Sample records for strong lensing tests

  1. Cosmological test using strong gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Yuan, C. C.; Wang, F. Y.

    2015-09-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.

  2. Strong gravitational lensing statistics as a test of cosmogonic scenarios

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.

    1994-01-01

    Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the

  3. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    PubMed

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  4. LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2016-12-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimization of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the Sloan Lens ACS Survey lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.

  5. Strong Gravitational Lensing with LSST

    NASA Astrophysics Data System (ADS)

    Marshall, Philip J.; Bradac, M.; Chartas, G.; Dobler, G.; Eliasdottir, A.; Falco, E.; Fassnacht, C. D.; Jee, M. J.; Keeton, C. R.; Oguri, M.; Tyson, J. A.; LSST Strong Lensing Science Collaboration

    2010-01-01

    LSST will find more strong gravitational lensing events than any other survey preceding it, and will monitor them all at a cadence of a few days to a few weeks. We can expect the biggest advances in strong lensing science made with LSST to be in those areas that benefit most from the large volume, and the high accuracy multi-filter time series: studies of, and using, several thousand lensed quasars and several hundred supernovae. However, the high quality imaging will allow us to detect and measure large numbers of background galaxies multiply-imaged by galaxies, groups and clusters. In this poster we give an overview of the strong lensing science enabled by LSST, and highlight the particular associated technical challenges that will have to be faced when working with the survey.

  6. Test of Parameterized Post-Newtonian Gravity with Galaxy-scale Strong Lensing Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Li, Xiaolei; Biesiada, Marek; Xu, Tengpeng; Cai, Yongzhi; Zhu, Zong-Hong

    2017-01-01

    Based on a mass-selected sample of galaxy-scale strong gravitational lenses from the SLACS, BELLS, LSD, and SL2S surveys and using a well-motivated fiducial set of lens-galaxy parameters, we tested the weak-field metric on kiloparsec scales and found a constraint on the post-Newtonian parameter γ ={0.995}-0.047+0.037 under the assumption of a flat ΛCDM universe with parameters taken from Planck observations. General relativity (GR) predicts exactly γ = 1. Uncertainties concerning the total mass density profile, anisotropy of the velocity dispersion, and the shape of the light profile combine to systematic uncertainties of ˜25%. By applying a cosmological model-independent method to the simulated future LSST data, we found a significant degeneracy between the PPN γ parameter and the spatial curvature of the universe. Setting a prior on the cosmic curvature parameter -0.007 < Ωk < 0.006, we obtained the constraint on the PPN parameter that γ ={1.000}-0.0025+0.0023. We conclude that strong lensing systems with measured stellar velocity dispersions may serve as another important probe to investigate validity of the GR, if the mass-dynamical structure of the lensing galaxies is accurately constrained in future lens surveys.

  7. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  8. Strong Gravitational Lensing: Relativity in Action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2009-05-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  9. DeepLensing: The Use of Deep Machine Learning to Find Strong Gravitational Lenses in Astronomical Surveys

    NASA Astrophysics Data System (ADS)

    Nord, Brian

    2017-01-01

    Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.

  10. Line-of-sight structure toward strong lensing galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines ofmore » sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.« less

  11. Cosmology with Strong-lensing Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Gavazzi, Raphaël; Piórkowska, Aleksandra; Zhu, Zong-Hong

    2015-06-01

    In this paper, we assemble a catalog of 118 strong gravitational lensing systems from the Sloan Lens ACS Survey, BOSS emission-line lens survey, Lens Structure and Dynamics, and Strong Lensing Legacy Survey and use them to constrain the cosmic equation of state. In particular, we consider two cases of dark energy phenomenology: the XCDM model, where dark energy is modeled by a fluid with constant w equation-of-state parameter, and in the Chevalier-Polarski-Linder (CPL) parameterization, where w is allowed to evolve with redshift, w(z)={{w}0}+{{w}1}\\frac{z}{1 + z} . We assume spherically symmetric mass distribution in lensing galaxies, but we relax the rigid assumption of the SIS model in favor of a more general power-law index γ, also allowing it to evolve with redshifts γ (z). Our results for the XCDM cosmology show agreement with values (concerning both w and γ parameters) obtained by other authors. We go further and constrain the CPL parameters jointly with γ (z). The resulting confidence regions for the parameters are much better than those obtained with a similar method in the past. They are also showing a trend of being complementary to the Type Ia supernova data. Our analysis demonstrates that strong gravitational lensing systems can be used to probe cosmological parameters like the cosmic equation of state for dark energy. Moreover, they have a potential to judge whether the cosmic equation of state evolved with time or not.

  12. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Florian, Michael K.

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  13. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.

    2016-08-29

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  14. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert

    2016-11-01

    In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, andmore » test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (∼10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.« less

  15. Using Strong Gravitational Lensing to Identify Fossil Group Progenitors

    NASA Astrophysics Data System (ADS)

    Johnson, Lucas E.; Irwin, Jimmy A.; White, Raymond E., III; Wong, Ka-Wah; Maksym, W. Peter; Dupke, Renato A.; Miller, Eric D.; Carrasco, Eleazar R.

    2018-04-01

    Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z < 0.2, which leads to the question, what were these systems’ progenitors? Such progenitors are expected to have imminent or ongoing major merging near the brightest group galaxy that, when concluded, will meet the fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems’ galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.

  16. The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew

    2017-08-01

    We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics |*| the infamous |*|gastrophysics|*| in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.

  17. The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew

    2017-09-01

    We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics -- the infamous ``gastrophysics''-- in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.

  18. Shadows and strong gravitational lensing: a brief review

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro V. P.; Herdeiro, Carlos A. R.

    2018-04-01

    For ultra compact objects, light rings and fundamental photon orbits (FPOs) play a pivotal role in the theoretical analysis of strong gravitational lensing effects, and of BH shadows in particular. In this short review, specific models are considered to illustrate how FPOs can be useful in order to understand some non-trivial gravitational lensing effects. This paper aims at briefly overviewing the theoretical foundations of these effects, touching also some of the related phenomenology, both in general relativity and alternative theories of gravity, hopefully providing some intuition and new insights for the underlying physics, which might be critical when testing the Kerr black hole hypothesis.

  19. Constraints on cosmological models from strong gravitational lensing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combiningmore » stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.« less

  20. Strong Lensing Mass Reconstruction: from Frontier Fields to the Typical Lensing Clusters of Future Surveys

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Dahle, Håkon; Johnson, Traci L.; Florian, Michael K.; Dunham, Samuel; Murray, Katherine; Whitaker, Kate; Li, Nan

    Driven by the unprecedented wealth of high quality data that is accumulating for the Frontier Fields, they are becoming some of the best-studied strong lensing clusters to date, and probably the next few years. As will be discussed intensively in this focus meeting, the FF prove transformative for many fields: from studies of the high redshift Universe, to the assembly and structure of the clusters themselves. The FF data and the extensive collaborative effort around this program will also allow us to examine and improve upon current lens modeling techniques. Strong lensing is a powerful tool for mass reconstruction of the cores of galaxy clusters of all scales, providing an estimate of the total (dark and seen) projected mass density distribution out to 0.5 Mpc. Though SL mass may be biased by contribution from structures along the line of sight, its strength is that it is relatively insensitive to assumptions on cluster baryon astrophysics and dynamical state. Like the Frontier Fields clusters, the most ``famous'' strong lensing clusters are at the high mass end; they lens dozens of background sources into multiple images, providing ample lensing constraints. In this talk, I will focus on how we can leverage what we learn from modeling the FF clusters in strong lensing studies of the hundreds of clusters that will be discovered in upcoming surveys. In typical clusters, unlike the Frontier Fields, the Bullet Cluster and A1689, we observe only one to a handful of background sources, and have limited lensing constraints. I will describe the limitations that such a configuration imposes on strong lens modeling, highlight measurements that are robust to the richness of lensing evidence, and address the sources of uncertainty and what sort of information can help reduce those uncertainties. This category of lensing clusters is most relevant to the wide cluster surveys of the future.

  1. Strong Lensing Mass Reconstruction: from Frontier Fields to the Typical Lensing Clusters of Future Surveys

    NASA Astrophysics Data System (ADS)

    Sharon, Keren

    2015-08-01

    Driven by the unprecedented wealth of high quality data that is accumulating for the Frontier Fields, they are becoming some of the best-studied strong lensing clusters to date, and probably the next few years. As will be discussed intensively in this focus meeting, the FF prove transformative for many fields: from studies of the high redshift Universe, to the assembly and structure of the clusters themselves. The FF data and the extensive collaborative effort around this program will also allow us to examine and improve upon current lens modeling techniques. Strong lensing is a powerful tool for mass reconstruction of the cores of galaxy clusters of all scales, providing an estimate of the total (dark and seen) projected mass density distribution out to ~0.5 Mpc. Though SL mass may be biased by contribution from structures along the line of sight, its strength is that it is relatively insensitive to assumptions on cluster baryon astrophysics and dynamical state. Like the Frontier Fields clusters, the most "famous" strong lensing clusters are at the high mass end; they lens dozens of background sources into multiple images, providing ample lensing constraints. In this talk, I will focus on how we can leverage what we learn from modeling the FF clusters in strong lensing studies of the hundreds of clusters that will be discovered in upcoming surveys. In typical clusters, unlike the Frontier Fields, the Bullet Cluster and A1689, we observe only one to a handful of background sources, and have limited lensing constraints. I will describe the limitations that such a configuration imposes on strong lens modeling, highlight measurements that are robust to the richness of lensing evidence, and address the sources of uncertainty and what sort of information can help reduce those uncertainties. This category of lensing clusters is most relevant to the wide cluster surveys of the future.

  2. Finding strong lenses in CFHTLS using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Glazebrook, K.; Collett, T.; More, A.; McCarthy, C.

    2017-10-01

    We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62 406 simulated lenses and 64 673 non-lens negative examples generated with two different methodologies. An ensemble of trained networks was applied to all of the 171 deg2 of the CFHTLS wide field image data, identifying 18 861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early-type galaxies selected from the survey catalogue as potential deflectors, identified 2465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalogue-based search we estimate a completeness of 21-28 per cent with respect to detectable lenses and a purity of 15 per cent, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify 20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  3. Line-of-sight effects in strong lensing: putting theory into practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Simon; Welschen, Cyril; Amara, Adam

    2017-04-01

    We present a simple method to accurately infer line of sight (LOS) integrated lensing effects for galaxy scale strong lens systems through image reconstruction. Our approach enables us to separate weak lensing LOS effects from the main strong lens deflector. We test our method using mock data and show that strong lens systems can be accurate probes of cosmic shear with a precision on the shear terms of ± 0.003 (statistical error) for an HST-like dataset. We apply our formalism to reconstruct the lens COSMOS 0038+4133 and its LOS. In addition, we estimate the LOS properties with a halo-rendering estimatemore » based on the COSMOS field galaxies and a galaxy-halo connection. The two approaches are independent and complementary in their information content. We find that when estimating the convergence at the strong lens system, performing a joint analysis improves the measure by a factor of two compared to a halo model only analysis. Furthermore the constraints of the strong lens reconstruction lead to tighter constraints on the halo masses of the LOS galaxies. Joint constraints of multiple strong lens systems may add valuable information to the galaxy-halo connection and may allow independent weak lensing shear measurement calibrations.« less

  4. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  5. Exciting discoveries of strong gravitational lenses from the HSC Survey

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Team 1: Masayuki Tanaka, Kenneth Wong, et al.; Team 2: Chien-Hsiu Lee, Masamune Oguri, et al.

    2017-01-01

    Strong gravitational lenses have numerous applications in astrophysics and cosmology. We expect to discover thousands of strong gravitational lenses from the Hyper Suprime-Cam (HSC) Survey, thanks to its unique combination of deep and wide imaging. I will give highlights on a few interesting gravitational lenses that were discovered recently from early HSC data, for example, the first spectroscopically confirmed double source plane (DSP) lens system dubbed ''Eye of Horus'' and the highest-redshift quadruply-lensed low-luminosity Active Galactic Nucleus (LLAGN).DSP lenses such as ''Eye of Horus'' are even more rare than ordinary lenses but provide tighter constraints on the lens mass distribution and can also be useful to measure cosmological parameters such as Dark Energy and Matter density parameter. The lensed LLAGN discovered recently from HSC is only the second such lens system in our knowledge. LLAGNs are thought to have differentmechanisms driving their nuclear activity compared to their brighter counterparts i.e. quasars. Our knowledge about this abundant but faint population of AGNs is limited to the local universe so far. But lensing magnification will allow studies of distant LLAGNs which should be discovered in large numbers from a deep survey like HSC for the first time. Also, owing to the variable nature of LLAGNs, they could potentially be used as a cosmological probe similar to the lensed quasars.

  6. Testing cosmogonic models with gravitational lensing.

    PubMed

    Wambsganss, J; Cen, R; Ostriker, J P; Turner, E L

    1995-04-14

    Gravitational lensing provides a strict test of cosmogonic models because it is directly sensitive to mass inhomogeneities. Detailed numerical propagation of light rays through a universe that has a distribution of inhomogeneities derived from the standard CDM (cold dark matter) scenario, with the aid of massive, fully nonlinear computer simulations, was used to test the model. It predicts that more widely split quasar images should have been seen than were actually found. These and other inconsistencies rule out the Cosmic Background Explorer (COBE)-normalized CDM model with density parameter Omega = 1 and the Hubble constant (H(o)) = 50 kilometers second(-1) megaparsec(-1); but variants of this model might be constructed, which could pass the stringent tests provided by strong gravitational lensing.

  7. Probing small-scale structure in galaxies with strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur Benjamin

    - solar-mass scale, we predict that the probability of observing strong lensing of a background star is roughly 56%. We also consider how lensing by Sgr A* could be used to test general relativity against alternative theories, concluding that microarcsecond resolution would make this possible.

  8. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    PubMed

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  9. LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Pourrahmani, Milad; Nayyeri, Hooshang; Cooray, Asantha

    2018-03-01

    In this work, we present our machine learning classification algorithm for identifying strong gravitational lenses from wide-area surveys using convolutional neural networks; LENSFLOW. We train and test the algorithm using a wide variety of strong gravitational lens configurations from simulations of lensing events. Images are processed through multiple convolutional layers that extract feature maps necessary to assign a lens probability to each image. LENSFLOW provides a ranking scheme for all sources that could be used to identify potential gravitational lens candidates by significantly reducing the number of images that have to be visually inspected. We apply our algorithm to the HST/ACS i-band observations of the COSMOS field and present our sample of identified lensing candidates. The developed machine learning algorithm is more computationally efficient and complimentary to classical lens identification algorithms and is ideal for discovering such events across wide areas from current and future surveys such as LSST and WFIRST.

  10. The Strong Lensing Time Delay Challenge (2014)

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  11. Compensation of strong thermal lensing in high-optical-power cavities.

    PubMed

    Zhao, C; Degallaix, J; Ju, L; Fan, Y; Blair, D G; Slagmolen, B J J; Gray, M B; Lowry, C M Mow; McClelland, D E; Hosken, D J; Mudge, D; Brooks, A; Munch, J; Veitch, P J; Barton, M A; Billingsley, G

    2006-06-16

    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.

  12. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    NASA Astrophysics Data System (ADS)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure

  13. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  14. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function.more » Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.« less

  15. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamicalmore » masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.« less

  16. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  17. Constraints on holographic cosmologies from strong lensing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica

    We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensingmore » measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.« less

  18. A comparison of cosmological models using strong gravitational lensing galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, thoughmore » the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe

  19. Two peculiar fast transients in a strongly lensed host galaxy

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.

    2018-04-01

    A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.

  20. THE GINI COEFFICIENT AS A MORPHOLOGICAL MEASUREMENT OF STRONGLY LENSED GALAXIES IN THE IMAGE PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-12-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time- and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rathermore » than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less

  1. The GINI coefficient as a morphological measurement of strongly lensed galaxies in the image plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-11-30

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time-and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather thanmore » the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less

  2. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  3. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter

    2017-08-01

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M */L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M ⊙. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2σ. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m ≲ 0.3 M ⊙), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M */L relative to the mean matched-σ ETG. We provide the spectra used in this study to facilitate future comparisons.

  4. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Petrillo, C. E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L. V. E.; Verdoes Kleijn, G.; Napolitano, N. R.; Covone, G.; Schneider, P.; Grado, A.; McFarland, J.

    2017-11-01

    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyse sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255 deg2 of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii ≳1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789 colour-magnitude selected luminous red galaxies (LRGs), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find ∼100 massive LRG-galaxy lenses at z ≲ 0.4 in KiDS when completed. In the most optimistic scenario, this number can grow considerably (to maximally ∼2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.

  5. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie

    2017-08-20

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high- σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M {sub *}/ L using lensing and stellar dynamics.more » We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy and van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2–3 σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M {sub ⊙}. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2 σ . There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched- σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses ( m ≲ 0.3 M {sub ⊙}), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M {sub *}/ L relative to the mean matched- σ ETG. We provide the spectra used in this study to facilitate future comparisons.« less

  6. The detection of a population of submillimeter-bright, strongly lensed galaxies.

    PubMed

    Negrello, Mattia; Hopwood, R; De Zotti, G; Cooray, A; Verma, A; Bock, J; Frayer, D T; Gurwell, M A; Omont, A; Neri, R; Dannerbauer, H; Leeuw, L L; Barton, E; Cooke, J; Kim, S; da Cunha, E; Rodighiero, G; Cox, P; Bonfield, D G; Jarvis, M J; Serjeant, S; Ivison, R J; Dye, S; Aretxaga, I; Hughes, D H; Ibar, E; Bertoldi, F; Valtchanov, I; Eales, S; Dunne, L; Driver, S P; Auld, R; Buttiglione, S; Cava, A; Grady, C A; Clements, D L; Dariush, A; Fritz, J; Hill, D; Hornbeck, J B; Kelvin, L; Lagache, G; Lopez-Caniego, M; Gonzalez-Nuevo, J; Maddox, S; Pascale, E; Pohlen, M; Rigby, E E; Robotham, A; Simpson, C; Smith, D J B; Temi, P; Thompson, M A; Woodgate, B E; York, D G; Aguirre, J E; Beelen, A; Blain, A; Baker, A J; Birkinshaw, M; Blundell, R; Bradford, C M; Burgarella, D; Danese, L; Dunlop, J S; Fleuren, S; Glenn, J; Harris, A I; Kamenetzky, J; Lupu, R E; Maddalena, R J; Madore, B F; Maloney, P R; Matsuhara, H; Michaowski, M J; Murphy, E J; Naylor, B J; Nguyen, H; Popescu, C; Rawlings, S; Rigopoulou, D; Scott, D; Scott, K S; Seibert, M; Smail, I; Tuffs, R J; Vieira, J D; van der Werf, P P; Zmuidzinas, J

    2010-11-05

    Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

  7. HERSCHEL-ATLAS: TOWARD A SAMPLE OF {approx}1000 STRONGLY LENSED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Nuevo, J.; Lapi, A.; Bressan, S.

    2012-04-10

    While the selection of strongly lensed galaxies (SLGs) with 500 {mu}m flux density S{sub 500} > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of {approx_equal} 1.5-2 deg{sup -2}, i.e., a factor ofmore » about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to {approx}1000 candidate SLGs (with amplifications {mu} {approx}> 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field ({approx_equal} 14.4 deg{sup 2}) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a {approx_equal} 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density ({approx_equal} 1.45 deg{sup -2}) can be reached with a {approx}70% efficiency.« less

  8. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  9. Fast automated analysis of strong gravitational lenses with convolutional neural networks.

    PubMed

    Hezaveh, Yashar D; Levasseur, Laurence Perreault; Marshall, Philip J

    2017-08-30

    Quantifying image distortions caused by strong gravitational lensing-the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures-and estimating the corresponding matter distribution of these structures (the 'gravitational lens') has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the 'singular isothermal ellipsoid' density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.

  10. Strong lensing of gravitational waves as seen by LISA.

    PubMed

    Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C

    2010-12-17

    We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).

  11. Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Chan, James H. H.; Shu, Yiping; More, Anupreeta; Oguri, Masamune; Suyu, Sherry H.; Wong, Kenneth C.; Lee, Chien-Hsiu; Coupon, Jean; Yonehara, Atsunori; Bolton, Adam S.; Jaelani, Anton T.; Tanaka, Masayuki; Miyazaki, Satoshi; Komiyama, Yutaka

    2018-01-01

    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is an excellent survey for the search for strong lenses, thanks to its area, image quality, and depth. We use three different methods to look for lenses among 43000 luminous red galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS) sample with photometry from the S16A internal data release of the HSC-SSP. The first method is a newly developed algorithm, named YATTALENS, which looks for arc-like features around massive galaxies and then estimates the likelihood of an object being a lens by performing a lens model fit. The second method, CHITAH, is a modeling-based algorithm originally developed to look for lensed quasars. The third method makes use of spectroscopic data to look for emission lines from objects at a different redshift from that of the main galaxy. We find 15 definite lenses, 36 highly probable lenses, and 282 possible lenses. Among the three methods, YATTALENS, which was developed specifically for this study, performs best in terms of both completeness and purity. Nevertheless, five highly probable lenses were missed by YATTALENS but found by the other two methods, indicating that the three methods are highly complementary. Based on these numbers, we expect to find ˜300 definite or probable lenses by the end of the HSC-SSP.

  12. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case ofmore » the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.« less

  13. Fast automated analysis of strong gravitational lenses with convolutional neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.

    Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. Our procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physicalmore » processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. We report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.« less

  14. Fast automated analysis of strong gravitational lenses with convolutional neural networks

    DOE PAGES

    Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.

    2017-08-30

    Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. Our procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physicalmore » processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. We report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.« less

  15. Fast automated analysis of strong gravitational lenses with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.

    2017-08-01

    Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.

  16. Research on Hartmann test for progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Qin, Lin-ling; Yu, Jing-chi

    2009-05-01

    Recently, in the world some growing-up measurements for Progressive addition lenses and relevant equipments have been developed. They are single point measurement, moiré deflectometry, Ronchi test techniques. Hartmann test for Progressive addition lenses is proposed in the article. The measurement principle of Hartmann test for ophthalmic lenses and the power compensation of off-axis rays are introduced. The experimental setup used to test lenses is put forward. For experimental test, a spatial filter is used for selecting a clean Gaussian beam; a collimating lens with focal distance f =300 mm is used to produce collimated beam. The Hartmann plate with a square array of holes separated at 2 mm is selected. The selection of laser and CCD camera is critical to the accuracy of experiment and the image processing algorithm. The spot patterns from CCD are obtained from the experimental tests. The power distribution map for lenses can be obtained by image processing in theory. The results indicate that Hartmann test for Progressive addition lenses is convenient and feasible; also its structure is simple.

  17. Strong gravitational lensing probes of the particle nature of dark matter

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Abazajian, Kevork; Benson, Andrew; Bolton, Adam S.; Bullock, James S.; Chen, Jacqueline; Cheng, Edward; Coe, Dan; Congdon, Arthur B.; Dalal, Neal; Diemand, Juerg; Dobke, Benjamin M.; Dobler, Greg; Dore, Olivier; Dutton, Aaron; Ellis, Richard; Fassnacht, Chris D.; Ferguson, Henry; Finkbeiner, Douglas; Gavassi, Raphael; High, Fredrick William; Jeltema, Telsa; Jullo, Eric; Kaplinghat, Manoj; Keeton, Charles R.; Kneib, Jean-Paul; Koopmans, Leon V.E.; Koishiappas, Savvas M.; Kuhlen, Michael; Kusenko, Alexander; Lawrence, Charles R.; Loeb, Avi; Madae, Piero; Marshall, Phil; Metcalf, R. Ben; Natarajan, Priya; Primack, Joel R.; Profumo, Stefano; Seiffert, Michael D.; Simon, Josh; Stern, Daniel; Strigari, Louis; Taylor, James E.; Wayth, Randall; Wambsganss, Joachim; Wechsler, Risa; Zentner, Andrew

    There is a vast menagerie of plausible candidates for the constituents of dark matter, both within and beyond extensions of the Standard Model of particle physics. Each of these candidates may have scattering (and other) cross section properties that are consistent with the dark matter abundance, BBN, and the most scales in the matter power spectrum; but which may have vastly different behavior at sub-galactic "cutoff" scales, below which dark matter density fluctuations are smoothed out. The only way to quantitatively measure the power spectrum behavior at sub-galactic scales at distances beyond the local universe, and indeed over cosmic time, is through probes available in multiply imaged strong gravitational lenses. Gravitational potential perturbations by dark matter substructure encode information in the observed relative magnifications, positions, and time delays in a strong lens. Each of these is sensitive to a different moment of the substructure mass function and to different effective mass ranges of the substructure. The time delay perturbations, in particular, are proving to be largely immune to the degeneracies and systematic uncertainties that have impacted exploitation of strong lenses for such studies. There is great potential for a coordinated theoretical and observational effort to enable a sophisticated exploitation of strong gravitational lenses as direct probes of dark matter properties. This opportunity motivates this white paper, and drives the need for: a) strong support of the theoretical work necessary to understand all astrophysical consequences for different dark matter candidates; and b) tailored observational campaigns, and even a fully dedicated mission, to obtain the requisite data.

  18. Curvature from Strong Gravitational Lensing: A Spatially Closed Universe or Systematics?

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Ding, Xuheng; Wang, Guo-Jian; Liao, Kai; Zhu, Zong-Hong

    2018-02-01

    Model-independent constraints on the spatial curvature are not only closely related to important problems, such as the evolution of the universe and properties of dark energy, but also provide a test of the validity of the fundamental Copernican principle. In this paper, with the distance sum rule in the Friedmann–Lemaître–Robertson–Walker metric, we achieve model-independent measurements of the spatial curvature from the latest type Ia supernovae and strong gravitational lensing (SGL) observations. We find that a spatially closed universe is preferred. Moreover, by considering different kinds of velocity dispersion and subsamples, we study possible factors that might affect model-independent estimations for the spatial curvature from SGL observations. It is suggested that the combination of observational data from different surveys might cause a systematic bias, and the tension between the spatially flat universe and SGL observations is alleviated when the subsample only from the Sloan Lens ACS Survey is used or a more complex treatment for the density profile of lenses is considered.

  19. Observational selection biases in time-delay strong lensing and their impact on cosmography

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Cunnington, Steven D.

    2016-11-01

    Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters inferred. Using an ellipsoidal power-law deflector population, we build a sample of double- and quadruple-image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quads, we find that this selection function can introduce a 3.5 per cent bias on the inferred time-delay distances if the properties of the input ensemble are (incorrectly) used as priors on the lens model. This bias remains at the 2.4 per cent level when high-resolution imaging of the quasar host is used to precisely infer the properties of individual lenses. We also investigate if the lines of sight for monitorable strong lenses are biased. The expectation value for the line-of-sight convergence is increased by 0.009 (0.004) for quads (doubles) implying a 0.9 per cent (0.4 per cent) bias on H0. We therefore conclude that whilst the properties of typical quasar lenses and their lines of sight do deviate from the global population, the total magnitude of this effect is likely to be a subdominant effect for current analyses, but has the potential to be a major systematic for samples of ˜25 or more lenses.

  20. Cosmological Studies with Galaxy Clusters, Active Galactic Nuclei, and Strongly Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Nicholas Andrew

    transitional `green valley' on a color-magnitude diagram. Spectral analysis of the AGN hosts showed that the average host galaxy had either on-going or recent star formation, and was younger than the average galaxy, across all LSS in our sample. We further subdivided our sample in two based on the average evolutionary state of the LSS. The AGN in the more evolved structures had lower X-ray luminosities and longer times since last starburst. These results provide some evidence for merger-based AGN triggering, although other mechanisms, and possibly more than one, could be responsible. In the third study, we probed LambdaCDM cosmology from a different angle. An important part of the model is the cosmological parameters that define our universe. As such, probes that can more accurately and precisely measure these parameters, such as H0 and the dark energy equation of state, w, can allow us to more closely inspect the model. Strongly-lensed quasars provide one such probe, and we sought to perform the first step in using them for cosmological inference, which is to measure the time delays between strongly lensed images. We performed radio monitoring campaigns on six strongly lensed quasars using the Very Large Array. Lightcurves were extracted for each lensed image and analyzed for intrinsic variability. Two lensed quasars showed strong time variations, but the variations were linear in time, preventing precise time delay measurements due to a degeneracy with the magnifications. These results suggest most of the systems should be targeted for followup monitoring, and we estimate that time delays can be measured for the most variable systems with precision of 0.5 to 3.5 days with two more seasons of monitoring. In a joint fit with previously studied systems, these measurements could tighten constraints on H 0 by up to ~1.4.

  1. Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Balestra, I.; Rosati, P.; Grillo, C.; Halkola, A.; Suyu, S. H.; Coe, D.; Caminha, G. B.; Frye, B.; Koekemoer, A.; Mercurio, A.; Nonino, M.; Postman, M.; Zitrin, A.

    2017-04-01

    We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACS J2129.4-0741 (zcl = 0.589) obtained by combining high-resolution Hubble Space Telescope photometry from the CLASH (Cluster Lensing And Supernovae survey with Hubble) survey with new spectroscopic observations from the CLASH-VLT (Very Large Telescope) survey. A background bright red passive galaxy at zsp = 1.36, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region (R < 100 kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of 0.4 arcsec. This translates to a high-precision mass reconstruction of MACS 2129, which is constrained at a level of 2 per cent. The cluster has Einstein parameter ΘE = (29 ± 4) arcsec and a projected total mass of Mtot(<ΘE) = (1.35 ± 0.03) × 1014 M⊙ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic data set for the cluster members and lensed images measured with VLT/Visible Multi-Object Spectrograph within the CLASH-VLT survey.

  2. Research and analysis on new test lenses for calibration of focimeters used for measuring contact lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Wang, Liru; Ma, Zhenya

    2006-11-01

    A focimeter is one of the basic ophthalmic instruments used in every optometric practice, and verification of the accuracy and calibration of the instrument are of the utmost importance. For many years the International Standardization for Organization requires that calibrations for all kinds of focimeters shall be accomplished by using test lenses described in ISO 9342:1996. These test lenses must be of high quality and of nominal back vertex power that is known with high accuracy. With the development of science and technology, ISO 9342 was revised in 2005. A new part ISO 9342-2 had been drafted for test lenses used to calibrate focimeters with contact lens measurement, and the original ISO 9342 was turned into the current ISO 9342-1, which could only be used to calibrate fociemters with spectacle lens measurement. As one of the standard drafters, the background for the newly published ISO 9342-2 is introduced in this study, and comparison between test lenses of ISO 9342-1 and ISO 9342-2 is made. Further, the influence of tolerance and uncertainty in design and production of standard test lenses of ISO 9342-2 is analyzed. The paraxial approximation is used to relate the lens parameters with back vertex power and to calculate the uncertainty budget. Moreover, one set of test lenses conforming to ISO 9342-2 is manufactured and experiments are done with it. Results show that test lenses described in ISO 9342-2 can correct the measurement errors of focimeters used for measuring contact lenses well, especially for spherical aberration, and the correction is more effective for spherical contact lenses with high back vertex power.

  3. The inner mass power spectrum of galaxies using strong gravitational lensing: beyond linear approximation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Koopmans, Léon V. E.

    2018-02-01

    In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

  4. What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Smith, Graham P.; Jauzac, Mathilde; Veitch, John; Farr, Will M.; Massey, Richard; Richard, Johan

    2018-04-01

    Motivated by the preponderance of so-called `heavy black holes' in the binary black hole (BBH) gravitational wave (GW) detections to date, and the role that gravitational lensing continues to play in discovering new galaxy populations, we explore the possibility that the GWs are strongly lensed by massive galaxy clusters. For example, if one of the GW sources were actually located at z = 1, then the rest-frame mass of the associated BHs would be reduced by a factor of ˜2. Based on the known populations of BBH GW sources and strong-lensing clusters, we estimate a conservative lower limit on the number of BBH mergers detected per detector year at LIGO/Virgo's current sensitivity that are multiply-imaged, of Rdetect ≃ 10-5 yr-1. This is equivalent to rejecting the hypothesis that one of the BBH GWs detected to date was multiply-imaged at ≲4σ. It is therefore unlikely, but not impossible, that one of the GWs is multiply-imaged. We identify three spectroscopically confirmed strong-lensing clusters with well-constrained mass models within the 90 per cent credible sky localizations of the BBH GWs from LIGO's first observing run. In the event that one of these clusters multiply-imaged one of the BBH GWs, we predict that 20-60 per cent of the putative next appearances of the GWs would be detectable by LIGO, and that they would arrive at Earth within 3yr of first detection.

  5. Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation

    2018-01-01

    We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.

  6. Strong gravitational lensing of gravitational waves from double compact binaries—perspectives for the Einstein Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong

    Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less

  7. The Gini Coefficient as a Tool for Image Family Idenitification in Strong Lensing Systems with Multiple Images

    NASA Astrophysics Data System (ADS)

    Florian, Michael K.; Gladders, Michael D.; Li, Nan; Sharon, Keren

    2016-01-01

    The sample of cosmological strong lensing systems has been steadily growing in recent years and with the advent of the next generation of space-based survey telescopes, the sample will reach into the thousands. The accuracy of strong lens models relies on robust identification of multiple image families of lensed galaxies. For the most massive lenses, often more than one background galaxy is magnified and multiply imaged, and even in the cases of only a single lensed source, identification of counter images is not always robust. Recently, we have shown that the Gini coefficient in space-telescope-quality imaging is a measurement of galaxy morphology that is relatively well-preserved by strong gravitational lensing. Here, we investigate its usefulness as a diagnostic for the purposes of image family identification and show that it can remove some of the degeneracies encountered when using color as the sole diagnostic, and can do so without the need for additional observations since whenever a color is available, two Gini coefficients are as well.

  8. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND HST/WFC3/ACS IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitrin, A.; Broadhurst, T.; Coe, D.

    2011-12-01

    We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 A, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27more » multiple images of nine systems are used to tightly constrain the inner mass profile gradient, dlog {Sigma}/dlog r {approx_equal} -0.6 {+-} 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap ({approx}0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M{sub vir} = (5.37{sup +0.70}{sub -0.63} {+-} 0.26) Multiplication-Sign 10{sup 14} M{sub Sun} h{sup -1} and a relatively high concentration, c{sub vir} = 8.77{sup +0.44}{sub -0.42} {+-} 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r{sub E} {approx_equal} 16 {+-} 2'' (for z{sub s} = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25

  9. The Impact of Microlensing on the Standardisation of Strongly Lensed Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foxley-Marrable, Max; Collett, Thomas E.; Vernardos, Georgios; Goldstein, Daniel A.; Bacon, David

    2018-05-01

    We investigate the effect of microlensing on the standardisation of strongly lensed Type Ia supernovae (GLSNe Ia). We present predictions for the amount of scatter induced by microlensing across a range of plausible strong lens macromodels. We find that lensed images in regions of low convergence, shear and stellar density are standardisable, where the microlensing scatter is ≲ 0.15 magnitudes, comparable to the intrinsic dispersion of for a typical SN Ia. These standardisable configurations correspond to asymmetric lenses with an image located far outside the Einstein radius of the lens. Symmetric and small Einstein radius lenses (≲ 0.5 arcsec) are not standardisable. We apply our model to the recently discovered GLSN Ia iPTF16geu and find that the large discrepancy between the observed flux and the macromodel predictions from More et al. (2017) cannot be explained by microlensing alone. Using the mock GLSNe Ia catalogue of Goldstein et al. (2017), we predict that ˜ 22% of GLSNe Ia discovered by LSST will be standardisable, with a median Einstein radius of 0.9 arcseconds and a median time-delay of 41 days. By breaking the mass-sheet degeneracy the full LSST GLSNe Ia sample will be able to detect systematics in H0 at the 0.5% level.

