, Joaquin

    2013-04-10

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of {approx}10{sup 8} M{sub Sun} with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a {approx}55% probability of detecting a substructure with M > 10{sup 8} M{sub Sun} with more than 5{sigma} detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of {approx}100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  16. Scattered light in photolithographic lenses

    NASA Astrophysics Data System (ADS)

    Kirk, Joseph P.

    1994-05-01

    Scattered light, flare, is present in the images formed by all photolithography lenses and it reduces lithographic process tolerances. It varies from lens to lens and with time, but is easily measured by observation of images of opaque objects formed in positive photoresist. The scattered light halo of a lens is modeled and the model used to estimate the flare for any reticle used with that lens.

  17. A new look at massive clusters: weak lensing constraints on the triaxial dark matter haloes of A1689, A1835 and A2204

    NASA Astrophysics Data System (ADS)

    Corless, Virginia L.; King, Lindsay J.; Clowe, Douglas

    2009-03-01

    Measuring the three-dimensional (3D) distribution of mass on galaxy cluster scales is a crucial test of the Λ cold dark matter (ΛCDM) model, providing constraints on the nature of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. We recently introduced a Markov Chain Monte Carlo method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true shape uncertainty present in nature. In this paper we apply that method to weak lensing data obtained with the ESO/MPG Wide Field Imager for galaxy clusters A1689, A1835 and A2204, under a range of Bayesian priors derived from theory and from independent X-ray and strong lensing observations. For Abell1689, using a simple strong lensing prior we find marginalized mean parameter values M200 = (0.83 +/- 0.16) × 1015h-1Msolar and C = 12.2 +/- 6.7, which are marginally consistent with the mass-concentration relation predicted in ΛCDM. With the same strong lensing prior we find for Abell1835 M200 = (0.67 +/- 0.22) × 1015h-1Msolar and C = 7.1+10.6-7.1, and using weak lensing information alone find for Abell2204 M200 = (0.50 +/- 0.19) × 1015h-1Msolar and C = 7.1 +/- 6.2. The large error contours that accompany our triaxial parameter estimates more accurately represent the true extent of our limited knowledge of the structure of galaxy cluster lenses, and make clear the importance of combining many constraints from other theoretical, lensing (strong, flexion), or other observational (X-ray, Sunyaev

  18. Gravitational lensing in plasmic medium

    SciTech Connect

    Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  19. Gravitational lensing in plasmic medium

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-07-01

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  20. Constraining warm dark matter using QSO gravitational lensing

    NASA Astrophysics Data System (ADS)

    Miranda, Marco; Macciò, Andrea V.

    2007-12-01

    Warm dark matter (WDM) has been invoked to resolve apparent conflicts of cold dark matter (CDM) models with observations on subgalactic scales. In this work, we provide a new and independent lower limit for the WDM particle mass (e.g. sterile neutrino) through the analysis of image fluxes in gravitationally lensed quasi-stellar objects (QSOs). Starting from a theoretical unperturbed cusp configuration, we analyse the effects of intergalactic haloes in modifying the fluxes of QSO multiple images, giving rise to the so-called anomalous flux ratio. We found that the global effect of such haloes strongly depends on their mass/abundance ratio and it is maximized for haloes in the mass range 106-108Msolar. This result opens up a new possibility to constrain CDM predictions on small scales and test different warm candidates, since free streaming of WDM particles can considerably dampen the matter power spectrum in this mass range. As a consequence, while a (Λ)CDM model is able to produce flux anomalies at a level similar to those observed, a WDM model, with an insufficiently massive particle, fails to reproduce the observational evidences. Our analysis suggests a lower limit of a few keV (mν ~ 10) for the mass of WDM candidates in the form of a sterile neutrino. This result makes sterile neutrino WDM less attractive as an alternative to CDM, in good agreement with previous findings from Lyman α forest and cosmic microwave background analysis.

  1. Luminous and Dark Matter Profiles from Galaxies to Clusters: Bridging the Gap with Group-scale Lenses

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso

    2015-11-01

    Observations of strong gravitational lensing, stellar kinematics, and larger-scale tracers enable accurate measures of the distribution of dark matter (DM) and baryons in massive early-type galaxies (ETGs). While such techniques have been applied to galaxy-scale and cluster-scale lenses, the paucity of intermediate-mass systems with high-quality data has precluded a uniform analysis of mass-dependent trends. With the aim of bridging this gap, we present new observations and analyses of 10 group-scale lenses at < z> =0.36, characterized by Einstein radii {θ }{{Ein}}=2\\buildrel{\\prime\\prime}\\over{.} 5-5\\buildrel{\\prime\\prime}\\over{.} 1 and a mean halo mass of {M}200={10}14.0 {M}⊙ . We measure a mean concentration c200 = 5.0 ± 0.8 consistent with unmodified cold dark matter halos. By combining our data with other lens samples, we analyze the mass structure of ETGs in 1013 {M}⊙ -1015 {M}⊙ halos using homogeneous techniques. We show that the slope of the total density profile γtot within the effective radius depends on the stellar surface density, as demonstrated previously, but also on the halo mass. We analyze these trends using halo occupation models and resolved stellar kinematics with the goal of testing the universality of the DM profile. Whereas the central galaxies of clusters require a shallow inner DM density profile, group-scale lenses are consistent with a Navarro-Frenk-White profile or one that is slightly contracted. The largest uncertainties arise from the sample size and likely radial gradients in stellar populations. We conclude that the net effect of baryons on the DM distribution may not be universal, but more likely varies with halo mass due to underlying trends in star formation efficiency and assembly history.

  2. IRAC Snapshot Imaging of Massive-Cluster Gravitational Lenses Observed by the Herschel Lensing Survey

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi; Rawle, Timothy; Cava, Antonio; Clement, Benjamin; Dessauges-Zavadsky, Miroslava; Ebeling, Harald; Kneib, Jean-Paul; Perez-Gonzalez, Pablo; Richard, Johan; Rujopakarn, Wiphu; Schaerer, Daniel; Walth, Gregory

    2015-10-01

    Using the Herschel Space Observatory, our team has been conducting a large survey of the fields of massive galaxy clusters, 'The Herschel Lensing Survey (HLS)' (PI: Egami; 419 hours). The main scientific goal is to penetrate the confusion limit of Herschel by taking advantage of the strong gravitational lensing power of these massive clusters and study the population of low-luminosity and/or high-redshift dusty star-forming galaxies that are beyond the reach of field Herschel surveys. In the course of this survey, we have obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 clusters (HLS-deep) as well as shallower (but nearly confusion-limited) SPIRE images for 527 clusters (HLS-snapshot). The goal of this proposal is to obtain shallow (500 sec/band) 3.6/4.5 um images of 266 cluster fields that have been observed by the HLS-snapshot survey but do not have any corresponding IRAC data. The HLS-snapshot SPIRE images are deep enough to detect a large number of sources in the target cluster fields, many of which are distant star-forming galaxies lensed by the foreground clusters, and the large sample size of HLS-snapshot promises a great potential for making exciting discoveries. Yet, these Herschel images would be of limited use if we could not identify the counterparts of the Herschel sources accurately and efficiently. The proposed IRAC snapshot program will greatly enhance the utility of these Herschel data, and will feed powerful gound observing facilities like ALMA and NOEMA with interesting targets to follow up.

  3. Full-field and scanning microtomography based on parabolic refractive x-ray lenses

    NASA Astrophysics Data System (ADS)

    Schroer, C. G.; Kuhlmann, M.; Günzler, T. F.; Benner, B.; Kurapova, O.; Patommel, J.; Lengeler, B.; Roth, S. V.; Gehrke, R.; Snigirev, A.; Snigireva, I.; Stribeck, N.; Almendarez-Camarillo, A.; Beckmann, F.

    2006-08-01

    Hard x-ray full field and scanning microscopy both greatly benefit from recent advances in x-ray optics. In full field microscopy, for instance, rotationally parabolic refractive x-ray lenses can be used as objective lens in a hard x-ray microscope, magnifying an object onto a detector free of distortion. Using beryllium as lens material, a hard x-ray optical resolution of about 100 nm has been obtained in a field of view of more than 500 micrometers. Further improvement of the spatial resolution to below 50 nm is expected. By reconstructing the sample from a series of micrographs recorded from different perspectives, tomographic imaging with a resolution well below one micrometer was achieved. The technique is demonstrated using a microchip as test sample. In scanning microscopy and tomography, the sample is scanned through a hard x-ray microbeam. Different hard x-ray analytical techniques can be exploited as contrast mechanism, such as x-ray fluorescence, absorption, or scattering. In tomographic scanning mode, they yield for example local elemental, chemical, or structural information from inside a specimen. At synchrotron radiation sources, a small and intensive microbeam can be generated by imaging the source onto the sample position in a strongly reducing geometry, e.g., by parabolic refractive x-ray lenses. With nanofocusing refractive x-ray lenses, a lateral beam size of 50 nm was reached. As an example for scanning tomography, we consider tomographic small angle x-ray scattering (SAXS-tomography), reconstructing a series of SAXS patterns related to small volume elements inside a polymer rod made by injection moulding.

  4. Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper is devoted to study equatorial gravitational lensing in accelerating and rotating black hole with a NUT parameter in the strong field limit. For this purpose, we first calculate null geodesic equation using the Hamilton-Jacobi separation method. We then numerically obtain deflection angle and deflection coefficients which depend on acceleration and spin parameter of the black hole. We also investigate observables in the strong field limit by taking the example of a black hole in the center of galaxy. It is concluded that acceleration parameter has a significant effect on the strong field lensing in the equatorial plane.

  5. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  6. [Contact lenses permeable to gas. Literature review].

    PubMed

    Livshiys, V S; Popova, T A; Zaikov, G E; Kuś, H

    1989-01-01

    Some medical-technical requirements concerning ophthalmic contact lenses were formulated. A whole series of scientific descriptions of contact lenses was analysed. A short characterization of lenses was given on the basis of PMMA (polymethacrylate of methyl), silicon rubber, poly-2-methacrylic cellulose and cellulose acetate-butyrate; the properties of contact lenses made of materials achieved through a modification of the above-mentioned ones as well as made of new materials were also examined. The problems of transmission of gases of contact lenses were described and the calculations necessary for a minimum of the gas transmittance were mentioned, starting from partial oxygen to the eye cornea. Some ways of solving the problems concerning the insertion of therapeutic substances into contact lenses are described together with prevention of the accumulation of lacrimation fluid protein on their surfaces. PMID:2682577

  7. Instrumental systematics and weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, R.

    2015-05-01

    We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.