  10. Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Koopmans, L.V.E.; Barnabe, M.; Bolton, A.; Bradac, M.; Ciotti, L.; Congdon, A.; Czoske, O.; Dye, S.; Dutton, A.; Elliasdottir, A.; Evans, E.; Fassnacht, C.D.; Jackson, N.; Keeton, C.; Lasio, J.; Moustakas, L.; Meneghetti, M.; Myers, S.; Nipoti, C.; Suyu, S.; van de Ven, G.; Vegetti, S.; Wucknitz, O.; Zhao, H.-S.

    Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optical (e.g. LSST and JDEM) instruments can provide 10^(2-4) new lenses, and up to 10^(4-6) new lens systems from SKA/LSST/JDEM all-sky surveys around ~2020. Follow-up imaging of (radio) lenses is necessary with moderate ground/space-based optical-IR telescopes and with 30-50m telescopes for spectroscopy (e.g. TMT, GMT, ELT). To answer these fundamental questions through strong gravitational lensing, a strong investment in large radio and optical-IR facilities is therefore critical in the coming decade. In particular, only large-scale radio lens surveys (e.g. with SKA) provide the large numbers of high-resolution and high-fidelity images of lenses needed for SMBH and flux-ratio anomaly studies.

  11. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  12. Exploring a Potential Bias in Dark Matter Investigations Using Strongly Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Hsueh, Jen-Wei; Fassnacht, Christopher; Vegetti, Simona; Springola, Cristiana; Oldham, Lindsay; Despali, Giulia; Auger, Matthew; Xu, Dandan; Metcalf, Benton; McKean, John; Koopmans, Leon; Lagattuta, David

    2018-01-01

    Simulations based on ΛCDM cosmology predict thousands of substructures under galactic scale have not been detected in the local universe. One hypothesis proposes that most of these substructures are dark for various astrophysical reasons. Gravitational lensing provides a powerful alternative way to probe dark substructures in distant galaxies by detecting their gravitational perturbations and therefore provides insights into the nature of dark matter. Lensed quasars with certain image configurations are especially promising for probing substructure abundance in lens galaxy halos. When the observed flux ratios of the lensed quasar images deviate from the smooth mass model predictions, these “flux-ratio anomalies” are considered to be the evidence of gravitational perturbations. While the standard analysis of flux-ratio anomalies assumes that substructures are the only cause of anomalies, we found that in two edge-on disk lenses, B1555+375 and B0712+472, their flux anomalies can be explained by including disk components into their mass models. Our results bring up a concern with a potential bias in the previous analyses of flux-ratio anomalies. To further investigate the baryonic effects in flux-ratio anomalies, we create mock quasar lenses by selecting disk and elliptical galaxies in the Illustris simulation. Our analysis shows that baryon-induced flux anomalies can be found in all morphological types of lens galaxies. The baryonic effects increase the probability of finding lenses with strong anomalies by 8% in ellipticals and 10~20% in disk lenses, showing that the baryonic effects are unneglectable in the analysis. As future large-scale surveys are expected to bring numerous lensed quasar samples, further investigations on baryonic effects should be done in order to achieve precise constraints on dark matter in the future.

  13. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG),more » and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.« less

  14. The Hidden Fortress: structure and substructure of the complex strong lensing cluster SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune; Schrabback, Tim; Jullo, Eric; Ota, Naomi; Kochanek, Christopher S.; Dai, Xinyu; Ofek, Eran O.; Richards, Gordon T.; Blandford, Roger D.; Falco, Emilio E.; Fohlmeister, Janine

    2013-02-01

    We present Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) observations of SDSS J1029+2623, a three-image quasar lens system produced by a foreground cluster at z = 0.584. Our strong lensing analysis reveals six additional multiply imaged galaxies in addition to the multiply imaged quasar. We confirm the complex nature of the mass distribution of the lensing cluster, with a bimodal dark matter distribution which deviates from the Chandra X-ray surface brightness distribution. The Einstein radius of the lensing cluster is estimated to be θE = 15.2 ± 0.5 arcsec for the quasar redshift of z = 2.197. We derive a radial mass distribution from the combination of strong lensing, HST/ACS weak lensing and Subaru/Suprime-cam weak lensing analysis results, finding a best-fitting virial mass of Mvir = 1.55+ 0.40- 0.35 × 1014 h- 1 M⊙ and a concentration parameter of cvir = 25.7+ 14.1- 7.5. The lensing mass estimate at the outer radius is smaller than the X-ray mass estimate by a factor of ˜2. We ascribe this large mass discrepancy to shock heating of the intracluster gas during a merger, which is also suggested by the complex mass and gas distributions and the high value of the concentration parameter. In the HST image, we also identify a probable galaxy, GX, in the vicinity of the faintest quasar image C. In strong lens models, the inclusion of GX explains the anomalous flux ratios between the quasar images. The morphology of the highly elongated quasar host galaxy is also well reproduced. The best-fitting model suggests large total magnifications of 30 for the quasar and 35 for the quasar host galaxy, and has an AB time delay consistent with the measured value.

  15. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopesmore » of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.« less

  16. Cosmological constraints from strong gravitational lensing in clusters of galaxies.

    PubMed

    Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo

    2010-08-20

    Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.

  17. Strong lensing by fermionic dark matter in galaxies

    NASA Astrophysics Data System (ADS)

    Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.

    2016-12-01

    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used

  18. 30 CFR 18.66 - Tests of windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of windows and lenses. 18.66 Section 18... Tests § 18.66 Tests of windows and lenses. (a) Impact tests. A 4-pound cylindrical weight with a 1-inch-diameter hemispherical striking surface shall be dropped (free fall) to strike the window or lens in its...

  19. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravitymore » field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.« less

  20. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  1. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    NASA Astrophysics Data System (ADS)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  2. Strongly lensed gravitational waves from intrinsically faint double compact binaries—prediction for the Einstein Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong, E-mail: dingxuheng@mail.bnu.edu.cn, E-mail: marek.biesiada@us.edu.pl, E-mail: zhuzh@bnu.edu.cn

    With a fantastic sensitivity improving significantly over the advanced GW detectors, Einstein Telescope (ET) will be able to observe hundreds of thousand inspiralling double compact objects per year. By virtue of gravitational lensing effect, intrinsically unobservable faint sources can be observed by ET due to the magnification by intervening galaxies. We explore the possibility of observing such faint sources amplified by strong gravitational lensing. Following our previous work, we use the merger rates of DCO (NS-NS,BH-NS,BH-BH systems) as calculated by Dominik et al.(2013). It turns out that tens to hundreds of such (lensed) extra events will be registered by ET.more » This will strongly broaden the ET's distance reach for signals from such coalescences to the redshift range z = 2 − 8. However, with respect to the full inspiral event catalog this magnification bias is at the level of 0.001 and should not affect much cosmological inferences.« less

  3. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpretmore » the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.« less

  4. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  5. Validity of strong lensing statistics for constraints on the galaxy evolution model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akiko; Futamase, Toshifumi

    2008-02-01

    We examine the usefulness of the strong lensing statistics to constrain the evolution of the number density of lensing galaxies by adopting the values of the cosmological parameters determined by recent Wilkinson Microwave Anisotropy Probe observation. For this purpose, we employ the lens-redshift test proposed by Kochanek and constrain the parameters in two evolution models, simple power-law model characterized by the power-law indexes νn and νv, and the evolution model by Mitchell et al. based on cold dark matter structure formation scenario. We use the well-defined lens sample from the Sloan Digital Sky Survey (SDSS) and this is similarly sized samples used in the previous studies. Furthermore, we adopt the velocity dispersion function of early-type galaxies based on SDSS DR1 and DR5. It turns out that the indexes of power-law model are consistent with the previous studies, thus our results indicate the mild evolution in the number and velocity dispersion of early-type galaxies out to z = 1. However, we found that the values for p and q used by Mitchell et al. are inconsistent with the presently available observational data. More complete sample is necessary to withdraw more realistic determination on these parameters.

  6. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    NASA Astrophysics Data System (ADS)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  7. CLASH: Joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters*

    DOE PAGES

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; ...

    2016-04-20

    Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters atmore » $$0.19\\lesssim z\\lesssim 0.69$$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h –1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $$c{| }_{z=0.34}=3.95\\pm 0.35$$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $$\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h –1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the

  8. Hubble Frontier Fields: systematic errors in strong lensing models of galaxy clusters - implications for cosmography

    NASA Astrophysics Data System (ADS)

    Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan

    2017-09-01

    Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.

  9. Modelling high-resolution ALMA observations of strongly lensed highly star-forming galaxies detected by Herschel

    NASA Astrophysics Data System (ADS)

    Dye, S.; Furlanetto, C.; Dunne, L.; Eales, S. A.; Negrello, M.; Nayyeri, H.; van der Werf, P. P.; Serjeant, S.; Farrah, D.; Michałowski, M. J.; Baes, M.; Marchetti, L.; Cooray, A.; Riechers, D. A.; Amvrosiadis, A.

    2018-06-01

    We have modelled ˜0.1 arcsec resolution Atacama Large Millimetre/submillimeter Array imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed submillimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high-redshift submillimetre galaxies and low-redshift ultra-luminous infrared galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.

  10. A redshift survey of the strong-lensing cluster ABELL 383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpcmore » of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.« less

  11. Revisiting the monster: the mass profile of the galaxy cluster Abell 3827 using dynamical and strong lensing constrains

    NASA Astrophysics Data System (ADS)

    Rodrigo Carrasco Damele, Eleazar; Verdugo, Tomas

    2018-01-01

    The galaxy cluster Abell 3827 is one of the most massive clusters know at z ≦ 0.1 (Richness class 2, BM typeI, X-ray LX = 2.4 x 1044 erg s-1). The Brightest Cluster Galaxy (BCG) in Abell 3827 is perhaps the most extreme example of ongoing galaxy cannibalism. The multi-component BCG hosts the stellar remnants nuclei of at least four bright elliptical galaxies embedded in a common assymetric halo extended up to 15 kpc. The most notorious characteristic of the BCG is the existence of a unique strong gravitational lens system located within the inner 15 kpc region. A mass estimation of the galaxy based on strong lensing model was presented in Carrasco et al (2010, ApJL, 715, 160). Moreover, the exceptional strong lensing lens system in Abell 3827 and the location of the four bright galaxies has been used to measure for the first time small physical separations between dark and ordinary matter (Williams et al. 2011, MNRAS, 415, 448, Massey et al. 2015, MNRAS, 449, 3393). In this contribution, we present a detailed strong lensing and dynamical analysis of the cluster Abell 3827 based on spectroscopic redshift of the lensed features and from ~70 spectroscopically confirmed member galaxies inside 0.5 x 0.5 Mpc from the cluster center.

  12. Model Selection with Strong-lensing Systems

    NASA Astrophysics Data System (ADS)

    Leaf, Kyle; Melia, Fulvio

    2018-05-01

    In this paper, we use an unprecedentedly large sample (158) of confirmed strong lens systems for model selection, comparing five well studied Friedmann-Robertson-Walker cosmologies: ΛCDM, wCDM (the standard model with a variable dark-energy equation of state), the Rh = ct universe, the (empty) Milne cosmology, and the classical Einstein-de Sitter (matter dominated) universe. We first use these sources to optimize the parameters in the standard model and show that they are consistent with Planck, though the quality of the best fit is not satisfactory. We demonstrate that this is likely due to under-reported errors, or to errors yet to be included in this kind of analysis. We suggest that the missing dispersion may be due to scatter about a pure single isothermal sphere (SIS) model that is often assumed for the mass distribution in these lenses. We then use the Bayes information criterion, with the inclusion of a suggested SIS dispersion, to calculate the relative likelihoods and ranking of these models, showing that Milne and Einstein-de Sitter are completely ruled out, while Rh = ct is preferred over ΛCDM/wCDM with a relative probability of ˜73% versus ˜24%. The recently reported sample of new strong lens candidates by the Dark Energy Survey, if confirmed, may be able to demonstrate which of these two models is favoured over the other at a level exceeding 3σ.

  13. Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference

    NASA Astrophysics Data System (ADS)

    Daylan, Tansu; Cyr-Racine, Francis-Yan; Diaz Rivero, Ana; Dvorkin, Cora; Finkbeiner, Douglas P.

    2018-02-01

    Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a pipeline to model strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian framework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows one to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps—for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope data set, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. The implemented software, Probabilistic Cataloger (PCAT) is made publicly available at https://github.com/tdaylan/pcat.

  14. ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    NASA Astrophysics Data System (ADS)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S. J.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-04-01

    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro-Frenk-White profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  15. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  16. Strong lensing of a regular black hole with an electrodynamics source

    NASA Astrophysics Data System (ADS)

    Manna, Tuhina; Rahaman, Farook; Molla, Sabiruddin; Bhadra, Jhumpa; Shah, Hasrat Hussain

    2018-05-01

    In this paper we have investigated the gravitational lensing phenomenon in the strong field regime for a regular, charged, static black holes with non-linear electrodynamics source. We have obtained the angle of deflection and compared it to a Schwarzschild black hole and Reissner Nordström black hole with similar properties. We have also done a graphical study of the relativistic image positions and magnifications. We hope that this method may be useful in the detection of non-luminous bodies like this current black hole.

  17. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming

    2008-01-01

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with Ωb = 0.04 and ΩΛ = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function μ(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.

  18. Improved mass constraints for two nearby strong-lensing elliptical galaxies from Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-01-01

    We analyse newly obtained Hubble Space Telescope imaging for two nearby strong lensing elliptical galaxies, SNL-1 (z = 0.03) and SNL-2 (z = 0.05), in order to improve the lensing mass constraints. The imaging reveals previously unseen structure in both the lens galaxies and lensed images. For SNL-1, which has a well resolved source, we break the mass-versus-shear degeneracy using the relative magnification information, and measure a lensing mass of 9.49 ± 0.15 × 1010 M⊙, a 7 per cent increase on the previous estimate. For SNL-2, the imaging reveals a bright unresolved component to the source and this presents additional complexity due to possible active galactic nucleus microlensing or variability. We tentatively use the relative magnification information to constrain the contribution from SNL-2's nearby companion galaxy, measuring a lensing mass of 12.59 ± 0.30 × 1010 M⊙, a 9 per cent increase in mass. Our improved lens modelling reduces the mass uncertainty from 5 and 10 per cent to 2 and 3 per cent, respectively. Our results support the conclusions of the previous analysis, with newly measured mass excess parameters of 1.17 ± 0.09 and 0.96 ± 0.10 for SNL-1 and SNL-2, relative to a Milky Way like (Kroupa) initial mass function.

  19. A relatively small change in sodium chloride concentration has a strong effect on adhesion of ocular bacteria to contact lenses.

    PubMed

    Cowell, B A; Willcox, M D; Schneider, R P

    1998-06-01

    Adhesion of bacteria to hydrogel lenses is thought to be an initial step of ocular colonization allowing evasion of normal host defences. The salt concentration of media is an important parameter controlling microbial adhesion. Salinity varies from 0.97% NaCl equivalents in the open eye to 0.89% in the closed eye state. In this study, the effect of sodium chloride in the concentration range of 0.8-1.0% (w/v) NaCl on adhesion of ocular bacteria to soft contact lenses was investigated using a static adhesion assay. Pseudomonas aeruginosa was found to adhere to lenses in significantly greater amounts than Serratia marcescens, Flavobacterium meningosepticum, Stenotrophomonas maltophilia and Staphylococcus intermedius. Increasing NaCl from 0.8% to 1.0% (w/v) increased adhesion of all bacteria tested. This adhesion was strong since the organisms could not be removed by washing in low ionic buffer. Adhesion of these organisms did not correlate with their cell surface properties as determined by bacterial adhesion to hydrocarbons (BATH) and retention on sepharose columns.

  20. A bright lensed galaxy at z = 5.4 with strong Lyα emission

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Clément, Benjamin; Mainali, Ramesh; Stark, Daniel P.; Gronke, Max; Dijkstra, Mark; Fan, Xiaohui; Bian, Fuyan; Frye, Brenda; Jiang, Linhua; Kneib, Jean-Paul; Limousin, Marceau; Walth, Gregory

    2018-05-01

    We present a detailed study of a unusually bright, lensed galaxy at z = 5.424 discovered within the CFHTLS imaging survey. With an observed flux of iAB = 23.0, J141446.82+544631.9 is one of the brightest galaxies known at z > 5. It is characterized by strong Lyα emission, reaching a peak in (observed) flux density of >10-16 erg s-1 cm-2 Å-1. A deep optical spectrum from the LBT places strong constraints on N V and C IV emission, disfavouring an AGN source for the emission. However, a detection of the N IV] λ1486 emission line indicates a hard ionizing continuum, possibly from hot, massive stars. Resolved imaging from HST deblends the galaxy from a foreground interloper; these observations include narrowband imaging of the Lyα emission, which is marginally resolved on ˜few kpc scales and has EW0 ˜ 260Å. The Lyα emission extends over ˜2000 km s-1 and is broadly consistent with expanding shell models. SED fitting that includes Spitzer/IRAC photometry suggests a complex star formation history that include both a recent burst and an evolved population. J1414+5446 lies 30″ from the centre of a known lensing cluster in the CFHTLS; combined with the foreground contribution this leads to a highly uncertain estimate for the lensing magnification in the range 5 ≲ μ ≲ 25. Because of its unusual brightness J1414+5446 affords unique opportunities for detailed study of an individual galaxy near the epoch of reionization and a preview of what can be expected from upcoming wide-area surveys that will yield hundreds of similar objects.

  1. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Daming, E-mail: cdm@bao.ac.cn

    2008-01-15

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with {Omega}{sub b} = 0.04 and {Omega}{sub {Lambda}} = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We comparemore » our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function {mu}(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.« less

  2. Measurements of Morphology in Strongly Lensed Galaxies in the Image Plane

    NASA Astrophysics Data System (ADS)

    Florian, Michael Kenneth

    2017-02-01

    The peak of star formation in the universe, the so-called "cosmic noon", occurs around redshift 2. Therefore, to study the physical mechanisms driving galaxy assembly and star formation, and thus the bulk morphological appearances of present day galaxies, we must look to galaxies at this redshift and greater. Unfortunately, even with current space-based telescopes, the internal structures of these galaxies cannot be resolved. The point spread function of the Hubble Space Telescope (HST), for example, corresponds to scales of about 0.5 kpc at redshift 2. Even the next generation of telescopes (e.g., the James Webb Space Telescope, the Wide-Field Infrared Survey Telescope, and the new thirty meter class of ground-based telescopes) will not be able to access the spatial scales--tens of parsecs or less--on which star formation has been shown to occur in the local universe. Fortunately, strong gravitational lensing can magnify these spatial scales to angular scales comparable to, or larger than, the HST point spread function. However, this increased access to small scales comes at the cost of strong distortions of the underlying image. To deal with this, I use simulations to show that some morphological measurements (e.g., the Gini coefficient) are preserved by gravitational lensing and can be measured in the image plane. I further show how such measurements can aid image family identification and thus improve lens models and source reconstructions. I explore a method to measure the fraction of a lensed galaxy's light that is contained in star-forming clumps in the image plane, which would bypass the need for lens modeling and source reconstruction to carry out similar measurements. I present a proof of concept for a simple case, and show where the major uncertainties lie--uncertainties that will need to be dealt with in order to expand this technique for use on more image configurations and tighten the relationship between the intrinsic values and the measured values

  3. Testing the uniqueness of mass models using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Walls, Levi; Williams, Liliya L. R.

    2018-06-01

    The positions of images produced by the gravitational lensing of background-sources provide insight to lens-galaxy mass distributions. Simple elliptical mass density profiles do not agree well with observations of the population of known quads. It has been shown that the most promising way to reconcile this discrepancy is via perturbations away from purely elliptical mass profiles by assuming two super-imposed, somewhat misaligned mass distributions: one is dark matter (DM), the other is a stellar distribution. In this work, we investigate if mass modelling of individual lenses can reveal if the lenses have this type of complex structure, or simpler elliptical structure. In other words, we test mass model uniqueness, or how well an extended source lensed by a non-trivial mass distribution can be modeled by a simple elliptical mass profile. We used the publicly-available lensing software, Lensmodel, to generate and numerically model gravitational lenses and “observed” image positions. We then compared “observed” and modeled image positions via root mean square (RMS) of their difference. We report that, in most cases, the RMS is ≤0.05‧‧ when averaged over an extended source. Thus, we show it is possible to fit a smooth mass model to a system that contains a stellar-component with varying levels of misalignment with a DM-component, and hence mass modelling cannot differentiate between simple elliptical versus more complex lenses.

  4. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE PAGES

    Nord, B.; Buckley-Geer, E.; Lin, H.; ...

    2016-08-05

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less

  5. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Buckley-Geer, E.; Lin, H.

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less

  6. Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.

    PubMed

    Milgrom, Mordehai

    2013-07-26

    The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0.

  7. OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Buckley-Geer, E.; Lin, H.

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ∼ 0.80–3.2 and in i -band surface brightness i {sub SB} ∼ 23–25 mag arcsec{sup −2} (2″ aperture). For each of the six systems, we estimate the Einstein radius θ {sub E} and the enclosed mass M {sub enc}, which have ranges θ {sub E} ∼ 5″–9″ and M {sub enc} ∼ 8 × 10{sup 12} to 6 × 10{sup 13} M {sub ⊙}, respectively.« less

  8. Observation and Confirmation of Six Strong-lensing Systems in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D'Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration

    2016-08-01

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80-3.2 and in I-band surface brightness I SB ˜ 23-25 mag arcsec-2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″-9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-01

    In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.

  10. Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Lu, Wenbin

    2017-09-01

    Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.

  11. Connection between black-hole quasinormal modes and lensing in the strong deflection limit.

    PubMed

    Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G

    2010-06-25

    The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

  12. J0454-0309: evidence of a strong lensing fossil group falling into a poor galaxy cluster

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Suyu, S.; Schrabback, T.; Hildebrandt, H.; Erben, T.; Halkola, A.

    2010-05-01

    Aims: We have discovered a strong lensing fossil group (J0454) projected near the well-studied cluster MS0451-0305. Using the large amount of available archival data, we compare J0454 to normal groups and clusters. A highly asymmetric image configuration of the strong lens enables us to study the substructure of the system. Methods: We used multicolour Subaru/Suprime-Cam and CFHT/Megaprime imaging, together with Keck spectroscopy to identify member galaxies. A VLT/FORS2 spectrum was taken to determine the redshifts of the brightest elliptical and the lensed arc. Using HST/ACS images, we determined the group's weak lensing signal and modelled the strong lens system. This is the first time that a fossil group is analysed with lensing methods. The X-ray luminosity and temperature were derived from XMM-Newton data. Results: J0454 is located at z = 0.26, with a gap of 2.5 mag between the brightest and second brightest galaxies within half the virial radius. Outside a radius of 1.5 Mpc, we find two filaments extending over 4 Mpc, and within we identify 31 members spectroscopically and 33 via the red sequence with i < 22 mag. They segregate into spirals (σ_v = 590 km s-1) and a central concentration of ellipticals (σ_v = 480 km s-1), establishing a morphology-density relation. Weak lensing and cluster richness relations yield consistent values of r200 = 810-850 kpc and M200 = (0.75-0.90) × 1014 M_⊙. The brightest group galaxy (BGG) is inconsistent with the dynamic centre of J0454. It strongly lenses a galaxy at z = 2.1 ± 0.3, and we model the lens with a pseudo-isothermal elliptical mass distribution. A high external shear, and a discrepancy between the Einstein radius and the weak lensing velocity dispersion requires that the BGG must be offset from J0454's dark halo centre by at least 90-130 kpc. The X-ray halo is offset by 24 ± 16 kpc from the BGG, shows no signs of a cooling flow and can be fit by a single β-model. With LX = (1.4 ± 0.2) × 1043 erg s-1 J0454

  13. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images

    NASA Astrophysics Data System (ADS)

    Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.

    2018-01-01

    We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.

  14. Feedback control of thermal lensing in a high optical power cavity.

    PubMed

    Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J

    2008-10-01

    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

  15. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    DOE PAGES

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-15

    In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less

  16. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less

  17. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  18. SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-06-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  19. Power spectrum of dark matter substructure in strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  20. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  1. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Anupreeta; Oguri, Masamune; More, Surhud

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but placesmore » a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.« less

  2. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE PAGES

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  3. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  4. CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly magnified by galaxy cluster members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillo, C.; Christensen, L.; Gobat, R.

    2014-05-01

    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to modelmore » the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this

  5. Astrophysical Applications of Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Muñoz, Jose A.; Garzón, Francisco; Mahoney, Terence J.

    2016-10-01

    Contributors; Participants; Preface; Acknowledgements; 1. Lensing basics Sherry H. Suyu; 2. Exoplanet microlensing Andrew Gould; 3. Case studies of microlensing Veronica Motta and Emilio Falco; 4. Microlensing of quasars and AGN Joachim Wambsganss; 5. DM in clusters and large-scale structure Peter Schneider; 6. The future of strong lensing Chris Fassnacht; 7. Methods for strong lens modelling Charles Keeton; 8. Tutorial on inverse ray shooting Jorge Jimenez-Vicente.

  6. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  7. Gravitational lensing of active galactic nuclei.

    PubMed

    Hewitt, J N

    1995-12-05

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes.

  8. Gravitational lenses, cosmology, and galaxy structure

    NASA Astrophysics Data System (ADS)

    Winn, J.

    2002-05-01

    Gravitational lenses can be used to study dark matter in galaxies and to measure the Hubble constant. The statistics of lensing can be used to measure the cosmological constant. I have been conducting a survey of the southern sky for new lenses at radio wavelengths, which has resulted in 4 confirmed lenses and 3 strong candidates that require further follow-up. I will describe the survey and the scientific results that have been obtained from the new lenses. I will also describe my other life as a science journalist.

  9. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...

  10. The M31 Pixel Lensing PLAN Campaign: MACHO Lensing and Self-lensing Signals

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Bozza, V.; Bruni, I.; Dall'Ora, M.; De Paolis, F.; Dominik, M.; Gualandi, R.; Ingrosso, G.; Jetzer, Ph.; Mancini, L.; Nucita, A.; Safonova, M.; Scarpetta, G.; Sereno, M.; Strafella, F.; Subramaniam, A.; Gould, A.; PLAN Collaboration

    2014-03-01

    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' × 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both "self lensing" and "MACHO lensing" lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10-2) M ⊙ MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M ⊙ MACHOs.

  11. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel

    2017-08-01

    We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  12. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission tomore » its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.« less

  13. DES meets Gaia: discovery of strongly lensed quasars from a multiplet search

    NASA Astrophysics Data System (ADS)

    Agnello, A.; Lin, H.; Kuropatkin, N.; Buckley-Geer, E.; Anguita, T.; Schechter, P. L.; Morishita, T.; Motta, V.; Rojas, K.; Treu, T.; Amara, A.; Auger, M. W.; Courbin, F.; Fassnacht, C. D.; Frieman, J.; More, A.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; Suyu, S. H.; Glazebrook, K.; Morgan, N.; Nord, B.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bernstein, R. A.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Drlica-Wagner, A.; Eifler, T. F.; Flaugher, B.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, J. Gschwend G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D.; Wechsler, R.

    2018-06-01

    We report the discovery, spectroscopic confirmation and first lens models of the first, strongly lensed quasars from a combined search in WISE and Gaia-DR1 over the DES footprint. Their Einstein radii span a range between ≈2.0″ and ≈0.4″. Two of these (WGD2038-4008, r.a.=20:38:02.65, dec.=-40:08:14.64; WGD2021-4115, r.a.=20:21:39.45, dec.=-41:15:57.11) also have confirmed deflector redshifts. The four-image lens WGD2038-4008, with source- and deflector- redshifts zs = 0.777 ± 0.001 and zl = 0.230 ± 0.002 respectively, has a deflector with radius Reff ≈ 3.4″, stellar mass log (M_{\\star }/M_{⊙})=11.64^{+0.20}_{-0.43}, and extended isophotal shape variation. Simple lens models yield Einstein radii RE = (1.30 ± 0.04)″, axis ratio q = 0.75 ± 0.1 (compatible with that of the starlight) and considerable shear-ellipticity degeneracies. The two-image lens WGD2021-4115has zs = 1.390 ± 0.001 and zl = 0.335 ± 0.002, and Einstein radius RE = (1.1 ± 0.1)″, but higher-resolution imaging is needed to accurately separate the deflector and faint quasar image. Analogous lens-model degeneracies hold for the other six lenses (J0146-1133, J0150-4041, J0235-2433, J0245-0556, J0259-2338, J0508-2748) shown in this paper.

  14. Solution for testing large high-power laser lenses having long focal length (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fappani, Denis; IDE, Monique

    2017-05-01

    Many high power laser facilities are in operation all around the world and include various tight optical components such as large focussing lenses. Such lenses exhibit generally long focal lengths which induces some issues for their optical testing during manufacturing and inspection. Indeed, their transmitted wave fronts need to be very accurate and interferometric testing is the baseline to achieve that. But, it is always a problem to manage simultaneously long testing distances and fine accuracies in such interferometry testing. Taking example of the large focusing lenses produced for the Orion experimentation at AWE (UK), the presentation will describe which kind of testing method has been developed to demonstrate simultaneously good performances with sufficiently good repeatability and absolute accuracy. Special emphasis will be made onto the optical manufacturing issues and interferometric testing solutions. Some ZEMAX results presenting the test set-up and the calibration method will be presented as well. The presentation will conclude with a brief overview of the existing "state of the art" at Thales SESO for these technologies.

  15. The Master Lens Database and The Orphan Lenses Project

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas

    2012-10-01

    Strong gravitational lenses are uniquely suited for the study of dark matter structure and substructure within massive halos of many scales, act as gravitational telescopes for distant faint objects, and can give powerful and competitive cosmological constraints. While hundreds of strong lenses are known to date, spanning five orders of magnitude in mass scale, thousands will be identified this decade. To fully exploit the power of these objects presently, and in the near future, we are creating the Master Lens Database. This is a clearinghouse of all known strong lens systems, with a sophisticated and modern database of uniformly measured and derived observational and lens-model derived quantities, using archival Hubble data across several instruments. This Database enables new science that can be done with a comprehensive sample of strong lenses. The operational goal of this proposal is to develop the process and the code to semi-automatically stage Hubble data of each system, create appropriate masks of the lensing objects and lensing features, and derive gravitational lens models, to provide a uniform and fairly comprehensive information set that is ingested into the Database. The scientific goal for this team is to use the properties of the ensemble of lenses to make a new study of the internal structure of lensing galaxies, and to identify new objects that show evidence of strong substructure lensing, for follow-up study. All data, scripts, masks, model setup files, and derived parameters, will be public, and free. The Database will be accessible online and through a sophisticated smartphone application, which will also be free.

  16. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Naab, T.

    2018-04-01

    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  17. Shatter resistance of spectacle lenses.

    PubMed

    Vinger, P F; Parver, L; Alfaro, D V; Woods, T; Abrams, B S

    1997-01-08

    To evaluate the relative strength and shatter resistance of spectacle lenses currently used in sunglasses and dress, sports, and industrial eyewear. Seven lenses that met the US American National Standards Institute (ANSI) Z80 standards for dress glasses (made of high-index plastic, allyl resin plastic, heat tempered glass, chemically tempered glass, and polycarbonate, and with center thickness ranging from 1 mm to 2.2 mm) and 4 lenses that met ANSI Z87 standards for industrial safety eyewear (allyl resin plastic, heat-tempered glass, chemically tempered glass, and polycarbonate, all with 3.0-mm center thickness) were tested for impact resistance to 5 projectiles (air gun pellets, golf balls, tennis balls, lacrosse balls, and baseballs). Impact energy required to shatter spectacle lenses. Based on 348 lens impacts, dress and industrial lenses made from glass, allyl resin plastic, and high-index plastic shattered at impact energies less than those expected to be encountered from the test projectiles during their routine use. Polycarbonate lenses demonstrated resistance to impact for all tested projectiles exceeding the impact potential expected during routine use. Under the test conditions of this study, polycarbonate lenses demonstrated greater impact resistance than other commonly used spectacle lenses that conform to prevailing eyewear standards. These findings suggest that current ANSI Z80 and ANSI Z87 standards should be reevaluated.

  18. Habitual wearers of colored lenses adapt more rapidly to the color changes the lenses produce.

    PubMed

    Engel, Stephen A; Wilkins, Arnold J; Mand, Shivraj; Helwig, Nathaniel E; Allen, Peter M

    2016-08-01

    The visual system continuously adapts to the environment, allowing it to perform optimally in a changing visual world. One large change occurs every time one takes off or puts on a pair of spectacles. It would be advantageous for the visual system to learn to adapt particularly rapidly to such large, commonly occurring events, but whether it can do so remains unknown. Here, we tested whether people who routinely wear spectacles with colored lenses increase how rapidly they adapt to the color shifts their lenses produce. Adaptation to a global color shift causes the appearance of a test color to change. We measured changes in the color that appeared "unique yellow", that is neither reddish nor greenish, as subjects donned and removed their spectacles. Nine habitual wearers and nine age-matched control subjects judged the color of a small monochromatic test light presented with a large, uniform, whitish surround every 5s. Red lenses shifted unique yellow to more reddish colors (longer wavelengths), and greenish lenses shifted it to more greenish colors (shorter wavelengths), consistent with adaptation "normalizing" the appearance of the world. In controls, the time course of this adaptation contained a large, rapid component and a smaller gradual one, in agreement with prior results. Critically, in habitual wearers the rapid component was significantly larger, and the gradual component significantly smaller than in controls. The total amount of adaptation was also larger in habitual wearers than in controls. These data suggest strongly that the visual system adapts with increasing rapidity and strength as environments are encountered repeatedly over time. An additional unexpected finding was that baseline unique yellow shifted in a direction opposite to that produced by the habitually worn lenses. Overall, our results represent one of the first formal reports that adjusting to putting on or taking off spectacles becomes easier over time, and may have important

  19. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  20. Parametric strong gravitational lensing analysis of Abell 1689

    NASA Astrophysics Data System (ADS)

    Halkola, A.; Seitz, S.; Pannella, M.

    2006-11-01

    We have derived the mass distribution of galaxy cluster Abell 1689 within 0.3h-170Mpc of the cluster centre using its strong lensing (SL) effect on 32 background galaxies, which are mapped in altogether 107 multiple images. The multiple images are based on some from the literature with modifications to both include new and exclude some of the original image systems. The cluster profile is explored further out to ~2.5h-170Mpc with weak lensing (WL) shear measurements from the literature. The masses of ~200 cluster galaxies are measured with the Fundamental Plane (FP) in order to model accurately the small-scale mass structure in the cluster. The cluster galaxies are modelled as elliptical truncated isothermal spheres. The scalings of the truncation radii with the velocity dispersions of galaxies are assumed to match those of: (i) field galaxies; and (ii) theoretical expectations for galaxies in dense environments. The dark matter (DM) component of the cluster is described by either non-singular isothermal ellipsoids (NSIE) or elliptical versions of the universal DM profile (elliptical Navarro, Frenk & White, ENFW). To account for substructure in the DM we allow for two DM haloes. The fitting of a non-singular isothermal sphere (NSIS) to the smooth DM component results in a velocity dispersion of 1450+39-31kms-1 and a core radius of 77+10-8h-170kpc, while a Navarro, Frenk & White (NFW) profile has an r200 of 2.86 +/- 0.16h-170Mpc (M200 = 3.2 × 1015Msolarh70) and a concentration of 4.7+0.6-0.5. The total mass profile is well described by either a NSIS profile with σ = 1514+18-17kms-1 and a core radius of rc = 71 +/- 5h-170kpc, or an NFW profile with C = 6.0 +/- 0.5 and r200 = 2.82 +/- 0.11h-170Mpc (M200 = 3.0 × 1015Msolarh70). The errors are assumed to be due to the error in assigning masses to the individual galaxies in the galaxy component. Their small size is due to the very strong constraints imposed by multiple images and the ability of the smooth DM component

  1. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  2. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  3. A strong-lensing elliptical galaxy in the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.