  8. Aberrations of sphero-cylindrical ophthalmic lenses.

    PubMed

    Malacara, Z; Malacara, D

    1990-04-01

    The authors have presented in two previous articles the graphic solutions resembling Tscherning ellipses, for spherical as well as for aspherical ophthalmic lenses free of astigmatism or power error. These solutions were exact, inasmuch as they were based on exact ray tracing, and not third-order theory as frequently done. In this paper sphero-cylindrical lenses are now analyzed, also using exact ray tracing. The functional dependence of the astigmatism and the power error for these lenses is described extensively.

  9. Reconstruction of small-scale galaxy cluster substructure with lensing flexion

    NASA Astrophysics Data System (ADS)

    Cain, Benjamin; Bradač, Maruša; Levinson, Rebecca

    2016-09-01

    We present reconstructions of galaxy-cluster-scale mass distributions from simulated gravitational lensing data sets including strong lensing, weak lensing shear, and measurements of quadratic image distortions - flexion. The lensing data is constructed to make a direct comparison between mass reconstructions with and without flexion. We show that in the absence of flexion measurements, significant galaxy-group scale substructure can remain undetected in the reconstructed mass profiles, and that the resulting profiles underestimate the aperture mass in the substructure regions by ˜25 - 40%. When flexion is included, subhaloes down to a mass of ˜3 × 1012 M⊙ can be detected at an angular resolution smaller than 10″. Aperture masses from profiles reconstructed with flexion match the input distribution values to within an error of ˜13%, including both statistical error and scatter. This demonstrates the important constraint that flexion measurements place on substructure in galaxy clusters and its utility for producing high-fidelity mass reconstructions.

  10. Reducing Systematic Error in Weak Lensing Cluster Surveys

    NASA Astrophysics Data System (ADS)

    Utsumi, Yousuke; Miyazaki, Satoshi; Geller, Margaret J.; Dell'Antonio, Ian P.; Oguri, Masamune; Kurtz, Michael J.; Hamana, Takashi; Fabricant, Daniel G.

    2014-05-01

    Weak lensing provides an important route toward collecting samples of clusters of galaxies selected by mass. Subtle systematic errors in image reduction can compromise the power of this technique. We use the B-mode signal to quantify this systematic error and to test methods for reducing this error. We show that two procedures are efficient in suppressing systematic error in the B-mode: (1) refinement of the mosaic CCD warping procedure to conform to absolute celestial coordinates and (2) truncation of the smoothing procedure on a scale of 10'. Application of these procedures reduces the systematic error to 20% of its original amplitude. We provide an analytic expression for the distribution of the highest peaks in noise maps that can be used to estimate the fraction of false peaks in the weak-lensing κ-signal-to-noise ratio (S/N) maps as a function of the detection threshold. Based on this analysis, we select a threshold S/N = 4.56 for identifying an uncontaminated set of weak-lensing peaks in two test fields covering a total area of ~3 deg2. Taken together these fields contain seven peaks above the threshold. Among these, six are probable systems of galaxies and one is a superposition. We confirm the reliability of these peaks with dense redshift surveys, X-ray, and imaging observations. The systematic error reduction procedures we apply are general and can be applied to future large-area weak-lensing surveys. Our high-peak analysis suggests that with an S/N threshold of 4.5, there should be only 2.7 spurious weak-lensing peaks even in an area of 1000 deg2, where we expect ~2000 peaks based on our Subaru fields. Based in part on data collected at Subaru Telescope and obtained from the SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan.

  11. Design of spherical symmetric gradient index lenses

    NASA Astrophysics Data System (ADS)

    Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción

    2012-10-01

    Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.

  12. The Alvarez and Lohmann refractive lenses revisited.

    PubMed

    Barbero, Sergio

    2009-05-25

    Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.

  13. Gravitational lenses and dark matter - Observations

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1987-01-01

    Following a few general comments on gravitational lenses from an observer's perspective, the currently available observations of the six known gravitational lenses are summarized. Attention is called to some regularities and peculiarities of the properties of the known lenses and to how they might be interpreted. The most important conclusions, relevant to the dark matter problem, which can be obtained from current observations are that the distributions of mass and light appear to be quite different in at least some of the lensing objects and that objects with projected mass/brightness values about 10 times larger than those ordinarily associated with galaxies exist and are not too rare.

  14. Galaxy Cluster Center Detection Methods with Weak Lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    2013-01-01

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. Misidentification of centers, either because a well-defined center does not exist or because candidate centers are incorrectly identified or ranked, leads to systematic underestimates of cluster masses. Weak lensing provides a potential lever on this issue by directly probing the distribution of dark matter. We test methods of determining cluster centers directly from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ~500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. In cases where other center identification methods fail, however, the method may still be useful to distinguish between competing options.

  15. Disentangling dark sector models using weak lensing statistics

    NASA Astrophysics Data System (ADS)

    Giocoli, Carlo; Metcalf, R. Benton; Baldi, Marco; Meneghetti, Massimo; Moscardini, Lauro; Petkova, Margarita

    2015-09-01

    We perform multiplane ray tracing using the GLAMER gravitational lensing code within high-resolution light-cones extracted from the CoDECS simulations: a suite of cosmological runs featuring a coupling between dark energy and cold dark matter (CDM). We show that the presence of the coupling is evident not only in the redshift evolution of the normalization of the convergence power spectrum, but also in differences in non-linear structure formation with respect to ΛCDM. Using a tomographic approach under the assumption of a ΛCDM cosmology, we demonstrate that weak lensing measurements would result in a σ8 value that changes with the source redshift if the true underlying cosmology is a coupled dark energy (cDE) one. This provides a generic null test for these types of models. We also find that different models of cDE can show either an enhanced or a suppressed correlation between convergence maps with differing source redshifts as compared to ΛCDM. This would provide a direct way to discriminate between different possible realizations of the cDE scenario. Finally, we discuss the impact of the coupling on several lensing observables for different source redshifts and angular scales with realistic source redshift distributions for current ground-based and future space-based lensing surveys.

  16. Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses

    PubMed Central

    Zambelli, Alison M.; Brothers, Kimberly M.; Hunt, Kristin M.; Romanowski, Eric G.; Nau, Amy C.; Dhaliwal, Deepinder K.; Shanks, Robert M. Q.

    2014-01-01

    Objectives To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses in vitro. Methods Using an in vitro model, the diffusion of three antimicrobials through SH contact lenses was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of four hours. The amount of each diffused antimicrobial was determined by comparing the experimental value to a standard curve. A biological assay was performed to validate the contact lens diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least 4 independent replicates. Results Our data show detectable moxifloxacin and PHMB diffusion through SH contact lenses at 30 minutes, while amphotericin B diffusion remained below the limit of detection within the 4 hour experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 minutes on bacterial lawns, whereas PHMB and amphotericin B failed to demonstrate killing on microbial lawns over the course of the 60 minute experiment. Conclusions In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through silicone hydrogel contact lenses. Further studies regarding the clinical benefit of using these agents along with bandage contact lens use for corneal pathology are warranted. PMID:25806673

  17. cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ford, Jes

    2016-05-01

    The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.

  18. Constraining dark energy evolution with gravitational lensing by large scale structures

    SciTech Connect

    Benabed, Karim; Waerbeke, Ludovic van

    2004-12-15

    We study the sensitivity of weak lensing by large scale structures as a probe of the evolution of dark energy. We explore a two-parameters model of dark energy evolution, inspired by tracking quintessence models. To this end, we compute the likelihood of a few fiducial models with varying and nonvarying equation of states. For the different models, we investigate the dark energy parameter degeneracies with the mass power spectrum shape {gamma}, normalization {sigma}{sub 8}, and with the matter mean density {omega}{sub M}. We find that degeneracies are such that weak lensing turns out to be a good probe of dark energy evolution, even with limited knowledge on {gamma}, {sigma}{sub 8}, and {omega}{sub M}. This result is a strong motivation for performing large scale structure simulations beyond the simple constant dark energy models, in order to calibrate the nonlinear regime accurately. Such calibration could then be used for any large scale structure tests of dark energy evolution. Prospective for the Canada France Hawaii Telescope Legacy Survey and Super-Novae Acceleration Probe are given. These results complement nicely the cosmic microwave background and supernovae constraints.

  19. Use of the Humphrey Lens Analyzer for off-axis measurements of spectacle lenses.

    PubMed

    Atchison, D A; Kris, M; Sheedy, J E; Bailey, I L

    1991-04-01

    Automated focimeters can be used to make quick, precise measurements of off-axis power and prismatic effects corresponding to an eye rotating behind a spectacle lens. An automated focimeter, the Humphrey Lens Analyzer, was assessed in this regard. The Humphrey Lens Analyzer can be used to give a valid measure of off-axis power of lenses with low power, but not of lenses with moderate to higher power (greater than 3 D). For 3 D spherical lenses discrepancies of the order of 0.1 D occur at 30 degrees rotation, and 6 D spheres give discrepancies of 0.5 D at the same rotation. Small discrepancies were found for measurements of prism. The Humphrey Lens Analyzer was also used in a mode where the lens being tested is rotated about the center of curvature of its back surface. This is the mode often used to assess aberrations and prism of progressive-addition lenses. In this mode, the instrument provides reasonable accuracy in estimating off-axis power corresponding to eye rotation for lenses with low power, but not for lenses with moderate to higher power (greater than 3 D). However, it provides accurate values of the variation in off-axis surface power for low powered lenses with aspheric front surfaces. There were considerable systematic errors associated with the measurement of prism. A simple raytracing method was developed to predict the results of measurements with the Humphrey Lens Analyzer. Predictions of off-axis power were good when lenses were rotated about a position corresponding to the center-of-rotation of an eye, but were poorer when lenses were rotated about the center of curvature of their back surfaces. Predictions of primatic efforts were good in both situations. A method by which the Humphrey Lens Analyzer should provide an accurate measurement of off-axis powers corresponding to eye rotation behind a spectacle lens is described, but has not been tested. PMID:2052286

  20. Systematic errors in strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci Lin; Sharon, Keren; Bayliss, Matthew B.

    2015-08-01

    The lensing community has made great strides in quantifying the statistical errors associated with strong lens modeling. However, we are just now beginning to understand the systematic errors. Quantifying these errors is pertinent to Frontier Fields science, as number counts and luminosity functions are highly sensitive to the value of the magnifications of background sources across the entire field of view. We are aware that models can be very different when modelers change their assumptions about the parameterization of the lensing potential (i.e., parametric vs. non-parametric models). However, models built while utilizing a single methodology can lead to inconsistent outcomes for different quantities, distributions, and qualities of redshift information regarding the multiple images used as constraints in the lens model. We investigate how varying the number of multiple image constraints and available redshift information of those constraints (ex., spectroscopic vs. photometric vs. no redshift) can influence the outputs of our parametric strong lens models, specifically, the mass distribution and magnifications of background sources. We make use of the simulated clusters by M. Meneghetti et al. and the first two Frontier Fields clusters, which have a high number of multiply imaged galaxies with spectroscopically-measured redshifts (or input redshifts, in the case of simulated clusters). This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies, and are more prone to these systematic errors.

  1. Spherical aberration of aspheric contact lenses on eye.

    PubMed

    Hammer, R M; Holden, B A

    1994-08-01

    It is important to assess aspheric rigid contact lenses not only for fit, but also for optical performance. Using ray tracing techniques, on-eye total longitudinal aberration induced by aspheric contact lenses and the variation of the tangential focus with ray height were determined. Both the contact lens and tear lens were taken into account. The front and back surface profiles of the contact lens and the corneal profile were modeled as conic sections. On-eye aberration was found to become strongly more positive as the p-value of the contact lens front surface increased. It became more negative as the back surface p-value increased, but the tendency was weaker. These calculations indicate that selection of a contact lens back surface p-value according to fitting considerations without choosing a front surface p-value to minimize aberrations could, in some circumstances, lead to a reduction in visual performance.

  2. Difference Imaging of Lensed Quasar Candidates inthe SDSS Supernova Survey Region

    SciTech Connect

    Lacki, Brian C.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Inada, Naohisa; Oguri, Masamune

    2008-02-04

    Difference imaging provides a new way to discover gravitationally lensed quasars because few non-lensed sources will show spatially extended, time variable flux. We test the method on lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS) and their surrounding fields. Starting from 20768 sources, including 49 SDSS quasars and 36 candidate lenses/lensed images, we find that 21 sources including 15 SDSS QSOs and 7 candidate lenses/lensed images are non-periodic variable sources. We can measure the spatial structure of the variable flux for 18 of these sources and identify only one as a non-point source. This source does not display the compelling spatial structure of the variable flux of known lensed quasars, so we reject it as a lens candidate. None of the lens candidates from the SQLS survive our cuts. Given our effective survey area of order 0.71 square degrees, this indicates a false positive rate of order one per square degree for the method. The fraction of quasars not found to be variable and the false positive rate should both fall if we analyze the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will avoid these limitations.

  3. Constraining gravity at the largest scales through CMB lensing and galaxy velocities

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Alam, Shadab; He, Siyu; Ho, Shirley

    2016-08-01

    We demonstrate a new method to constrain gravity on the largest cosmological scales by combining measurements of cosmic microwave background (CMB) lensing and the galaxy velocity field. EG is a statistic, constructed from a gravitational lensing tracer and a measure of velocities such as redshift-space distortions (RSD), that can discriminate between gravity models while being independent of clustering bias and σ8. While traditionally, the lensing field for EG has been probed through galaxy lensing, CMB lensing has been proposed as a more robust tracer of the lensing field for EG at higher redshifts while avoiding intrinsic alignments. We perform the largest-scale measurement of EG ever, up to 150 Mpc h-1, by cross-correlating the Planck CMB lensing map with the Sloan Digital Sky Survey III (SDSS-III) CMASS galaxy sample and combining this with our measurement of the CMASS auto-power spectrum and the RSD parameter β. We report EG(z = 0.57) = 0.243 ± 0.060 (stat) ± 0.013 (sys), a measurement in tension with the general relativity (GR) prediction at a level of 2.6σ. Note that our EG measurement deviates from GR only at scales greater than 80 Mpc h-1, scales which have not been probed by previous EG tests. Upcoming surveys, which will provide an order-of-magnitude reduction in statistical errors, can significantly constrain alternative gravity models when combined with better control of systematics.

  4. Strong Interaction

    SciTech Connect

    Karsch, F.; Vogelsang, V.

    2009-09-29

    We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.

  5. Gravitational Lensing Extends SETI Range

    NASA Astrophysics Data System (ADS)

    Factor, Richard

    Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.

  6. Weak lensing by galaxy troughs

    NASA Astrophysics Data System (ADS)

    Gruen, Daniel

    2016-06-01

    Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.

  7. A comparison of cosmological models using time delay lenses

    SciTech Connect

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio E-mail: xfwu@pmo.ac.cn

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  8. Comparison of spectacle classical progressive and office progressive lenses.

    PubMed

    Kozlík, Marek; Knollová, Libuse Nováková

    2013-04-01

    This paper elaborates on analysis of progressive spectacle lenses, to correct presbyopia, which are nowadays offered at the market. The paper describes different types of progressive lenses, their parameters, length and width of their progressive segments. It also describes degressive spectacles lenses--progressive lenses on middle and near distance. The main part of the paper is a comparison of functional differences among different types of progressive spectacles lenses. The paper also addresses correctness of choice of progressive lenses for different works and professions. Lastly, it elaborates on differences of centration of different types of progressive lenses and parameters for correct choice of glasses frame for progressive spectacles lenses. PMID:23837232

  9. Using compound kinoform hard-x-ray lenses to exceed the critical angle limit.

    PubMed

    Evans-Lutterodt, K; Stein, A; Ablett, J M; Bozovic, N; Taylor, A; Tennant, D M

    2007-09-28

    We have fabricated and tested a compound lens consisting of an array of four kinoform lenses for hard x-ray photons of 11.3 keV. Our data demonstrate that it is possible to exceed the critical angle limit by using multiple lenses, while retaining lens function, and this suggests a route to practical focusing optics for hard x-ray photons with nanometer scale resolution and below. PMID:17930597

  10. Preschool Social-Emotional Skills Training: A Controlled Pilot Test of the Making Choices and Strong Families Programs

    ERIC Educational Resources Information Center

    Conner, Natalie W.; Fraser, Mark W.

    2011-01-01

    Objective: The purpose of this study was to pilot test a multicomponent program designed to prevent aggressive behavior in preschool children. The first program component was comprised of social-emotional skills training. It focused on improving the social information processing and emotional-regulation skills of children. The second component was…

  11. Lenses and Perception: Investigations with Light

    ERIC Educational Resources Information Center

    Akcay, Hakan

    2005-01-01

    The main goals of these activities are to help students learn how a convex lens can serve as a magnifying lens and how light travels and creates images. These explorations will introduce middle school students to different types of lenses and how they work. Students will observe and describe how lenses bend light that passes through them and how…

  12. A symplectic framework for multiplane gravitational lensing

    NASA Astrophysics Data System (ADS)

    Izumiya, S.; Janeczko, S.

    2003-05-01

    We construct a new framework for the study of multiplane gravitational lensing from the view point of symplectic geometry. Symplectic relations are used to compose the systems and weaker Lagrangian equivalence is applied for classifying the caustics of multiplane gravitational lensing.

  13. Time delay in Swiss cheese gravitational lensing

    SciTech Connect

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-15

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  14. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  15. Optical plasticity in fish lenses.

    PubMed

    Kröger, Ronald H H

    2013-05-01

    In a typical fish eye, the crystalline lens is the only refractive element. It is spherical in shape and has high refractive power. Most fish species have elaborate color vision and spectral sensitivity may range from the near-infrared to the near-ultraviolet. Longitudinal chromatic aberration exceeds depth of focus and chromatic blur is compensated for by species-specific multifocality of the lens. The complex optical properties of fish lenses are subject to accurate regulation, including circadian reversible adjustments and irreversible developmental tuning. The mechanisms optimize the transfer of visual information to the retina in diverse and variable environments, and allow for rapid evolutionary changes in color vision. Active optical tuning of the lens is achieved by changes in the refractive index gradient and involves layers of mature, denucleated lens fiber cells. First steps have been taken toward unraveling the signaling systems controlling lens optical plasticity. Multifocal lenses compensating for chromatic blur are common in all major groups of vertebrates, including birds and mammals. Furthermore, the optical quality of a monofocal lens, such as in the human eye, is equally sensitive to the exact shape of the refractive index profile. Optical plasticity in the crystalline lens may thus be present in vertebrates in general.

  16. Ray optics of generalized lenses.

    PubMed

    Chaplain, Gregory J; Macauley, Gavin; Bělín, Jakub; Tyc, Tomáš; Cowie, Euan N; Courtial, Johannes

    2016-05-01

    We study the ray optics of generalized lenses (glenses), which are ideal thin lenses generalized to have different object- and image-sided focal lengths, and the most general light-ray-direction-changing surfaces that stigmatically image any point in object space to a corresponding point in image space. Gabor superlenses [UK patent541,753 (1940); J. Opt. A1, 94 (1999)JOAOF81464-425810.1088/1464-4258/1/1/013] can be seen as pixelated realizations of glenses. Our analysis is centered on the nodal point. Whereas the nodal point of a thin lens always resides in the lens plane, that of a glens can reside anywhere on the optical axis. Utilizing the nodal point, we derive simple equations that describe the mapping between object and image space and the light-ray-direction change. We demonstrate our findings with the help of ray-tracing simulations. Glenses allow novel optical instruments to be realized, at least theoretically, and our results facilitate the design and analysis of such devices. PMID:27140894

  17. A 7 deg2 survey for galaxy-scale gravitational lenses with the HST imaging archive

    NASA Astrophysics Data System (ADS)

    Pawase, R. S.; Courbin, F.; Faure, C.; Kokotanekova, R.; Meylan, G.