    2017-01-01

    I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.

  4. Investigations of Galaxy Clusters Using Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters andmore » gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.« less

  5. Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Agnello, A.; Treu, T.; Abramson, L. E.; Anguita, T.; Apostolovski, Y.; Chen, G. C.-F.; Fassnacht, C. D.; Hsueh, J. W.; Lemaux, B. C.; Motta, V.; Oldham, L.; Rojas, K.; Rusu, C. E.; Shajib, A. J.; Wang, X.

    2018-06-01

    We present the discovery of three quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 arcsec on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67 arcsec on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at zs = 2.10. SDSS J1640+1045 has two quasar spectra at zs = 1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming three new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.

  6. EDITORIAL: Focus on Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh

    2007-11-01

    progressed rapidly. That cosmic shear is now regarded as a key element of major missions aimed at probing dark energy is a feat of scientific persuasion—a decade ago not many believed it was realistic to even detect this tiny shear signal, let alone measure it with the percent-level accuracy needed to advance dark energy measurements. If weak lensing measurements deliver on their promise, then, in combination with other imaging and spectroscopic probes, they may well impact fundamental physics and cosmology. For example they may find evidence for an evolving dark energy component or signatures of departures from general relativity. These exciting prospects rest on new optical surveys planned for the next five years which will image a thousand square degrees or more of the sky to redshifts ~1 (compared to about a hundred square degrees imaged currently). Further, through photometric redshifts based on galaxy colors, lensing tomography methods will be applied to learn about the three-dimensional distribution of dark matter. Lensing measurements in other wavelengths, such as planned 21-cm surveys and CMB lensing, would add valuable diversity to measurement techniques. The case for the next generation optical surveys from the ground and space is compelling as well: they will produce another order of magnitude in data quantity and deliver images with minimal distortions due to the atmosphere and telescope optics. The coming decade therefore has the potential for exciting discoveries in gravitational lensing. Focus on Gravitational Lensing Contents A Bayesian approach to strong lensing modelling of galaxy clusters E Jullo, J-P Kneib, M Limousin, Á Elíasdóttir, P J Marshall and T Verdugo Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance Masahiro Takada and Sarah Bridle How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test? Pedro R Capelo and Priyamvada Natarajan Dark energy constraints

  7. Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.

    2014-07-01

    We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.

  8. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z {approx} 2.4 IN THE COSMOS/UltraVISTA FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Labbe, Ivo; Franx, Marijn

    2012-12-20

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the sourcemore » at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding

  9. A Strongly Lensed Massive Ultracompact Quiescent Galaxy at z ~ 2.4 in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Muzzin, Adam; Labbé, Ivo; Franx, Marijn; van Dokkum, Pieter; Holt, J.; Szomoru, Daniel; van de Sande, Jesse; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Caputi, K. I.; Dunlop, James; Fynbo, J. P. U.; Le Févre, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo

    2012-12-01

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z = 0.960. This system was serendipitously discovered as a set of extremely Ks -bright high-redshift galaxies with red J - Ks colors using new data from the UltraVISTA YJHKs near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 ± 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the Ks -band image, to constrain the size and Sérsic profile of the galaxy. The best-fit model is an ultracompact galaxy (Re = 0.64+0.08 - 0.18 kpc, lensing-corrected), with a Sérsic profile that is intermediate between a disk and a bulge profile (n = 2.2+2.3 - 0.9), albeit with considerable uncertainties on the Sérsic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M star/M ⊙) = 10.8+0.1 - 0.1, lensing-corrected) with an age of 1.0+1.0 - 0.4 Gyr, moderate dust extinction (Av = 0.8+0.5 - 0.6), and a low specific star formation rate (log(SSFR) <-11.0 yr-1). This is typical of massive "red-and-dead" galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger sample of these galaxies. Based on data products from observations made with ESO Telescopes at the La

  10. Strong lensing analysis of PLCK G004.5-19.5, a Planck-discovered cluster hosting a radio relic at z = 0.52

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Menanteau, Felipe; Hughes, John P.; Carrasco, Mauricio; Barrientos, L. Felipe

    2014-02-01

    Context. The recent discovery of a large number of galaxy clusters using the Sunyaev-Zel'dovich (SZ) effect has opened a new era on the study of the most massive clusters in the Universe. Multiwavelength analyses are required to understand the properties of these new sets of clusters, which are a sensitive probe of cosmology. Aims: We aim for a multiwavelength characterization of PLCK G004.5-19.5, one of the most massive X-ray validated SZ effect-selected galaxy clusters discovered by the Planck satellite. Methods: We have observed PLCK G004.5-19.5 with GMOS on the 8.1 m-Gemini South Telescope for optical imaging and spectroscopy, and performed a strong lensing analysis. We also searched for associated radio emission in published catalogs. Results: An analysis of the optical images confirms that this is a massive cluster, with a dominant central galaxy and an accompanying red sequence of galaxies, plus a 14″-long strong lensing arc. Longslit spectroscopy of six cluster members shows that the cluster is at z = 0.516 ± 0.002. We also targeted the strongly lensed arc, and found zarc = 1.601. We use LensTool to carry out a strong lensing analysis, from which we measure a median Einstein radius θE(zs = 1.6) ≃ 30″ and estimate an enclosed mass ME = 2.45-0.47+0.45 × 1014 M⊙. By extrapolating a Navarro-Frenk-White profile, we find a total mass M500SL = 4.0-1.0+2.1 × 1014 M⊙. We also include a constraint on the mass from previous X-ray observations, which yields a slightly higher mass, M500SL+X = 6.7-1.3+2.6 × 1014 M⊙, consistent with the value from strong lensing alone. Intermediate-resolution radio images from the TIFR GMRT Sky Survey at 150 MHz reveal that PLCK G004.5-19.5 hosts a powerful radio relic on scales ≲500 kpc. Emission at the same location is also detected in low-resolution images at 843 MHz and 1.4 GHz. This is one of the higher redshift radio relics known to date. Based on observations obtained at the Gemini Observatory, which is operated

  11. First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements

    NASA Astrophysics Data System (ADS)

    Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.

    2017-04-01

    Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.

  12. Exploration and comparison of in vitro eye irritation tests with the ISO standard in vivo rabbit test for the evaluation of the ocular irritancy of contact lenses.

    PubMed

    Yun, Jun-Won; Hailian, Quan; Na, Yirang; Kang, Byeong-Cheol; Yoon, Jung-Hee; Cho, Eun-Young; Lee, Miri; Kim, Da-Eun; Bae, SeungJin; Seok, Seung Hyeok; Lim, Kyung-Min

    2016-12-01

    In an effort to explore the use of alternative methods to animal testing for the evaluation of the ocular irritancy of medical devices, we evaluated representative contact lenses with the bovine corneal opacity and permeability test (BCOP) and an in vitro eye irritation test using the three-dimensionally-reconstructed human corneal epithelium (RhCE) models, EpiOcular™ and MCTT HCE™. In addition, we compared the obtained results with the ISO standard in vivo rabbit eye irritation test (ISO10993-10). Along with the positive controls (benzalkonium chloride, BAK, 0.02, 0.2, and 1%), the extracts of 4 representative contact lenses (soft, disposable, hard, and colored lenses) and 2 reference lenses (dye-eluting and BAK-coated lenses) were tested. All the lenses, except for the BAK-coated lens, were determined non-irritants in all test methods, while the positive controls yielded relevant results. More importantly, BCOP, EpiOcular™, and MCTT HCE™ yielded a consistent decision for all the tested samples, with the exception of 0.2% BAK in BCOP, for which no prediction could be made. Overall, all the in vitro tests correlated well with the in vivo rabbit eye irritation test, and furthermore, the combination of in vitro tests as a tiered testing strategy was able to produce results similar to those seen in vivo. These observations suggest that such methods can be used as alternative assays to replace the conventional in vivo test method in the evaluation of the ocular irritancy of ophthalmic medical devices, although further study is necessary. Copyright © 2016. Published by Elsevier Ltd.

  13. Galaxy cluster lensing masses in modified lensing potentials

    DOE PAGES

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; ...

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less

  14. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z Almost-Equal-To 11 GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Dan; Postman, Marc; Bradley, Larry

    2013-01-01

    We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7{sup +0.6} {sub -0.4} (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2{sigma}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of {approx}80, 7, and 2, with the brighter two observed at {approx}26th magnitudemore » AB ({approx}0.15 {mu}Jy) in the WFC3/IR F160W filter ({approx}1.4-1.7 {mu}m) where they are detected at {approx}>12{sigma}. All three images are also confidently detected at {approx}>6{sigma} in F140W ({approx}1.2-1.6 {mu}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters ({approx}0.2-1.4 {mu}m), and lacking bright detections in Spitzer/IRAC 3.6 {mu}m and 4.5 {mu}m imaging ({approx}3.2-5.0 {mu}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z {approx} 10.8 and MACS1149-JD at z {approx} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {approx}> 10 suggested by field searches.« less

  15. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  16. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    , which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.

  17. RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9‑40.7

    NASA Astrophysics Data System (ADS)

    Acebron, Ana; Cibirka, Nathália; Zitrin, Adi; Coe, Dan; Agulli, Irene; Sharon, Keren; Bradač, Maruša; Frye, Brenda; Livermore, Rachael C.; Mahler, Guillaume; Salmon, Brett; Umetsu, Keiichi; Bradley, Larry; Andrade-Santos, Felipe; Avila, Roberto; Carrasco, Daniela; Cerny, Catherine; Czakon, Nicole G.; Dawson, William A.; Hoag, Austin T.; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Kikuchihara, Shotaro; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Ouchi, Masami; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Ryan, Russell E.; Sendra-Server, Irene; Stark, Daniel P.; Strait, Victoria; Toft, Sune; Trenti, Michele; Vulcani, Benedetta

    2018-05-01

    Strong gravitational lensing by galaxy clusters has become a powerful tool for probing the high-redshift universe, magnifying distant and faint background galaxies. Reliable strong-lensing (SL) models are crucial for determining the intrinsic properties of distant, magnified sources and for constructing their luminosity function. We present here the first SL analysis of MACS J0308.9+2645 and PLCK G171.9‑40.7, two massive galaxy clusters imaged with the Hubble Space Telescope, in the framework of the Reionization Lensing Cluster Survey (RELICS). We use the light-traces-mass modeling technique to uncover sets of multiply imaged galaxies and constrain the mass distribution of the clusters. Our SL analysis reveals that both clusters have particularly large Einstein radii (θ E > 30″ for a source redshift of z s = 2), providing fairly large areas with high magnifications, useful for high-redshift galaxy searches (∼2 arcmin2 with μ > 5 to ∼1 arcmin2 with μ > 10, similar to a typical Hubble Frontier Fields cluster). We also find that MACS J0308.9+2645 hosts a promising, apparently bright (J ∼ 23.2–24.6 AB), multiply imaged high-redshift candidate at z ∼ 6.4. These images are among the brightest high-redshift candidates found in RELICS. Our mass models, including magnification maps, are made publicly available for the community through the Mikulski Archive for Space Telescopes.

  18. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  19. Microbial adherence to cosmetic contact lenses.

    PubMed

    Chan, Ka Yin; Cho, Pauline; Boost, Maureen

    2014-08-01

    To investigate whether cosmetic contact lenses (CCL) with surface pigments affect microbial adherence. Fifteen brands of CCL were purchased from optical, non-optical retail outlets, and via the Internet. A standardized rub-off test was performed on each CCL (five lenses per brand) to confirm the location of the pigments. The rub-off test comprised gentle rubbing on the surfaces of each CCL with wetted cotton buds for a maximum of 20 rubs per surface. A new set of CCL (five lenses per brand) were incubated in Pseudomonas aeruginosa overnight. Viable counts of adhered bacteria were determined by the number of colony-forming units (CFU) on agar media on each lens. The adherence of P. aeruginosa as well as Staphylococcus aureus and Serratia marcescens to three brands of CCL (A-C) (five lenses per brand) were also compared to their adherences on their clear counterparts. Only two of the 15 brands of CCL tested (brands B and C) had pigments that did not detach with the rub-off test. The remaining 13 brands of CCL all failed the rub-off test and these lenses showed higher P. aeruginosa adherence (8.7 × 10(5)-1.9 × 10(6) CFU/lens). Brands B and C lenses showed at least six times less bacterial adhesion than the other 13 brands. Compared to their clear counterparts, bacterial adherence to brands B and C lenses did not differ significantly, whereas brand A lenses showed significantly higher adherence. Surface pigments on CCL resulted in significantly higher bacterial adherence. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  20. Weak Gravitational Lensing of Finite Beams.

    PubMed

    Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe

    2017-11-10

    The standard theory of weak gravitational lensing relies on the infinitesimal light beam approximation. In this context, images are distorted by convergence and shear, the respective sources of which unphysically depend on the resolution of the distribution of matter-the so-called Ricci-Weyl problem. In this Letter, we propose a strong-lensing-inspired formalism to describe the lensing of finite beams. We address the Ricci-Weyl problem by showing explicitly that convergence is caused by the matter enclosed by the beam, regardless of its distribution. Furthermore, shear turns out to be systematically enhanced by the finiteness of the beam. This implies, in particular, that the Kaiser-Squires relation between shear and convergence is violated, which could have profound consequences on the interpretation of weak-lensing surveys.

  1. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies.

    PubMed

    Dutta, Debarun; Ozkan, Jerome; Willcox, Mark D P

    2014-05-01

    Covalent immobilization of antimicrobial peptide melimine onto contact lenses can produce broad-spectrum antimicrobial lenses. The purpose of this study was to investigate the performance of melimine-coated contact lenses in an animal model and human clinical trial. Melimine was covalently attached onto the surface of contact lenses via EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) coupling. A rabbit model of daily contralateral wear of lenses for 22 days was conducted to assess the lens safety. A prospective, randomized, double-masked, one-day human clinical trial was used to evaluate subjective responses and ocular physiology during contralateral wear of melimine-coated (test) and uncoated (control) lenses. Delayed reactions were monitored during follow-up visits after 1 and 4 weeks. Ex vivo retention of antimicrobial activity of worn lenses was assessed by reduction in numbers of viable Pseudomonas aeruginosa and Staphylococcus aureus. Melimine-coated lenses produced no ocular signs or symptoms that would indicate cytotoxicity during the lens wear of rabbits. No histological changes were found in rabbit corneas. During the human trial, no differences were observed in wettability, surface deposition, lens-fitting centration, movement, tightness, and corneal coverage between test and control lenses (p > 0.05). There were no significant differences in bulbar, limbal, or palpebral redness or conjunctival staining (p > 0.05). Mean corneal (extent, depth, and type) staining was higher for test lenses compared with that for control lenses (p < 0.05). There was no significant difference in subjective responses for lens comfort, dryness, and awareness (p > 0.05). No delayed reactions were associated with the test lenses. Worn test lenses retained more than 1.5 log inhibition against both bacterial types. Melimine-coated contact lenses were worn safely by humans. However, they were associated with higher corneal staining. The melimine-coated lenses

  2. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael

    2013-07-20

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminositymore » and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.« less

  3. X-Ray Properties of Lensing-Selected Clusters

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel; Sharon, Keren; Bayliss, Matthew; McDonald, Michael; Gladders, Michael; Johnson, Traci; Dahle, Hakon; Rigby, Jane R.; Whitaker, Katherine E.; Florian, Michael; Wuyts, Eva

    2017-08-01

    I will present preliminary results from the Michigan Swift X-ray observations of clusters from the Sloan Giant Arcs Survey (SGAS). These clusters were lensing selected based on the presence of a giant arc visible from SDSS. I will characterize the morphology of the intracluster medium (ICM) of the clusters in the sample, and discuss the offset between the X-ray centroid, the mass centroid as determined by strong lensing analysis, and the BCG position. I will also present early-stage work on the scaling relation between the lensing mass and the X-ray luminosity.

  4. Lensed Type Ia supernovae as probes of cluster mass models

    Science.gov Websites

    SAO/NASA ADS Astronomy Abstract Service Title: Lensed Type Ia supernovae as probes of cluster mass Origin: OUP Astronomy Keywords: gravitational lensing: strong, supernovae: general, galaxies: clusters

  5. MACS J0416.1-2403: Impact of line-of-sight structures on strong gravitational lensing modelling of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chirivì, G.; Suyu, S. H.; Grillo, C.; Halkola, A.; Balestra, I.; Caminha, G. B.; Mercurio, A.; Rosati, P.

    2018-06-01

    Exploiting the powerful tool of strong gravitational lensing by galaxy clusters to study the highest-redshift Universe and cluster mass distributions relies on precise lens mass modelling. In this work, we aim to present the first attempt at modelling line-of-sight (LOS) mass distribution in addition to that of the cluster, extending previous modelling techniques that assume mass distributions to be on a single lens plane. We have focussed on the Hubble Frontier Field cluster MACS J0416.1-2403, and our multi-plane model reproduces the observed image positions with a rms offset of 0.''53. Starting from this best-fitting model, we simulated a mock cluster that resembles MACS J0416.1-2403 in order to explore the effects of LOS structures on cluster mass modelling. By systematically analysing the mock cluster under different model assumptions, we find that neglecting the lensing environment has a significant impact on the reconstruction of image positions (rms 0.''3); accounting for LOS galaxies as if they were at the cluster redshift can partially reduce this offset. Moreover, foreground galaxies are more important to include into the model than the background ones. While the magnification factor of the lensed multiple images are recovered within 10% for 95% of them, those 5% that lie near critical curves can be significantly affected by the exclusion of the lensing environment in the models. In addition, LOS galaxies cannot explain the apparent discrepancy in the properties of massive sub-halos between MACS J0416.1-2403 and N-body simulated clusters. Since our model of MACS J0416.1-2403 with LOS galaxies only reduced modestly the rms offset in the image positions, we conclude that additional complexities would be needed in future models of MACS J0416.1-2403.

  6. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  7. The skewed weak lensing likelihood: why biases arise, despite data and theory being sound.

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena; Heymans, Catherine; Harnois-Déraps, Joachim

    2018-04-01

    We derive the essentials of the skewed weak lensing likelihood via a simple Hierarchical Forward Model. Our likelihood passes four objective and cosmology-independent tests which a standard Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased low, since they are drawn from a skewed distribution. This occurs already in the framework of ΛCDM. Mathematically, the biases arise because noisy two-point functions follow skewed distributions. This form of bias is already known from CMB analyses, where the low multipoles have asymmetric error bars. Weak lensing is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to 30% of the standard deviation per data point, dependent on the properties of the weak lensing survey and the employed filter function. Our likelihood provides a versatile framework with which to address this bias in future weak lensing analyses.

  8. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.

    2016-03-01

    Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an

  9. Omni-focal refractive focus correction technology as a substitute for bi/multi-focal intraocular lenses, contact lenses, and spectacles

    NASA Astrophysics Data System (ADS)

    Ben Yaish, Shai; Zlotnik, Alex; Raveh, Ido; Yehezkel, Oren; Belkin, Michael; Lahav, Karen; Zalevsky, Zeev

    2009-02-01

    We present novel technology for extension in depth of focus of imaging lenses for use in ophthalmic lenses correcting myopia, hyperopia with regular/irregular astigmatism and presbyopia. This technology produces continuous focus without appreciable loss of energy. It is incorporated as a coating or engraving on the surface for spectacles, contact or intraocular lenses. It was fabricated and tested in simulations and in clinical trials. From the various testing this technology seems to provide a satisfactory single-lens solution. Obtained performance is apparently better than those of existing multi/bifocal lenses and it is modular enough to provide solution to various ophthalmic applications.

  10. Periodic self-lensing from accreting massive black hole binaries

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  11. Prescription compliance in ophthalmic lenses.

    PubMed

    Yuen, Gloria S-C; Chou, B Ralph; Ngo, Thao Pt; Cheng, Brian B; Dain, Stephen J

    2011-07-01

    index = 1.53 hard coated lenses (n = 20) cannot be considered satisfactory and is a strong indication of a failure to check lenses before they leave the laboratory. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  12. BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er Xinzhong; Ge Junqiang; Mao Shude, E-mail: xer@nao.cas.cn

    2013-06-20

    We study the lensing magnification effect on background galaxies. Differential magnification due to different magnifications of different source regions of a galaxy will change the lensed composite spectra. The derived properties of the background galaxies are therefore biased. For simplicity, we model galaxies as a superposition of an axis-symmetric bulge and a face-on disk in order to study the differential magnification effect on the composite spectra. We find that some properties derived from the spectra (e.g., velocity dispersion, star formation rate, and metallicity) are modified. Depending on the relative positions of the source and the lens, the inferred results canmore » be either over- or underestimates of the true values. In general, for an extended source at strong lensing regions with high magnifications, the inferred physical parameters (e.g., metallicity) can be strongly biased. Therefore, detailed lens modeling is necessary to obtain the true properties of the lensed galaxies.« less

  13. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  14. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  15. The skewed weak lensing likelihood: why biases arise, despite data and theory being sound

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena; Heymans, Catherine; Harnois-Déraps, Joachim

    2018-07-01

    We derive the essentials of the skewed weak lensing likelihood via a simple hierarchical forward model. Our likelihood passes four objective and cosmology-independent tests which a standard Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased low, since they are drawn from a skewed distribution. This occurs already in the framework of Lambda cold dark matter. Mathematically, the biases arise because noisy two-point functions follow skewed distributions. This form of bias is already known from cosmic microwave background analyses, where the low multipoles have asymmetric error bars. Weak lensing is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to 30 per cent of the standard deviation per data point, dependent on the properties of the weak lensing survey and the employed filter function. Our likelihood provides a versatile framework with which to address this bias in future weak lensing analyses.

  16. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  17. MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi

    2013-05-20

    Lens magnification by galaxy clusters induces characteristic spatial variations in the number counts of background sources, amplifying their observed fluxes and expanding the area of sky, the net effect of which, known as magnification bias, depends on the intrinsic faint-end slope of the source luminosity function. The bias is strongly negative for red galaxies, dominated by the geometric area distortion, whereas it is mildly positive for blue galaxies, enhancing the blue counts toward the cluster center. We generalize the Bayesian approach of Umetsu et al. for reconstructing projected cluster mass profiles, by incorporating multiple populations of background sources for magnification-biasmore » measurements and combining them with complementary lens-distortion measurements, effectively breaking the mass-sheet degeneracy and improving the statistical precision of cluster mass measurements. The approach can be further extended to include strong-lensing projected mass estimates, thus allowing for non-parametric absolute mass determinations in both the weak and strong regimes. We apply this method to our recent CLASH lensing measurements of MACS J1206.2-0847, and demonstrate how combining multi-probe lensing constraints can improve the reconstruction of cluster mass profiles. This method will also be useful for a stacked lensing analysis, combining all lensing-related effects in the cluster regime, for a definitive determination of the averaged mass profile.« less

  18. Spectroscopy of Giant Arcs Behind the Strongest Lenses in the Universe

    NASA Astrophysics Data System (ADS)

    Hennawi, Joseph F.; Gladders, Michael; Oguri, Masamune; Koester, Benjamin; Bayliss, Matt; Dahle, Hakon; Natarajan, Priya

    2009-02-01

    We have conducted a deep ((mu)_g ≲ 24) imaging survey using the WIYN 4-m telescope, the UH 88-inch telescope, and the 2.5m Nordic Optical Telescope (NOT) to search for giant arcs behind the richest clusters identified in the Gpc^3 volume of the SDSS. By imaging nearly 500 massive clusters, this ongoing survey has uncovered some of the most dramatic examples of gravitational lensing ever discovered, similar to `poster-children' like Abell 1689 and CL0024+1654. We propose to use GMOS on Gemini-North and the Blue Channel Spectrograph on the MMT to determine arc redshifts in these new lenses. When combined with our GMOS data from a similar program in 2008A, this proposal will result in a sample of 60 gravitationally lensed galaxies behind ~ 25 clusters. These arc redshifts pinpoint the mass of dark matter interior to the Einstein radius in the cluster core (R < 200 kpc; comoving). The larger scale (R ~ 1-5 Mpc) weak lensing shear has been measured for more than half of our targets from deep imaging at NOT, WIYN, Subaru, and using archival data from HST. GMOS arc redshifts combined with weak and strong lensing will allow us to measure the density profile of dark matter halos on scales 200 kpc < R < 5 Mpc for the statistical sample of lensing clusters, providing a powerful test of the (Lambda)CDM paradigm.

  19. Dark matter-rich early-type galaxies in the CASSOWARY 5 strong lensing system

    NASA Astrophysics Data System (ADS)

    Grillo, C.; Christensen, L.

    2011-12-01

    We study the strong gravitational lensing system number 5 identified by the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY). In this system, a source at redshift 1.069 is lensed into four detected images by two early-type galaxies at redshift 0.388. The average projected angular distance of the multiple images from the primary lens is 12.6 kpc, corresponding to approximately 1.3 times the value of the galaxy effective radius. The observed positions of the multiple images are well reproduced by a model in which the total mass distribution of the deflector is described in terms of two singular isothermal sphere profiles and a small external shear component. The values of the effective velocity dispersions of the two lens galaxies are 328+7- 8 and 350+17- 18 km s-1. The best-fitting lensing model predicts magnification values larger than 2 for each multiple image and a total magnification factor of 17. By modelling the lens galaxy spectral energy distributions, we measure lens luminous masses of (3.09 ± 0.30) × 1011 and (5.87 ± 0.58) × 1011 M⊙ and stellar mass-to-light ratios of 2.5 ± 0.3 and 2.8 ± 0.3 M⊙ L-1⊙, i (in the observed i band). These values are used to disentangle the luminous and dark matter components in the vicinity of the multiple images. We estimate that the dark over total mass ratio projected within a cylinder centred on the primary lens and with a radius of 12.6 kpc is 0.8 ± 0.1. Inside the effective radii of the two galaxies, we measure projected total mass-to-light ratios of 12.6 ± 1.4 and 13.1 ± 1.7 M⊙ L-1⊙, i. We contrast these measurements with the typical values found at similar distances (in units of the effective radius) in isolated lens galaxies and show that the amount of dark matter present in these lens galaxies is almost a factor 4 larger than in field lens galaxies with comparable luminous masses. Data and models are therefore consistent with interpreting the lens of this system as a galaxy group. We infer

  20. Searching for massive clusters in weak lensing surveys

    NASA Astrophysics Data System (ADS)

    Hamana, Takashi; Takada, Masahiro; Yoshida, Naoki

    2004-05-01

    We explore the ability of weak lensing surveys to locate massive clusters. We use both analytic models of dark matter haloes and mock weak lensing surveys generated from a large cosmological N-body simulation. The analytic models describe the average properties of weak lensing haloes and predict the number counts, enabling us to compute an effective survey selection function. We argue that the detectability of massive haloes depends not only on the halo mass but also strongly on the redshift where the halo is located. We test the model prediction for the peak number counts in weak lensing mass maps against mock numerical data, and find that the noise resulting from intrinsic galaxy ellipticities causes a systematic effect which increases the peak counts. We develop a correction scheme for the systematic effect in an empirical manner, and show that, after correction, the model prediction agrees well with the mock data. The mock data is also used to examine the completeness and efficiency of the weak lensing halo search by fully taking into account the noise and the projection effect by large-scale structures. We show that the detection threshold of S/N = 4 ~ 5 gives an optimal balance between completeness and efficiency. Our results suggest that, for a weak lensing survey with a galaxy number density of ng= 30 arcmin-2 with a mean redshift of z= 1, the mean number of haloes which are expected to cause lensing signals above S/N = 4 is Nhalo(S/N > 4) = 37 per 10 deg2, whereas 23 of the haloes are actually detected with S/N > 4, giving the effective completeness as good as 63 per cent. Alternatively, the mean number of peaks in the same area is Npeak= 62 for a detection threshold of S/N = 4. Among the 62 peaks, 23 are caused by haloes with the expected peak height S/N > 4, 13 result from haloes with 3 < S/N < 4 and the remaining 26 peaks are either the false peaks caused by the noise or haloes with a lower expected peak height. Therefore the contamination rate is 44

  1. Psychophysical Vision Simulation of Diffractive Bifocal and Trifocal Intraocular Lenses

    PubMed Central

    Brezna, Wolfgang; Lux, Kirsten; Dragostinoff, Nikolaus; Krutzler, Christian; Plank, Nicole; Tobisch, Rainer; Boltz, Agnes; Garhöfer, Gerhard; Told, Reinhard; Witkowska, Katarzyna; Schmetterer, Leopold

    2016-01-01

    Purpose The visual performance of monofocal, bifocal, and trifocal intraocular lenses was evaluated by human individuals using a vision simulator device. This allowed investigation of the visual impression after cataract surgery, without the need actually to implant the lenses. Methods The randomized, double-masked, three-way cross-over study was conducted on 60 healthy male and female subjects aged between 18 and 35 years. Visual acuity (Early Treatment Diabetic Retinopathy Study; ETDRS) and contrast sensitivity tests (Pelli-Robson) under different lighting conditions (luminosities from 0.14–55 cd/m2, mesopic to photopic) were performed at different distances. Results Visual acuity tests showed no difference for corrected distance visual acuity data of bi- and trifocal lens prototypes (P = 0.851), but better results for the trifocal than for the bifocal lenses at distance corrected intermediate (P = 0.021) and distance corrected near visual acuity (P = 0.044). Contrast sensitivity showed no differences between bifocal and trifocal lenses at the distant (P = 0.984) and at the near position (P = 0.925), but better results for the trifocal lens at the intermediate position (P = 0.043). Visual acuity and contrast sensitivity showed a strong dependence on luminosity (P < 0.001). Conclusions At all investigated distances and all lighting conditions, the trifocal lens prototype often performed better, but never worse than the bifocal lens prototype. Translational Relevance The vision simulator can fill the gap between preclinical lens development and implantation studies by providing information of the perceived vision quality after cataract surgery without implantation. This can reduce implantation risks and promotes the development of new lens concepts due to the cost effective test procedure. PMID:27777828

  2. The Herschel-ATLAS: magnifications and physical sizes of 500-μm-selected strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Enia, A.; Negrello, M.; Gurwell, M.; Dye, S.; Rodighiero, G.; Massardi, M.; De Zotti, G.; Franceschini, A.; Cooray, A.; van der Werf, P.; Birkinshaw, M.; Michałowski, M. J.; Oteo, I.

    2018-04-01

    We perform lens modelling and source reconstruction of Sub-millimetre Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500μm in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). A previous analysis of the same data set used a single Sérsic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5σ. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value reff ˜ 1.77 kpc and a median Gaussian full width at half-maximum ˜1.47 kpc. After correction for magnification, our sources have intrinsic star formation rates (SFR) ˜ 900-3500 M⊙ yr-1, resulting in a median SFR surface density ΣSFR ˜ 132 M⊙ yr-1 kpc-2 (or ˜218 M⊙ yr-1 kpc-2 for the Gaussian fit). This is consistent with that observed for other star-forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.

  3. Systematics errors in strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.

    We investigate how varying the number of multiple image constraints and the available redshift information can influence the systematic errors of strong lens models, specifically, the image predictability, mass distribution, and magnifications of background sources. This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies.

  4. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE PAGES

    Clampitt, J.; S?nchez, C.; Kwan, J.; ...

    2016-11-22

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  5. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.

    2017-03-01

    We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  6. Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clampitt, J.; S?nchez, C.; Kwan, J.

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less

  7. Gravitational lensing in quasar samples

    NASA Astrophysics Data System (ADS)

    Claeskens, Jean-François; Surdej, Jean

    The first cosmic mirage was discovered approximately 20 years ago as the double optical counterpart of a radio source. This phenomenon had been predicted some 70 years earlier as a consequence of General Relativity. We present here a summary of what we have learnt since. The applications are so numerous that we had to concentrate on a few selected aspects of this new field of research. This review is focused on strong gravitational lensing, i.e. the formation of multiple images, in QSO samples. It is intended to give the reader an up-to-date status of the observations and to present an overview of its most interesting potential applications in cosmology and astrophysics, as well as numerous important results achieved so far. The first section follows an intuitive approach to the basics of gravitational lensing and is developed in view of our interest in multiply imaged quasars. The astrophysical and cosmological applications of gravitational lensing are outlined in Sect. 2 and the most important results are presented in Sect. 5. Sections 3 and 4 are devoted to the observations. Finally, conclusions are summarized in the last section. We have tried to avoid duplication with existing (and excellent) introductions to the field of gravitational lensing. For this reason, we did not concentrate on the individual properties of specific lens models, as these are already well presented in Narayan and Bartelmann (1996) and on a more intuitive ground in Refsdal and Surdej (1994). Wambsganss (1998) proposes a broad view on gravitational lensing in astronomy; the reviews by Fort and Mellier (1994) and Hattori et al. (1999) deal with lensing by galaxy clusters; microlensing in the Galaxy and the local group is reviewed by Paczynski (1996) and a general panorama on weak lensing is given by Bartelmann and Schneider (1999) and Mellier (1999). The monograph on the theory of gravitational lensing by Schneider, Ehlers and Falco (1992) also remains a reference in the field.

  8. Biocompatibility and light transmission of liposomal lenses.

    PubMed

    Danion, Anne; Doillon, Charles J; Giasson, Claude J; Djouahra, Saliha; Sauvageau, Patrick; Paradis, Renée; Vermette, Patrick

    2007-10-01

    To validate the biocompatibility and transmittance properties of contact lenses bearing intact liposomes. These liposomal lenses loaded with therapeutics can be used as ophthalmic drug delivery systems. The biocompatibility of soft contact lenses, coated with liposomes was evaluated through in vitro direct and indirect cytocompatibility assays on human corneal epithelial cells, on reconstructed human corneas and on ex vivo rabbit corneas. The direct and indirect transmission spectra of liposome-covered lenses were also evaluated to test if they transmit all wavelengths of the ultraviolet-visible spectrum, to thereby fulfill their optical function, without gross alteration of the colors perception and with a minimum of light dispersion. Contact lenses bearing layers of stable liposomes did not induce any significant changes in cell viability and in cell growth, compared with lenses bearing no liposome. Elution assays revealed that no cytotoxic compound leaks from the lenses whether bearing liposomes or not. Histological analyses of reconstructed human corneas and ex vivo rabbit corneas directly exposed to liposomal lenses revealed neither alteration to the cell nor to the tissue structures. Contact lenses bearing layers of liposomes did not significantly affect light transmission compared with control lenses without liposome at the wavelength of maximal photopic sensitivity, i.e., 550 nm. In addition, the contact lenses afford more eye protection in the ultraviolet spectrum, compared with the control lenses. Liposomal contact lenses are biocompatible and their transmittance properties are not affected in the visible light range.