    2014-04-01

    We present the results of a visual search for galaxy-scale gravitational lenses in ˜7 deg2 of Hubble Space Telescope (HST) images. The data set comprises the whole imaging data ever taken with the Advanced Camera for Surveys (ACS) in the filter F814W (I-band) up to 2011 August 31, i.e. 6.03 deg2 excluding the field of the Cosmic Evolution Survey which has been the subject of a separate visual search. In addition, we have searched for lenses in the whole Wide Field Camera 3 (WFC3) near-IR imaging data set in all filters (1.01 deg2) up to the same date. Our primary goal is to provide a sample of lenses with a broad range of different morphologies and lens-source brightness contrast in order to estimate a lower limit to the number of galaxy-scale strong lenses in the future Euclid survey in its VIS band. Our criteria to select lenses are purely morphological as we do not use any colour or redshift information. The final candidate selection is very conservative hence leading to a nearly pure but incomplete sample. We find 49 new lens candidates: 40 in the ACS images and 9 in the WFC3 images. Out of these, 16 candidates are secure lenses owing to their striking morphology, 21 more are very good candidates and 12 more have morphologies compatible with gravitational lensing but also compatible with other astrophysical objects such as ring and chain galaxies or mergers. Interestingly, some lens galaxies include low surface brightness galaxies, compact groups and mergers. The imaging data set is heterogeneous in depth and spans a broad range of galactic latitudes. It is therefore insensitive to cosmic variance and allows us to estimate the number of galaxy-scale strong lenses on the sky for a putative survey depth, which is the main result of this work. Because of the incompleteness of the sample, the estimated lensing rates should be taken as lower limits. Using these, we anticipate that a 15 000 deg2 space survey such as Euclid will find at least 60 000 galaxy

  18. 3D Printed Terahertz Diffraction Gratings And Lenses

    NASA Astrophysics Data System (ADS)

    Squires, A. D.; Constable, E.; Lewis, R. A.

    2015-01-01

    3D printing opens up an inexpensive, rapid, and versatile path to the fabrication of optical elements suited to the terahertz regime. The transmission of the plastics used in 3D printers, while generally decreasing with frequency, is usable over the range 0.1-2 THz. We have designed, fabricated, and tested regular and blazed gratings and aspherical lenses for operation at terahertz frequencies. We find that the measured performance matches our theoretical predictions.

  19. Aberration analysis in aerial images formed by lithographic lenses

    NASA Astrophysics Data System (ADS)

    Freitag, Wolfgang; Grossmann, Wilfried; Grunewald, Uwe

    1992-05-01

    A test procedure for the final assembly of lenses that does not need exposed photographic plates is introduced. It is based on the metrological simulation of optical ray tracing. A measuring example illustrates its suitabilty for ultraviolet optical systems in particular. The measuring apparatus displays the distortion vectors directly in the aerial image, gives a wave-front analysis, and performs an analogous distortion analysis.

  20. MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES

    SciTech Connect

    Umetsu, Keiichi

    2013-05-20

    Lens magnification by galaxy clusters induces characteristic spatial variations in the number counts of background sources, amplifying their observed fluxes and expanding the area of sky, the net effect of which, known as magnification bias, depends on the intrinsic faint-end slope of the source luminosity function. The bias is strongly negative for red galaxies, dominated by the geometric area distortion, whereas it is mildly positive for blue galaxies, enhancing the blue counts toward the cluster center. We generalize the Bayesian approach of Umetsu et al. for reconstructing projected cluster mass profiles, by incorporating multiple populations of background sources for magnification-bias measurements and combining them with complementary lens-distortion measurements, effectively breaking the mass-sheet degeneracy and improving the statistical precision of cluster mass measurements. The approach can be further extended to include strong-lensing projected mass estimates, thus allowing for non-parametric absolute mass determinations in both the weak and strong regimes. We apply this method to our recent CLASH lensing measurements of MACS J1206.2-0847, and demonstrate how combining multi-probe lensing constraints can improve the reconstruction of cluster mass profiles. This method will also be useful for a stacked lensing analysis, combining all lensing-related effects in the cluster regime, for a definitive determination of the averaged mass profile.

  1. Use of HPLC/UPLC-spectrophotometry for detection of formazan in in vitro Reconstructed human Tissue (RhT)-based test methods employing the MTT-reduction assay to expand their applicability to strongly coloured test chemicals.

    PubMed

    Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P

    2015-06-01

    A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals.

  2. Planck 2015 results. XV. Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

  3. Properties of Galaxy Dark Matter Halos from Weak Lensing

    NASA Astrophysics Data System (ADS)

    Hoekstra, Henk; Yee, H. K. C.; Gladders, Michael D.

    2004-05-01

    We present the results of a study of weak lensing by galaxies based on 45.5 deg2 of RC-band imaging data from the Red-Sequence Cluster Survey (RCS). We define a sample of lenses with 19.5lensing detection of the flattening of galaxy dark matter halos. We use a simple model in which the ellipticity of the halo is f times the observed ellipticity of the lens. We find a best-fit value of f=0.77+0.18-0.21, which suggests that the dark matter halos are somewhat rounder than the light distribution. The fact that we detect a significant flattening implies that the halos are well aligned with the light distribution. Given the average ellipticity of the lenses, this implies a halo ellipticity of =0.33+0.07-0.09, in fair agreement with results from numerical simulations of cold dark matter. We note that this result is formally a lower limit to the flattening, since the measurements imply a larger flattening if the halos are not aligned with the light distribution. Alternative theories of gravity (without dark matter) predict an isotropic lensing signal, which is excluded with 99.5% confidence. Hence, our results provide strong support for the existence of dark matter. We also study the average mass profile around the lenses, using a maximum likelihood analysis. We consider two models for the halo mass profile: a truncated isothermal sphere (TIS) and a Navarro-Frenk-White (NFW) profile. We adopt observationally motivated scaling relations between the lens luminosity and the velocity dispersion and the extent of the halo. The TIS model yields a best-fit velocity dispersion of σ=136+/-5+/-3 km s-1 (all errors are 68% confidence limits; the first error bar indicates the statistical uncertainty, whereas the second error bar indicates the systematic error) and a truncation radius s=185+30-28h-1 kpc for a galaxy with a fiducial luminosity of LB=1010h-2LB,solar (under the assumption that

  4. Weak lensing by intergalactic ministructures in quadruple lens systems: simulation and detection

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuichi; Inoue, Kaiki Taro

    2014-05-01

    We investigate the weak lensing effects of line-of-sight structures on quadruple images in quasar-galaxy strong lens systems based on N-body and ray-tracing simulations that can resolve haloes with a mass of ˜105 M⊙. The intervening haloes and voids disturb the magnification ratios of lensed images as well as their relative positions due to lensing. The magnification ratios typically change by O(10 per cent) when the shifts of relative angular positions of lensed images are constrained to <0.004 arcsec. The constrained amplitudes of projected density perturbations due to line-of-sight structures are O(108) M⊙ arcsec- 2. These results are consistent with our new analytical estimate based on the two-point correlation of density fluctuations. The observed mid-infrared flux ratios for six quasar-galaxy lens systems with quadruple images agree well with the numerically estimated values without taking into account subhalos residing in the lensing galaxies. We find that the constrained mean amplitudes of projected density perturbations in the line of sight are negative, which suggests that the fluxes of lensed images are perturbed mainly by minivoids and minihaloes in underdense regions. We derive a new fitting formula for estimating the probability distribution function of magnification perturbation. We also find that the mean amplitude of magnification perturbation roughly equals the standard deviation regardless of the model parameters.

  5. Contact lenses as the best conservative treatment of newly diagnosed keratoconus--epidemiological retrospective study.

    PubMed

    Mrazovac, Danijela; Barisić Kutija, Marija; Vidas, Sania; Kuzman, Tomislav; Petricek, Igor; Jandroković, Sonja; Kalauz, Miro; Cerovski, Branimir

    2014-12-01

    Keratoconus is a progressive, non-inflammatory corneal ectasia characterized by thinning and weakening of the corneal stroma which results in its' protrusion. The onset is during puberty and progresses until the fourth decade of life. In earlier stages, good visual acuity can be provided with spectacles. With progression, contact lenses are considered to be a better therapy. Aim of this study was to determine if there is statistically significant difference between best corrected visual acuity (BCVA) obtained by spectacles and contact lenses in newly diagnosed keratoconus patients, as well as to determine which type of contact lenses provide better BCVA in keratoconus patients. We conducted a 5-year retrospective study of all 2891 patients attending our Contact Lens Department for the first time, searching for patients newly diagnosed with keratoconus. Data were obtained on gender, age, education level, treated eyes, corneal changes, keratoconus severity, BCVA with spectacles, contact lenses and best fitted contact lens type. All patients underwent standard ophthalmic exam, refractometry and keratometry have been done, followed by a spectacles correction and lens fitting. Wilcoxon signed rank test was used for statistical analysis. Results showed that of all 2891 patients examined for the first time, 137 patients (4.74%) have been newly diagnosed with heratoconus, there was male bias (72.26%), mean age 27.7 +/- 9.9 years. Most patients had high school education (51.11%), 3.70% had present corneal changes, 50.37% had mild heratoconus. Majority had keratoconus on both eyes (36.3%) or keratoconus of right eye (26.67%). There was a statistically significant difference (p<0.001) between the BCVA obtained with contact lenses (0.82 +/- 0.21 Snellen chart) rather than spectacles (0.37 +/- 0.27 Snellen chart). The best corrected visual acuity was achieved with rigid gas permeable (RGP) lenses in majority of kera- toconus eyes (51.85%), with semi-gas permeable (SGP) lenses

  6. Contact lenses as the best conservative treatment of newly diagnosed keratoconus--epidemiological retrospective study.