  9. Models of the strongly lensed quasar DES J0408-5354

    NASA Astrophysics Data System (ADS)

    Agnello, A.; Lin, H.; Buckley-Geer, L.; Treu, T.; Bonvin, V.; Courbin, F.; Lemon, C.; Morishita, T.; Amara, A.; Auger, M. W.; Birrer, S.; Chan, J.; Collett, T.; More, A.; Fassnacht, C. D.; Frieman, J.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; Suyu, S. H.; Castander, F.; Finley, D.; Howell, A.; Kochanek, C.; Makler, M.; Martini, P.; Morgan, N.; Nord, B.; Ostrovski, F.; Schechter, P.; Tucker, D.; Wechsler, R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Gill, M. S.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-12-01

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass Mp(RE, G2) ≲ 1.0 × 1010 M⊙. The main deflector has stellar mass log _{10}(M_{\\star }/M_{⊙})=11.49^{+0.46}_{-0.32}, a projected mass Mp(RE, G1) ≈ 6 × 1011 M⊙ within its Einstein radius RE, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267-280 km s-1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (ΔtAB = (135.0 ± 12.6) d, ΔtBD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.

  10. Combining strong lensing and dynamics in galaxy clusters: integrating MAMPOSSt within LENSTOOL. I. Application on SL2S J02140-0535

    NASA Astrophysics Data System (ADS)

    Verdugo, T.; Limousin, M.; Motta, V.; Mamon, G. A.; Foëx, G.; Gastaldello, F.; Jullo, E.; Biviano, A.; Rojas, K.; Muñoz, R. P.; Cabanac, R.; Magaña, J.; Fernández-Trincado, J. G.; Adame, L.; De Leo, M. A.

    2016-10-01

    Context. The mass distribution in galaxy clusters and groups is an important cosmological probe. It has become clear in recent years that mass profiles are best recovered when combining complementary probes of the gravitational potential. Strong lensing (SL) is very accurate in the inner regions, but other probes are required to constrain the mass distribution in the outer regions, such as weak lensing or studies of dynamics. Aims: We constrain the mass distribution of a cluster showing gravitational arcs by combining a strong lensing method with a dynamical method using the velocities of its 24 member galaxies. Methods: We present a new framework in which we simultaneously fit SL and dynamical data. The SL analysis is based on the LENSTOOL software and the dynamical analysis uses the MAMPOSSt code, which we integrated into LENSTOOL. After describing the implementation of this new tool, we applied it to the galaxy group SL2S J02140-0535 (zspec = 0.44), which we had previously studied. We used new VLT/FORS2 spectroscopy of multiple images and group members, as well as shallow X-ray data from XMM. Results: We confirm that the observed lensing features in SL2S J02140-0535 belong to different background sources. One of these sources is located at zspec = 1.017 ± 0.001, whereas the other source is located at zspec = 1.628 ± 0.001. With the analysis of our new and our previously reported spectroscopic data, we find 24 secure members for SL2S J02140-0535. Both data sets are well reproduced by a single NFW mass profile; the dark matter halo coincides with the peak of the light distribution, with scale radius, concentration, and mass equal to rs = 82+44-17 kpc, c200 = 10.0+1.7-2.5, and M200 = 1.0+0.5-0.2 × 1014 M⊙ respectively. These parameters are better constrained when we fit SL and dynamical information simultaneously. The mass contours of our best model agrees with the direction defined by the luminosity contours and the X-ray emission of SL2S J02140-0535. The

  11. Occlusion properties of prosthetic contact lenses for the treatment of amblyopia.

    PubMed

    Collins, Randall S; McChesney, Megan E; McCluer, Craig A; Schatz, Martha P

    2008-12-01

    The efficacy of opaque contact lenses as occlusion therapy for amblyopia has been established in the literature. Prosthetic contact lenses use similar tints to improve cosmesis in scarred or deformed eyes and may be an alternative in occlusion therapy. To test this idea, we determined the degree of vision penalization elicited by prosthetic contact lenses and their effect on peripheral fusion. We tested 19 CIBA Vision DuraSoft 3 Prosthetic soft contact lenses with varying iris prints, underprints, and opaque pupil sizes in 10 volunteers with best-corrected Snellen distance visual acuity of 20/20 or better in each eye. Snellen visual acuity and peripheral fusion using the Worth 4-Dot test at near were measured on each subject wearing each of the 19 lenses. Results were analyzed with 3-factor analysis of variance. Mean visual acuity through the various lenses ranged from 20/79 to 20/620. Eight lenses allowed preservation of peripheral fusion in 50% or more of the subjects tested. Iris print pattern and opaque pupil size were significant factors in determining visual acuity (p < 0.05). Sufficient vision penalization can be achieved to make occlusion with prosthetic contact lenses a viable therapy for amblyopia. The degree of penalization can be varied and different iris print patterns and pupil sizes, using peripheral fusion, can be preserved with some lenses. Prosthetic contact lenses can be more cosmetically appealing and more tolerable than other amblyopia treatment modalities. These factors may improve compliance in occlusion therapy.

  12. Models of the strongly lensed quasar DES J0408-5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; Lin, H.; Buckley-Geer, L.

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass M p(R E, G2) ≲ 1.0 × 10 10 M⊙. The main deflector has stellar mass log10 (M */M⊙) =11.49more » $$+0.46\\atop{-0.32}$$ log10 (M */M⊙)=11.49-0.32+0.46 , a projected mass M p(R E, G1) ≈ 6 × 10 11 M⊙ within its Einstein radius R E, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s -1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (Δt AB = (135.0 ± 12.6) d, Δt BD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. Lastly, we also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  13. Models of the strongly lensed quasar DES J0408-5354

    DOE PAGES

    Agnello, A.; Lin, H.; Buckley-Geer, L.; ...

    2017-09-07

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass M p(R E, G2) ≲ 1.0 × 10 10 M⊙. The main deflector has stellar mass log10 (M */M⊙) =11.49more » $$+0.46\\atop{-0.32}$$ log10 (M */M⊙)=11.49-0.32+0.46 , a projected mass M p(R E, G1) ≈ 6 × 10 11 M⊙ within its Einstein radius R E, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s -1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (Δt AB = (135.0 ± 12.6) d, Δt BD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. Lastly, we also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  14. DES meets Gaia: discovery of strongly lensed quasars from a multiplet search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We report the discovery, spectroscopic confirmation and first lens models of the first two, strongly lensed quasars from a combined search in WISE and Gaia over the DES footprint. The four-image lensWGD2038-4008 (r.a.=20:38:02.65, dec.=-40:08:14.64) has source- and lens-redshiftsmore » $$z_{s}=0.777 \\pm 0.001$$ and $$z_l = 0.230 \\pm 0.002$$ respectively. Its deflector has effective radius $$R_{\\rm eff} \\approx 3.4^{\\prime\\prime}$$, stellar mass $$\\log(M_{\\star}/M_{\\odot}) = 11.64^{+0.20}_{-0.43}$$, and shows extended isophotal shape variation. Simple lens models yield Einstein radii $$R_{\\rm E}=(1.30\\pm0.04)^{\\prime\\prime},$$ axis ratio $$q=0.75\\pm0.1$$ (compatible with that of the starlight) and considerable shear-ellipticity degeneracies. The two-image lensWGD2021-4115 (r.a.=20:21:39.45, dec.=--41:15:57.11) has $$z_{s}=1.390\\pm0.001$$ and $$z_l = 0.335 \\pm 0.002$$, and Einstein radius $$R_{\\rm E} = (1.1\\pm0.1)^{\\prime\\prime},$$ but higher-resolution imaging is needed to accurately separate the deflector and faint quasar image. We also show high-rank candidate doubles selected this way, some of which have been independently identified with different techniques, and discuss a DES+WISE quasar multiplet selection.« less

  15. Solid explosive plane-wave lenses pressed-to-shape with dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olinger, B.

    2007-11-01

    Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.

  16. Visual performance with sport-tinted contact lenses in natural sunlight.

    PubMed

    Erickson, Graham B; Horn, Fraser C; Barney, Tyler; Pexton, Brett; Baird, Richard Y

    2009-05-01

    The use of tinted and clear contact lenses (CLs) in all aspects of life is becoming a more popular occurrence, particularly in athletic activities. This study broadens previous research regarding performance-tinted CLs and their effects on measures of visual performance. Thirty-three subjects (14 male, 19 female) were fitted with clear B&L Optima 38, 50% visible light transmission Amber and 36% visible light transmission Gray-Green Nike Maxsight CLs in an individualized randomized sequence. Subjects were dark-adapted with welding goggles before testing and in between subtests involving a Bailey-Lovie chart and the Haynes Distance Rock test. The sequence of testing was repeated for each lens modality. The Amber and Gray-Green lenses enabled subjects to recover vision faster in bright sunlight compared with clear lenses. Also, subjects were able to achieve better visual recognition in bright sunlight when compared with clear lenses. Additionally, the lenses allowed the subjects to alternate fixation between a bright and shaded target at a more rapid rate in bright sunlight as compared with clear lenses. Subjects preferred both the Amber and Gray-Green lenses over clear lenses in the bright and shadowed target conditions. The results of the current study show that Maxsight Amber and Gray-Green lenses provide better contrast discrimination in bright sunlight, better contrast discrimination when alternating between bright and shaded target conditions, better speed of visual recovery in bright sunlight, and better overall visual performance in bright and shaded target conditions compared with clear lenses.

  17. Prescribing prophylactic antibiotics to users of therapeutic contact lenses.

    PubMed

    Colomé-Campos, J; Quevedo-Junyent, L; Godoy-Barreda, N; Martínez-Salcedo, I; Romero-Aroca, P

    2013-03-01

    To describe the benefits and optimum use of prophylactic antibiotics in users of therapeutic contact lenses (TCL). A microbiological study was carried out on samples from 33 patients who continuously wore TCL. The resistance to antibiotics of bacteria isolated in our health region was also reviewed. An assessment was also made on whether there were microorganisms of a higher pathogenic potential in TCL than conventional contact lenses, as reported in the literature. No bacteria were isolated from 17 (52%) of the 33 lenses studied. From the 16 (48%) remaining lenses, coagulase negative Staphylococci were isolated from 10 (62%), Propionibacterium acnes from 4 (25%), and Corynebacterium from 2 (13%). The high number of negative cultures and the presence of saprophytic bacteria indicate that prophylactic antibiotic treatment is not precise. The most frequent pathogenic bacteria found in contact lenses are strongly resistant to the current commercially available antibiotics. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  18. Discovery of a Very Bright and Intrinsically Very Luminous, Strongly Lensed Lyα Emitting Galaxy at z = 2.82 in the BOSS Emission-Line Lens Survey

    NASA Astrophysics Data System (ADS)

    Marques-Chaves, Rui; Pérez-Fournon, Ismael; Shu, Yiping; Martínez-Navajas, Paloma I.; Bolton, Adam S.; Kochanek, Christopher S.; Oguri, Masamune; Zheng, Zheng; Mao, Shude; Montero-Dorta, Antonio D.; Cornachione, Matthew A.; Brownstein, Joel R.

    2017-01-01

    We report the discovery of a very bright (r = 20.16), highly magnified, and yet intrinsically very luminous Lyα emitter (LAE) at z=2.82. This system comprises four images in the observer plane with a maximum separation of ˜ 6\\prime\\prime and it is lensed by a z=0.55 massive early-type galaxy. It was initially identified in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey for GALaxy-Lyα EmitteR sYstems survey, and follow-up imaging and spectroscopic observations using the Gran Telescopio Canarias and William Herschel Telescope confirmed the lensing nature of this system. A lens model using a singular isothermal ellipsoid in an external shear field reproduces the main features of the system quite well, yielding an Einstein radius of 2.″95 ± 0.″10, and a total magnification factor for the LAE of 8.8 ± 0.4. This LAE is one of the brightest and most luminous galaxy-galaxy strong lenses known. We present initial imaging and spectroscopy showing the basic physical and morphological properties of this lensed system. Based on observations made with the Gran Telescopio Canarias (GTC) and William Herschel Telescope (WHT), in the Spanish Observatorio del Roque de los Muchachos of the IAC, under Directors Discretionary Time (DDT programs IDs: GTC2016-054 and DDT2016-077).

  19. Modeling fine-scale geological heterogeneity--examples of sand lenses in tills.

    PubMed

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio; Renard, Philippe; Nilsson, Bertel; Klint, Knud Erik; Bjerg, Poul Løgstrup

    2013-01-01

    Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  20. SUN: A fully automated interferometric test bench aimed at measuring photolithographic grade lenses with a sub nanometer accuracy

    NASA Astrophysics Data System (ADS)

    Bourgois, R.; Hamy, A. L.; Pourcelot, P.

    2017-10-01

    SUN is a test bench developed by Safran Reosc to measure spherical or aspherical surface errors of litho-grade lenses with sub-nanometer accuracy. SUN provides full aperture high resolution interferometric measurements. Measurements are performed at the center of curvature using high precision transmission sphere (TS), and Computer Generated Holograms (CGH) for aspheres, in order to light the surface at normal incidence. SUN can measure lenses with diameter up to 350mm and a radius of curvature varying from 60 to 3000 mm.

  1. Types of Contact Lenses

    MedlinePlus

    ... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...

  2. [Laboratory study of the cytotoxicity of colored soft contact lenses].

    PubMed

    Almesmary, A A

    1999-01-01

    In the clinical practice we have met with the fact that some patients did not tolerate soft coloured contact lenses even when they used them for a short time. To find whether the cause is the composition of these lenses, mainly the adding of stain, he used the laboratory test to determine cytotoxicity, the test of dynamic observation of cytotoxicity where the cells cultured in vitro are the experimental object. On the basis of the results of this test commonly used for the determination of the cytotoxicity of implantation materials, he thinks that the cause of intolerance of coloured lenses is not their toxicity but other phenomena. An individual hypersensitivity or insufficient care of lenses (the influence of disinfectants) can be among these causes.

  3. Fast Variability and Millimeter/IR Flares in GRMHD Models of Sgr A* from Strong-field Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Medeiros, Lia; Marrone, Daniel; Saḑowski, Aleksander; Narayan, Ramesh

    2015-10-01

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  4. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares,more » which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.« less

  5. Gravitational lensing of gravitational waves: a statistical perspective

    NASA Astrophysics Data System (ADS)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  6. The Strong Gravitationally Lensed Herschel Galaxy HLock01: Optical Spectroscopy Reveals a Close Galaxy Merger with Evidence of Inflowing Gas

    NASA Astrophysics Data System (ADS)

    Marques-Chaves, Rui; Pérez-Fournon, Ismael; Gavazzi, Raphael; Martínez-Navajas, Paloma I.; Riechers, Dominik; Rigopoulou, Dimitra; Cabrera-Lavers, Antonio; Clements, David L.; Cooray, Asantha; Farrah, Duncan; Ivison, Rob J.; Jiménez-Ángel, Camilo E.; Nayyeri, Hooshang; Oliver, Seb; Omont, Alain; Scott, Douglas; Shu, Yiping; Wardlow, Julie

    2018-02-01

    The submillimeter galaxy (SMG) HERMES J105751.1+573027 (hereafter HLock01) at z = 2.9574 ± 0.0001 is one of the brightest gravitationally lensed sources discovered in the Herschel Multi-tiered Extragalactic Survey. Apart from the high flux densities in the far-infrared, it is also extremely bright in the rest-frame ultraviolet (UV), with a total apparent magnitude m UV ≃ 19.7 mag. We report here deep spectroscopic observations with the Gran Telescopio Canarias of the optically bright lensed images of HLock01. Our results suggest that HLock01 is a merger system composed of the Herschel-selected SMG and an optically bright Lyman break-like galaxy (LBG), separated by only 3.3 kpc in projection. While the SMG appears very massive (M * ≃ 5 × 1011 M ⊙), with a highly extinguished stellar component (A V ≃ 4.3 ), the LBG is a young, lower-mass (M * ≃ 1 × 1010 M ⊙), but still luminous (10× {L}UV}* ) satellite galaxy. Detailed analysis of the high signal-to-noise ratio (S/N) rest-frame UV spectrum of the LBG shows complex kinematics of the gas, exhibiting both blueshifted and redshifted absorption components. While the blueshifted component is associated with strong galactic outflows from the massive stars in the LBG, as is common in most star-forming galaxies, the redshifted component may be associated with gas inflow seen along a favorable sightline to the LBG. We also find evidence of an extended gas reservoir around HLock01 at an impact parameter of 110 kpc, through the detection of C II λλ1334 absorption in the red wing of a bright Lyα emitter at z ≃ 3.327. The data presented here highlight the power of gravitational lensing in high S/N studies to probe deeply into the physics of high-z star-forming galaxies.

  7. Effect of cholesterol deposition on bacterial adhesion to contact lenses.

    PubMed

    Babaei Omali, Negar; Zhu, Hua; Zhao, Zhenjun; Ozkan, Jerome; Xu, Banglao; Borazjani, Roya; Willcox, Mark D P

    2011-08-01

    To examine the effect of cholesterol on the adhesion of bacteria to silicone hydrogel contact lenses. Contact lenses, collected from subjects wearing Acuvue Oasys or PureVision lenses, were extracted in chloroform:methanol (1:1, v/v) and amount of cholesterol was estimated by thin-layer chromatography. Unworn lenses were soaked in cholesterol, and the numbers of Pseudomonas aeruginosa strains or Staphylococcus aureus strains that adhered to the lenses were measured. Cholesterol was tested for effects on bacterial growth by incubating bacteria in medium containing cholesterol. From ex vivo PureVision lenses, 3.4 ± 0.3 μg/lens cholesterol was recovered, and from Acuvue Oasys lenses, 2.4 ± 0.2 to 1.0 ± 0.1 μg/lens cholesterol was extracted. Cholesterol did not alter the total or viable adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). However, worn PureVision lenses reduced the numbers of viable cells of P. aeruginosa (5.8 ± 0.4 log units) compared with unworn lenses (6.4 ± 0.2 log units, p = 0.001). Similarly, there were fewer numbers of S. aureus 031 adherent to worn PureVision (3.05 ± 0.8 log units) compared with unworn PureVision (4.6 ± 0.3 log units, p = 0.0001). Worn Acuvue Oasys lenses did not affect bacterial adhesion. Cholesterol showed no effect on the growth of any test strain. Although cholesterol has been shown to adsorb to contact lenses during wear, this lipid does not appear to modulate bacterial adhesion to a lens surface.

  8. Strong-lensing analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and Einstein radii

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi; Broadhurst, Tom; Barkana, Rennan; Rephaeli, Yoel; Benítez, Narciso

    2011-01-01

    We present the results of a strong-lensing analysis of a complete sample of 12 very luminous X-ray clusters at z > 0.5 using HST/ACS images. Our modelling technique has uncovered some of the largest known critical curves outlined by many accurately predicted sets of multiple images. The distribution of Einstein radii has a median value of ≃28 arcsec (for a source redshift of zs˜ 2), twice as large as other lower z samples, and extends to 55 arcsec for MACS J0717.5+3745, with an impressive enclosed Einstein mass of 7.4 × 1014 M⊙. We find that nine clusters cover a very large area (>2.5 arcmin2) of high magnification (μ > 10×) for a source redshift of zs˜ 8, providing primary targets for accessing the first stars and galaxies. We compare our results with theoretical predictions of the standard Λ cold dark matter (ΛCDM) model which we show systematically fall short of our measured Einstein radii by a factor of ≃1.4, after accounting for the effect of lensing projection. Nevertheless, a revised analysis, once arc redshifts become available, and similar analyses of larger samples, is needed in order to establish more precisely the level of discrepancy with ΛCDM predictions.

  9. Weak lensing of the Lyman α forest

    NASA Astrophysics Data System (ADS)

    Croft, Rupert A. C.; Romeo, Alessandro; Metcalf, R. Benton

    2018-06-01

    The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman α (Lyα) forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing of the Lyα forest could be measured using similar techniques that have been applied to the lensed cosmic microwave background (CMB), and which have also been proposed for application to spectral data from 21-cm radio telescopes. As with 21-cm data, the forest has the advantage of spectral information, potentially yielding many lensed `slices' at different redshifts. We perform an illustrative idealized test, generating a high-resolution angular grid of quasars (of order arcminute separation), and lensing the Lyα forest spectra at redshifts z = 2-3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z ˜ 1. There currently exists a wealth of Lyα forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyα forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high-redshift Lyα forest may become a useful new cosmological probe.

  10. Phakic Intraocular Lenses

    MedlinePlus

    ... Implants and Prosthetics Phakic Intraocular Lenses Phakic Intraocular Lenses Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Phakic intraocular lenses are new devices used to correct nearsightedness. These ...

  11. A new strong-lensing galaxy at z=0.066: Another elliptical galaxy with a lightweight IMF

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-05-01

    We report the discovery of a new low-redshift galaxy-scale gravitational lens, identified from a systematic search of publicly available MUSE observations. The lens galaxy, 2MASXJ04035024-0239275, is a giant elliptical at z = 0.06604 with a velocity dispersion of σ = 314 km s-1. The lensed source has a redshift of 0.19165 and forms a pair of bright images on either side of the lens centre. The Einstein radius is 1.5 arcsec, projecting to 1.8 kpc, which is just one quarter of the galaxy effective radius. After correcting for an estimated 19 per cent dark matter contribution, we find that the stellar mass-to-light ratio from lensing is consistent with that expected for a Milky Way initial mass function (IMF). Combining the new system with three previously-studied low-redshift lenses of similar σ, the derived mean mass excess factor (relative to a Kroupa IMF) is ⟨α⟩ = 1.09±0.08. With all four systems, the intrinsic scatter in α for massive elliptical galaxies can be limited to <0.32, at 90 per cent confidence.

  12. Jet printing of convex and concave polymer micro-lenses.

    PubMed

    Blattmann, M; Ocker, M; Zappe, H; Seifert, A

    2015-09-21

    We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.

  13. Precision cosmology with weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.

    In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my

  14. A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magaña, Juan; Motta, V.; Cárdenas, Victor H.

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL datamore » are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.« less

  15. Gravitationally Lensed Quasars in Gaia: II. Discovery of 24 Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Ostrovski, Fernanda

    2018-04-01

    We report the discovery, spectroscopic confirmation and preliminary characterisation of 24 gravitationally lensed quasars identified using Gaia observations. Candidates were selected in the Pan-STARRS footprint with quasar-like WISE colours or as photometric quasars from SDSS, requiring either multiple detections in Gaia or a single Gaia detection near a morphological galaxy. The Pan-STARRS grizY images were modelled for the most promising candidates and 60 candidate systems were followed up with the William Herschel Telescope. 13 of the lenses were discovered as Gaia multiples and 10 as single Gaia detections near galaxies. We also discover 1 lens identified through a quasar emission line in an SDSS galaxy spectrum. The lenses have median image separation 2.13″ and the source redshifts range from 1.06 to 3.36. 4 systems are quadruply-imaged and 20 are doubly-imaged. Deep CFHT data reveal an Einstein ring in one double system. We also report 12 quasar pairs, 10 of which have components at the same redshift and require further follow-up to rule out the lensing hypothesis. We compare the properties of these lenses and other known lenses recovered by our search method to a complete sample of simulated lenses to show the lenses we are missing are mainly those with small separations and higher source redshifts. The initial Gaia data release only catalogues all images of ˜ 30% of known bright lensed quasars, however the improved completeness of Gaia data release 2 will help find all bright lensed quasars on the sky.

  16. Gravitational lenses and large scale structure

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1987-01-01

    Four possible statistical tests of the large scale distribution of cosmic material are described. Each is based on gravitational lensing effects. The current observational status of these tests is also summarized.

  17. Compact Groups analysis using weak gravitational lensing II: CFHT Stripe 82 data

    NASA Astrophysics Data System (ADS)

    Chalela, Martín; Gonzalez, Elizabeth Johana; Makler, Martín; Lambas, Diego García; Pereira, Maria E. S.; O'mill, Ana; Shan, HuanYuan

    2018-06-01

    In this work we present a lensing study of Compact Groups (CGs) using data obtained from the high quality Canada-France-Hawaii Telescope Stripe 82 Survey. Using stacking techniques we obtain the average density contrast profile. We analyse the lensing signal dependence on the groups surface brightness and morphological content, for CGs in the redshift range z = 0.2 - 0.4. We obtain a larger lensing signal for CGs with higher surface brightness, probably due to their lower contamination by interlopers. Also, we find a strong dependence of the lensing signal on the group concentration parameter, with the most concentrated quintile showing a significant lensing signal, consistent with an isothermal sphere with σV = 336 ± 28 km/s and a NFW profile with R200 = 0.60 ± 0.05 h_{70}^{-1}Mpc. We also compare lensing results with dynamical estimates finding a good agreement with lensing determinations for CGs with higher surface brightness and higher concentration indexes. On the other hand, CGs that are more contaminated by interlopers show larger dynamical dispersions, since interlopers bias dynamical estimates to larger values, although the lensing signal is weakened.

  18. Thin Film Coating Technology For Ophthalmic Lenses

    NASA Astrophysics Data System (ADS)

    Guenther, K. H.

    1986-05-01

    Coating of ophthalmic lenses is an application of high-vacuum coating technology which must satisfy not only physical and technical requirements but also customer demands with respect to aesthetics, color fidelity, and exchangeability of coated ophthalmic lenses. Because this application caters specifically to the consumer market, ophthalmic lenses are subject to certain fashion trends which frequently require quick adaptation of the coating technique. The state-of-the-art of ophthalmic lens coating is reviewed in this paper, with particular emphasis on the durability requirements in daily use by untrained consumers as well as on the applicable testing methods.

  19. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  20. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; hide

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  1. Variable practice with lenses improves visuo-motor plasticity

    NASA Technical Reports Server (NTRS)

    Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.

    2001-01-01

    Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.

  2. Strong-lensing analysis of MACS J0717.5+3745 from Hubble Frontier Fields observations: How well can the mass distribution be constrained?

    NASA Astrophysics Data System (ADS)

    Limousin, M.; Richard, J.; Jullo, E.; Jauzac, M.; Ebeling, H.; Bonamigo, M.; Alavi, A.; Clément, B.; Giocoli, C.; Kneib, J.-P.; Verdugo, T.; Natarajan, P.; Siana, B.; Atek, H.; Rexroth, M.

    2016-04-01

    We present a strong-lensing analysis of MACSJ0717.5+3745 (hereafter MACS J0717), based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which have been spectroscopically confirmed. The total number of images comprised in these systems rises to 165, compared to 48 images in 16 systems before the HFF observations. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, and the subset of the 132 most secure multiple images to constrain a mass distribution composed of four large-scale mass components (spatially aligned with the four main light concentrations) and a multitude of galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of "peaky" non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well, in the sense that both models give comparable total rms. Although the total (smooth dark matter component plus galaxy-scale perturbers) mass distributions of both models are consistent, as are the integrated two-dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, emphasizing the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification. We show that the amplification difference between the two models is larger

  3. Discovery of the Lensed Quasar System DES J0408-5354

    DOE PAGES

    Lin, H.; Buckley-Geer, E.; Agnello, A.; ...

    2017-03-27

    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (more » $$i\\lt 20$$) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.« less

  4. Discovery of the Lensed Quasar System DES J0408-5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H.; Buckley-Geer, E.; Agnello, A.

    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (more » $$i\\lt 20$$) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.« less

  5. Focusing cosmic telescopes: systematics of strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci Lin; Sharon, Keren q.

    2018-01-01

    The use of strong gravitational lensing by galaxy clusters has become a popular method for studying the high redshift universe. While diverse in computational methods, lens modeling techniques have grasped the means for determining statistical errors on cluster masses and magnifications. However, the systematic errors have yet to be quantified, arising from the number of constraints, availablity of spectroscopic redshifts, and various types of image configurations. I will be presenting my dissertation work on quantifying systematic errors in parametric strong lensing techniques. I have participated in the Hubble Frontier Fields lens model comparison project, using simulated clusters to compare the accuracy of various modeling techniques. I have extended this project to understanding how changing the quantity of constraints affects the mass and magnification. I will also present my recent work extending these studies to clusters in the Outer Rim Simulation. These clusters are typical of the clusters found in wide-field surveys, in mass and lensing cross-section. These clusters have fewer constraints than the HFF clusters and thus, are more susceptible to systematic errors. With the wealth of strong lensing clusters discovered in surveys such as SDSS, SPT, DES, and in the future, LSST, this work will be influential in guiding the lens modeling efforts and follow-up spectroscopic campaigns.

  6. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    NASA Astrophysics Data System (ADS)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  7. Reconstruction of cluster masses using particle based lensing

    NASA Astrophysics Data System (ADS)

    Deb, Sanghamitra

    Clusters of galaxies are among the richest astrophysical data systems, but to truly understand these systems, we need a detailed study of the relationship between observables and the underlying cluster dark matter distribution. Gravitational lensing is the most direct probe of dark matter, but many mass reconstruction techniques assume that cluster light traces mass, or combine different lensing signals in an ad hoc way. In this talk, we will describe "Particle Based Lensing" (PBL), a new method for cluster mass reconstruction, that avoids many of the pitfalls of previous techniques. PBL optimally combines lensing information of varying signal-to-noise, and makes no assumptions about the relationship between mass and light. We will describe mass reconstructions in three very different, but very illuminating cluster systems: the "Bullet Cluster" (lE 0657-56), A901/902 and A1689. The "Bullet Cluster" is a system of merging clusters made famous by the first unambiguous lensing detection of dark matter. A901/902 is a multi-cluster system with four peaks, and provides an ideal laboratory for studying cluster interaction. We are particularly interested in measuring and correlating the dark matter clump ellipticities. A1689 is one of the richest clusters known, and has significant substructure at the core. It is also my first exercise in optimally combining weak and strong gravitational lensing in a cluster reconstruction. We find that the dark matter distribution is significantly clumpier than indicated by X-ray maps of the gas. We conclude by discussing various potential applications of PBL to existing and future data.

  8. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    NASA Astrophysics Data System (ADS)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  9. Efficacy and durability of ultraviolet tints in CR-39 ophthalmic lenses.

    PubMed

    Lee, D Y; Brown, W L; Trachimowicz, R

    1997-11-01

    Ocular protection from solar ultraviolet (UV) radiation has been emphasized in recent years as a result of the thinning of the ozone layer in the atmosphere. The purpose of this study was to evaluate the absorptive properties of UV tints in CR-39 lenses. We used a spectrophotometer to measure the UV transmittance of three groups of UV tinted CR-39 lenses, including (1) lenses tinted by local optical laboratories: (2) lenses tinted by us, using commercially available dyes: and (3) stock UV lenses that have UV absorptive molecules throughout the lens. We also tested the durability of these tints to daily washing/drying by measuring their UV transmittance characteristics at 3, 6, and 12 months. All the tested lenses absorbed all of the UV-B and at least 99% of UV-A. The durability of these UV tints when exposed to daily washing/drying was excellent: all lenses continued to absorb all of the UV-B and at least 99% of UV-A after 1 year. These data suggest that UV tinted CR-39 lenses provide protection against UV radiation that meets the ANSI Z80.3-1996 Standard for non-prescription sunglasses and fashion eyewear. Furthermore, normal daily washing/drying for 1 year does not cause a significant decrease in the protective effect of the UV tint.

  10. Arcs from gravitational lensing

    NASA Technical Reports Server (NTRS)

    Grossman, Scott A.; Narayan, Ramesh

    1988-01-01

    The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.

  11. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the formermore » test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.« less

  12. Does correcting astigmatism with toric lenses improve driving performance?

    PubMed

    Cox, Daniel J; Banton, Thomas; Record, Steven; Grabman, Jesse H; Hawkins, Ronald J

    2015-04-01

    Driving is a vision-based activity of daily living that impacts safety. Because visual disruption can compromise driving safety, contact lens wearers with astigmatism may pose a driving safety risk if they experience residual blur from spherical lenses that do not correct their astigmatism or if they experience blur from toric lenses that rotate excessively. Given that toric lens stabilization systems are continually improving, this preliminary study tested the hypothesis that astigmats wearing toric contact lenses, compared with spherical lenses, would exhibit better overall driving performance and driving-specific visual abilities. A within-subject, single-blind, crossover, randomized design was used to evaluate driving performance in 11 young adults with astigmatism (-0.75 to -1.75 diopters cylinder). Each participant drove a highly immersive, virtual reality driving simulator (210 degrees field of view) with (1) no correction, (2) spherical contact lens correction (ACUVUE MOIST), and (3) toric contact lens correction (ACUVUE MOIST for Astigmatism). Tactical driving skills such as steering, speed management, and braking, as well as operational driving abilities such as visual acuity, contrast sensitivity, and foot and arm reaction time, were quantified. There was a main effect for type of correction on driving performance (p = 0.05). Correction with toric lenses resulted in significantly safer tactical driving performance than no correction (p < 0.05), whereas correction with spherical lenses did not differ in driving safety from no correction (p = 0.118). Operational tests differentiated corrected from uncorrected performance for both spherical (p = 0.008) and toric (p = 0.011) lenses, but they were not sensitive enough to differentiate toric from spherical lens conditions. Given previous research showing that deficits in these tactical skills are predictive of future real-world collisions, these preliminary data suggest that correcting low to moderate

  13. Parabolic crossed planar polymeric x-ray lenses

    NASA Astrophysics Data System (ADS)

    Nazmov, V.; Reznikova, E.; Mohr, J.; Saile, V.; Vincze, L.; Vekemans, B.; Bohic, S.; Somogyi, A.

    2011-01-01

    The principles of design and manufacturing of the polymer planar x-ray lenses focusing in one and two directions, as well as the peculiarities of optical behaviors and the results of the lens test are reported in this paper. The methods of electron and deep x-ray lithography used in lens manufacturing allow the manufacture of ten or more x-ray lenses on one substrate; the lenses show focal lengths down to several centimeters for photon energies between 5 and 40 keV. The measured focus size was 105 nm for a linear lens with an intensity gain of about 407, and 300 × 770 nm for a crossed lens with an intensity gain of 6470.

  14. Large-acceptance diamond planar refractive lenses manufactured by laser cutting.

    PubMed

    Polikarpov, Maxim; Snigireva, Irina; Morse, John; Yunkin, Vyacheslav; Kuznetsov, Sergey; Snigirev, Anatoly

    2015-01-01

    For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements. Owing to the unsurpassed thermal properties of single-crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.

  15. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.; Magain, P.

    2006-06-01

    Aims.We measure the redshift of the lensing galaxy in eight gravitationally lensed quasars in view of determining the Hubble parameter H0 from the time delay method. Methods.Deep VLT/FORS1 spectra of lensed quasars are spatially deconvolved in order to separate the spectrum of the lensing galaxies from the glare of the much brighter quasar images. A new observing strategy is devised. It involves observations in Multi-Object-Spectroscopy (MOS) which allows the simultaneous observation of the target and of several PSF and flux calibration stars. The advantage of this method over traditional long-slit observations is a much more reliable extraction and flux calibration of the spectra. Results.For the first time we measure the redshift of the lensing galaxy in three multiply-imaged quasars: SDSS J1138+0314 (z_lens = 0.445), SDSS J1226-0006 (z_lens = 0.517), SDSS J1335+0118 (z_lens = 0.440), and we give a tentative estimate of the redshift of the lensing galaxy in Q 1355-2257 (z_lens = 0.701). We confirm four previously measured redshifts: HE 0047-1756 (z_lens = 0.407), HE 0230-2130 (z_lens = 0.523), HE 0435-1223 (z_lens = 0.454) and WFI J2033-4723 (z_lens = 0.661). In addition, we determine the redshift of the second lensing galaxy in HE 0230-2130 (z_lens = 0.526). The spectra of all lens galaxies are typical for early-type galaxies, except for the second lensing galaxy in HE 0230-2130 which displays prominent [OII] emission.

  16. First measurement of the cross-correlation of CMB lensing and galaxy lensing

    DOE PAGES

    Hand, Nick; Leauthaud, Alexie; Das, Sudeep; ...

    2015-03-02

    Here, we measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 sigma, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ~0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematicmore » biases in weak lensing measurements.« less

  17. Micro-optofluidic Lenses: A review

    PubMed Central

    Nguyen, Nam-Trung

    2010-01-01

    This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369

  18. Problems with small area surveys: lensing covariance of supernova distance measurements.

    PubMed

    Cooray, Asantha; Huterer, Dragan; Holz, Daniel E

    2006-01-20

    While luminosity distances from type Ia supernovae (SNe) are a powerful probe of cosmology, the accuracy with which these distances can be measured is limited by cosmic magnification due to gravitational lensing by the intervening large-scale structure. Spatial clustering of foreground mass leads to correlated errors in SNe distances. By including the full covariance matrix of SNe, we show that future wide-field surveys will remain largely unaffected by lensing correlations. However, "pencil beam" surveys, and those with narrow (but possibly long) fields of view, can be strongly affected. For a survey with 30 arcmin mean separation between SNe, lensing covariance leads to a approximately 45% increase in the expected errors in dark energy parameters.

  19. Terahertz Brewster lenses.

    PubMed

    Wichmann, Matthias; Scherger, Benedikt; Schumann, Steffen; Lippert, Sina; Scheller, Maik; Busch, Stefan F; Jansen, Christian; Koch, Martin

    2011-12-05

    Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.

  20. Evaporated As2S3 Luneburg lenses for LiNbO3:Ti optical waveguides

    NASA Technical Reports Server (NTRS)

    Busch, J. R.; Wood, V. E.; Kenan, R. P.; Verber, C. M.

    1981-01-01

    Luneburg lenses of good quality were formed on high index optical waveguides by evaporation of arsenic trisulfide glass through simple masks. Using only two thin circular aperture masks, lenses with focal spots of a few times the diffraction limited width at f/4 were obtained. These lenses were designed for and tested at both visible (633 nm) and infrared wavelengths. Procedures for the design, fabrication, and testing of lenses of this type are described.

  1. Deep convolutional neural networks as strong gravitational lens detectors

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  2. Antimicrobial Efficacy of Multipurpose Disinfecting Solutions in the Presence of Contact Lenses and Lens Cases.

    PubMed

    Gabriel, Manal M; McAnally, Cindy; Bartell, John

    2018-03-01

    The aim of this study was to use antimicrobial efficacy endpoint methodology to determine compatibility of multipurpose disinfecting solutions (MPSs), lens cases, and hydrogel lenses for disinfection (AEEMC) against International Organization for Standardization (ISO)-specified microorganisms and clinical ocular isolates of Stenotrophomonas maltophilia. Six MPSs (PQ/Aldox 1, 2, and 3; PQ/Alexidine; PQ/PHMB; and PHMB) were challenged against ISO-specified microorganisms and S. maltophilia using the AEEMC test. AEEMC tests were performed with and without balafilcon A, etafilcon A, and senofilcon A lenses in lens cases with organic soil. Exposure times included disinfection time (DT) and 24 hr. Additionally, all six MPSs were challenged with two strains of S. maltophilia, based on the ISO Stand-alone test. The efficacy against bacteria for PQ/Aldox and PQ/Alexidine MPSs was not diminished by the presence of lenses. The efficacy of PQ/PHMB and PHMB MPSs against Serratia marcescens was significantly reduced compared with the no-lens control at DT for at least one lens type. The PHMB MPS with lenses present also demonstrated reduced efficacy against Staphylococcus aureus at DT versus the control. PQ/Aldox MPSs retained activity against Fusarium solani with lenses present; however, all other test MPSs demonstrated reduced F. solani efficacy at DT with lenses present. With lenses, all MPSs showed reduced efficacy against Candida albicans. AEEMC antimicrobial efficacy test results vary based on challenge microorganism, contact lenses, and MPS biocide systems. This study highlights the importance of evaluating MPSs for compatibility with lenses and lens cases.

  3. Antimicrobial Efficacy of Multipurpose Disinfecting Solutions in the Presence of Contact Lenses and Lens Cases

    PubMed Central

    McAnally, Cindy; Bartell, John

    2018-01-01

    Objective: The aim of this study was to use antimicrobial efficacy endpoint methodology to determine compatibility of multipurpose disinfecting solutions (MPSs), lens cases, and hydrogel lenses for disinfection (AEEMC) against International Organization for Standardization (ISO)–specified microorganisms and clinical ocular isolates of Stenotrophomonas maltophilia. Methods: Six MPSs (PQ/Aldox 1, 2, and 3; PQ/Alexidine; PQ/PHMB; and PHMB) were challenged against ISO-specified microorganisms and S. maltophilia using the AEEMC test. AEEMC tests were performed with and without balafilcon A, etafilcon A, and senofilcon A lenses in lens cases with organic soil. Exposure times included disinfection time (DT) and 24 hr. Additionally, all six MPSs were challenged with two strains of S. maltophilia, based on the ISO Stand-alone test. Results: The efficacy against bacteria for PQ/Aldox and PQ/Alexidine MPSs was not diminished by the presence of lenses. The efficacy of PQ/PHMB and PHMB MPSs against Serratia marcescens was significantly reduced compared with the no-lens control at DT for at least one lens type. The PHMB MPS with lenses present also demonstrated reduced efficacy against Staphylococcus aureus at DT versus the control. PQ/Aldox MPSs retained activity against Fusarium solani with lenses present; however, all other test MPSs demonstrated reduced F. solani efficacy at DT with lenses present. With lenses, all MPSs showed reduced efficacy against Candida albicans. Conclusions: AEEMC antimicrobial efficacy test results vary based on challenge microorganism, contact lenses, and MPS biocide systems. This study highlights the importance of evaluating MPSs for compatibility with lenses and lens cases. PMID:27598555

  4. Spectral transmittance of UV-blocking soft contact lenses: a comparative study.

    PubMed

    Rahmani, Saeed; Mohammadi Nia, Mohadeseh; Akbarzadeh Baghban, Alireza; Nazari, Mohammad Reza; Ghassemi-Broumand, Mohammad

    2014-12-01

    Three major parts of sunlight consist of visible, ultraviolet and infrared radiation. Exposure to ultraviolet radiation (UVR) can result in a spectrum of skin and ocular diseases. UV-blocking contact lenses help provide protection against harmful UV radiation. We studied the ultraviolet and visible light rays transmission in some soft UV-blocking contact lenses. Four available tinted soft lenses (Acuvue Moist, Zeiss CONTACT Day 30 Air spheric, Pretty Eyes and Sauflon 56 UV) have been evaluated for UV and visible transmission. One-way ANOVA testing was performed to establish is there a statistically significant difference between the UV regions and visible spectra means for the contact lenses (α=0.05). Pretty Eyes, Zeiss CONTACT, Acuvue Moist and Sauflon 56 UV showed UV-B transmittance value of 0.65%, 10.69%, 1.22%, and 5.78%, respectively. Pretty Eyes and Acuvue Moist had UV-A transmittance values of 32% and 34%, Sauflon 56 UV and Zeiss CONTACT had transmittance values of 48% and 43%, respectively. All of the studied lenses transmitted at least 94.6% on the visible spectrum. The results of the one-way ANOVA statistical analysis show that a statistically significant difference exists within the group of contact lenses tested for the visible (p<0.001), UV-B (p<0.001) and UV-A (p<0.001) portions of the spectrum (α=0.05). Acuvue Moist has the best UV-blocking property and also visible transmission between other tested contact lenses in this study. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  5. Gravitational lensing by rotating naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.; Institut fuer Theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen

    We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentummore » is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.« less

  6. Two-Season Atacama Cosmology Telescope Polarimeter Lensing Power Spectrum

    NASA Technical Reports Server (NTRS)

    Shewin, Blake D.; van Engelen, Alexander; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E.; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Becker, Daniel T.; Beall, James A.; hide

    2017-01-01

    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck CDM model over a range of multipoles L 80-2100, with an amplitude of lensing A(sub lens) = 1.06 +/- 0.15 stat +/- 0.06 sys relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma 8 omega m(sup 0.25) = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma 8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol data set.

  7. Aspherics in spectacle lenses

    NASA Astrophysics Data System (ADS)

    Dürsteler, Juan Carlos

    2016-12-01

    A review of the use of aspherics in the last decades, understood in a broad sense as encompassing single-vision lenses with conicoid surfaces and free-form and progressive addition lenses (PALs) as well, is provided. The appearance of conicoid surfaces to correct aphakia and later to provide thinner and more aesthetically appealing plus lenses and the introduction of PALs and free-form surfaces have shaped the advances in spectacle lenses in the last three decades. This document basically considers the main target optical aberrations, the idiosyncrasy of single lenses for correction of refractive errors and the restrictions and particularities of PAL design and their links to science vision and perception.

  8. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  9. Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects.

    PubMed

    Zhu, Hua; Kumar, Ajay; Ozkan, Jerome; Bandara, Rani; Ding, Aidong; Perera, Indrani; Steinberg, Peter; Kumar, Naresh; Lao, William; Griesser, Stefani S; Britcher, Leanne; Griesser, Hans J; Willcox, Mark D P

    2008-05-01

    To examine the ability of contact lenses coated with fimbrolides, inhibitors of bacterial quorum sensing, to prevent microbial adhesion and their safety during short-term clinical assessment. A fimbrolide was covalently attached to commercially available high Dk contact lenses. Subsequently Pseudomonas aeruginosa, Staphylococcus aureus, Serratia marcescens, or Acanthamoeba sp. were added to the lenses and control uncoated contact lenses. Lenses plus microbes were incubated for 24 h, then washed thoroughly to remove non-adherent microbes. Lenses were macerated and resulting slurry plated onto agar plates. After appropriate incubation, the numbers of colony forming units of bacteria (or numbers of Acanthamoeba trophozoites measured using a hemocytometer) from fimbrolide-coated and uncoated lenses were examined. A Guinea Pig model of lens wear was used to assess the safety of lenses worn on a continuous basis for 1 month. In a separate study, 10 subjects wore fimbrolide-coated lenses for 24 h. The responses of the Guinea Pigs and human volunteers to the lenses were assessed by slit lamp examination. The fimbrolides-coated lenses reduced the adhesion of all bacterial strains tested, with reductions occurring of between 67 and 92%. For Acanthamoeba a reduction of 70% was seen. There were no significant differences in ocular responses to fimbrolide-coated lenses compared with controls in either the 1 month animal model or overnight human trial. Fimbrolide-coated lenses show promise as an antibacterial and anti-acanthamoebal coating on contact lenses and appear to be safe when worn on the eye in an animal model.

  10. Efficiency and coherence preservation studies of Be refractive lenses for XFELO application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Tomasz; Stoupin, Stanislav; Grizolli, Walan

    2018-02-14

    Performance tests of parabolic beryllium refractive lenses, considered as X-ray focusing elements in the future X-ray free-electron laser oscillator (XFELO), are reported. Single and double refractive lenses were subject to X-ray tests, which included: surface profile, transmissivity measurements, imaging capabilities and wavefront distortion with grating interferometry. Optical metrology revealed that surface profiles were close to the design specification in terms of the figure and roughness. The transmissivity of the lenses is >94% at 8 keV and >98% at 14.4 and 18 keV. These values are close to the theoretical values of ideal lenses. Images of the bending-magnet source obtained withmore » the lenses were close to the expected ones and did not show any significant distortion. Grating interferometry revealed that the possible wavefront distortions produced by surface and bulk lens imperfections were on the level of ~λ/60 for 8 keV photons. Thus the Be lenses can be succesfully used as focusing and beam collimating elements in the XFELO.« less

  11. Three gravitationally lensed supernovae behind clash galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Brandon; McCully, Curtis; Jha, Saurabh W.

    2014-05-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive.more » Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.« less

  12. Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Cheongho; Shin, In-Gu; Jung, Youn Kil

    Chang–Refsdal (C–R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C–R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C–R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C–Rmore » lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C–R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C–R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C–R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.« less

  13. Gravitational lensing in modified Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Mortlock, Daniel J.; Turner, Edwin L.

    2001-10-01

    Modified Newtonian dynamics (MOND) is an alternative theory of gravity that aims to explain large-scale dynamics without recourse to any form of dark matter. However, the theory is incomplete, lacking a relativistic counterpart, and so makes no definite predictions about gravitational lensing. The most obvious form that MONDian lensing might take is that photons experience twice the deflection of massive particles moving at the speed of light, as in general relativity (GR). In such a theory there is no general thin-lens approximation (although one can be made for spherically symmetric deflectors), but the three-dimensional acceleration of photons is in the same direction as the relativistic acceleration would be. In regimes where the deflector can reasonably be approximated as a single point-mass (specifically low-optical depth microlensing and weak galaxy-galaxy lensing), this naive formulation is consistent with observations. Forthcoming galaxy-galaxy lensing data and the possibility of cosmological microlensing have the potential to distinguish unambiguously between GR and MOND. Some tests can also be performed with extended deflectors, for example by using surface brightness measurements of lens galaxies to model quasar lenses, although the breakdown of the thin-lens approximation allows an extra degree of freedom. None the less, it seems unlikely that simple ellipsoidal galaxies can satisfy both constraints. Furthermore, the low-density universe implied by MOND must be completely dominated by the cosmological constant (to fit microwave background observations), and such models are at odds with the low frequency of quasar lenses. These conflicts might be resolved by a fully consistent relativistic extension to MOND; the alternative is that MOND is not an accurate description of the Universe.

  14. Quantitative evaluation of performance of three-dimensional printed lenses

    NASA Astrophysics Data System (ADS)

    Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-08-01

    We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.

  15. Quantitative evaluation of performance of 3D printed lenses

    PubMed Central

    Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-01-01

    We present an analysis of the shape, surface quality, and imaging capabilities of custom 3D printed lenses. 3D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical and rotationally non-symmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes such as grinding, polishing and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical© technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root-mean-squared wavefront error, radii of curvature and the arithmetic average of the roughness profile (Ra) of plastic and glass lenses. Additionally, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra < 20 nm). The RMS wavefront error of 3D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but when measured within 63% of its clear aperture, 3D printed components’ RMS wavefront error was comparable to glass lenses. PMID:29238114

  16. An analytical approach to gravitational lensing by an ensemble of axisymmetric lenses

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Spergel, David N.

    1990-01-01

    The problem of gravitational lensing by an ensemble of identical axisymmetric lenses randomly distributed on a single lens plane is considered and a formal expression is derived for the joint probability density of finding shear and convergence at a random point on the plane. The amplification probability for a source can be accurately estimated from the distribution in shear and convergence. This method is applied to two cases: lensing by an ensemble of point masses and by an ensemble of objects with Gaussian surface mass density. There is no convergence for point masses whereas shear is negligible for wide Gaussian lenses.

  17. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias andmore » scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).« less

  18. Personalized Progressive Addition Lenses: Correlation between Performance and Design.

    PubMed

    Forkel, Johanne; Reiniger, Jenny Lorén; Muschielok, Adam; Welk, Andrea; Seidemann, Anne; Baumbach, Peter

    2017-02-01

    A continuous set of personalized designs (design space) for progressive addition lenses (PALs) is investigated. The main goals are (1) to study how the subjects' perception of a personalized design depends on its position in the design space and (2) to compare the performance of personalized PALs to a conventional PAL with a fixed design. In a double-blind study, 51 subjects compared Rodenstock Impression FreeSign 3, which is a family of PALs with a continuously controllable personalized design, and Rodenstock Progressiv Life Free, which is a conventional PAL with a single fixed design. The positions and sizes of viewing zones and the softness of gradients of mean power and astigmatism of personalized lenses were customized to individual viewing preferences. These designs were represented as points in a design space comprising a continuum of PAL designs. Subjective ratings and experimental measurements were used to study viewing zone widths, blur gradient smoothness, amount of distortion, the feeling of safety during motion, and overall wearing comfort. (1) Far viewing zone width (experiments and ratings), near viewing zone width (experiments), blur gradient smoothness, and the amount of distortion (ratings) were significantly dependent on the position of the personalized lens design in the design space. This was consistent with the structure of the design space. (2) 82% of the subjects chose personalized lenses as their favorite. Most subjects reported higher wearing comfort and tolerability with personalized lenses than with conventional lenses. The designs of the tested personalized lenses were perceived by the subjects as intended. This is a prerequisite to the successful customization of PALs to individual wearing preferences. Possible reasons for the preference of the tested personalized lenses are the optimization with respect to individual wearing conditions and the personalization.

  19. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  20. Gravitational Lensing in Astronomy.

    PubMed

    Wambsganss, Joachim

    1998-01-01

    Deflection of light by gravity was predicted by General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically. Among them were: the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility of determining Hubble's constant with lensing. It is only relatively recently, (after the discovery of the first doubly imaged quasar in 1979), that gravitational lensing has became an observational science. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered: For example, giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, and weak gravitational lensing. At present, literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, the physics of quasars, dark matter in galaxy halos, and galaxy structure. Looking at these successes in the recent past we predict an even more luminous future for gravitational lensing. Supplementary material is available for this article at 10.12942/lrr-1998-12.

  1. Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum

    NASA Astrophysics Data System (ADS)

    Sherwin, Blake D.; van Engelen, Alexander; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E.; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Becker, Daniel T.; Beall, James A.; Bond, J. Richard; Calabrese, Erminia; Datta, Rahul; Devlin, Mark J.; Dünner, Rolando; Dunkley, Joanna; Fox, Anna E.; Gallardo, Patricio; Halpern, Mark; Hasselfield, Matthew; Henderson, Shawn; Hill, J. Colin; Hilton, Gene C.; Hubmayr, Johannes; Hughes, John P.; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Koopman, Brian; Kosowsky, Arthur; Louis, Thibaut; Maurin, Loïc; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Sievers, Jonathan; Spergel, David N.; Staggs, Suzanne T.; Thornton, Robert J.; Van Lanen, Jeff; Vavagiakis, Eve; Wollack, Edward J.

    2017-06-01

    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck Λ CDM model over a range of multipoles L =80 - 2100 , with an amplitude of lensing Alens=1.06 ±0.15 (stat )±0.06 (sys ) relative to Planck. Our measurement of the CMB lensing power spectrum gives σ8Ωm0.25=0.643 ±0.054 ; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be σ8=0.831 ±0.053 . We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol data set.

  2. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  3. Ultrathin zoom lens system based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2015-07-01

    In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.

  4. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NASA Astrophysics Data System (ADS)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-07-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ~1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/Li ˜ 8 +/- 4 M⊙ L⊙ -1, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ~ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.

  5. Oscillatory squeeze film analysis of soft contact lenses.

    PubMed

    Donnchadha, Éanna Mac; Leal, Cristina; Esmonde, Harry

    2018-04-13

    The complex modulus of a soft contact lens affects the optical performance, fitting, on-eye movement, wettability, physiological impact and overall comfort of the lens. However, despite acknowledgement that the mechanical behaviour of contact lenses is time-dependent, the rheological characteristics of contact lenses remain under-defined. While existing studies have focussed on elasticity to describe lens behaviour, this paper proposes using oscillatory squeeze film analysis to evaluate the complex modulus. The effects of excitation amplitude, repeatability and surface wetness are examined for four commercially available lenses. Slip at the lens/platen interface is considered along with bias introduced by pre-compressing the lens between platens. Test results when compared to results reported from other test methods indicate that a high degree of slip occurs at the lens platen interface suggesting that deformation is primarily due to biaxial extension. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  6. Direct shear mapping - a new weak lensing tool

    NASA Astrophysics Data System (ADS)

    de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.

    2015-08-01

    We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).

  7. Simulations for 21 cm radiation lensing at EoR redshifts

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro; Metcalf, Robert Benton; Pourtsidou, Alkistis

    2018-02-01

    We introduce simulations aimed at assessing how well weak gravitational lensing of 21cm radiation from the Epoch of Reionization (z ˜ 8) can be measured by a Square Kilometre Array (SKA)-like radio telescope. A simulation pipeline has been implemented to study the performance of lensing reconstruction techniques. We show how well the lensing signal can be reconstructed using the 3D quadratic lensing estimator in Fourier space assuming different survey strategies. The numerical code introduced in this work is capable of dealing with issues that cannot be treated analytically such as the discreteness of visibility measurements and the inclusion of a realistic model for the antennas distribution. This paves the way for future numerical studies implementing more realistic re-ionization models, foreground subtraction schemes, and testing the performance of lensing estimators that take into account the non-Gaussian distribution of HI after re-ionization. If multiple frequency channels covering z ˜ 7-11.6 are combined, Phase 1 of SKA-Low should be able to obtain good quality images of the lensing potential with a total resolution of ˜1.6 arcmin. The SKA-Low Phase 2 should be capable of providing images with high fidelity even using data from z ˜ 7.7 to 8.3. We perform tests aimed at evaluating the numerical implementation of the mapping reconstruction. We also discuss the possibility of measuring an accurate lensing power spectrum. Combining data from z ˜ 7 to 11.6 using the SKA2-Low telescope model, we find constraints comparable to sample variance in the range L < 1000, even for survey areas as small as 25 deg2.

  8. Weak gravitational lensing due to large-scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Jaroszynski, Michal; Park, Changbom; Paczynski, Bohdan; Gott, J. Richard, III

    1990-01-01

    The effect of the large-scale structure of the universe on the propagation of light rays is studied. The development of the large-scale density fluctuations in the omega = 1 universe is calculated within the cold dark matter scenario using a smooth particle approximation. The propagation of about 10 to the 6th random light rays between the redshift z = 5 and the observer was followed. It is found that the effect of shear is negligible, and the amplification of single images is dominated by the matter in the beam. The spread of amplifications is very small. Therefore, the filled-beam approximation is very good for studies of strong lensing by galaxies or clusters of galaxies. In the simulation, the column density was averaged over a comoving area of approximately (1/h Mpc)-squared. No case of a strong gravitational lensing was found, i.e., no 'over-focused' image that would suggest that a few images might be present. Therefore, the large-scale structure of the universe as it is presently known does not produce multiple images with gravitational lensing on a scale larger than clusters of galaxies.

  9. Metric Tests for Curvature from Weak Lensing and Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Bernstein, G.

    2006-02-01

    We describe a practical measurement of the curvature of the universe which, unlike current constraints, relies purely on the properties of the Robertson-Walker metric rather than any assumed model for the dynamics and content of the universe. The observable quantity is the cross-correlation between foreground mass and gravitational shear of background galaxies, which depends on the angular diameter distances dA(zl), dA(zs), and dA(zs,zl) on the degenerate triangle formed by observer, source, and lens. In a flat universe, dA(zl,zs)=dA(zs)-dA(zl), but in curved universes an additional term ~Ωk appears and alters the lensing observables even if dA(z) is fixed. We describe a method whereby weak-lensing data can be used to solve simultaneously for dA and the curvature. This method is completely insensitive to the equation of state of the contents of the universe, or amendments to general relativity that alter the gravitational deflection of light or the growth of structure. The curvature estimate is also independent of biases in the photometric redshift scale. This measurement is shown to be subject to a degeneracy among dA, Ωk, and the galaxy bias factors that may be broken by using the same imaging data to measure the angular scale of baryon acoustic oscillations. Simplified estimates of the accuracy attainable by this method indicate that ambitious weak-lensing + baryon-oscillation surveys would measure Ωk to an accuracy ~0.04f-1/2sky(σlnz/0.04)1/2, where σlnz is the photometric redshift error. The Fisher-matrix formalism developed here is also useful for predicting bounds on curvature and other characteristics of parametric dark energy models. We forecast some representative error levels and compare ours to other analyses of the weak-lensing cross-correlation method. We find both curvature and parametric constraints to be surprisingly insensitive to the systematic shear calibration errors.

  10. Stress-Detection Lenses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.

  11. A HIGHLY ELONGATED PROMINENT LENS AT z = 0.87: FIRST STRONG-LENSING ANALYSIS OF EL GORDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitrin, Adi; Menanteau, Felipe; Hughes, John P.

    We present the first strong-lensing (SL) analysis of the galaxy cluster ACT-CL J0102-4915 (El Gordo), in recent HST/ACS images, revealing a prominent strong lens at a redshift of z = 0.87. This finding adds to the already-established unique properties of El Gordo: it is the most massive, hot, X-ray luminous, and bright Sunyaev-Zeldovich effect cluster at z {approx}> 0.6, and the only {sup b}ullet{sup -}like merging cluster known at these redshifts. The lens consists of two merging massive clumps, where, for a source redshift of z{sub s} {approx} 2, each clump exhibits only a small, separate critical area, with amore » total area of 0.69 {+-} 0.11{open_square}' over the two clumps. For a higher source redshift, z{sub s} {approx} 4, the critical curves of the two clumps merge together into one bigger and very elongated lens (axis ratio {approx_equal} 5.5), enclosing an effective area of 1.44 {+-} 0.22{open_square}'. The critical curves continue expanding with increasing redshift so that for high-redshift sources (z{sub s} {approx}> 9) they enclose an area of {approx}1.91 {+-} 0.30{open_square}' (effective {theta}{sub e} {approx_equal} 46.''8 {+-} 3.''7) and a mass of 6.09 {+-} 1.04 Multiplication-Sign 10{sup 14} M{sub Sun }. According to our model, the area of high magnification ({mu} > 10) for such high-redshift sources is {approx_equal}1.2{open_square}', and the area with {mu} > 5 is {approx_equal}2.3{open_square}', making El Gordo a compelling target for studying the high-redshift universe. We obtain a strong lower limit on the total mass of El Gordo, {approx}> 1.7 Multiplication-Sign 10{sup 15} M{sub Sun} from the SL regime alone, suggesting a total mass of roughly M{sub 200} {approx} 2.3 Multiplication-Sign 10{sup 15} M{sub Sun }. Our results should be revisited when additional spectroscopic and HST imaging data are available.« less

  12. Relative performance of soft contact lenses having lathe-cut posterior surfaces with and without additional polishing.

    PubMed

    O'Brien, C; Charman, W N

    2006-05-01

    After a preliminary investigation of the effects of tool feed rate and spindle speed on the surface roughness of unhydrated, lathe-cut polymacon surfaces, a laboratory and clinical comparison was made between lenses with identical parameters except that the lathe-cut posterior surface was left unpolished in the "test" lenses and was polished in the "control" lenses. The lenses had moulded anterior surfaces. Laboratory comparisons included surface roughness, lens power and its uniformity across the surface. Double-blind clinical trials over 4-hour (27 subjects) and 1-month (10 subjects) periods, involved one eye of each subject wearing a "test" lens and the other, a "control" lens. No clinically significant differences were found between the results for the test and control lenses. It is concluded that today's lathing technology makes a final polishing stage unnecessary.

  13. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  14. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  15. Probing Primordial Non-Gaussianity with Weak-lensing Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi; Nishimichi, Takahiro

    2012-11-01

    We study the cosmological information contained in the Minkowski functionals (MFs) of weak gravitational lensing convergence maps. We show that the MFs provide strong constraints on the local-type primordial non-Gaussianity parameter f NL. We run a set of cosmological N-body simulations and perform ray-tracing simulations of weak lensing to generate 100 independent convergence maps of a 25 deg2 field of view for f NL = -100, 0 and 100. We perform a Fisher analysis to study the degeneracy among other cosmological parameters such as the dark energy equation of state parameter w and the fluctuation amplitude σ8. We use fully nonlinear covariance matrices evaluated from 1000 ray-tracing simulations. For upcoming wide-field observations such as those from the Subaru Hyper Suprime-Cam survey with a proposed survey area of 1500 deg2, the primordial non-Gaussianity can be constrained with a level of f NL ~ 80 and w ~ 0.036 by weak-lensing MFs. If simply scaled by the effective survey area, a 20,000 deg2 lensing survey using the Large Synoptic Survey Telescope will yield constraints of f NL ~ 25 and w ~ 0.013. We show that these constraints can be further improved by a tomographic method using source galaxies in multiple redshift bins.

  16. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances.

    PubMed

    Leung, Tsz Wing; Li, Roger Wing-Hong; Kee, Chea-Su

    2017-01-01

    To evaluate the optical performance of blue-light filtering spectacle lenses and investigate whether a reduction in blue light transmission affects visual performance and sleep quality. Experiment 1: The relative changes in phototoxicity, scotopic sensitivity, and melatonin suppression of five blue-light filtering plano spectacle lenses were calculated based on their spectral transmittances measured by a spectrophotometer. Experiment 2: A pseudo-randomized controlled study was conducted to evaluate the clinical performance of two blue-light filtering spectacle lenses (BF: blue-filtering anti-reflection coating; BT: brown-tinted) with a regular clear lens (AR) serving as a control. A total of eighty computer users were recruited from two age cohorts (young adults: 18-30 yrs, middle-aged adults: 40-55 yrs). Contrast sensitivity under standard and glare conditions, and colour discrimination were measured using standard clinical tests. After one month of lens wear, subjective ratings of lens performance were collected by questionnaire. All tested blue-light filtering spectacle lenses theoretically reduced the calculated phototoxicity by 10.6% to 23.6%. Although use of the blue-light filters also decreased scotopic sensitivity by 2.4% to 9.6%, and melatonin suppression by 5.8% to 15.0%, over 70% of the participants could not detect these optical changes. Our clinical tests revealed no significant decrease in contrast sensitivity either with (95% confidence intervals [CI]: AR-BT [-0.05, 0.05]; AR-BF [-0.05, 0.06]; BT-BF [-0.06, 0.06]) or without glare (95% CI: AR-BT [-0.01, 0.03]; AR-BF [-0.01, 0.03]; BT-BF [-0.02, 0.02]) and colour discrimination (95% CI: AR-BT [-9.07, 1.02]; AR-BF [-7.06, 4.46]; BT-BF [-3.12, 8.57]). Blue-light filtering spectacle lenses can partially filter high-energy short-wavelength light without substantially degrading visual performance and sleep quality. These lenses may serve as a supplementary option for protecting the retina from potential

  17. Additive manufacturing of tunable lenses

    NASA Astrophysics Data System (ADS)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  18. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    PubMed

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  19. Evaluation of glutaraldehyde and povidone iodine for sterilization of wide-field contact vitrectomy lenses.

    PubMed

    Das, T; Sharma, S; Singh, J; Rao, V; Chalam, K V

    2001-01-01

    Wide-field vitrectomy contact lenses are currently sterilized with ethylene oxide gas, and other lenses with autoclaving. To maintain a large inventory or possibly run the risk of loss of lens quality with repeated autoclaving, glutaraldehyde 2% and povidone iodine 5% solution were evaluated as possible sterilizing agents. Ethylene oxide presterilized lenses were contaminated with known concentrations (10(5) organisms/mL) of bacteria (S. epidemidis, P. aeruginosa, B. subtilis), and fungi (A. flavus, C. albicans) for 5 minutes. The test lenses were treated with glutaraldehyde or povidone iodine for 5, 10, 30, 60, and 120 minutes, and controls with sterilized water for a similar duration. Following treatment, both test and control lenses were sampled with sterile cotton swabs. The swabs were cultured for bacteria (tryptone soya broth 48 hours), and fungi (Saubourd's dextrose broth 5 days). The culture was negative for both glutaraldehyde- and povidone iodine-treated lenses against all organisms at all time points except B subtilis, which needed 120 minutes treatment. Two hours contact time with glutaraldehyde 2% or providone iodine 5% can sterilize vitrectomy contact lenses against common bacteria and fungi without affecting lens quality.

  20. VizieR Online Data Catalog: IMF in 3 low-redshift strong lenses from SNELLS (Newman+, 2017)

    NASA Astrophysics Data System (ADS)

    Newman, A. B.; Smith, R. J.; Conroy, C.; Villaume, A.; van Dokkum, P.

    2018-04-01

    The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) lenses (Smith+ 2015MNRAS.449.3441S) were observed using the IMACS spectrograph at the 6.5m Magellan Baade telescope during 2015 April 9-10 and 2015 September 25. Spectroscopic observations cover the wavelength range 3565-9415Å continuously with a uniform resolution of 2.8Å. Total exposure times ranged from 60 minutes to 100 minutes per grating. See section 2.1. All SNELLS lenses were also observed using FIRE, a near-infrared echellete spectrograph at the Magellan Baade telescope, during the nights of 2015 April 8, May 3, and September 25. The FIRE spectra cover 0.82-2.51um, but in this paper we use only the region around the Wing-Ford band of FeH near 9916Å for SNL-0 and SNL-1. On-target exposure times for SNL-0 and SNL-1 were 32 minutes and 54 minutes, respectively. The 1" wide slit provided a resolution of R~4000. See section 2.2. We acquired optical and near-infrared spectra for all the SNELLS lenses with X-shooter at the 8.2m UT2 of the ESO Very Large Telescope (VLT). See section 2.3. We obtained r-band images of SNL-1 and SNL-2 using the LDSS-3 imaging spectrograph at the Magellan 2 telescope. Photometric calibration was tied to the SDSS DR9. For SNL-0, we used Hubble Heritage observations taken with the Advanced Camera for Surveys and the F625W filter (Proposal 10710). When constructing our dynamical model of SNL-2, we also use an R-band image obtained in excellent seeing with FORS2 at the VLT. See section 2.4. (2 data files).

  1. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    PubMed

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  2. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary

    NASA Astrophysics Data System (ADS)

    Main, Robert; Yang, I.-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H.

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as `interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the `black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses10.

  3. Effect of Yellow-Tinted Lenses on Visual Attributes Related to Sports Activities

    PubMed Central

    Kohmura, Yoshimitsu; Murakami, Shigeki; Aoki, Kazuhiro

    2013-01-01

    The purpose of this study was to clarify the effect of colored lenses on visual attributes related to sports activities. The subjects were 24 students (11 females, 13 males; average age 21.0 ±1.2 years) attending a sports university. Lenses of 5 colors were used: colorless, light yellow, dark yellow, light gray, and dark gray. For each lens, measurements were performed in a fixed order: contrast sensitivity, dynamic visual acuity, depth perception, hand-eye coordination and visual acuity and low-contrast visual acuity. The conditions for the measurements of visual acuity and low-contrast visual acuity were in the order of Evening, Evening+Glare, Day, and Day+Glare. There were no significant differences among lenses in dynamic visual acuity and depth perception. For hand-eye coordination, time was significantly shorter with colorless than dark gray lenses. Contrast sensitivity was significantly higher with colorless, light yellow, and light gray lenses than with dark yellow and dark gray lenses. The low-contrast visual acuity test in the Day+Glare condition showed no significant difference among the lenses. In the Evening condition, low-contrast visual acuity was significantly higher with colorless and light yellow lenses than with dark gray lenses, and in the Evening+Glare condition, low-contrast visual acuity was significantly higher with colorless lenses than with the other colors except light yellow. Under early evening conditions and during sports activities, light yellow lenses do not appear to have an adverse effect on visual attributes. PMID:23717352

  4. Absorbance and light scattering of lenses organ cultured with glucose.

    PubMed

    Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas

    2018-06-06

    Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.

  5. Galilean-invariant scalar fields can strengthen gravitational lensing.

    PubMed

    Wyman, Mark

    2011-05-20

    The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.

  6. The Specificity of Colored Lenses as Visual Aids in Retinal Disease.

    ERIC Educational Resources Information Center

    Gawande, A.; And Others

    1992-01-01

    This study of the effects of lenses of different colors on the visual abilities and comfort of 20 patients with retinal disease found that, in home trials, the critical issue was density more than color. Office tests of visual acuity and contrast sensitivity with colored lenses did not predict subjective benefit. (Author/JDD)

  7. Gravitational Lensing in Astronomy

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    1998-11-01

    In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered: For example, giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, and weak gravitational lensing. At present, literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, the physics of quasars, dark matter in galaxy halos, and galaxy structure. Looking at these successes in the recent past we predict an even more luminous future for gravitational lensing.

  8. Ultraviolet radiation-blocking characteristics of contact lenses: relevance to eye protection for psoralen-sensitised patients.