    PubMed

    Mrazovac, Danijela; Barisić Kutija, Marija; Vidas, Sania; Kuzman, Tomislav; Petricek, Igor; Jandroković, Sonja; Kalauz, Miro; Cerovski, Branimir

    2014-12-01

    Keratoconus is a progressive, non-inflammatory corneal ectasia characterized by thinning and weakening of the corneal stroma which results in its' protrusion. The onset is during puberty and progresses until the fourth decade of life. In earlier stages, good visual acuity can be provided with spectacles. With progression, contact lenses are considered to be a better therapy. Aim of this study was to determine if there is statistically significant difference between best corrected visual acuity (BCVA) obtained by spectacles and contact lenses in newly diagnosed keratoconus patients, as well as to determine which type of contact lenses provide better BCVA in keratoconus patients. We conducted a 5-year retrospective study of all 2891 patients attending our Contact Lens Department for the first time, searching for patients newly diagnosed with keratoconus. Data were obtained on gender, age, education level, treated eyes, corneal changes, keratoconus severity, BCVA with spectacles, contact lenses and best fitted contact lens type. All patients underwent standard ophthalmic exam, refractometry and keratometry have been done, followed by a spectacles correction and lens fitting. Wilcoxon signed rank test was used for statistical analysis. Results showed that of all 2891 patients examined for the first time, 137 patients (4.74%) have been newly diagnosed with heratoconus, there was male bias (72.26%), mean age 27.7 +/- 9.9 years. Most patients had high school education (51.11%), 3.70% had present corneal changes, 50.37% had mild heratoconus. Majority had keratoconus on both eyes (36.3%) or keratoconus of right eye (26.67%). There was a statistically significant difference (p<0.001) between the BCVA obtained with contact lenses (0.82 +/- 0.21 Snellen chart) rather than spectacles (0.37 +/- 0.27 Snellen chart). The best corrected visual acuity was achieved with rigid gas permeable (RGP) lenses in majority of kera- toconus eyes (51.85%), with semi-gas permeable (SGP) lenses

  7. SKA Weak Lensing II: Simulated Performance and Survey Design Considerations

    NASA Astrophysics Data System (ADS)

    Bonaldi, Anna; Harrison, Ian; Camera, Stefano; Brown, Michael L.

    2016-08-01

    We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimise a 2-year weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal-to-noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5,000 square degrees is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3π steradian) and sensitivity improves both the signal-to-noise and the dark energy metrics by two orders of magnitude.

  8. Adhesive Capabilities of Staphylococcus Aureus and Pseudomonas Aeruginosa Isolated from Tears of HIV/AIDS Patients to Soft Contact Lenses

    PubMed Central

    B. O., Ajayi; F.E., Kio; F.D., Otajevwo

    2012-01-01

    Fifty conjunctival swab samples collected from ELISA confirmed HIV/AIDS seropositive patients who were referred to the HIV/AIDS laboratories of the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria were aseptically cultured on appropriate media by standard methods. The resulting isolates/strains, after identification by standard methods, were tested for their ability to adhere to two hydrophobic non-ionic daily wear silicone hydrogel soft contact lenses (i.e. lotrafilcon B, WC 33% and polymacon, WC 38%) as well as to two hydrophilic ionic conventional extended wear silicone hydrogel soft contact lenses (i.e. methafilcon A, WC 55% and omafilcon A, WC 60%) by the adhesiveness/slime production modified vortex/Robin device method. Evidence of adhesiveness/slime production was indicated by presence of a visible stained film lining the surface of the contact lens which was measured and recorded as strong or weak according to the density of the adhered bacterial film. Fourteen (28.0%) Staphylococcus aureus strains and 10 (20.0%) Pseudomonas aeruginosa strains were obtained among other organisms. Staphylococcus aureus strains adhered in decreasing order to lotrafilcon B (55.4 ± 4.7), polymacon (46.4 ± 8.4), methfilcon A (46.4 ± 8.4) and omafilcon A (25.0 ± 6.4) with no significant difference in adhesive strengths of individual strains (P > 0.05). Pseudomonas aeruginosa strains also recorded decreasing adhesive strengths to lotrafilcon B (37.5 ± 8.2), polymacon (28.6 ± 6.3), methafilcon A (26.8 ± 5.5) and omafilcon A (23.2 ± 5.5) also with no significant difference in adhesive strengths of individual strains (P > 0.05). Attachment strengths of Staph. aureus strains to all four contact lenses were higher than those of Pseudomonas aeruginosa strains. Both organisms adhered most to hydrophobic lotrafilcon B and least to hydrophilic omafilcon A. This invitro adhesion studies revealed that daily wear silicone hydrogel low water

  9. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  10. Constraining Source Redshift Distributions with Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Wittman, D.; Dawson, W. A.

    2012-09-01

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive (σ v = 1200 km s-1) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N_lens^{-{1\\over 2}}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.

  11. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  12. HST Observations of New Class Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Jackson, Neal

    1995-07-01

    We propose to examine a few of the very best lens candidates from a new gravitational lens survey, the Cosmic Lens All-Sky Survey (CLASS) made with the VLA. We are virtually certain that we have one new lens system (1600+434) and another (1609+655) has a radio configuration which almost invariably indicates gravitational lensing. The other cases are systems which have a high probability of being lenses (statistically we would expect at least 5 of the 10 objects should be lensed, since we have imaged >3000 radio sources and experience shows that 1 in 500 are lensed). All have separations which make them difficult to study from the ground and therefore uniquely suited to the capabilities of the HST. In this investigation we will study 1600+434 and 1609+655 and attempt to image the lensing galaxy. We will image the remainder in an attempt to confirm their lens status (which requires 0.1" resolution imaging typically) and search for lensing galaxies and/or clusters in those found to be lensed systems.

  13. Mesh-free free-form lensing - I. Methodology and application to mass reconstruction

    NASA Astrophysics Data System (ADS)

    Merten, Julian

    2016-09-01

    Many applications and algorithms in the field of gravitational lensing make use of meshes with a finite number of nodes to analyse and manipulate data. Specific examples in lensing are astronomical CCD images in general, the reconstruction of density distributions from lensing data, lens-source plane mapping or the characterization and interpolation of a point spread function. We present a numerical framework to interpolate and differentiate in the mesh-free domain, defined by nodes with coordinates that follow no regular pattern. The framework is based on radial basis functions (RBFs) to smoothly represent data around the nodes. We demonstrate the performance of Gaussian RBF-based, mesh-free interpolation and differentiation, which reaches the sub-percent level in both cases. We use our newly developed framework to translate ideas of free-form mass reconstruction from lensing on to the mesh-free domain. By reconstructing a simulated mock lens we find that strong-lensing only reconstructions achieve <10 per cent accuracy in the areas where these constraints are available but provide poorer results when departing from these regions. Weak-lensing only reconstructions give <10 per cent accuracy outside the strong-lensing regime, but cannot resolve the inner core structure of the lens. Once both regimes are combined, accurate reconstructions can be achieved over the full field of view. The reconstruction of a simulated lens, using constraints that mimics real observations, yields accurate results in terms of surface-mass density, Navarro-Frenk-White profile (NFW) parameters, Einstein radius and magnification map recovery, encouraging the application of this method to real data.

  14. In-office microwave disinfection of soft contact lenses

    SciTech Connect

    Harris, M.G.; Rechberger, J.; Grant, T.; Holden, B.A. )

    1990-02-01

    We evaluated the effectiveness of an in-office microwave disinfection procedure which allowed for the disinfection of up to 40 soft contact lenses at one time. Ciba AOSept cases filled with sterile unpreserved saline were contaminated with one of six FDA test challenge microorganisms at a concentration of approximately 10(3) colony forming units per milliliter (CFU/ml). Twenty cases were placed on the rotating plate of a standard 2450 MHz 650 W microwave oven in a 10-cm diameter circle. The cases were exposed to high intensity microwave irradiation for periods of 0 to 15 min. None of the 6 microorganisms evaluated survived 2 min or longer of microwave exposure. Our findings indicated that microwave irradiation can be a convenient, rapid, and effective method of disinfecting a number of soft contact lenses at one time and thus adaptable as an in-office soft contact lens disinfection procedure.

  15. UV laser ionization and electron beam diagnostics for plasma lenses

    SciTech Connect

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated.

  16. The DES Science Verification weak lensing shear catalogues

    NASA Astrophysics Data System (ADS)

    Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.

    2016-08-01

    We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees.

  17. The DES Science Verification Weak Lensing Shear Catalogs

    DOE PAGES

    Jarvis, M.

    2016-05-01

    We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less

  18. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-01

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics. PMID:24745402

  19. Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-Correlation with the Cosmic Infrared Background

    NASA Astrophysics Data System (ADS)

    Ade, P. A. R.; Akiba, Y.; Anthony, A. E.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Borrill, J.; Borys, C.; Chapman, S.; Chinone, Y.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Gilbert, A.; Grainger, W.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Howard, J.; Hyland, P.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Meng, X.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Quealy, E.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K.; Schanning, I.; Schenck, D. E.; Sherwin, B. D.; Shimizu, A.; Shimmin, C.; Shimon, M.; Siritanasak, P.; Smecher, G.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Wilson, B.; Yadav, A.; Zahn, O.; Polarbear Collaboration

    2014-04-01

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  20. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-01

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  1. Tevatron Electron Lenses: Design and Operation

    SciTech Connect

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab

    2008-08-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  2. Wettability and silicone hydrogel lenses: a review.

    PubMed

    Keir, Nancy; Jones, Lyndon

    2013-01-01

    One of the major breakthroughs in the development of silicone hydrogel contact lenses has related to the ability of manufacturers to overcome the surface hydrophobicity that occurred with silicone elastomer lenses. However, the wettability of silicone hydrogel lenses continues to be of interest as a potential link between in vivo lens performance and contact lens-related comfort. This article will review some of the knowledge we have gained in the area of contact lens wettability over the past decade and will discuss some of the challenges related to its measurement. PMID:23274760

  3. Edge shape and comfort of rigid lenses.

    PubMed

    La Hood, D

    1988-08-01

    One of the main factors determining the comfort of a rigid contact lens is the shape of the edge. The comfort of four different contact lens edge shapes was assessed with four unadapted subjects in a randomized masked trial. Lenses with well rounded anterior edge profiles were found to be significantly more comfortable than lenses with square anterior edges. There was no significant difference in subjective comfort between a rounded and square posterior edge profile. The results suggest that the interaction of the edge with the eyelid is more important in determining comfort than edge effects on the cornea, when lenses are fitted according to a corneal alignment philosophy. PMID:3177585

  4. Twin axial vortices generated by Fibonacci lenses.

    PubMed

    Calatayud, Arnau; Ferrando, Vicente; Remón, Laura; Furlan, Walter D; Monsoriu, Juan A

    2013-04-22

    Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multi-functional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics. PMID:23609732

  5. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    SciTech Connect

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

  6. Liquid cell with plasmon lenses for surface enhanced raman spectroscopy.

    SciTech Connect

    Vlasko-Vlasov, V.; Joshi-Imre, A.; Bahns, J. T.; Chen, L.; Ocola, L.; Welp, U.

    2010-05-17

    High-fidelity surface enhanced Raman spectra (SERS) of Rhodamine 6G and 2-mercaptopyrimidine liquid solutions are measured using a microfluidic delivery system constructed on a flat silver substrate. Microscopic plasmon lenses patterned in the silver film focus surface plasmons into a subwavelength spot which yields the light amplification required for SERS. The system provides an efficiency similar to traditional colloidal substrates, and allows multiple sample loading. We find that the main contribution to the spectra comes from the molecules directly attached to the silver surface, which gives strong evidence for the chemical enhancement of SERS.

  7. Degeneracy between Lensing and Occultation in the Analysis of Self-lensing Phenomena

    NASA Astrophysics Data System (ADS)

    Han, Cheongho

    2016-03-01

    More than 40 years after the first discussion, the detection of a self-lensing phenomenon within a binary system where the brightness of a background star is magnified by its foreground companion was recently reported. It is expected that the number of self-lensing binary detections will be increased by a wealth of data from current and future survey experiments. In this paper, we introduce a degeneracy in the interpretation of self-lensing light curves. The degeneracy is intrinsic to self-lensing binaries for which both magnification by lensing and de-magnification by occultation occur simultaneously and are caused by the difficulty in separating the contribution of the lensing-induced magnification from the observed light curve. We demonstrate the severity of this degeneracy by presenting examples of self-lensing light curves that suffer from it. We also present the relation between the lensing parameters of the degenerate solutions. This degeneracy is an important obstacle in accurately determining self-lensing parameters and thus characterizing binaries.

  8. The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey

    SciTech Connect

    Antonik, M. L.; Bacon, D. J.; Bridle, S.; Doel, P.; Brooks, D.; Worswick, S.; Bernstein, G.; Bernstein, R.; DePoy, D.; Flaugher, B.; Frieman, J. A.; Gladders, M.; Gutierrez, G.; Jain, B.; Jarvis, M.; Kent, S. M.; Lahav, O.; Parker, S. -. J.; Roodman, A.; Walker, A. R.

    2013-04-10

    Telescope point spread function (PSF) quality is critical for realizing the potential of cosmic weak lensing observations to constrain dark energy and test general relativity. In this paper, we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment, we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However, this can be increased by a factor of approximately 3 if the lenses are only just aligned within their maximum specified tolerances. We calculate the E- and B-mode shear and flexion variance as a function of the decentre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than decentre, depending on the lens considered. Finally, we consider the compound effect of decentre and tilt of multiple lenses simultaneously, by sampling from a plausible range of values of each parameter. We find that the compound effect can be around twice as detrimental as when considering any one lens alone. Furthermore, this combined effect changes the conclusions about which lens is most important to align accurately. For DES, the tilt of the first two lenses is the most important.

  9. The effects of camera lenses and dental specialties on the perception of smile esthetics

    PubMed Central

    Sajjadi, Seyed Hadi; Khosravanifard, Behnam; Esmaeilpour, Mozhgan; Rakhshan, Vahid; Moazzami, Fatemeh

    2015-01-01

    Background and Aim: The purpose of this study was to investigate whether different camera lenses and dental specialties can affect the perception of smile esthetics. Methods: In the first phase of this study, 40 female smile photographs (taken from dental students) were evaluated by six orthodontists, three specialists in restorative dentistry, and three prosthodontists to select the most beautiful smiles. The 20 students with the best smile ranks were again photographed in standard conditions, but this time with two different lenses: Regular and then macro lenses. Each referee evaluated the beauty of the smiles on a visual analog scale. The referees were blinded of the type of lenses, and the images were all coded. The data were analyzed using two-way analysis of variance (ANOVA), Kruskal–Wallis and Mann–Whitney U-tests (alpha = 0.05, alpha = 0.0167). Results: The lenses led to similar scores of beauty perception (Mann–Whitney P = 0.8). There was no difference between subjective beauty perception of specialties (Kruskal–Wallis P = 0.6). Two-way ANOVA indicated no significant role for lenses (P = 0.1750), specialties (P = 0.7677), or their interaction (P = 0.7852). Conclusion: The photographs taken by a regular lens and then digitally magnified can be as appealing as close-up photographs taken by a macro lens. Experts in different specialties (orthodontics, prosthodontics, and restorative dentistry) showed similar subjective judgments of smile beauty. PMID:26952147

  10. Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ)

    2006-06-01

    Four verification test problems are presented for checking the conceptual development and computational implementation of calculations to determine the probability of loss of assured safety (PLOAS) in temperature-dependent systems with multiple weak links (WLs) and strong links (SLs). The problems are designed to test results obtained with the following definitions of loss of assured safety: (1) Failure of all SLs before failure of any WL, (2) Failure of any SL before failure of any WL, (3) Failure of all SLs before failure of all WLs, and (4) Failure of any SL before failure of all WLs. The test problems are based on assuming the same failure properties for all links, which results in problems that have the desirable properties of fully exercising the numerical integration procedures required in the evaluation of PLOAS and also possessing simple algebraic representations for PLOAS that can be used for verification of the analysis.

  11. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  12. Nanofocusing Parabolic Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-05-12

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV.

  13. Contact lenses and the work environment.

    PubMed

    Mäkitie, J

    1984-01-01

    Controversial opinions have been presented about the use of contact lenses in industrial environments. Work environments contain few obstacles to the use of contact lenses, but many occupations are associated with the risk of excessive difficulties, spoilation , irritation, or complications. From the radiant energy the shorter (280 nm) ultraviolet (UV) wavelengths and the longer (1300 nm) infra-red (IR) wavelengths are absorbed by contact lenses, the absorption increases their temperature and may cause corneal complications. Protective glasses, however, absorb more than 99.5% of the UV and IR energy and thus provide sufficient protection for contact lens wearers exposed to UV or IR radiation. The advantages and risks of contact lenses in industrial work are discussed. PMID:6328841

  14. Tear exchange and contact lenses: a review.

    PubMed

    Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses.

  15. A weak lensing mass reconstruction of the large-scale filament feeding the massive galaxy cluster MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Jullo, Eric; Kneib, Jean-Paul; Ebeling, Harald; Leauthaud, Alexie; Ma, Cheng-Jiun; Limousin, Marceau; Massey, Richard; Richard, Johan

    2012-11-01

    We report the first weak lensing detection of a large-scale filament funnelling matter on to the core of the massive galaxy cluster MACS J0717.5+3745. Our analysis is based on a mosaic of 18 multipassband images obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ˜10 × 20 arcmin2. We use a weak lensing pipeline developed for the Cosmic Evolution Survey, modified for the analysis of galaxy clusters, to produce a weak lensing catalogue. A mass map is then computed by applying a weak gravitational lensing multiscale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the resulting mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong lensing constraints and find excellent agreement. Our analysis detects the MACS J0717.5+3745 filament within the 3σ detection contour of the lensing mass reconstruction, and underlines the importance of filaments for theoretical and numerical models of the mass distribution in the cosmic web. We measure the filament's projected length as ˜4.5 h74-1 Mpc, and its mean density as (2.92 ± 0.66) × 108 h74 M⊙ kpc-2. Combined with the redshift distribution of galaxies obtained after an extensive spectroscopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible constraints concerning the structure's geometry based on its galaxy velocity field, we construct a three-dimensional (3D) model of the large-scale filament. Within this framework, we derive the 3D length of the filament to be 18 h74-1 Mpc. The filament's deprojected density in terms of the critical density of the Universe is measured as (206 ± 46) ρcrit, a value that lies at the very high end of the range predicted by numerical simulations. Finally, we study the distribution of stellar mass in the

  16. Use of HPLC/UPLC-spectrophotometry for detection of formazan in in vitro Reconstructed human Tissue (RhT)-based test methods employing the MTT-reduction assay to expand their applicability to strongly coloured test chemicals.

    PubMed

    Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P

    2015-06-01

    A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. PMID:25701760

  17. Revised Unfilling Procedure for Solid Lithium Lenses

    SciTech Connect

    Leveling, A.; /Fermilab

    2003-06-03

    A procedure for unfilling used lithium lenses to has been described in Pbar Note 664. To date, the procedure has been used to disassemble lenses 20, 21, 17, 18, and 16. As a result of this work, some parts of the original procedure were found to be time consuming and ineffective. Modifications to the original procedure have been made to streamline the process and are discussed in this note. The revised procedure is included in this note.

  18. Measuring neutrino masses with weak lensing

    SciTech Connect

    Wong, Yvonne Y. Y.

    2006-11-17

    Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.

  19. Electron lenses for particle collimation in LHC

    SciTech Connect

    Shiltsev, v.; /Fermilab

    2007-12-01

    Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects [1], DC beam removal from abort gaps [2], as a diagnostic tool. In this presentation we - following original proposal [3] - consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.

  20. Partitioned-field uniaxial holographic lenses.

    PubMed

    López, Ana M; Atencia, Jesús; Tornos, José; Quintanilla, Manuel

    2002-04-01

    The efficiency and aberration of partitioned-field uniaxial volume holographic compound lenses are theoretically and experimentally studied. These systems increase the image fields of holographic volume lenses, limited by the angular selectivity that is typical of these elements. At the same time, working with uniaxial systems has led to a decrease in aberration because two recording points (that behave as aberration-free points) are used. The extension of the image field is experimentally proved.

  1. The general theory of secondary weak gravitational lensing

    SciTech Connect

    Clarkson, Chris

    2015-09-01

    Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.

  2. Metrology of achromatic diffractive features on chalcogenide lenses

    NASA Astrophysics Data System (ADS)

    Scordato, M.; Nelson, J.; Schwertz, K.; Mckenna, P.; Bagwell, J.