    PubMed

    Anstey, A; Taylor, D; Chalmers, I; Ansari, E

    1999-10-01

    Nine brands of contact lens marketed as "UV protective" were tested for ultraviolet (UV) transmission in order to assess potential suitability for psoralen-sensitised patients. UV-transmission characteristics of hydrated lenses was tested with a Bentham monochromator spectro-radiometer system. All lenses showed minimal transmission loss in the visible band. The performance of the nine lenses was uniform for ultraviolet B radiation with negligible transmission, but showed variation in transmission for ultraviolet A radiation. None of the lenses complied with UV-transmission criteria used previously to assess UV-blocking spectacles. Only two lenses had UV-blocking characteristics which came close to the arbitrary criteria used. The performance of ordinary soft and hard lenses was very similar, with negligible blocking of UV radiation. None of the nine contact lenses marketed as "UV protective" excluded sufficient UVA to comply with criteria in current use to assess UV protection in spectacles for psoralen-sensitised patients. However, the improved UV-blocking characteristics of contact lenses identified in this paper compared to previous studies suggests that such a contact lens will soon become available. Meanwhile, contact lens-wearing systemically sensitised PUVA patients should continue to wear approved spectacles for eye protection whilst photosensitised with psoralen.

  9. Discovery of a faint, star-forming, multiply lensed, Lyman-α blob

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Karman, W.; Rosati, P.; Caputi, K. I.; Arrigoni Battaia, F.; Balestra, I.; Grillo, C.; Mercurio, A.; Nonino, M.; Vanzella, E.

    2016-11-01

    We report the discovery of a multiply lensed Lyman-α blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z = 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties, and we find an intrinsic luminosity of LLyα = 1.9 × 1042 erg s-1, extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in agreement with previous studies that find LABs in overdensities. In addition to Lyman-α (Lyα) emission, we find C iv, He II, and O III] ultraviolet (UV) emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the Lyα nebula is likely powered by embedded star formation. Resonant scattering of the Lyα photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-L∗ galaxies at z ≈ 3.

  10. Biochemical analyses of lipids deposited on silicone hydrogel lenses

    PubMed Central

    Hatou, Shin; Fukui, Masaki; Yatsui, Keiichi; Mochizuki, Hiroshi; Akune, Yoko; Yamada, Masakazu

    2010-01-01

    Purpose This study was performed to determine the levels of lipids deposited on in vivo worn silicone hydrogel lenses. Methods Three silicone hydrogel materials, galyfilcon A, senofilcon A, and asmofilcon A, were worn for 2 weeks by 35 normal subjects. Total lipid deposition was determined by the sulfo-phospho-vanillin reaction. Cholesterol was estimated by a colorimetric probe through enzymatic oxidation. Phospholipid level was estimated by determining phosphorus with ammonium molybdate through enzymatic digestion. Results The total lipid content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 32.9 ± 33.8, 42.1 ± 14.0, and 36.6 ± 31.9 μg/lens, respectively. The cholesterol content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 26.2 ± 26.9, 28.6 ± 19.4, and 31.1 ± 21.1 μg/lens, respectively. There were no statistically significant differences in total lipids and cholesterol among the contact lens types. However, the quantity of phospholipid recovered from the asmofilcon A (7.0 ± 5.5 μg/lens) lenses was significantly higher than from galyfilcon A (1.1 ± 0.8 μg/lens) and senofilcon A (2.4 ± 0.8 mg/lens) lenses (p < 0.05, Mann-Whitney test). Conclusions The quantity of total lipid and cholesterol deposited on the 3 silicone hydrogel lenses tested did not differ. However, there were significant differences in the amounts of phospholipid deposited among the 3 silicone hydrogel lenses, of which clinical significance should be explored in the future study.

  11. RCSLenS: The Red Cluster Sequence Lensing Survey

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.; Choi, A.; Heymans, C.; Blake, C.; Erben, T.; Miller, L.; Nakajima, R.; van Waerbeke, L.; Viola, M.; Buddendiek, A.; Harnois-Déraps, J.; Hojjati, A.; Joachimi, B.; Joudaki, S.; Kitching, T. D.; Wolf, C.; Gwyn, S.; Johnson, N.; Kuijken, K.; Sheikhbahaee, Z.; Tudorica, A.; Yee, H. K. C.

    2016-11-01

    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to the ˜785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ˜ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin-2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.

  12. Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Aff004

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.

  13. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368

  14. Gravitational Lensing 2.0

    NASA Astrophysics Data System (ADS)

    Wittman, David M.; Benson, Bryant

    2018-06-01

    Weak lensing analyses use the image---the intensity field---of a distant galaxy to infer gravitational effects on that line of sight. What if we analyze the velocity field instead? We show that lensing imprints much more information onto a highly ordered velocity field, such as that of a rotating disk galaxy, than onto an intensity field. This is because shuffling intensity pixels yields a post-lensed image quite similar to an unlensed galaxy with a different orientation, a problem known as "shape noise." We show that velocity field analysis can eliminate shape noise and yield much more precise lensing constraints. Furthermore, convergence as well as shear can be constrained using the same target, and there is no need to assume the weak lensing limit of small convergence. We present Fisher matrix forecasts of the precision achievable with this method. Velocity field observations are expensive, so we derive guidelines for choosing suitable targets by exploring how precision varies with source parameters such as inclination angle and redshift. Finally, we present simulations that support our Fisher matrix forecasts.

  15. Phosphorylcholine impairs susceptibility to biofilm formation of hydrogel contact lenses.

    PubMed

    Selan, Laura; Palma, Stefano; Scoarughi, Gian Luca; Papa, Rosanna; Veeh, Richard; Di Clemente, Daniele; Artini, Marco

    2009-01-01

    To compare silicone-hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), and phosphorylcholine-coated (PC-C) contact lenses in terms of their susceptibility to biofilm formation by Staphylococcus epidermidis and Pseudomonas aeruginosa. Laboratory investigation. Biofilm formation on colonized test lenses was evaluated with confocal microscopy and in vitro antibiotic susceptibility assays. The results of the latter assays were compared with those performed on planktonic cultures of the same organism. For both microorganisms, sessile colonies on silicone-hydrogel and pHEMA lenses displayed lower antibiotic susceptibility than their planktonic counterparts. In contrast, the susceptibility of cultures growing on PC-C lenses was comparable with that for planktonic cultures. In particular, minimum inhibitory concentration for Tazocin (piperacillin plus tazobactam; Wyeth Pharmaceuticals, Aprilia, Italy; S. epidermidis) and gentamicin (P. aeruginosa) was identical, either in the presence of PC-C support or in planktonic cultures (Tazocin, lenses (0.4 mug/ml) with respect to planktonic cultures (0.2 mug/ml). Confocal microscopy of lenses colonized for 24 hours with P. aeruginosa green fluorescent protein-expressing cells revealed a sessile colonization on silicone-hydrogel lens and a few isolated bacterial cells scattered widely over the surface of the PC-C lens. An increase in antibiotic susceptibility of bacterial cultures was associated with diminished bacterial adhesion. Our results indicate that PC-C lenses seem to be more resistant than silicone-hydrogel and pHEMA lenses to bacterial adhesion and colonization. This feature may facilitate their disinfection.

  16. Effect of phospholipid deposits on adhesion of bacteria to contact lenses.

    PubMed

    Babaei Omali, Negar; Proschogo, Nicholas; Zhu, Hua; Zhao, Zhenjun; Diec, Jennie; Borazjani, Roya; Willcox, Mark D P

    2012-01-01

    Protein and lipid deposits on contact lenses may contribute to clinical complications. This study examined the effect of phospholipids on the adhesion of bacteria to contact lenses. Worn balafilcon A (n = 11) and senofilcon A (n = 11) were collected after daily wear and phospholipids were extracted in chloroform:methanol. The amount of phospholipid was measured by electrospray ionization mass spectrometry. Unworn lenses soaked in phospholipids were exposed to Pseudomonas aeruginosa and Staphylococcus aureus. After 18 h incubation, the numbers of P. aeruginosa or S. aureus that adhered to the lenses were measured. Phospholipid was tested for possible effects on bacterial growth. A broad range of sphingomyelins (SM) and phosphatidylcholines (PC) were detected from both types of worn lenses. SM (16:0) (m/z 703) and PC (34:2) (m/z 758) were the major phospholipids detected in the lens extracts. Phospholipids did not alter the adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). Phospholipids (0.1 mg/mL) showed no effect on the growth of P. aeruginosa 6294 or S. aureus 031. Phospholipids adsorb/absorb to contact lenses during wear, however, the major types of phospholipids adsorbed to lenses do not alter bacterial adhesion or growth.

  17. Gravitational Lensing and Microlensing in Clusters: Clusters as Dark Matter Telescopes

    NASA Astrophysics Data System (ADS)

    Safonova, Margarita

    2018-04-01

    Gravitational lensing is brightening of background objects due to deflection of light by foreground sources. Rich clusters of galaxies are very effective lenses because they are centrally concentrated. Such natural Gravitational Telescopes provide us with strongly magnified galaxies at high redshifts otherwise too faint to be detected or analyzed. With a lensing boost, we can study galaxies shining at the end of the “Dark Ages”. We propose to exploit the opportunity provided by the large field of view and depth, to search for sources magnified by foreground clusters in the vicinity of the cluster critical curves, where enhancements can be of several tens in brightness. Another aspect is microlensing (ML), where we would like to continue our survey of a number of Galactic globular clusters over time-scales of weeks to years to search for ML events from planets to hypothesized central intermediate-mass black holes (IMBH).

  18. A Modern Series Of Cinematographic Lenses: From Concept To Product

    NASA Astrophysics Data System (ADS)

    Neil, lain A.

    1988-06-01

    In the past photographic "taking" lenses and, in particular, those for the motion picture industry i.e. cinematographic lenses have had a mixed career due to inconsistencies between the processes of lens design, manufacture, testing and calibration and practical assessment in the customer domain. Usually these inconsistencies can be attributed to differences between the comparison of, a lens design "scientifically" made and final evaluation in an "artistic" manner. The following paper addresses the processes of lens design, manufacture, testing and calibration using a combination of acquired practical experience and modern test and calibration methods. Various performance aspects are separately addressed and considered in terms of different means of measurement.

  19. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances

    PubMed Central

    2017-01-01

    Purposes To evaluate the optical performance of blue-light filtering spectacle lenses and investigate whether a reduction in blue light transmission affects visual performance and sleep quality. Methods Experiment 1: The relative changes in phototoxicity, scotopic sensitivity, and melatonin suppression of five blue-light filtering plano spectacle lenses were calculated based on their spectral transmittances measured by a spectrophotometer. Experiment 2: A pseudo-randomized controlled study was conducted to evaluate the clinical performance of two blue-light filtering spectacle lenses (BF: blue-filtering anti-reflection coating; BT: brown-tinted) with a regular clear lens (AR) serving as a control. A total of eighty computer users were recruited from two age cohorts (young adults: 18–30 yrs, middle-aged adults: 40–55 yrs). Contrast sensitivity under standard and glare conditions, and colour discrimination were measured using standard clinical tests. After one month of lens wear, subjective ratings of lens performance were collected by questionnaire. Results All tested blue-light filtering spectacle lenses theoretically reduced the calculated phototoxicity by 10.6% to 23.6%. Although use of the blue-light filters also decreased scotopic sensitivity by 2.4% to 9.6%, and melatonin suppression by 5.8% to 15.0%, over 70% of the participants could not detect these optical changes. Our clinical tests revealed no significant decrease in contrast sensitivity either with (95% confidence intervals [CI]: AR–BT [–0.05, 0.05]; AR–BF [–0.05, 0.06]; BT–BF [–0.06, 0.06]) or without glare (95% CI: AR–BT [–0.01, 0.03]; AR–BF [–0.01, 0.03]; BT–BF [–0.02, 0.02]) and colour discrimination (95% CI: AR–BT [–9.07, 1.02]; AR–BF [–7.06, 4.46]; BT–BF [–3.12, 8.57]). Conclusion Blue-light filtering spectacle lenses can partially filter high-energy short-wavelength light without substantially degrading visual performance and sleep quality. These lenses may

  20. Partially Covered Lenses and Additive Color Mixing

    NASA Astrophysics Data System (ADS)

    Razpet, Nada; Kranjc, Tomaž

    2017-12-01

    When doing experimental work of image formation by mirrors and (thin) lenses, it turns out again and again that students often have partially incorrect preconceptions about how the light emerging from an object passes through a lens and how the image is formed on a screen or directly in the eye. To check students' prior knowledge and help get a better understanding of geometrical optics, we decided to start classes with a pre-test to assess their knowledge and understanding. Then we performed a series of experiments (to be described in the paper) with (thin) converging lenses, partially covered with either an opaque screen or with (one or more) color filters. In the end, students' knowledge and understanding were tested again with a post-test. The main goal of the experiments was to convey to students a clearer picture about the image formation, and to help them recognize the fact that every small part of a lens participates in the formation of the whole image.

  1. Massive star clusters in a z=1 star-forming galaxy seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi

    2015-08-01

    Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved

  2. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  3. Binary Lenses in OGLE-III EWS Database. Seasons 2002-2003

    NASA Astrophysics Data System (ADS)

    Jaroszynski, M.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-06-01

    We present 15 binary lens candidates from OGLE-III Early Warning System database for seasons 2002-2003. We also found 15 events interpreted as single mass lensing of double sources. The candidates were selected by visual light curves inspection. Examining the models of binary lenses of this and our previous study (10 caustic crossing events of OGLE-II seasons 1997--1999) we find one case of extreme mass ratio binary (q approx 0.005) and the rest in the range 0.1strong discrepancy between the expected and the observed distributions of mass ratios and separations for binary stars.

  4. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  5. Planck 2015 results. XV. Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

  6. Planck 2015 results: XV. Gravitational lensing

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤more » L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8Ω 0.25 m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck’s sensitivity to this known sky signal. Finally, we also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.« less

  7. [Contact lenses for children. Indications and results].

    PubMed

    Steinbach, P D; Nover, A

    1976-03-18

    If it is necessary to prescribe contact lenses for children, this correction should be made as soon as possible. As a consequence of the development of soft (hydrophile) lenses, the above mentioned group of patients has increased considerably. In any case, a monolateral aphakia as well as a manifest anisometropia should be corrected by a contact lense to avoid amblyopia, heterotropia and loss of stereoscopic vision. Usually soft lenses are well tolerated, so that patients suffering from aphakia as well as hyperopia should always use this type of lense. Nevertheless, the hard lense still has its indication in treating myopia and high astigmatism.

  8. CLUMP-3D: Three-dimensional Shape and Structure of 20 CLASH Galaxy Clusters from Combined Weak and Strong Lensing

    NASA Astrophysics Data System (ADS)

    Chiu, I.-Non; Umetsu, Keiichi; Sereno, Mauro; Ettori, Stefano; Meneghetti, Massimo; Merten, Julian; Sayers, Jack; Zitrin, Adi

    2018-06-01

    We perform a three-dimensional triaxial analysis of 16 X-ray regular and 4 high-magnification galaxy clusters selected from the CLASH survey by combining two-dimensional weak-lensing and central strong-lensing constraints. In a Bayesian framework, we constrain the intrinsic structure and geometry of each individual cluster assuming a triaxial Navarro–Frenk–White halo with arbitrary orientations, characterized by the mass {M}200{{c}}, halo concentration {c}200{{c}}, and triaxial axis ratios ({q}{{a}}≤slant {q}{{b}}), and investigate scaling relations between these halo structural parameters. From triaxial modeling of the X-ray-selected subsample, we find that the halo concentration decreases with increasing cluster mass, with a mean concentration of {c}200{{c}}=4.82+/- 0.30 at the pivot mass {M}200{{c}}={10}15{M}ȯ {h}-1. This is consistent with the result from spherical modeling, {c}200{{c}}=4.51+/- 0.14. Independently of the priors, the minor-to-major axis ratio {q}{{a}} of our full sample exhibits a clear deviation from the spherical configuration ({q}{{a}}=0.52+/- 0.04 at {10}15{M}ȯ {h}-1 with uniform priors), with a weak dependence on the cluster mass. Combining all 20 clusters, we obtain a joint ensemble constraint on the minor-to-major axis ratio of {q}{{a}}={0.652}-0.078+0.162 and a lower bound on the intermediate-to-major axis ratio of {q}{{b}}> 0.63 at the 2σ level from an analysis with uniform priors. Assuming priors on the axis ratios derived from numerical simulations, we constrain the degree of triaxiality for the full sample to be { \\mathcal T }=0.79+/- 0.03 at {10}15{M}ȯ {h}-1, indicating a preference for a prolate geometry of cluster halos. We find no statistical evidence for an orientation bias ({f}geo}=0.93+/- 0.07), which is insensitive to the priors and in agreement with the theoretical expectation for the CLASH clusters.

  9. Modelling the line-of-sight contribution in substructure lensing

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.

    2018-04-01

    We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.

  10. The statistics of gravitational lenses. III - Astrophysical consequences of quasar lensing

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Vietri, M.

    1986-01-01

    The method of Schmidt and Green (1983) for calculating the luminosity function of quasars is combined with gravitational-lensing theory to compute expected properties of lensed systems. Multiple quasar images produced by galaxies are of order 0.001 of the observed quasars, with the numbers over the whole sky calculated to be (0.86, 120, 1600) to limiting B magnitudes of (16, 19, 22). The amount of 'false evolution' is small except for an interesting subset of apparently bright, large-redshift objects for which minilensing by starlike objects may be important. Some of the BL Lac objects may be in this category, with the galaxy identified as the parent object really a foreground object within which stars have lensed a background optically violent variable quasar.

  11. Effects of lenses with different power profiles on eye shape in chickens.

    PubMed

    Tepelus, Tudor Cosmin; Vazquez, Daniel; Seidemann, Anne; Uttenweiler, Dietmar; Schaeffel, Frank

    2012-02-01

    Defocus imposed to the periphery of the visual field can affect the development of foveal/central refractive errors. To make use of this observation, lenses can be designed to reduce myopia progression, but it is important to know which power profiles of the lenses are most effective. We have studied this question in chickens. Sixty male white leghorn chickens were used. From day 7 after hatching, they were treated for 5 days either with full field -7D or +7D lenses, with -7D lenses with a 4mm central hole, with hemi-field lenses of the same power, or with two different types of radial refractive gradient (RRG) lenses with increasing positive power from the center to the periphery, which were designed by Rodenstock GmbH, Munich, Germany. A macro file was written for "ImageJ" to trace and average the outlines of several excised eyes after treatment. Shapes of fellow control eyes and lens-treated eyes were compared in the horizontal and vertical meridians. Refractions were determined at -45°, 0°, and 45° over the horizontal visual field, at the beginning and at the end of experiments, using automated infrared photoretinoscopy. (1) Eye length, as determined by the new automated eye shape tracing technique, was well correlated with A-scan ultrasound data. (2) The effects of previously tested lens designs were reproduced with the new tracing technique. Full field lenses were by far the most effective (-7D: external axial length +0.24mm with an increase in eye volume of about 6%, +7D: -0.08 mm, with a decrease in eye volume of about 2%). Hemi-field lenses and negative lenses with a 4mm central hole induced conspicuous local changes in eye shape. (3) The first type of RRG lenses with a plano zone of about 4mm (equivalent to about ± 12.52° in the visual field for a vertex distance of 5mm) had no apparent effect on central refractions but induced small hyperopic shifts in the periphery, more significant in the temporal retina (+1.70 ± 1.70 D, p<0.001, paired t-test to

  12. Lensing convergence in galaxy clustering in ΛCDM and beyond

    NASA Astrophysics Data System (ADS)

    Villa, Eleonora; Di Dio, Enea; Lepori, Francesca

    2018-04-01

    We study the impact of neglecting lensing magnification in galaxy clustering analyses for future galaxy surveys, considering the ΛCDM model and two extensions: massive neutrinos and modifications of General Relativity. Our study focuses on the biases on the constraints and on the estimation of the cosmological parameters. We perform a comprehensive investigation of these two effects for the upcoming photometric and spectroscopic galaxy surveys Euclid and SKA for different redshift binning configurations. We also provide a fitting formula for the magnification bias of SKA. Our results show that the information present in the lensing contribution does improve the constraints on the modified gravity parameters whereas the lensing constraining power is negligible for the ΛCDM parameters. For photometric surveys the estimation is biased for all the parameters if lensing is not taken into account. This effect is particularly significant for the modified gravity parameters. Conversely for spectroscopic surveys the bias is below one sigma for all the parameters. Our findings show the importance of including lensing in galaxy clustering analyses for testing General Relativity and to constrain the parameters which describe its modifications.

  13. Gravitational lenses: The current sample, recent results, and continuing searches

    NASA Technical Reports Server (NTRS)

    Hewitt, Jacqueline N.

    1991-01-01

    Gravitational lensing is one of the topics in astrophysics that was quite extensively discussed over time before it was actually discovered. Ten years after the discovery of the first one, it is interesting to note how the field has developed. After an initial slow rate of discovery, the last few years have seen an explosion in the number of reported cases. Attention was drawn to the first few cases because quasars at the same red shift, with similar optical spectra, were observed with angular separations of only a few arc seconds. Most observational effort has been devoted to searching for new candidate lens systems and carefully measuring their properties, both to test whether they are indeed lensed and to provide constraints for modeling. A classification of the lenses is into rings, arcs, multiples, and doubles, where the progression is from sources close to the optical axis to far from the optical axis. The known candidate systems are listed. The searches for gravitational lenses are proving to be successful, and more lenses continue to be discovered serendipitously. Many searches are under way, along with instruments that will routinely increase the resolution of astronomical imaging.

  14. Measuring the lensing potential with tomographic galaxy number counts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, Francesco; Durrer, Ruth, E-mail: francesco.montanari@unige.ch, E-mail: ruth.durrer@unige.ch

    2015-10-01

    We investigate how the lensing potential can be measured tomographically with future galaxy surveys using their number counts. Such a measurement is an independent test of the standard ΛCDM framework and can be used to discern modified theories of gravity. We perform a Fisher matrix forecast based on galaxy angular-redshift power spectra, assuming specifications consistent with future photometric Euclid-like surveys and spectroscopic SKA-like surveys. For the Euclid-like survey we derive a fitting formula for the magnification bias. Our analysis suggests that the cross correlation between different redshift bins is very sensitive to the lensing potential such that the survey canmore » measure the amplitude of the lensing potential at the same level of precision as other standard ΛCDM cosmological parameters.« less

  15. GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.

    2015-08-01

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.

  16. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    NASA Astrophysics Data System (ADS)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of < {f}\\star > ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  17. Protein deposition and its effect on bacterial adhesion to contact lenses.

    PubMed

    Omali, Negar Babaei; Zhu, Hua; Zhao, Zhenjun; Willcox, Mark D P

    2013-06-01

    Bacterial adhesion to contact lenses is believed to be the initial step for the development of several adverse reactions that occur during lens wear such as microbial keratitis. This study examined the effect of combinations of proteins on the adhesion of bacteria to contact lenses. Unworn balafilcon A and senofilcon A lenses were soaked in commercially available pure protein mixtures to achieve the same amount of various proteins as found ex vivo. These lenses were then exposed to Pseudomonas aeruginosa and Staphylococcus aureus. Following incubation, the numbers of P. aeruginosa or S. aureus that adhered to the lenses were measured. The possible effect of proteins on bacterial growth was investigated by incubating bacteria in medium containing protein. Although there was a significant (p < 0.003) increase in the total or viable counts of one strain of S. aureus (031) on balafilcon A lenses soaked in the lysozyme/lactoferrin combination, the protein adhered to lenses did not alter the adhesion of any other strains of P. aeruginosa or S. aureus (p > 0.05). Growth of S. aureus 031 (p < 0.0001) but not of P. aeruginosa 6294 was stimulated by addition of lysozyme/lactoferrin combination (2.8/0.5 mg/mL). Addition of lipocalin did not affect the growth of any strains tested (p > 0.05). Adsorption of amounts of lysozyme and lactoferrin or lipocalin equivalent to those extracted from worn contact lenses did not affect the adhesion of most strains of S. aureus or P. aeruginosa to lens surfaces.

  18. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  19. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE PAGES

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger; ...

    2018-03-23

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  20. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  1. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; ...

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  2. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  3. Statistics of gravitational lenses - The uncertainties

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1991-01-01

    The assumptions in the analysis of gravitational lensing statistics are examined. Special emphasis is given to the uncertainties in the theoretical predictions. It is shown that a simple redshift cutoff model, which may result from galaxy evolution, can significantly reduce the lensing probability and explain the large mean separation of images in observed gravitational lenses. This effect may affect the constraint on the contribution of the cosmological constant to producing a flat universe from the number counts of the observed lenses. For the Omega(0) = 1 (filled beam) model, the lensing probability of early-type galaxies with finite core radii is reduced roughly by a factor of 2 for high-redshift quasars as compared with the corresponding singular isothermal sphere model. The finite core radius effect is about 20 percent for a lambda-dominated flat universe. It is also shown that the most recent galaxy luminosity function gives lensing probabilities that are smaller than previously estimated roughly by a factor of 3.

  4. On weak lensing shape noise

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias; Kitching, Thomas D.; Cropper, Mark

    2015-12-01

    One of the most powerful techniques to study the dark sector of the Universe is weak gravitational lensing. In practice, to infer the reduced shear, weak lensing measures galaxy shapes, which are the consequence of both the intrinsic ellipticity of the sources and of the integrated gravitational lensing effect along the line of sight. Hence, a very large number of galaxies is required in order to average over their individual properties and to isolate the weak lensing cosmic shear signal. If this `shape noise' can be reduced, significant advances in the power of a weak lensing surveys can be expected. This paper describes a general method for extracting the probability distributions of parameters from catalogues of data using Voronoi cells, which has several applications, and has synergies with Bayesian hierarchical modelling approaches. This allows us to construct a probability distribution for the variance of the intrinsic ellipticity as a function of galaxy property using only photometric data, allowing a reduction of shape noise. As a proof of concept the method is applied to the CFHTLenS survey data. We use this approach to investigate trends of galaxy properties in the data and apply this to the case of weak lensing power spectra.

  5. Lensing is low: cosmology, galaxy formation or new physics?

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; Saito, Shun; Hilbert, Stefan; Barreira, Alexandre; More, Surhud; White, Martin; Alam, Shadab; Behroozi, Peter; Bundy, Kevin; Coupon, Jean; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Mandelbaum, Rachel; Miller, Lance; Moraes, Bruno; Pereira, Maria E. S.; Rodríguez-Torres, Sergio A.; Schmidt, Fabian; Shan, Huan-Yuan; Viel, Matteo; Villaescusa-Navarro, Francisco

    2017-05-01

    We present high signal-to-noise galaxy-galaxy lensing measurements of the Baryon Oscillation Spectroscopic Survey constant mass (CMASS) sample using 250 deg2 of weak-lensing data from Canada-France-Hawaii Telescope Lensing Survey and Canada-France-Hawaii Telescope Stripe 82 Survey. We compare this signal with predictions from mock catalogues trained to match observables including the stellar mass function and the projected and two-dimensional clustering of CMASS. We show that the clustering of CMASS, together with standard models of the galaxy-halo connection, robustly predicts a lensing signal that is 20-40 per cent larger than observed. Detailed tests show that our results are robust to a variety of systematic effects. Lowering the value of S_8=σ _8 \\sqrt{Ω _m/0.3} compared to Planck Collaboration XIII reconciles the lensing with clustering. However, given the scale of our measurement (r < 10 h-1 Mpc), other effects may also be at play and need to be taken into consideration. We explore the impact of baryon physics, assembly bias, massive neutrinos and modifications to general relativity on ΔΣ and show that several of these effects may be non-negligible given the precision of our measurement. Disentangling cosmological effects from the details of the galaxy-halo connection, the effect of baryons, and massive neutrinos, is the next challenge facing joint lensing and clustering analyses. This is especially true in the context of large galaxy samples from Baryon Acoustic Oscillation surveys with precise measurements but complex selection functions.

  6. Golden gravitational lensing systems from the Sloan Lens ACS Survey - II. SDSS J1430+4105: a precise inner total mass profile from lensing alone

    NASA Astrophysics Data System (ADS)

    Eichner, Thomas; Seitz, Stella; Bauer, Anne

    2012-12-01

    We study the Sloan Lens ACS (SLACS) survey strong-lensing system SDSS J1430+4105 at zl = 0.285. The lensed source (zs = 0.575) of this system has a complex morphology with several subcomponents. Its subcomponents span a radial range from 4 to 10 kpc in the plane of the lens. Therefore, we can constrain the slope of the total projected mass profile around the Einstein radius from lensing alone. We measure a density profile that is slightly but not significantly shallower than isothermal at the Einstein radius. We decompose the mass of the lensing galaxy into a de Vaucouleurs component to trace the stars and an additional dark component. The spread of multiple-image components over a large radial range also allows us to determine the amplitude of the de Vaucouleurs and dark matter components separately. We get a mass-to-light ratio of M de Vauc LB ≈ (5.5±1.5) M⊙L⊙,B and a dark matter fraction within the Einstein radius of ≈20 to 40 per cent. Modelling the star formation history assuming composite stellar populations at solar metallicity to the galaxy's photometry yields a mass-to-light ratio of M, salp LB ≈ 4.0-1.3+0.6 M⊙L⊙,B and M, chab LB ≈ 2.3-0.8+0.3 M⊙L⊙,B for Salpeter and Chabrier initial mass functions, respectively. Hence, the mass-to-light ratio derived from lensing is more Salpeter like, in agreement with results for massive Coma galaxies and other nearby massive early-type galaxies. We examine the consequences of the galaxy group in which the lensing galaxy is embedded, showing that it has little influence on the mass-to-light ratio obtained for the de Vaucouleurs component of the lensing galaxy. Finally, we decompose the projected, azimuthally averaged 2D density distribution of the de

  7. Glasses and Contact Lenses

    MedlinePlus

    ... vision problems; this includes prescribing eyeglasses and contact lenses, but also doing eye surgery for other eye-related problems. An optometrist ... them clean. The most important thing about contact lenses is good hygiene to prevent infections in your eye. But the really fun part of new glasses ...

  8. THE SYSTEMATIC ERROR TEST FOR PSF CORRECTION IN WEAK GRAVITATIONAL LENSING SHEAR MEASUREMENT BY THE ERA METHOD BY IDEALIZING PSF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@riken.jp

    We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematicmore » error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.« less

  9. Compact Groups analysis using weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chalela, Martín; Gonzalez, Elizabeth Johana; Garcia Lambas, Diego; Foëx, Gael

    2017-05-01

    We present a weak lensing analysis of a sample of Sloan Digital Sky Survey compact groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the singular isothermal spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1} Mpc. We test three different definitions of CG centres to identify which best traces the true dark matter halo centre, concluding that a luminosity-weighted centre is the most suitable choice. We also study the lensing signal dependence on CG physical radius, group surface brightness and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yield σV ≈ 230 km s-1 in agreement with our lensing results.

  10. The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu

    2014-03-01

    The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observablesmore » like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus

  11. Application and System Design of Elastomer Based Optofluidic Lenses

    NASA Astrophysics Data System (ADS)

    Savidis, Nickolaos

    Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic

  12. Gravitational Lensing: Einstein's unfinished symphony

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Ellis, Richard S.

    2015-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.

  13. RELICS: Reionization Lensing Cluster Survey - Discovering Brightly Lensed Distant Galaxies for JWST

    NASA Astrophysics Data System (ADS)

    Coe, Dan; Bradley, Larry; Salmon, Brett; Avila, Roberto J.; Ogaz, Sara; Bradac, Marusa; Huang, Kuang-Han; Strait, Victoria; Hoag, Austin; Sharon, Keren q.; Cerny, Catherine; Paterno-Mahler, Rachel; Johnson, Traci Lin; Mahler, Guillaume; Zitrin, Adi; Sendra Server, Irene; Acebron, Ana; Cibirka, Nathália; Rodney, Steven; Strolger, Louis; Riess, Adam; Dawson, William; Jones, Christine; Andrade-Santos, Felipe; Lovisari, Lorenzo; Czakon, Nicole; Umetsu, Keiichi; Trenti, Michele; Vulcani, Benedetta; Carrasco, Daniela; Livermore, Rachael; Stark, Daniel P.; Mainali, Ramesh; Frye, Brenda; Oesch, Pascal; Lam, Daniel; Toft, Sune; Ryan, Russell; Peterson, Avery; Past, Matthew; Kikuchihara, Shotaro; Ouchi, Masami; Oguri, Masamune

    2018-01-01

    The Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program has completed observations of 41 massive galaxy clusters with 188 orbits of HST ACS and WFC3/IR imaging and 390 hours of Spitzer IRAC imaging. This poster presents an overview of the program and data releases. Reduced images, catalogs, and lens models for all clusters are now available on MAST. RELICS is studying the clusters, supernovae, and lensed high-redshift galaxies. A companion poster presents our high-redshift results: over 300 lensed z ~ 6 - 10 candidates, including some of the brightest known at these redshifts (Salmon et al. 2018). These will be excellent targets for detailed follow-up study in JWST Cycle 1 GO proposals.

  14. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  15. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    NASA Astrophysics Data System (ADS)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  16. The Search for Lensed Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  17. Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses

    NASA Astrophysics Data System (ADS)

    Taylor, Courtney D.

    Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples

  18. A PRECISE CLUSTER MASS PROFILE AVERAGED FROM THE HIGHEST-QUALITY LENSING DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi; Broadhurst, Tom; Zitrin, Adi

    2011-09-01

    We outline our methods for obtaining high-precision mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing measurements. For massive clusters, the strong- and weak-lensing regimes contribute equal logarithmic coverage of the radial profile. The utility of high-quality data is limited by the cosmic noise from large-scale structure along the line of sight. This noise is overcome when stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a mean radial mass profile of four similar mass clusters of high-quality Hubble Space Telescope and Subaru images, in the range Rmore » = 40-2800 kpc h {sup -1}, where the inner radial boundary is sufficiently large to avoid smoothing from miscentering effects. The stacked mass profile is detected at 58{sigma} significance over the entire radial range, with the contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro-Frenk-White form predicted for the family of cold dark matter (CDM) dominated halos in gravitational equilibrium. The central slope is constrained to lie in the range, -dln {rho}/dln r = 0.89{sup +0.27}{sub -0.39}. The mean concentration is c{sub vir} = 7.68{sup +0.42}{sub -0.40} (at M{sub vir} = 1.54{sup +0.11}{sub -0.10} x 10{sup 15} M{sub sun} h {sup -1}), which is high for relaxed, high-mass clusters, but consistent with {Lambda}CDM when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru Hyper Suprime-Cam, and XXM-XXL, to construct the c{sub vir}-M{sub vir} relation over a wider mass range.« less

  19. Galaxy cluster center detection methods with weak lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. In this work, we test methods of centroid determination from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ˜ 500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. We also project the usefulness of this technique in future surveys.