    2015-10-01

    Achromatic diffractive features on lenses are widely used in industry for color correction, however there is not a welldefined standard to quantify the performance of the lenses. One metric used to qualify a lens is the sag deviation from the nominal lens profile. Imperfections in the manufacturing of the diffractive feature may cause scattering and performance loss. This is not reflected in sag deviation measurements, therefore performance measurements are required. There are different quantitative approaches to measuring the performance of an achromatic diffractive lens. Diffraction efficiency, a measure of optical power throughput, is a common design metric used to define the percent drop from the modulation transfer function (MTF) metric. The line spread function (LSF) shows a layout of the intensity with linear distance and an ensquared energy specification can be implemented. The MTF is a common analysis tool for assemblies and can be applied to a single element. These functional tests will be performed and compared with diffractive lenses manufactured by different tool designs. This paper displays the results found with various instruments. Contact profilometry was used to inspect the profile of the diffractive elements, and a MTF bench was used to characterize lens performance. Included will be a discussion comparing the results of profile traces and beam profiles to expected diffraction efficiency values and the effects of manufacturing imperfections.

  3. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells

    NASA Astrophysics Data System (ADS)

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  4. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  5. TESTS OF GENERAL RELATIVITY IN THE STRONG-GRAVITY REGIME BASED ON X-RAY SPECTROPOLARIMETRIC OBSERVATIONS OF BLACK HOLES IN X-RAY BINARIES

    SciTech Connect

    Krawczynski, Henric

    2012-08-01

    Although general relativity (GR) has been tested extensively in the weak-gravity regime, similar tests in the strong-gravity regime are still missing. In this paper, we explore the possibility to use X-ray spectropolarimetric observations of black holes in X-ray binaries to distinguish between the Kerr metric and the phenomenological metrics introduced by Johannsen and Psaltis (which are not vacuum solutions of Einstein's equation) and thus to test the no-hair theorem of GR. To this end, we have developed a numerical code that calculates the radial brightness profiles of accretion disks and parallel transports the wave vector and polarization vector of photons through the Kerr and non-GR spacetimes. We used the code to predict the observational appearance of GR and non-GR accreting black hole systems. We find that the predicted energy spectra and energy-dependent polarization degree and polarization direction do depend strongly on the underlying spacetime. However, for large regions of the parameter space, the GR and non-GR metrics lead to very similar observational signatures, making it difficult to observationally distinguish between the two types of models.

  6. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  7. Statistics of gravitational lenses - The uncertainties

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1991-01-01

    The assumptions in the analysis of gravitational lensing statistics are examined. Special emphasis is given to the uncertainties in the theoretical predictions. It is shown that a simple redshift cutoff model, which may result from galaxy evolution, can significantly reduce the lensing probability and explain the large mean separation of images in observed gravitational lenses. This effect may affect the constraint on the contribution of the cosmological constant to producing a flat universe from the number counts of the observed lenses. For the Omega(0) = 1 (filled beam) model, the lensing probability of early-type galaxies with finite core radii is reduced roughly by a factor of 2 for high-redshift quasars as compared with the corresponding singular isothermal sphere model. The finite core radius effect is about 20 percent for a lambda-dominated flat universe. It is also shown that the most recent galaxy luminosity function gives lensing probabilities that are smaller than previously estimated roughly by a factor of 3.

  8. Two Lensed Lyman-α Emitting Galaxies at z~ 5

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Wuyts, Eva; Sharon, Keren; Gladders, Michael D.; Hennawi, Joseph F.; Koester, Benjamin P.; Dahle, Håkon

    2010-09-01

    We present observations of two strongly lensed z ~ 5 Lyman-α emitting galaxies that were discovered in the Sloan Giant Arcs Survey (SGAS). We identify the two sources as SGAS J091541+382655 at z = 5.200 and SGAS J134331+415455 at z = 4.994. We measure their AB magnitudes at (i, z) = (23.34 ± 0.09, 23.29 ± 0.13) mag and (i, z) = (23.78 ± 0.18, 24.24+0.18 -0.16) mag and the rest-frame equivalent widths of the Lyman-α emission at 25.3 ± 4.1 Å and 135.6 ± 20.3 Å for SGAS J091541+382655 and SGAS J134331+415455, respectively. Each source is strongly lensed by a massive galaxy cluster in the foreground, and the magnifications due to gravitational lensing are recovered from strong lens modeling of the foreground lensing potentials. We use the magnification to calculate the intrinsic, unlensed Lyman-α and UV continuum luminosities for both sources, as well as the implied star formation rates. We find SGAS J091541+382655 and SGAS J134341+415455 to be galaxies with (L Ly-α, L UV) <= (0.6 L* Ly-α, 2 L*UV) and (L Ly-α, L UV) = (0.5 L* Ly-α, 0.9 L*UV), respectively. Comparison of the spectral energy distributions of both sources against stellar population models produces estimates of the mass in young stars in each galaxy; we report an upper limit of M stars <= 7.9+3.7 -2.5 × 107 M sun h -1 0.7 for SGAS J091531+382655 and a range of viable masses for SGAS J134331+415455 of 2 × 108 M sun h -1 0.7< M stars < 6 × 109 M sun h -1 0.7. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovaci

  9. WITNESSING THE DIFFERENTIAL EVOLUTION OF DISK GALAXIES IN LUMINOSITY AND SIZE VIA GRAVITATIONAL LENSING

    SciTech Connect

    Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc

    2013-11-01

    We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.

  10. Discovery of a new component in the gravitationally lensed quasar 0957 + 561

    NASA Technical Reports Server (NTRS)

    Jones, C.; Stern, C.; Falco, E.; Forman, W.; David, L.; Shapiro, I.; Fabian, A. C.

    1993-01-01

    X-ray observations of the gravitationally lensed quasar 0957 + 561 with the Einstein Observatory High Resolution Imager indicate the presence of a new component in the system. The significantly greater X-ray intensity of image A compared with image B and the extended X-ray emission can be interpreted as the gravitational lensing of a quasi-circular X-ray emitting region into a partial Einstein ring. It is suggested that the observed X-ray emission is produced by a strong cooling flow which could arise were 0957 + 561 embedded in a group of cluster galaxies.

  11. Optimisation of the cell cultivation methods in the embryonic stem cell test results in an increased differentiation potential of the cells into strong beating myocard cells.

    PubMed

    De Smedt, Ann; Steemans, Margino; De Boeck, Marlies; Peters, Annelieke K; van der Leede, Bas-jan; Van Goethem, Freddy; Lampo, Ann; Vanparys, Philippe

    2008-10-01

    In order to support drug research in the selection process for non-embryotoxic pharmaceutical compounds, a screening method for embryotoxicity is needed. The murine embryonic stem cell test (EST) is a validated in vitro test based on two permanent mouse cell lines and delivering results in 10-days. Implementation of this test within our laboratory, revealed variability in the differentiation potential of the embryonic stem cells and, as a consequence, a lot of assays needed to be rejected due the fact the acceptance criteria were not reached. In order to gain a better yield of contracting myocardial cells, we used (1) a stringent control of the cell growth during subcultivation and a standardised hanging drop culture method and (2) a non-enzymatic cell harvest instead of a trypsin/EDTA cell harvest. Implementing of these cell culture modifications resulted in a decreased variability in the size of embryonic bodies, an increase of the number of acceptable tests and a significant increase of the differentiation potential of embryonic cells into strong beating myocardium, which made scoring less time consuming. Testing of 6 reference compounds in the optimized EST showed that the cell culture modifications did not changed the in vitro classification.

  12. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  13. Lense-Thirring precession around neutron stars with known spin

    NASA Astrophysics Data System (ADS)

    Van Doesburgh, Marieke; van der Klis, Michiel

    2016-07-01

    Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of

  14. cluster-lensing: a new Python package for galaxy clusters & lensing

    NASA Astrophysics Data System (ADS)

    Ford, Jes

    2016-03-01

    Short demo and links to a newly released pure Python package called cluster- lensing. This package contains tools to calculate galaxy cluster halo properties and weak lensing shear and magnification profiles. The model can easily include the effects of possible cluster miscentering offsets, which would otherwise lead to biased mass or concentration estimates.

  15. Lense-Thirring precession in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen

    Quasi-periodic oscillations (QPOs) with low frequencies (0.01-70 Hz) have been observed in the X-ray light curves of most neutron-star and black-hole low-mass X-ray binaries. Despite having been discovered more than 25 years ago, their origin is still not well understood. Similarities between the low-frequency QPOs in the two types of systems suggest that they have a common origin in the accretion flows around black holes and neutron stars. Some of the proposed models that attempt to explain low- frequency QPOs invoke a General Relativistic effect known as Lense-Thirring precession (or "frame dragging"). However, for Lense-Thirring precession to produce substantial modulations of the X-ray flux through relativistic beaming and gravitational lensing, the rotation axis of the inner part of the accretion disk needs to have a substantial tilt (10-20 degrees) with respect to the spin axis of the compact object. We argue that observational evidence for such titled inner accretion disks can be found in the variability of neutron- star low-mass X-ray binaries that are viewed at inclination angles of 60-80 degrees. In these systems low-frequency QPOs at ~0.1-15 Hz are observed that modulate the emission from the neutron star by quasi-periodic obscuration, presumably by a titled inner disc. The goal of our proposed program is to test whether the frequency evolution and spectral state dependence of these QPOs is similar to what is observed for the low-frequency QPOs that are observed in lower-inclination neutron-star X-ray binaries. To make such a comparison, we need to better characterize the properties and behavior of these QPOs. Our study will make use of almost 1300 RXTE observations of 11 sources, totaling 5.7 Ms of data. Signatures of strong gravity have long been sought after in accreting compact objects. While strong evidence from spectral features has emerged in the last decade (e.g. gravitationally broadened iron emission lines), there have only been hints of such

  16. Thermal lensing in Nd:YVO4 laser with in-band pumping at 914 nm

    NASA Astrophysics Data System (ADS)

    Waritanant, Tanant; Major, Arkady

    2016-05-01

    Thermal lensing in an Nd:YVO4 laser system operating at 1064 nm with in-band pumping at 914 nm was characterized. The focal length of the thermal lens in the crystal was calculated using ABCD matrix formalism from the experimental data of the output beam diameter measurements made at different output power levels. The determined focal lengths of thermal lens were as strong as 4.4 diopters at 3.5 W of output power. The experimental results agree well with the finite element analysis of the developed laser system. A numerical comparison of the thermal lensing effect with 914-, 888-, 880-nm pumping, and with a standard 808-nm pumping was also made, demonstrating effective reduction of thermal lensing up to 2.1 times.

  17. SDSS J133401.39+331534.3: A NEW SUBARCSECOND GRAVITATIONALLY LENSED QUASAR

    SciTech Connect

    Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Minowa, Yosuke; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2011-09-01

    The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with an image separation of 0.''833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Search, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2 m telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with a laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy {approx}4'' apart from the lensing galaxy is likely to affect the lens potential.

  18. First measurement of the cross-correlation of CMB lensing and galaxy lensing

    NASA Astrophysics Data System (ADS)

    Hand, Nick; Leauthaud, Alexie; Das, Sudeep; Sherwin, Blake D.; Addison, Graeme E.; Bond, J. Richard; Calabrese, Erminia; Charbonnier, Aldée; Devlin, Mark J.; Dunkley, Joanna; Erben, Thomas; Hajian, Amir; Halpern, Mark; Harnois-Déraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hincks, Adam D.; Kneib, Jean-Paul; Kosowsky, Arthur; Makler, Martin; Miller, Lance; Moodley, Kavilan; Moraes, Bruno; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Sehgal, Neelima; Shan, Huanyuan; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; Switzer, Eric R.; Taylor, James E.; Van Waerbeke, Ludovic; Welker, Charlotte; Wollack, Edward J.

    2015-03-01

    We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 σ , which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ˜0.9 . With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.

  19. Diamond planar refractive lenses for third- and fourth-generation X-ray sources.

    PubMed

    Nöhammer, Bernd; Hoszowska, Joanna; Freund, Andreas K; David, Christian

    2003-03-01

    The fabrication and testing of planar refractive hard X-ray lenses made from bulk CVD diamond substrates is reported. The lens structures were generated by electron-beam lithography and transferred by reactive-ion etching into the diamond. Various lens designs were fabricated and tested at 12.4 and 17.5 keV photon energy. Efficiencies of up to 71% and gains of up to 26 were achieved. A line focus of 3.2 micro m (FWHM) was measured. These lenses should be able to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.

  20. X-ray and Weak Lensing Masses for a Sample of 50 Relaxed and Non-Relaxed Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mahdavi, Andisheh; Hoekstra, Henk; Babul, Arif

    2014-08-01

    We present an updated, recalibrated, multiwavelength, X-ray + weak lensing measurement of the mass profiles for 50 rich systems of galaxies. We find that our weak gravitational lensing masses, calibrated with state-of-the-art shear testing simulations, are 18% +/- 4% higher than those found for the clusters in the Planck satellite sample. Using the Joint Analysis of Cluster Observations codebase, we simultaneously model the baryonic and nonbaryonic matter profiles in these systems, deriving joint constraints on the gas entropy, pressure, metallicity, and dark matter distributions. Simultaneous analysis of Chandra and XMM-Newton data where both are available allows us to constrain these profiles over nearly two decades in radius. We find clusters with low BCG-to-X-ray center offsets form a remarkably regular sample, with NFW dark matter profiles and gas fraction values that are consistent with the cosmological value. Clusters with low central gas entropy exhibit a similar trend, and do so with an intrinsic scatter that is consistent with zero. Non-relaxed clusters, on the other hand---those with offset BCGs and high central entropies---exhibit significant scatter and have mass profiles inconsistent with the NFW value (most likely due to strong violations of spherical symmetry).

  1. The Herschel Lensing Survey (HLS): HST Frontier Field Coverage

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi

    2015-08-01

    The Herschel Lensing Survey (HLS; PI: Egami) is a large Far-IR/Submm imaging survey of massive galaxy clusters using the Herschel Space Observatory. Its main goal is to detect and study IR/Submm galaxies that are below the nominal confusion limit of Herschel by taking advantage of the strong gravitational lensing power of massive galaxy clusters. HLS has obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 cluster fields (HLS-deep) as well as shallower but nearly confusion-limited SPIRE-only images for 527 cluster fields (HLS-snapshot) with a total observing time of ~420 hours. Extensive multi-wavelength follow-up studies are currently on-going with a variety of observing facilities including ALMA.Here, I will focus on the analysis of the deep Herschel PACS/SPIRE images obtained for the 6 HST Frontier Fields (5 observed by HLS-deep; 1 observed by the Herschel GT programs). The Herschel/SPIRE maps are wide enough to cover the Frontier-Field parallel pointings, and we have detected a total of ~180 sources, some of which are strongly lensed. I will present the sample and discuss the properties of these Herschel-detected dusty star-forming galaxies (DSFGs) identified in the Frontier Fields. Although the majority of these Herschel sources are at moderate redshift (z<3), a small number of extremely high-redshift (z>6) candidates can be identified as "Herschel dropouts" when combined with longer-wavelength data. We have also identified ~40 sources as likely cluster members, which will allow us to study the properties of DSFGs in the dense cluster environment.A great legacy of our HLS project will be the extensive multi-wavelength database that incorporates most of the currently available data/information for the fields of the Frontier-Field, CLASH, and other HLS clusters (e.g., HST/Spitzer/Herschel images, spectroscopic/photometric redshifts, lensing models, best-fit SED models etc.). Provided with a user-friendly GUI and a flexible search engine, this

  2. Combining weak-lensing tomography and spectroscopic redshift surveys

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is

  3. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  4. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Instrella, Ron; Chirayath, Ved

    2016-01-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  5. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    NASA Astrophysics Data System (ADS)

    Instrella, R.; Chirayath, V.

    2015-12-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  6. Pixelation Effects in Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-11-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  7. Numerical simulation of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Cherniak, Yakov

    Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.

  8. Mass Determination of QSOs Using Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Surdej, Jean

    1996-07-01

    Only four pairs of quasars with different redshifts and angular separations smaller than 5'' are presently known. We propose to directly image with the WFPC2 planetary camera these interesting quasar associations in order to search for the presence of a secondary lensed image of the background source near the foreground quasar. The detection {or non- detection} of these putative secondary images will enable us to weigh {or significantly improve the upper limit on} the mass of the foreground quasars. These QSO mass estimates will take into account the lensing effects due to the host galaxy of the foreground quasar{s} and/or other intervening galaxies, if detected on the high quality PC images. Furthermore, one of these quasars {Q 1009-0252} has recently been reported to be multiply imaged. The WFPC2 CCD frames will also enable us to search for the lensing object{s} and for additional macro- lensed images of the background quasar, and will thus provide essential constraints on the lensing model.

  9. CMB-lensing beyond the Born approximation

    NASA Astrophysics Data System (ADS)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2016-09-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles l lesssim 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.

  10. In vitro and in vivo evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery.

    PubMed

    Xu, Jinku; Li, Xinsong; Sun, Fuqian

    2011-02-01

    The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24 h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.

  11. Galaxy-galaxy lensing by non-spherical haloes - I. Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Howell, Paul J.; Brainerd, Tereasa G.

    2010-09-01

    We use a series of Monte Carlo simulations to investigate the theory of galaxy-galaxy lensing by non-spherical dark matter haloes. The simulations include a careful accounting of the effects of multiple deflections on the galaxy-galaxy lensing signal. In a typical observational data set where the mean tangential shear of sources with redshifts zs ~= 0.6 is measured with respect to the observed symmetry axes of foreground galaxies with redshifts zl ~= 0.3, we find that the signature of anisotropic galaxy-galaxy lensing differs substantially from the simple expectation that one would have in the absence of multiple deflections. In general, the observed ratio of the mean tangential shears, γ+(θ)/γ-(θ), is strongly suppressed compared to the function that one would measure if the intrinsic symmetry axes of the foreground galaxies were known. Depending upon the characteristic masses of the lenses, the observed ratio of the mean tangential shears may be consistent with an isotropic signal (despite the fact that the lenses are non-spherical), or it may even be reversed from the expected signal (i.e. the mean tangential shear for sources close to the observed minor axes of the lenses may exceed the mean tangential shear for sources close to the observed major axes of the lenses). These effects are caused primarily by the fact that the images of the lens galaxies have, themselves, been lensed and therefore the observed symmetry axes of the lens galaxies differ from their intrinsic symmetry axes. We show that the effects of lensing of the foreground galaxies on the observed function γ+(θ)/γ-(θ) cannot be eliminated simply by the rejection of foreground galaxies with very small image ellipticities nor by simply focusing the analysis on sources that are located very close to the observed symmetry axes of the foreground galaxies. We conclude that any attempt to use a measurement of γ+(θ)/γ-(θ) to constrain the shapes of dark matter galaxy haloes must include Monte

  12. Constraining modified gravitational theories by weak lensing with Euclid

    SciTech Connect

    Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto

    2011-01-15

    Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.

  13. Weak lensing in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Troxel, Michael

    2016-03-01

    I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.

  14. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  15. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  16. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  17. Microwave sterilization of hydrophilic contact lenses.

    PubMed

    Rohrer, M D; Terry, M A; Bulard, R A; Graves, D C; Taylor, E M

    1986-01-15

    We used standard 2,450-MHz microwave irradiation to achieve sterilization of hydrophilic contact lenses contaminated with a variety of bacterial, fungal, and viral corneal pathogens. A three-dimensional rotisserie was used to overcome the problem of "cold spots" within the microwave oven. The contact lenses became dehydrated in approximately two minutes. Rehydration with normal saline restored their shape and appearance. The time necessary to prohibit all growth of the bacterial and fungal organisms studied ranged from 45 seconds to eight minutes. All viral contaminants were completely inactivated after four minutes of microwave exposure. Refractive properties were unaffected after 101 exposures to microwaves for ten minutes. Slit-lamp examination and scanning electron microscopy disclosed minute particles on the surface of these contact lenses but no damage to the lens matrix from irradiation. PMID:3942177

  18. Interactions of benzalkonium chloride with soft and hard contact lenses.

    PubMed

    Chapman, J M; Cheeks, L; Green, K

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  19. Interactions of benzalkonium chloride with soft and hard contact lenses

    SciTech Connect

    Chapman, J.M.; Cheeks, L.; Green, K. )

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  20. 'Colored' and Decorative Contact Lenses: A Prescription Is a Must

    MedlinePlus

    ... labeling. (See additional information about cleaning solutions with hydrogen peroxide on the FDA website.) See your eye ... For More Information Decorative Contact Lenses Contact Lenses Hydrogen Peroxide Solution Related Consumer Updates Focusing on Contact ...