  20. Thermal lensing in ocular media

    NASA Astrophysics Data System (ADS)

    Vincelette, Rebecca Lee

    2009-12-01

    This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e2 laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina

  1. Population mixtures and searches of lensed and extended quasars across photometric surveys

    NASA Astrophysics Data System (ADS)

    Williams, Peter; Agnello, Adriano; Treu, Tommaso

    2017-04-01

    Wide-field photometric surveys enable searches of rare yet interesting objects, such as strongly lensed quasars or quasars with a bright host galaxy. Past searches for lensed quasars based on their optical and near-infrared properties have relied on photometric cuts and spectroscopic preselection (as in the Sloan Quasar Lens Search), or neural networks applied to photometric samples. These methods rely on cuts in morphology and colours, with the risk of losing many interesting objects due to scatter in their population properties, restrictive training sets, systematic uncertainties in catalogue-based magnitudes and survey-to-survey photometric variations. Here, we explore the performance of a Gaussian mixture model to separate point-like quasars, quasars with an extended host and strongly lensed quasars using griz psf and model magnitudes and WISE W1, W2. The choice of optical magnitudes is due to their presence in all current and upcoming releases of wide-field surveys, whereas UV information is not always available. We then assess the contamination from blue galaxies and the role of additional features such as W3 magnitudes or psf-model terms as morphological information. As a demonstration, we conduct a search in a random 10 per cent of the SDSS footprint, and provide the catalogue of the 43 SDSS object with the highest 'lens' score in our selection that survive visual inspection, and are spectroscopically confirmed to host active nuclei. We inspect archival data and find images of 5/43 objects in the Hubble Legacy Archive, including two known lenses. The code and materials are available to facilitate follow-up.

  2. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20%more » of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.« less

  3. CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medezinski, Elinor; Lemze, Doron; Ford, Holland

    2013-11-01

    The galaxy cluster MACS J0717.5+3745 (z = 0.55) is the largest known cosmic lens, with complex internal structures seen in deep X-ray, Sunyaev-Zel'dovich effect, and dynamical observations. We perform a combined weak- and strong-lensing analysis with wide-field BVR{sub c} i'z' Subaru/Suprime-Cam observations and 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble. We find consistent weak distortion and magnification measurements of background galaxies and combine these signals to construct an optimally estimated radial mass profile of the cluster and its surrounding large-scale structure out to 5 Mpc h {sup –1}. We findmore » consistency between strong-lensing and weak-lensing in the region where these independent data overlap, <500 kpc h {sup –1}. The two-dimensional weak-lensing map reveals a clear filamentary structure traced by distinct mass halos. We model the lensing shear field with nine halos, including the main cluster, corresponding to mass peaks detected above 2.5σ{sub κ}. The total mass of the cluster as determined by the different methods is M{sub vir} ≈ (2.8 ± 0.4) × 10{sup 15} M{sub ☉}. Although this is the most massive cluster known at z > 0.5, in terms of extreme value statistics, we conclude that the mass of MACS J0717.5+3745 by itself is not in serious tension with ΛCDM, representing only a ∼2σ departure above the maximum simulated halo mass at this redshift.« less

  4. [What is the role of contact lenses within the scope of electronystagmography?].

    PubMed

    Schmäl, F; Stoll, W

    1997-10-01

    During electronystagmography it is necessary to correct detective vision for calibration, smooth pursuit, and saccadic eye movements. Therefore more and more people use contact lenses instead of normal glasses. Given the lack of detailed information about this phenomenon, in the current literature we decided to investigate the influence of soft contact lenses on electronystagmography. The aim of this study was to find out differences in the results of electronystagmography between using glasses or contact lenses. Our investigation involved 20 vestibular healthy human subjects with myopia. In the first part of the examination they used their contact lenses and in the second part they were wearing normal glasses. After measuring the calibration potential we wanted to see if contact lenses would increase the rate of artifacts in the electronystagmogram. Then we attempted to determine whether contact lenses would an influence on the registration of the optokinetic nystagmus. Induced saccadic eye movements were recorded and analysed. Contact lenses had a negative influence neither on the calibration potential nor on the rate of artifacts. The latency of the saccadic eye movements also showed no differences between both parts of this investigation. Only the velocity of the saccades and the gain value during the optokinetic test were reduced when glasses were used. Contact lenses may stimulate the secretory function of the lacrimal gland and thus decrease friction forces. It is also possible that the reduced image size produced or the reduction-effect of minus by glasses in near sighted persons negatively influences eyeball velocity. In summary, our study demonstrates that contact lenses do not have a negative influence on electronystagmography. Therefore electronystagmographic studies of patients with contact lenses are permissible for purposes of documenting a medical opinion.

  5. Evaluation of the quality of generic polymethylmethacrylate intraocular lenses marketed in India.

    PubMed

    Combe, R; Watkins, R; Brian, G

    2001-04-01

    To determine the quality of single-piece, allpolymethylmethacrylate (PMMA) Intraocular lenses (IOLs) from eght generic manufacturers marketing their product in India. This assessment of quality was made with respect to compliance with internationa standards for the manufacture of IOLs, specifically those parameters most likely to affect patient postoperat ve visual acuity and the long-term biocompatibility of the implanted lens. Ten IOLs from each of eight manufacturers were purchased randomly from commercial retail outlets in India. Each IOL, in a masked fashion, had its physical dimensions, optical performance and cosmetic appearance assessed, using the methods prescribed in ISO 11979-2 and 11979-3. Validation of manufacturing process controls were determined by statistical process contro techniques. Four IOLs from each manufacturer were also tested for the presence of unpolymerized PMMA using gas chromatography. Only lenses from two IOL manufacturers complied with the optical and mechanical standards. All other manufacturers' lenses failed one or more of these tests. Intraocular lenses from only two producers met with surface quality and bulk homogeneity standards. All others exhibited defects such as surface contamination and scratches, poor polishing, and chipped or rough positioning holes. Lenses from two producers exhibited high levels of methylmethacrylate monomer (MMA). Non-clinical grade PMMA starting material may have been used in the manufacture of IOLs by some producers. Critical manufacturing defects occurred in the IOLs from five of the eight producers tested. Only one manufacturer's IOLs met all specifications, and on statistical analysis demonstrated good manufacturing process contro with respect to the properties tested. With the widespread acceptance of IOL implantation in developing countries, such as India, it is essential that in the rush to make this the norm, the quality of implants used not be overlooked.

  6. Microbial adhesion to silicone hydrogel lenses: a review.

    PubMed

    Willcox, Mark D P

    2013-01-01

    Microbial adhesion to contact lenses is believed to be one of the initiating events in the formation of many corneal infiltrative events, including microbial keratitis, that occur during contact lens wear. The advent of silicone hydrogel lenses has not reduced the incidence of these events. This may partly be related to the ability of microbes to adhere to these lenses. The aim of this study was to review the published literature on microbial adhesion to contact lenses, focusing on adhesion to silicone hydrogel lenses. The literature on microbial adhesion to contact lenses was searched, along with associated literature on adverse events that occur during contact lens wear. Particular reference was paid to the years 1995 through 2012 because this encompasses the time when the first clinical trials of silicone hydrogel lenses were reported, and their commercial availability and the publication of epidemiology studies on adverse events were studied. In vitro studies of bacterial adhesion to unworn silicone hydrogel lens have shown that generally, bacteria adhere to these lenses in greater numbers than to the hydroxyethyl methacrylate-based soft lenses. Lens wear has different effects on microbial adhesion, and this is dependent on the type of lens and microbial species/genera that is studied. Biofilms that can be formed on any lens type tend to protect the bacteria and fungi from the effects on disinfectants. Fungal hyphae can penetrate the surface of most types of lenses. Acanthamoeba adhere in greater numbers to first-generation silicone hydrogel lenses compared with the second-generation or hydroxyethyl methacrylate-based soft lenses. Microbial adhesion to silicone hydrogel lenses occurs and is associated with the production of corneal infiltrative events during lens wear.

  7. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  8. Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast

    NASA Astrophysics Data System (ADS)

    Cozzolino, Davide; Greggio, Nicolas; Antonellini, Marco; Giambastiani, Beatrice Maria Sole

    2017-08-01

    This study characterizes the near-shore portion of the shallow coastal aquifer included in the Ravenna area (Northern Italy) with special attention to the roles of coastal dunes as freshwater reservoirs and their buffer on groundwater salinity. The paper focuses on the presence and evolution of freshwater lenses below coastal dunes and highlights the existing differences between preserved natural dunes and dunes strongly affected by human intervention. The influence that multiple natural and anthropogenic factors, such as land cover, local drainage network, and beach erosion have on the presence, size and evolution of the freshwater lenses in the aquifer is quantified and discussed. The methodology includes multiple seasonal monitoring and sampling campaigns of physical (water level, salinity, and temperature) and chemical (major cations and anions) groundwater parameters. Results indicate that freshwater lenses, where existing, are limited in thickness (about 1-2 m). Proximity to drainage ditches as well as limited dune elevation and size do not allow the formation and permanent storage of large freshwater lenses in the aquifer below the dunes. The pine forest land cover, that replaced the typical bush or sand cover, intensifies evapotranspiration reducing net infiltration and freshwater storage. The cation species distribution in the water shows that a freshening process is ongoing in preserved natural sites with stable or advancing beaches, whereas a salinization process is ongoing in anthropogenic-impacted areas with strongly-fragmented dune systems. Currently, the thin freshwater lenses in the shallow Ravenna coastal aquifer are limited in space and have no relevance for irrigation or any other human activity. The dune-beach system, however, is the recharge zone of the coastal aquifer and its protection is important to reduce water and soil salinization, which in turn control the health of the whole coastal ecosystem.

  9. Adhesion of Pseudomonas aeruginosa to orthokeratology and alignment lenses.

    PubMed

    Choo, Jennifer D; Holden, Brien A; Papas, Eric B; Willcox, Mark D P

    2009-02-01

    To determine whether contact lenses designed for orthokeratology (OK) are colonized by greater numbers of bacteria compared with standard (alignment fitted) design rigid gas permeable lenses before and after lens wear. Eighteen 1-year-old cats were randomly fitted with an OK lens in one eye and an alignment fitted (AF) lens in the other eye. Both lenses were made in the same diameter and central thickness and of the same material. Two separate wearing periods of 2 weeks and 6 weeks were used. After each wearing period, lenses were soaked in Pseudomonas aeruginosa (6294 or 6206) for 10 min. The lenses were then reinserted onto their respective corneas for a wearing period of 16 hours after which lenses were collected and remaining adhered bacteria quantified. Unworn control lenses were also soaked and bacteria enumerated for comparison. There were no significant differences in the number of bacteria adherent to unworn AF and OK lenses. Analysis of lenses after wear showed OK lenses retained significantly higher numbers of viable bacteria than AF lenses in all studies. OK lenses retain more bacteria than AF rigid gas permeable lenses after bacteria-loaded overnight lens wear. This may increase the risk for an infection in OK patients should suitable conditions be present. Specific education on the cleaning of OK lenses is essential.

  10. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  11. Cosmic variance of the galaxy cluster weak lensing signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruen, D.; Seitz, S.; Becker, M. R.

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  12. Cosmic variance of the galaxy cluster weak lensing signal

    DOE PAGES

    Gruen, D.; Seitz, S.; Becker, M. R.; ...

    2015-04-13

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  13. One Episode, Two Lenses

    ERIC Educational Resources Information Center

    Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc

    2013-01-01

    A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…

  14. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  15. Contact Lenses in the Laboratory.

    ERIC Educational Resources Information Center

    Kingston, David W.

    1981-01-01

    Summarizes results of a three-item questionnaire returned by 43 Michigan institutions expressing views on wearing contact lenses in chemical laboratories. Questions focused on eye protection, type of protection, and use of contact lenses. (SK)

  16. Gravitational lensing and the Lyman-alpha forest

    NASA Technical Reports Server (NTRS)

    Ikeuchi, Satoru; Turner, Edwin L.

    1991-01-01

    Possible connections between the inhomogeneities responsible for the Lyman-alpha forest in quasar spectra and gravitational lensing effects are investigated. For most models of the Lyman-alpha forest, no significant lensing is expected. For some versions of the CDM model-based minihalo hypothesis, gravitational lensings on scales less than abour 0.1 arcsec would occur with a frequency approaching that with which ordinary galaxies cause arcsecond scale lensing.

  17. Lensing duct

    DOEpatents

    Beach, R.J.; Benett, W.J.

    1994-04-26

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.

  18. Are some BL Lacs artefacts of gravitational lensing?

    PubMed

    Ostriker, J P; Vietri, M

    1990-03-01

    WE suggested in 1985 that a significant fraction of BL Lacertae objects, a kind of lineless quasar, seen in nearby galaxies are in fact images, gravitationally lensed and substantially amplified by stars in the nearby galaxy, of background objects, optically violent variable (OVV) quasars at redshifts z > 1 (ref. 1). This hypothesis was made on the basis of certain general similarities between BL Lacs and O Ws, but for two recently observed BL Lacs(2,3) a strong case can be made that the accompanying elliptical galaxy is a foreground object. In addition, we argue that the distribution of BL Lac redshifts is hard to understand without gravitational lensing, unless we happen to be at a very local maximum of the spatial cosmic distribution of BL Lacs. Our analysis also indicates that the galaxies whose stars are likely to act as microlenses will be found in two peaks, one nearby, with redshift 0.05-0.10, and the other near the distant quasar.

  19. Breaking the imaging symmetry in negative refraction lenses.

    PubMed

    Ma, Changbao; Liu, Zhaowei

    2012-01-30

    Optical lenses are pervasive in various areas of sciences and technologies. It is well known that conventional lenses have symmetrical imaging properties along forward and backward directions. In this letter, we show that hyperbolic plasmonic metamaterial based negative refraction lenses perform as either converging lenses or diverging lenses depending on the illumination directions. New imaging equations and properties that are different from those of all the existing optical lenses are also presented. These new imaging properties, including symmetry breaking as well as the super resolving power, significantly expand the horizon of imaging optics and optical system design.

  20. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Kovetz, Ely D.; Dai, Liang; Kamionkowski, Marc

    2016-08-01

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20 - 100 M⊙ window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ˜20 M⊙ would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass ML induces two images, separated by a typical time delay ˜few×(ML/30 M⊙) msec . Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 1 04 FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 1 04 FRBs would constrain the fraction fDM of dark matter in MACHOs to fDM≲0.08 for ML≳20 M⊙ .

  1. Solutions for care of silicone hydrogel lenses.

    PubMed

    Willcox, Mark D P

    2013-01-01

    During wear of contact lenses on a daily wear basis, it is necessary to disinfect the lens overnight before reinserting the lens the next day. The ability of the solutions used for this to disinfect lenses and lens cases is important for safe lens wear. The literature on the disinfecting ability of multipurpose disinfecting solutions (MPDS) commonly used with silicone hydrogel lenses reported during the period 2000 to 2012 is reviewed, as this is the period of time during which these lenses have been commercially available. Particular emphasis is placed on the ability of disinfecting solutions to control colonization of lens cases by microbes and changes in composition and use of the solutions. In addition, the literature is reviewed on ways of minimizing lens case microbial contamination. Maintaining the hygiene of contact lenses and lens cases is important in minimizing various forms of corneal infiltrative events that occur during lens wear. Although lens case contamination is not associated with different lenses, it is determined by use of different MPDS. MPDS that allow more frequent or heavy contamination of cases by Gram-negative bacteria are associated with a higher incidence of corneal infiltrative events. MPDS are now available that contain dual disinfectants. Wiping lens cases with tissues or using lens cases that incorporate silver are associated with reductions in contamination in clinical trials. Similarly, using MPDS to rub and rinse lenses before disinfection may reduce levels of microbes on lenses. The MPDS also contain surfactants that help reduce deposition and denaturation of proteins on lenses. Improvements in MPDS formulations and hygiene practices may help to reduce the incidence of adverse events that are seen during use with silicone hydrogel lenses.

  2. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% atmore » 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.« less

  3. New Physical Optics Method for Curvilinear Refractive Surfaces and its Verification in the Design and Testing of W-band Dual-Aspheric Lenses

    DTIC Science & Technology

    2013-10-01

    its Verification in the Design and Testing of W-band Dual-Aspheric Lenses A. Altintas and V. Yurchenko EEE Department, Bilkent University Ankara...Theory and Techn., Vol. 55, 239, 2007 [5] ZEMAX Development Corporation, Zemax- EE , http://www.zemax.com/ [6] Pasqualini D. and Maci S., ”High-Frequency

  4. The Herschel Lensing Survey (HLS): HST Frontier Field Coverage

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi

    2015-08-01

    The Herschel Lensing Survey (HLS; PI: Egami) is a large Far-IR/Submm imaging survey of massive galaxy clusters using the Herschel Space Observatory. Its main goal is to detect and study IR/Submm galaxies that are below the nominal confusion limit of Herschel by taking advantage of the strong gravitational lensing power of massive galaxy clusters. HLS has obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 cluster fields (HLS-deep) as well as shallower but nearly confusion-limited SPIRE-only images for 527 cluster fields (HLS-snapshot) with a total observing time of ~420 hours. Extensive multi-wavelength follow-up studies are currently on-going with a variety of observing facilities including ALMA.Here, I will focus on the analysis of the deep Herschel PACS/SPIRE images obtained for the 6 HST Frontier Fields (5 observed by HLS-deep; 1 observed by the Herschel GT programs). The Herschel/SPIRE maps are wide enough to cover the Frontier-Field parallel pointings, and we have detected a total of ~180 sources, some of which are strongly lensed. I will present the sample and discuss the properties of these Herschel-detected dusty star-forming galaxies (DSFGs) identified in the Frontier Fields. Although the majority of these Herschel sources are at moderate redshift (z<3), a small number of extremely high-redshift (z>6) candidates can be identified as "Herschel dropouts" when combined with longer-wavelength data. We have also identified ~40 sources as likely cluster members, which will allow us to study the properties of DSFGs in the dense cluster environment.A great legacy of our HLS project will be the extensive multi-wavelength database that incorporates most of the currently available data/information for the fields of the Frontier-Field, CLASH, and other HLS clusters (e.g., HST/Spitzer/Herschel images, spectroscopic/photometric redshifts, lensing models, best-fit SED models etc.). Provided with a user-friendly GUI and a flexible search engine, this

  5. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera

  6. Recommended coordinate systems for thin spherocylindrical lenses.

    PubMed

    Deal, F C; Toop, J

    1993-05-01

    Because the set of thin spherocylindrical lenses forms a vector space, any such lens can be expressed in terms of its cartesian coordinates with respect to whatever set of basis lenses we may choose. Two types of cartesian coordinate systems have become prominent, those having coordinates associated with the lens power matrix and those having coordinates associated with the Humphrey Vision Analyzer. This paper emphasizes the value of a particular cartesian coordinate system of the latter type, and the cylindrical coordinate system related to it, by showing how it can simplify the trigonometry of adding lenses and how it preserves symmetry in depicting the sets of all spherical lenses, all Jackson crossed-cylinders, and all cylindrical lenses. It also discusses appropriate coordinates for keeping statistics on lenses and shows that an easy extension of the lens vector space to include general optical systems is not possible.

  7. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less

  8. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  9. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2018-01-16

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  10. Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter ofmore » the entire universe, including the otherwise-invisible dark matter.« less

  11. Direct Laser Writing of Nanophotonic Structures on Contact Lenses.

    PubMed

    AlQattan, Bader; Yetisen, Ali K; Butt, Haider

    2018-04-24

    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.

  12. The effect of Limber and flat-sky approximations on galaxy weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, Pablo; Challinor, Anthony; Efstathiou, George, E-mail: pl411@cam.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk, E-mail: gpe@ast.cam.ac.uk

    We review the effect of the commonly-used Limber and flat-sky approximations on the calculation of shear power spectra and correlation functions for galaxy weak lensing. These approximations are accurate at small scales, but it has been claimed recently that their impact on low multipoles could lead to an increase in the amplitude of the mass fluctuations inferred from surveys such as CFHTLenS, reducing the tension between galaxy weak lensing and the amplitude determined by Planck from observations of the cosmic microwave background. Here, we explore the impact of these approximations on cosmological parameters derived from weak lensing surveys, using themore » CFHTLenS data as a test case. We conclude that the use of small-angle approximations for cosmological parameter estimation is negligible for current data, and does not contribute to the tension between current weak lensing surveys and Planck.« less

  13. Inflatable lenses for space photovoltaic concentrator arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neill, M.J.; Piszczor, M.F.

    1997-12-31

    For 12 years, ENTECH and NASA Lewis have been developing Fresnel lens concentrator technology for space power applications. ENTECH provided the point-focus mini-dome lenses for the PASP+ array, launched in 1994. These silicone lenses performed well on orbit, with only about 3% optical performance loss after 1 year in elliptical orbit, with high radiation, atomic oxygen, and ultraviolet exposure. The only protection for these silicone lenses was a thin-film coating provided by OCLI. ENTECH also provided the line-focus lenses for the SCARLET 1 and SCARLET 2 arrays in 1995 and 1997, respectively. These lenses are laminated assemblies, with protective ceriamore » glass superstrates over the silicone lens. In March 1997, ENTECH and NASA Lewis began development of inflatable Fresnel lenses, to achieve lower weight, smaller launch volume, reduced cost, less fragility, and other advantages. This paper summarizes the new concentrator approach, including key program results to date.« less

  14. Transmittance of tinted and UV-blocking disposable contact lenses.

    PubMed

    Harris, M G; Haririfar, M; Hirano, K Y

    1999-03-01

    Tinted and ultraviolet (UV)-blocking disposable contact lenses have become increasingly popular over the last decade. Wearers of UV-blocking contact lenses could benefit greatly by protecting their eyes from potential UV radiation damage. A Uvikon 930 dual beam spectrophotometer was used to measure three enhancement-tinted lenses (royal blue, evergreen, and aqua), two types of UV-blocking lenses, and two types of non-UV-blocking lenses. Enhancement-tinted lenses did show a decrease in transmittance at certain wavelengths on the visible spectrum, but they did not reduce the transmittance of UV radiation to the extent of the UV-blocking lenses designed specifically for this purpose.

  15. Contamination risk of reusing daily disposable contact lenses.

    PubMed

    Boost, Maureen; Poon, Kin-Chiu; Cho, Pauline

    2011-12-01

    This study investigated contamination of saline and daily disposable contact lens (DDCL) stored overnight after use in the original blister pack and the practices of a group of DDCL users. Twenty DDCL wearers placed their lenses after 1 day's use back into the blister pack saline (BPS) and left them overnight before transferring both lens and BPS to a new CL case. The lens and BPS were cultured the following day, and total number of organisms, Staphylococci, and gram negative organisms enumerated. Each subject submitted five pairs of lenses over a 1 month period. Ninety-five percent of subjects had at least one pair of contaminated lenses, and the BPS yielded similar results to the contaminated lenses, with staphylococcal contamination being predominant. Three subjects admitted to not washing their hands before handling their lenses and six to habitual reuse of their lenses with storage in the BPS. There was a higher risk of contamination in male subjects. Reuse of lenses poses an important risk for DDCL users because they are unlikely to have received proper training in cleaning and disinfection of lenses and do not use a lens case or disinfecting solutions. Overnight storage in BPS results in contaminated lenses which if reused increases the infection risk especially with Staphylococci. It is important that practitioners carefully educate their patients in correct use of DDCL and, as cost of lenses is a major factor in willingness to reuse, ensure that DDCL is the most suitable choice when prescribing.

  16. Design and fabrication of the progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Qin, Linling; Qian, Lin; Yu, Jingchi

    2011-11-01

    The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.

  17. Polymer X-ray refractive nano-lenses fabricated by additive technology.

    PubMed

    Petrov, A K; Bessonov, V O; Abrashitova, K A; Kokareva, N G; Safronov, K R; Barannikov, A A; Ershov, P A; Klimova, N B; Lyatun, I I; Yunkin, V A; Polikarpov, M; Snigireva, I; Fedyanin, A A; Snigirev, A

    2017-06-26

    The present work demonstrates the potential applicability of additive manufacturing to X-Ray refractive nano-lenses. A compound refractive lens with a radius of 5 µm was produced by the two-photon polymerization induced lithography. It was successfully tested at the X-ray microfocus laboratory source and a focal spot of 5 μm was measured. An amorphous nature of polymer material combined with the potential of additive technologies may result in a significantly enhanced focusing performance compared to the best examples of modern X-ray compound refractive lenses.

  18. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  19. Irregular Corneas: Improve Visual Function With Scleral Contact Lenses.

    PubMed

    de Luis Eguileor, Beatriz; Etxebarria Ecenarro, Jaime; Santamaria Carro, Alaitz; Feijoo Lera, Raquel

    2018-05-01

    To assess visual function in patients with irregular cornea who do not tolerate gas permeable (GP) corneal contact lenses and are fitted with GP scleral contact lenses (Rose K2 XL). In this prospective study, we analyzed 15 eyes of 15 patients who did not tolerate GP corneal contact lenses and were fitted with scleral contact lenses (Rose K2 XL). We assessed visual function using visual acuity and the visual function index (VF-14); we used the VF-14 as an indicator of patient satisfaction. The measurements were taken with the optical correction used before and 1 month after the fitting of the Rose K2 XL contact lenses. We also recorded the number of hours lenses had been worn over the first month. Using Rose K2 XL contact lenses, visual acuity was 0.06±0.07 logMAR. In all cases, visual acuity had improved compared with the measurement before fitting the lenses (0.31±0.18 logMAR; P=0.001). VF-14 scores were 72.74±12.38 before fitting of the scleral lenses, and 89.31±10.87 after 1 month of lens use (P=0.003). Patients used these scleral lenses for 9.33±2.99 comfortable hours of wear. Both visual acuity and VF-14 may improve after fitting Rose K2 XL contact lenses in patients with irregular corneas. In addition, in our patients, these lenses can be worn for a longer period than GP corneal contact lenses.

  20. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*

    NASA Technical Reports Server (NTRS)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  1. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image ofmore » the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.« less

  2. Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter

    NASA Astrophysics Data System (ADS)

    Tröster, Tilman; Camera, Stefano; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo

    2017-05-01

    We measure the cross-correlation between Fermi gamma-ray photons and over 1000 deg2 of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section <σannv>, decay rate Γdec and particle mass mDM. We find that in the absence of a cross-correlation signal, tomography does not significantly improve the constraining power of the analysis. Assuming a strong contribution to the gamma-ray flux due to small-scale clustering of dark matter and accounting for known astrophysical sources of gamma rays, we exclude the thermal relic cross-section for particle masses of mDM ≲ 20 GeV.

  3. Electrowetting-based liquid lenses for endoscopy

    NASA Astrophysics Data System (ADS)

    Kuiper, S.

    2011-03-01

    In endoscopy there is a need for cameras with adjustable focus. In flexible and capsule endoscopes conventional focus systems are not suitable, because of restrictions in diameter and lens displacement range. In this paper it is shown that electrowetting-based variable-focus liquid lenses can provide a solution. A theoretical comparison is made between displacing and deforming lenses, and a demonstrator was built to prove the optical feasibility of focusing with liquid lenses in endoscopes.

  4. A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s –1 with a median of 350 km s –1. We also discovermore » a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s –1) group or group candidate projected within 2' of the lens.« less

  5. A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog

    DOE PAGES

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; ...

    2016-12-16

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s –1 with a median of 350 km s –1. We also discovermore » a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s –1) group or group candidate projected within 2' of the lens.« less

  6. Gauge-invariant formalism of cosmological weak lensing

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre

    2018-04-01

    We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.

  7. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    PubMed

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  8. An assessment of the measurement of the Lense Thirring effect in the Earth gravity field, in reply to: “On the measurement of the Lense Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so far performed tests for measuring the Lense Thirring effect with the LAGEOS satellites” by L. Iorio,” by I. Ciufolini and E. Pavlis

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2007-03-01

    In this paper we reply to recent claims by Ciufolini and Pavlis about certain aspects of the measurement of the general relativistic Lense-Thirring effect in the gravitational field of the Earth. (I) The proposal by such authors of using the existing satellites endowed with some active mechanism of compensation of the non-gravitational perturbations as an alternative strategy to improve the currently ongoing Lense-Thirring tests is unfeasible because of the impact of the uncancelled even zonal harmonics of the geopotential and of some time-dependent tidal perturbations. (II) It is shown that their criticisms about the possibility of using the existing altimeter Jason-1 and laser-ranged Ajisai satellites are groundless. (III) Ciufolini and Pavlis also claimed that we would have explicitly proposed to use the mean anomaly of the LAGEOS satellites in order to improve the accuracy of the Lense-Thirring tests. We prove that it is false. In regard to the mean anomaly of the LAGEOS satellites, Ciufolini himself did use such an orbital element in some previously published tests. About the latest test performed with the LAGEOS satellites, (IV) we discuss the cross-coupling between the inclination errors and the first even zonal harmonic as another possible source of systematic error affecting it with an additional 9% bias. (V) Finally, we stress the weak points of the claims about the origin of the two-nodes LAGEOS-LAGEOS II combination used in that test.

  9. Setting limits on q0 from gravitational lensing

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Park, Myeong-Gu; Lee, Hyung Mok

    1989-01-01

    Gravitational lensing by galaxies in a wide variety of cosmological models is considered. For closed models, the lensing depends on the parameter beta(crit). If beta(crit) is greater than zero, a normal lensing case can be obtained with two bright images separated by an angle twice beta(crit) and a third, arbitrarily dim image between them coincident with the position of the lensing galaxy nucleus. As the QSO approaches the antipodal redshift, which can occur in models with large values of the cosmological constant, the cross sections for lensing blow up. An overfocused case where beta(crit) is less than zero can be obtained for a QSO beyond the antipodal redshift. In this case, when a lensing event occurs, only one arbitrarily dim image coincident with the position of the lensing galaxy nucleus is seen. If galaxy rotation curves are always flat or slowly rising, the overfocused case always produces one image.

  10. Stacked lensing estimators and their covariance matrices: Excess surface mass density vs. Lensing shear

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Takada, Masahiro

    2018-05-01

    Stacked lensing is a powerful means of measuring the average mass distribution around large-scale structure tracers. There are two stacked lensing estimators used in the literature, denoted as ΔΣ and γ+, which are related as ΔΣ = Σcrγ+, where Σcr(zl, zs) is the critical surface mass density for each lens-source pair (zl and zs are lens and source redshifts, respectively). In this paper we derive a formula for the covariance matrix of ΔΣ-estimator focusing on "weight" function to improve the signal-to-noise (S/N). We assume that the lensing fields and the distribution of lensing objects obey the Gaussian statistics. With this formula, we show that, if background galaxy shapes are weighted by an amount of Σ _cr^{-2}(z_l,z_s), the ΔΣ-estimator maximizes the S/N in the shot noise limited regime. We also show that the ΔΣ-estimator with the weight Σ _cr^{-2} gives a greater (S/N)2 than that of the γ+-estimator by about 5-25% for lensing objects at redshifts comparable with or higher than the median of source galaxy redshifts for hypothetical Subaru HSC and DES surveys. However, for low-redshift lenses such as zl ≲ 0.3, the γ+-estimator has higher (S/N)2 than ΔΣ. We also discuss that the (S/N)2 for ΔΣ at large separations in the sample variance limited regime can be boosted, by up to a factor of 1.5, if one adopts a weight of Σ _cr^{-α } with α > 2. Our formula allows one to explore how the combination of the different estimators can approach an optimal estimator in all regimes of redshifts and separation scales.

  11. High Resolution Studies Of Lensed z ∼ 2 Galaxies: Kinematics And Metal Gradients

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha

    2016-09-01

    We use the OSIRIS integral field unit (IFU) spectograph to secure spatially-resolved strong emission lines of 15 gravitationally-lensed star-forming galaxies at redshift z ∼ 2. With the aid of gravitational lensing and Keck laser-assisted adaptive optics, the spatial resolution of these sub-luminous galaxies is at a few hundred parsecs. First, we demonstrate that high spatial resolution is crucial in diagnosing the kinematic properties and dynamical maturity of z ∼ 2 galaxies. We observe a significantly lower fraction of rotationally-supported systems than what has been claimed in lower spatial resolution surveys. Second, we find a much larger fraction of z ∼ 2 galaxies with weak metallicity gradients, contrary to the simple picture suggested by earlier studies that well-ordered rotation develops concurrently with established steep metal gradients in all but merging systems. Comparing our observations with the predictions of hydronamical simulations, strong feedback is likely to play a key role in flattening metal gradients in early star-forming galaxies.

  12. [Effects of orthokeratology lenses on the magnitude of accommodative lag and accommodativeconvergence/accommodation].

    PubMed

    Ren, Qiujin; Yue, Hui; Zhou, Qing

    2016-02-01

    To evaluate the change in accommodative lag and accommodation convergence/accommodation (AC/A) after patients with myopia wear orthokeratology lenses. 
 A total of 48 myopic subjects (a test group), who wore orthokeratology lenses regularly, and 48 myopic subjects (a control group), who wore spectacles regularly, were enrolled for this study from January 2011 to January 2013 in Optometric Center, the Forth Hospital of Changsha. Accommodative lag was measured by fused cross cylinder method, where the patients should gaze at the front optotypes 40 cm away. Gradient of the AC/A ratio was measured by Von Grafe method to check closer distance heterophoria. Accommodative lag and AC/A ratio were analyzed by statistics.
 After 1-year follow-up, accommodative lag and AC/A rate in patients with low or moderate myopia in the test group was decreased in 1, 3, 6 months or 1 year compared with that in the control group (P<0.05). 
 Compared with spectacles, orthokeratology lenses are able to decrease accommodative lag and high AC/A rate in patients with low or moderate myopia. The relationship between accommodation and convergence is improved by orthokeratology lenses. Orthokeratology is an effective way to control myopia.

  13. Contact lenses to slow progression of myopia.

    PubMed

    Sankaridurg, Padmaja

    2017-09-01

    The prevalence of myopia has been steadily rising, with 28 per cent of the global population said to be affected in 2010 and to rise to affect nearly 50 per cent by 2050. Increasing levels of myopia increase the risk of vision impairment and in particular, high myopia is associated with the risk of serious and permanent visual disability due to associated sight-threatening complications. To stem the burden associated with higher levels of myopia, there are efforts to slow the progression of myopia, and several optical and pharmaceutical strategies have been found useful in slowing myopia to varying degrees. More recently, numerous multifocal soft contact lenses and extended depth of focus soft contact lenses (collectively referred to as myopia control contact lenses) were found effective in slowing myopia. As opposed to overnight orthokeratology, myopia control contact lenses are worn during the day and the hypotheses proposed to explain the efficacy of these lenses are generally based on the premise that the stimulus for eye growth is a defocused retinal image with hyperopic blur either centrally or peripherally. Although the individual power profiles of the lenses vary, the contact lens generally incorporates 'positive power' to reduce the hyperopic blur and/or impose myopic defocus or in the case of the extended depth of focus lens, has a power profile designed to optimise retinal image quality for points on or in front of the retina. The use of soft contact lenses as a platform for myopia control offers an exciting and effective avenue to manage myopia but there is a need for further research on issues such as the mechanism underlying control of myopia, improving efficacy with lenses, and understanding rebound on discontinuation. More significantly, although contact lenses are generally safe and improve quality of life in older children, one of the major challenges for improved uptake and acceptance of contact lenses centres on the perceived risk of

  14. CMB-lensing beyond the Born approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozzi, Giovanni; Fanizza, Giuseppe; Durrer, Ruth

    2016-09-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles ℓ ∼< 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussianmore » nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.« less

  15. Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses

    PubMed Central

    Zambelli, Alison M.; Brothers, Kimberly M.; Hunt, Kristin M.; Romanowski, Eric G.; Nau, Amy C.; Dhaliwal, Deepinder K.; Shanks, Robert M. Q.

    2014-01-01

    Objectives To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses in vitro. Methods Using an in vitro model, the diffusion of three antimicrobials through SH contact lenses was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of four hours. The amount of each diffused antimicrobial was determined by comparing the experimental value to a standard curve. A biological assay was performed to validate the contact lens diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least 4 independent replicates. Results Our data show detectable moxifloxacin and PHMB diffusion through SH contact lenses at 30 minutes, while amphotericin B diffusion remained below the limit of detection within the 4 hour experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 minutes on bacterial lawns, whereas PHMB and amphotericin B failed to demonstrate killing on microbial lawns over the course of the 60 minute experiment. Conclusions In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through silicone hydrogel contact lenses. Further studies regarding the clinical benefit of using these agents along with bandage contact lens use for corneal pathology are warranted. PMID:25806673

  16. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  17. KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, Joachim; Tröster, Tilman; Chisari, Nora Elisa; Heymans, Catherine; van Waerbeke, Ludovic; Asgari, Marika; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Joudaki, Shahab; Kuijken, Konrad; Merten, Julian; Miller, Lance; Robertson, Naomi; Schneider, Peter; Viola, Massimo

    2017-10-01

    We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat Λ cold dark matter cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within 1σ with the KiDS-450 cosmology, with an amplitude re-scaling parameter AKiDS = 0.86 ± 0.19. Adopting a Planck cosmology, we find our results are consistent within 2σ, with APlanck = 0.68 ± 0.15. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing A by ∼0.1. This is the first tomographic analysis of the galaxy lensing - CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.

  18. The strong Bell inequalities: A proposed experimental test

    NASA Technical Reports Server (NTRS)

    Fry, Edward S.

    1994-01-01

    All previous experimental tests of Bell inequalities have required additional assumptions. The strong Bell inequalities (i.e. those requiring no additional assumptions) have never been tested. An experiment has been designed that can, for the first time, provide a definitive test of the strong Bell inequalities. Not only will the detector efficiency loophole be closed; but the locality condition will also be rigorously enforced. The experiment involves producing two Hg-199 atoms by a resonant Raman dissociation of a mercury dimer ((199)Hg2) that is in an electronic and nuclear spin singlet state. Bell inequalities can be tested by measuring angular momentum correlations between the spin one-half nuclei of the two Hg-199 atoms. The method used to make these latter measurements will be described.

  19. The Alvarez and Lohmann refractive lenses revisited.

    PubMed

    Barbero, Sergio

    2009-05-25

    Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.

  20. Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea.

    PubMed

    Mathews, Steven M; Spallholz, Julian E; Grimson, Mark J; Dubielzig, Richard R; Gray, Tracy; Reid, Ted W

    2006-08-01

    Although silicone hydrogel materials have produced many corneal health benefits to patients wearing contact lenses, bacteria that cause acute red eye or corneal ulcers are still a concern. A coating that inhibits bacterial colonization while not adversely affecting the cornea should improve the safety of contact lens wear. A covalent selenium (Se) coating on contact lenses was evaluated for safety using rabbits and prevention of bacterial colonization of the contact lenses in vitro. Contact lenses coated with Se were worn on an extended-wear schedule for up to 2 months by 10 New Zealand White rabbits. Corneal health was evaluated with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. Lenses worn by the rabbits were analyzed for protein and lipid deposits. In addition, the ability of Se to block bacterial colonization was tested in vitro by incubating lenses in a Pseudomonas aeruginosa broth followed by scanning electron microscopy of the contact lens surface. The covalent Se coating decreased bacterial colonization in vitro while not adversely affecting the corneal health of rabbits in vivo. The Se coating produced no noticeable negative effects as observed with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. The Se coating did not affect protein or lipid deposition on the contact lenses. The data from this pilot study suggest that a Se coating on contact lenses might reduce acute red eye and bacterial ulceration because of an inhibition of bacterial colonization. In addition, our safety tests suggest that this positive effect can be produced without an adverse effect on corneal health.

  1. Visualizing hydrophobic domains in silicone hydrogel lenses with Sudan IV.

    PubMed

    Jacob, Jean T; Levet, Jacques; Edwards, Tamika A; Dassanayake, Nissanke; Ketelson, Howard

    2012-06-08

    A lipophilic dye is used to investigate the degree to which the surface and bulk hydrophobic domains of the lenses can be imaged and to identify specific changes in the availability of those domains after in vitro wear and cleaning conditions. The effect of a multipurpose solution (MPS), OPTI-FREE RepleniSH, on lens hydrophobic domains was also investigated. Hydrophobic domains were determined using a saturated solution of Sudan IV. Staining periods of 30 minutes and 16 hours were used to determine surface versus bulk hydrophobic domains. Four types of silicone hydrogel lens materials were tested. The degree of staining was visually documented by photography and quantitatively determined by extraction and analysis of the total amount of dye adsorbed. Specific differences in staining were found for all control lenses. Exposure to in vitro wear conditions significantly decreased the staining response for all lens types as compared with unworn lenses (P = 0.001). However, the trend of staining remained the same: balafilcon A > galyfilcon A > senofilcon A > lotrafilcon B. MPS decreased the extent of staining; the degree of its effect varied with lens type. Hydrophobic staining with Sudan IV visualized domains on and within silicone hydrogel lenses. Differences in staining response after exposure to wear and cleaning conditions indicate the potential for protein and lipid deposition on the different lens types and the ability of MPS to affect that deposition. Hydrophobic staining may be useful for determining differences in surface modification and lipophilicity of silicone hydrogel lenses.

  2. Lenses matching of compound eye for target positioning

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Zheng, Yan Pei; Wang, Keyi

    2012-10-01

    Compound eye, as a new imaging method with multi-lens for a large field of view, could complete target positioning and detection fastly, especially at close range. Therefore it could be applicated in the fields of military and medical treatment and aviation with vast market potential and development prospect. Yet the compound eye imaging method designed use three layer construction of multiple lens array arranged in a curved surface and refractive lens and imaging sensor of CMOS. In order to simplify process structure and increase the imaging area of every sub-eye, the imaging area of every eye is coved with the whole CMOS. Therefore, for several imaging point of one target, the corresponding lens of every imaging point is unkonown, and thus to identify. So an algorithm was put forward. Firstly, according to the Regular Geometry relationship of several adjacent lenses, data organization of seven lenses with a main lens was built. Subsequently, by the data organization, when one target was caught by several unknown lenses, we search every combined type of the received lenses. And for every combined type, two lenses were selected to combine and were used to calculate one three-dimensional (3D) coordinate of the target. If the 3D coordinates are same to the some combine type of the lenses numbers, in theory, the lenses and the imaging points are matched. So according to error of the 3D coordinates is calculated by the different seven lenses numbers combines, the unknown lenses could be distinguished. The experimental results show that the presented algorithm is feasible and can complete matching task for imaging points and corresponding lenses.

  3. Processes for manufacturing multifocal diffractive-refractive intraocular lenses

    NASA Astrophysics Data System (ADS)

    Iskakov, I. A.

    2017-09-01

    Manufacturing methods and design features of modern diffractive-refractive intraocular lenses are discussed. The implantation of multifocal intraocular lenses is the most optimal method of restoring the accommodative ability of the eye after removal of the natural lens. Diffractive-refractive intraocular lenses are the most widely used implantable multifocal lenses worldwide. Existing methods for manufacturing such lenses implement various design solutions to provide the best vision function after surgery. The wide variety of available diffractive-refractive intraocular lens designs reflects the demand for this method of vision correction in clinical practice and the importance of further applied research and development of new technologies for designing improved lens models.

  4. Direct Shear Mapping: Prospects for Weak Lensing Studies of Individual Galaxy-Galaxy Lensing Systems

    NASA Astrophysics Data System (ADS)

    de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.

    2015-11-01

    Using both a theoretical and an empirical approach, we have investigated the frequency of low redshift galaxy-galaxy lensing systems in which the signature of 3D weak lensing might be directly detectable. We find good agreement between these two approaches. Using data from the Galaxy and Mass Assembly redshift survey we estimate the frequency of detectable weak lensing at low redshift. We find that below a redshift of z ~ 0.6, the probability of a galaxy being weakly lensed by γ ⩾ 0.02 is ~ 0.01. We have also investigated the feasibility of measuring the scatter in the M * - Mh relation using shear statistics. We estimate that for a shear measurement error of Δγ = 0.02 (consistent with the sensitivity of the Direct Shear Mapping technique), with a sample of ~50,000 spatially and spectrally resolved galaxies, the scatter in the M * - Mh relation could be measured. While there are currently no existing IFU surveys of this size, there are upcoming surveys that will provide this data (e.g The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), surveys with Hector, and the Square Kilometre Array (SKA)).

  5. A comparison of cosmological models using time delay lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% formore » the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.« less

  6. Factors influencing bacterial adhesion to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  7. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  8. Multifocal rigid gas permeable contact lenses with reduced halo

    NASA Astrophysics Data System (ADS)

    ben Yaish, Shai; Zlotnik, Alex; Limon, Ofer; Lahav Yacouel, Karen; Doron, Ravid; Zalevsky, Zeev

    2014-05-01

    In this communication we present the first dispensing medical trial in which we successfully report on testing of novel extended depth of focus rigid gas permeable (RGP) contact lenses having reduced halo and distinct focal peaks for near and far distance vision.

  9. Slit lamps and lenses: a potential source of nosocomial infections?

    PubMed

    Sobolewska, Bianka; Buhl, Michael; Liese, Jan; Ziemssen, Focke

    2018-01-30

    The aim of the study was to evaluate the bacterial contamination level of contact surfaces on slit lamps and the grip areas of lenses. Within unannounced audits, two regions of the slit lamps (headrest and joystick), indirect ophthalmoscopy devices, and ultrasound probes were obtained with rayon-tipped swab. Non-contact lenses used for indirect fundoscopy were pressed on RODAC (Replicate Organism Detection and Counting) plates. One hundred and eighty-one surfaces were sampled. The total number of colony-forming units was assessed and bacterial species were identified. Spa-typing and antimicrobial susceptibility testing were performed from Staphylococcus aureus isolates. Among the total bacterial isolates from ophthalmological equipment (lenses: 51 of 78, slit lamps: 43 of 88, ophthalmoscopy helmets: 3 of 8, ultrasound probes: 2 of 7), coagulase-negative staphylococci (CNS) was most frequently found, followed by Micrococcus spp. (lenses vs. slit lamps: P < 0.001 and P = 0.01, respectively). The bacterial contamination of lenses (76%) was significantly higher than that of slit lamps (54%) (P < 0.003). A significantly higher contamination with CNS was observed on lenses from residents vs. from consultants (78% vs. 35%, P = 0.01). A total of seven different spa-types of S. aureus were isolated. No correlation was found between S. aureus contamination of different ophthalmological equipments (Spearman's rank correlation coefficient, ρ = 0.04, P = 0.75). Methicillin-resistant S. aureus was not detected. Bacterial species of the normal skin flora were isolated from the ophthalmological equipment. The bacterial contamination of the portable devices was significantly higher than that of slit lamps. Therefore, proper hygiene of the mobile instruments should be monitored in order to prevent transmission of bacteria in residents and consultants.

  10. Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses.

    PubMed

    Onurdağ, Fatma Kaynak; Ozkan, Semiha; Ozgen, Selda; Olmuş, Hülya; Abbasoğlu, Ufuk

    2011-04-01

    In this study it was aimed to determine the adherence of Pseudomonas and Candida to contact lens surfaces, and to determine the difference in adherence between five contact lens types. Biofilm-negative control strains were also used to emphasize the difference between biofilm-positive and biofilm-negative strains in adherence. Five different soft contact lenses were used to investigate the adherence of Pseudomonas aeruginosa and Candida albicans strains. P. aeruginosa ATCC 27853, P. aeruginosa ATCC 10145, C.albicans ATCC 10231 standard strains and C. albicans clinical isolate were included in the study. Slime formation was investigated by two methods; modified Christensen macrotube method, and a modified microtiter plate test. P. aeruginosa and C. albicans slime formation on soft contact lenses was studied in adherence and separation phases. Pseudomonas and Candida suspensions were serially diluted and inoculated to blood agar and sabouraud dextrose agar surfaces respectively. After overnight incubation, the colonies were counted. Sterile unworn contact lenses were used as negative controls, and bacterial and fungal culture suspensions were used as positive controls. The experiments were conducted in three parallel series. The number of adherent Pseudomonas was as follows from high to low in polymacon, etafilcon A, hilafilcon, ocufilcon and lotrafilcon contact lenses respectively. However, the number of adherent yeast were determined higher in lotrafilcon and ocufilcon contact lenses, followed by hilafilcon, etafilcon A and polymacon contact lenses. Biofilm-negative Pseudomonas ATCC standard strain and Candida clinical isolate were used to confirm that the number of adherent cells were lower than the biofilm-positive ones. This study demonstrates that in addition to the contact lens properties, the microorganisms themselves and their interactions with the lens material also play an important role in adherence.

  11. Multifocal lenses in coral reef fishes.

    PubMed

    Karpestam, Björn; Gustafsson, Jonas; Shashar, Nadav; Katzir, Gadi; Kröger, Ronald H H

    2007-08-01

    The optical properties of crystalline lenses were studied in eleven species of coral reef fish from the Red Sea in Eilat, Israel. Three species each of diurnal planktivores, nocturnal planktivores and diurnal herbivores constituted three groups of animals with little within-group variability. In addition we studied two predators, which differed with respect to body size, prey preference, hunting method and diel activity period. All species studied have multifocal lenses. There were statistically significant differences in the optical properties of the lenses between the first three groups and between the predatory species. The properties of the lenses correlate well with known complements of visual pigments and feeding habits. Lenticular zones focusing ultraviolet light were found in two diurnal planktivores. The optical properties of the lens seem to be specifically adapted to the visual needs of each species.

  12. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU.

    PubMed

    Cole, Nerida; Hume, Emma B H; Vijay, Ajay K; Sankaridurg, Padmaja; Kumar, Naresh; Willcox, Mark D P

    2010-01-01

    One strategy to minimize bacteria-associated adverse responses such as microbial keratitis, contact lens-induced acute red eye (CLARE), and contact lens induced peripheral ulcers (CLPUs) that occur with contact lens wear is the development of an antimicrobial or antiadhesive contact lens. Cationic peptides represent a novel approach for the development of antimicrobial lenses. A novel cationic peptide, melimine, was covalently incorporated into silicone hydrogel lenses. Confirmation tests to determine the presence of peptide and anti-microbial activity were performed. Cationic lenses were then tested for their ability to prevent CLPU in the Staphylococcus aureus rabbit model and CLARE in the Pseudomonas aeruginosa guinea pig model. In the rabbit model of CLPU, melimine-coated lenses resulted in significant reductions in ocular symptom scores and in the extent of corneal infiltration (P < 0.05). Evaluation of the performance of melimine lenses in the CLARE model showed significant improvement in all ocular response parameters measured, including the percentage of eyes with corneal infiltrates, compared with those observed in the eyes fitted with the control lens (P < or = 0.05). Cationic coating of contact lenses with the peptide melimine may represent a novel method of prevention of bacterial growth on contact lenses and consequently result in reduction of the incidence and severity of adverse responses due to Gram-positive and -negative bacteria during lens wear.

  13. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitivemore » to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.« less

  14. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    NASA Astrophysics Data System (ADS)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-06-01

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg2 of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of zmed ˜ 0.7, while the CMB lensing kernel is broad and peaks at z ˜ 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z ˜ 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DES×SPT cross-power is found to be ASPT = 0.88 ± 0.30 and that from DES×Planck to be APlanck = 0.86 ± 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9σ and 2.2σ, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 ± 0.36 for DES×SPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.

  15. Do swimming goggles limit microbial contamination of contact lenses?

    PubMed

    Wu, Yvonne T; Tran, Jess; Truong, Michelle; Harmis, Najat; Zhu, Hua; Stapleton, Fiona

    2011-04-01

    Wearing goggles over contact lenses while swimming is often recommended by eye care professionals. Limited data are available to assess this recommendation. The purpose of this study was to examine whether wearing goggles while swimming limits bacterial colonization on contact lenses and whether the type of lens worn affects contamination rates. Twenty-three subjects underwent two swimming sessions at an ocean (salt water) pool (Maroubra beach Rock Pool, Sydney, Australia). Silicone hydrogel (Ciba Focus Night and Day) or hydrogel lenses (Ciba Focus Daily) were inserted into subjects' eyes before 30 min of swimming sessions, and subjects used modified goggles to mimic goggled and non-goggled conditions. At the end of each session, lenses were collected for microbial investigation. Viable bacterial colonies were classified as gram positive and gram negative and enumerated. The level of bacterial colonization on contact lenses between goggled and non-goggled conditions and between the two lens materials were compared. The range of colony forming units recovered from goggled lenses were 0 to 930 compared with 0 to 1210 on non-goggled lenses. The majority of subjects (16/23) had more microorganisms in the non-goggled condition than when wearing goggles (p = 0.03). Gram negative organisms were found in three non-goggled lenses. No significant difference was shown in the number of bacteria isolated from silicone hydrogel and hydrogel lenses (p > 0.6) irrespective of wearing goggles. Water samples had consistently higher numbers of bacterial counts than those adhered to the lenses; however, no association was found between the number of bacteria in the water sample and those found on the contact lenses. Consistently, fewer bacterial colonies were found on the goggled contact lens, thus suggesting goggles offer some protection against bacterial colonization of contact lenses while swimming. These data would support the recommendation encouraging lens wearers to use goggles

  16. The effect of baryons in the cosmological lensing PDFs

    NASA Astrophysics Data System (ADS)

    Castro, Tiago; Quartin, Miguel; Giocoli, Carlo; Borgani, Stefano; Dolag, Klaus

    2018-07-01

    Observational cosmology is passing through a unique moment of grandeur with the amount of quality data growing fast. However, in order to better take advantage of this moment, data analysis tools have to keep up the pace. Understanding the effect of baryonic matter on the large-scale structure is one of the challenges to be faced in cosmology. In this work, we have thoroughly studied the effect of baryonic physics on different lensing statistics. Making use of the Magneticum Pathfinder suite of simulations, we show that the influence of luminous matter on the 1-point lensing statistics of point sources is significant, enhancing the probability of magnified objects with μ > 3 by a factor of 2 and the occurrence of multiple images by a factor of 5-500, depending on the source redshift and size. We also discuss the dependence of the lensing statistics on the angular resolution of sources. Our results and methodology were carefully tested to guarantee that our uncertainties are much smaller than the effects here presented.

  17. Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations

    PubMed Central

    Akondi, Vyas; Dorronsoro, Carlos; Gambra, Enrique; Marcos, Susana

    2017-01-01

    Fast tunable lenses allow an effective design of a portable simultaneous vision simulator (SimVis) of multifocal corrections. A novel method of evaluating the temporal profile of a tunable lens in simulating different multifocal intraocular lenses (M-IOLs) is presented. The proposed method involves the characteristic fitting of the through-focus (TF) optical quality of the multifocal component of a given M-IOL to a linear combination of TF optical quality of monofocal lenses viable with a tunable lens. Three different types of M-IOL designs are tested, namely: segmented refractive, diffractive and refractive extended depth of focus. The metric used for the optical evaluation of the temporal profile is the visual Strehl (VS) ratio. It is shown that the time profiles generated with the VS ratio as a metric in SimVis resulted in TF VS ratio and TF simulated images that closely matched the TF VS ratio and TF simulated images predicted with the M-IOL. The effects of temporal sampling, varying pupil size, monochromatic aberrations, longitudinal chromatic aberrations and temporal dynamics on SimVis are discussed. PMID:28717577

  18. The effect of baryons in the cosmological lensing PDFs

    NASA Astrophysics Data System (ADS)

    Castro, Tiago; Quartin, Miguel; Giocoli, Carlo; Borgani, Stefano; Dolag, Klaus

    2018-05-01

    Observational cosmology is passing through a unique moment of grandeur with the amount of quality data growing fast. However, in order to better take advantage of this moment, data analysis tools have to keep up the pace. Understanding the effect of baryonic matter on the large-scale structure is one of the challenges to be faced in cosmology. In this work, we have thoroughly studied the effect of baryonic physics on different lensing statistics. Making use of the Magneticum Pathfinder suite of simulations we show that the influence of luminous matter on the 1-point lensing statistics of point sources is significant, enhancing the probability of magnified objects with μ > 3 by a factor of 2 and the occurrence of multiple-images by a factor 5 - 500 depending on the source redshift and size. We also discuss the dependence of the lensing statistics on the angular resolution of sources. Our results and methodology were carefully tested in order to guarantee that our uncertainties are much smaller than the effects here presented.

  19. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    PubMed

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  20. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID

  1. Difference Imaging of Lensed Quasar Candidates in the Sloan Digital Sky Survey Supernova Survey Region

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Inada, Naohisa; Oguri, Masamune

    2009-06-01

    Difference imaging provides a new way to discover gravitationally lensed quasars because few nonlensed sources will show spatially extended, time variable flux. We test the method on the fields of lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS) and one serendipitously discovered lensed quasar. Starting from 20,536 sources, including 49 SDSS quasars, 32 candidate lenses/lensed images, and one known lensed quasar, we find that 174 sources including 35 SDSS quasars, 16 candidate lenses/lensed images, and the known lensed quasar are nonperiodic variable sources. We can measure the spatial structure of the variable flux for 119 of these variable sources and identify only eight as candidate extended variables, including the known lensed quasar. Only the known lensed quasar appears as a close pair of sources on the difference images. Inspection of the remaining seven suggests they are false positives, and only two were spectroscopically identified quasars. One of the lens candidates from the SQLS survives our cuts, but only as a single image instead of a pair. This indicates a false positive rate of order ~1/4000 for the method, or given our effective survey area of order 0.82 deg2, ~5 per deg2 in the SDSS Supernova Survey. The fraction of quasars not found to be variable and the false positive rate would both fall if we had analyzed the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will significantly improve on these limitations.

  2. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    NASA Astrophysics Data System (ADS)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  3. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.

  4. Effect of Ultraviolet Exposure on Impact Resistance of Ophthalmic Lenses.

    PubMed

    Chou, B Ralph; Dain, Stephen J; Cheng, Brian B

    2015-12-01

    To investigate the effect of ultraviolet radiation (UVR) on the impact resistance of organic ophthalmic lens materials. Plano power CR39, Phoenix, Trilogy, and polycarbonate lenses with various scratch-resistant (SR) and/or antireflection (AR) coatings were obtained in batches of 40 units. All lenses had a nominal thickness of 2 mm. Half of each batch was conditioned following the European Standard EN 168 protocol for the test of resistance to UVR (exposed group). The remaining lenses comprised an unexposed group for that combination of lens substrate and coating treatment. Each group was subjected to ballistic impact with 6-mm steel balls following the ZEST protocol to determine its mean breakage velocity. The difference in mean breakage velocity between exposed and unexposed groups of each combination of lens substrate and coating was assessed for statistical significance. Exposed uncoated CR39 showed a reduction in fracture velocity of 10.3 m/s whereas CR39 with ultra hard coat had a reduction of 3.5 m/s and CR39 with AR and SR coating had a reduction of 4.1 m/s. Scratch-resistant coated Phoenix had a reduction of 4.8 m/s whereas AR-coated Phoenix had a reduction of 3.7 m/s. The corresponding reductions for Trilogy were 3.9 and 17.8 m/s. All differences were significant at the p level of less than 0.05. Although we were unable to break unexposed SR-coated polycarbonate lenses with our test apparatus, exposed SR-coated polycarbonate had a mean breakage velocity of 142 m/s. Our data suggest that extended UVR exposure causes a significant reduction in the impact resistance of the ophthalmic lens substrates commonly used for occupational eye protectors. Protective lenses that have been exposed to high levels of UVR for extended periods should be replaced regularly to maintain optimal impact protection, even if they do not show visible damage owing to wear and tear.

  5. CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi; Koch, Patrick M.; Lin, Kai-Yang

    2012-08-10

    We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z = 0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVR{sub c} I{sub c} z' imaging and our recent 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble program. We find good agreement in the regions of overlap between several weak- and strong-lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large-scale structure with the major axis running approximately northwest-southeast (NW-SE), aligned withmore » the cluster and its brightest galaxy shapes, showing elongation with a {approx}2: 1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dln {Sigma}/dln R {approx} -1 at cluster outskirts (R {approx}> 1 Mpc h{sup -1}), whereas the mass distribution excluding the NW-SE excess regions steepens farther out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M{sub vir} = (1.1 {+-} 0.2 {+-} 0.1) Multiplication-Sign 10{sup 15} M{sub Sun} h{sup -1} and a halo concentration c{sub vir} = 6.9 {+-} 1.0 {+-} 1.2 (c{sub vir} {approx} 5.7 when the central 50 kpc h{sup -1} is excluded), which falls in the range 4 {approx}< (c) {approx}< 7 of average c(M, z) predictions for relaxed clusters from recent {Lambda} cold dark matter simulations. Our full-lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, they yield a cumulative gas mass fraction of 13.7{sup +4.5}{sub -3.0}% at 0.7 Mpc h{sup -1}( Almost-Equal-To 1.7 r{sub 2500}), a typical value observed for high-mass clusters.« less

  6. Radiation Blocking Lenses

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Biomedical Optical Company of America's (BOCA) suntiger lenses, similar in principle to natural filters in the eyes of hawks and eagles, bar 99 percent of potentially harmful wavelengths, while allowing visually useful colors of light (red, orange, green) to pass through. They also improve visual acuity, night vision and haze or fog visibility. The lenses evolved from work done by James B. Stephens and Dr. Charles G. Miller of the Jet Propulsion Laboratory. They developed a formula and produced a commercial welding curtain that absorbs, filters, and scatters light. This research led to protective glasses now used by dentists, workers in hazardous environments, CRT operators and skiers.

  7. The MICE Grand Challenge light-cone simulation - III. Galaxy lensing mocks from all-sky lensing maps

    NASA Astrophysics Data System (ADS)

    Fosalba, P.; Gaztañaga, E.; Castander, F. J.; Crocce, M.

    2015-02-01

    In Paper I of this series, we presented a new N-body light-cone simulation from the MICE Collaboration, the MICE Grand Challenge (MICE-GC), containing about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume, from which we built halo and galaxy catalogues using a Halo Occupation Distribution and Halo Abundance Matching technique, as presented in the companion Paper II. Given its large volume and fine mass resolution, the MICE-GC simulation also allows an accurate modelling of the lensing observables from upcoming wide and deep galaxy surveys. In the last paper of this series (Paper III), we describe the construction of all-sky lensing maps, following the `Onion Universe' approach, and discuss their properties in the light-cone up to z = 1.4 with sub-arcminute spatial resolution. By comparing the convergence power spectrum in the MICE-GC to lower mass-resolution (i.e. particle mass ˜1011 h-1 M⊙) simulations, we find that resolution effects are at the 5 per cent level for multipoles ℓ ˜ 103 and 20 per cent for ℓ ˜ 104. Resolution effects have a much lower impact on our simulation, as shown by comparing the MICE-GC to recent numerical fits by Takahashi. We use the all-sky lensing maps to model galaxy lensing properties, such as the convergence, shear, and lensed magnitudes and positions, and validate them thoroughly using galaxy shear auto and cross-correlations in harmonic and configuration space. Our results show that the galaxy lensing mocks here presented can be used to accurately model lensing observables down to arcminute scales. Accompanying this series of papers, we make a first public data release of the MICE-GC galaxy mock, the MICECAT v1.0, through a dedicated web-portal for the MICE simulations, http://cosmohub.pic.es, to help developing and exploiting the new generation of astronomical surveys.

  8. Galaxy–galaxy lensing estimators and their covariance properties

    DOE PAGES

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros; ...

    2017-07-21

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less

  9. Galaxy–galaxy lensing estimators and their covariance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less

  10. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    NASA Astrophysics Data System (ADS)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. We calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies.

  11. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Håkon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τAB = 47.7 ± 6.0 days and τAC = -722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τAD = 502 ± 68 days, τAE = 611 ± 75 days, and τAF = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13337.

  12. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions.

    PubMed

    Kackar, Siddharth; Suman, Ethel; Kotian, M Shashidhar

    2017-01-01

    Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD). Statistical analysis was done by SPSS 11.5, Kruskal-Wallis test and Chi-square test. Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020) on biofilm formation on soft lenses and also lens cases (P < 0.001). Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001). There was no significant inhibitory effect by bacteriophages. This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  13. Lensing Constraints on the Mass Profile Shape and the Splashback Radius of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi; Diemer, Benedikt

    2017-02-01

    The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wide range of cluster masses is averaged in physical length units. This effect especially conceals rapid changes in gradient such as the steep drop associated with the splashback radius, a sharp edge corresponding to the outermost caustic in accreting halos. We optimize the extraction of such local features by scaling individual halo profiles to a number of spherical overdensity radii, and apply this method to 16 X-ray-selected, high-mass clusters targeted in the Cluster Lensing And Supernova survey with Hubble. By forward-modeling the weak- and strong-lensing data presented by Umetsu et al., we show that, regardless of the scaling overdensity, the projected ensemble density profile is remarkably well described by a Navarro-Frenk-White (NFW) or Einasto profile out to R˜ 2.5 {h}-1 {Mpc}, beyond which the profiles flatten. We constrain the NFW concentration to {c}200{{c}}=3.66+/- 0.11 at {M}200{{c}}≃ 1.0× {10}15 {h}-1 {M}⊙ , consistent with and improved from previous work that used conventionally stacked lensing profiles, and in excellent agreement with theoretical expectations. Assuming the profile form of Diemer & Kravtsov and generic priors calibrated from numerical simulations, we place a lower limit on the splashback radius of the cluster halos, if it exists, of {R}{sp}3{{D}}/{r}200{{m}}> 0.89 ({R}{sp}3{{D}}> 1.83 {h}-1 {Mpc}) at 68% confidence. The corresponding density feature is most pronounced when the cluster profiles are scaled by {r}200{{m}}, and smeared out when scaled to higher overdensities. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.

  14. Predicting gravitational lensing by stellar remnants

    NASA Astrophysics Data System (ADS)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  15. Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability.

    PubMed

    Vermeltfoort, Pit B J; van der Mei, Henny C; Busscher, Henk J; Hooymans, Johanna M M; Bruinsma, Gerda M

    2004-11-15

    The aim of this study was to determine the transfer of Pseudomonas aeruginosa No. 3 and Staphylococcus aureus 835 from contact lenses to surfaces with different hydrophobicity and roughness. Bacteria were allowed to adhere to contact lenses (Surevue, PureVision, or Focus Night & Day) by incubating the lenses in a bacterial suspension for 30 min. The contaminated lenses were put on a glass, poly(methylmethacrylate), or silicone rubber substratum, shaped to mimic the eye. After 2 and 16 h, lenses were separated from the substrata and bacteria were swabbed off from the respective surfaces and resuspended in saline. Appropriate serial dilutions of these suspensions were made, from which aliquots were plated on agar for enumeration. Bacterial transfer varied between 4 and 60%, depending on the combination of strain, contact time, contact lens, and substratum surface. For P. aeruginosa No. 3, transfer was significantly higher after 16 h than after 2 h, whereas less increase with time was seen for S. aureus 835. Bacterial transfer from all tested contact lenses was least to silicone rubber, the most hydrophobic and roughest substratum surface included. (c) 2004 Wiley Periodicals, Inc.

  16. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array

  17. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    PubMed

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Autostereoscopic display based on two-layer lenticular lenses.

    PubMed

    Zhao, Wu-Xiang; Wang, Qiong-Hua; Wang, Ai-Hong; Li, Da-Hai

    2010-12-15

    An autostereoscopic display based on two-layer lenticular lenses is proposed. The two-layer lenticular lenses include one-layer conventional lenticular lenses and additional one-layer concentrating-light lenticular lenses. Two prototypes of the proposed and conventional autostereoscopic displays are developed. At the optimum three-dimensional view distance, the luminance distribution of the prototypes along the horizontal direction is measured. By calculating the luminance distribution, the crosstalk of the prototypes is obtained. Compared with the conventional autostereoscopic display, the proposed autostereoscopic display has less crosstalk, a wider view angle, and higher efficiency of light utilization.

  19. Effect of lensing non-Gaussianity on the CMB power spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Antony; Pratten, Geraint, E-mail: antony@cosmologist.info, E-mail: geraint.pratten@gmail.com

    2016-12-01

    Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. Assuming no primordial non-Gaussianity, the lowest-order result gives ∼ 0.3% corrections to the BB and EE polarization spectra on small-scales. However we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing,more » rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the peaks and troughs of the power spectrum).« less

  20. In vitro adhesion of Acanthamoeba castellanii to soft contact lenses depends on water content and disinfection procedure.

    PubMed

    Reverey, Julia F; Fromme, Roland; Leippe, Matthias; Selhuber-Unkel, Christine

    2014-08-01

    To compare the potential of different soft contact lenses to be contaminated with Acanthamoeba castellanii as a function of material parameters and cleaning procedures. Different unworn soft hydrogel and silicone hydrogel contact lenses were incubated with human pathogenic A. castellanii. The adhesion of the acanthamoebae was investigated on the contact lenses and put into relation to their material parameters. The efficacy of a recommended contact lens cleaning procedure in reducing A. castellanii adhesion was investigated. We found that material parameters such as elastic modulus, silicone content, ionic properties and swelling do not influence the adhesion of acanthamoebae to soft contact lenses. A material parameter that influenced adhesion significantly was the water content of the lens. With increasing water content, the adhesion of acanthamoebae increased. By following the cleaning instructions of the manufacturer the contamination of the lenses with A. castellanii could be reduced to a minimum, as shown both on contact lenses and in control experiments. With this study we show that for the tested lenses, the adhesion of A. castellanii to contact lenses is independent of the silicone content of the lens, but depends nonlinearly on the water content of the lens. Furthermore, we demonstrate that applying proper lens cleaning procedures minimizes the risk of acanthamoebae adhesion to contact lenses. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤  z {sub grp} ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 <  z {sub grp} < 0.6. The groups have radial velocity dispersions of 60 ≤  σ {sub grp} ≤ 1200 km s{sup −1} with a median of 350 km s{sup −1}. We also discover a supergroup in field B0712+472 atmore » z = 0.29 that consists of three main groups. We recover groups similar to ∼85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ {sub grp}, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive ( σ {sub grp} ≥ 500 km s{sup −1}) group or group candidate projected within 2′ of the lens.« less

  2. Bacterial populations on silicone hydrogel and hydrogel contact lenses after swimming in a chlorinated pool.

    PubMed

    Choo, Jennifer; Vuu, Kathy; Bergenske, Peter; Burnham, Kara; Smythe, Jennifer; Caroline, Patrick

    2005-02-01

    A number of reports have indicated an association between swimming with contact lenses and subsequent eye infection. This study tests whether a hydrophilic contact lens worn while swimming accumulates bacteria present in the water. It was of interest to determine whether lens type (silicone hydrogel vs. hydrogel) affected the result. Fifteen healthy noncontact lens wearers swam for 30 minutes with a silicone hydrogel lens (PureVision, Bausch & Lomb, Rochester, NY) on one eye and a hydrogel lens (Acuvue 2, Vistakon Inc., Jacksonville, FL) on the other. Lenses were removed aseptically and placed in sterile vials 10 minutes after the subjects left the water. Microbial growth was enumerated for total numbers of colonies and categorized by species present. Numbers of colonies were compared between the two lens groups and with a water sample taken from the pool at the time of the experiment. Eight of the subjects returned on a different day and wore new lenses for 50 minutes in normal room conditions. Two lenses were lost while swimming. Twenty-seven of the remaining 28 lenses worn while swimming showed colonization, principally with Staphylococcus epidermidis, which was also by far the most common species identified from the water itself. Small numbers of Staphylococcus aureus and Streptococcus salivarius were also present in the water and on the lenses. Numbers of colonies varied among subjects (range, 0 to 230), but no differences were observed between the two lens groups. Lenses removed after 30 minutes of wear without swimming were mostly sterile, with 3 of 16 lenses showing just two colonies each. It appears that wearing a hydrophilic lens while swimming allows accumulation of microbial organisms on or in the lens, regardless of lens material. Swimmers should be advised to wear tight-fitting goggles if lenses are worn while swimming, and thorough disinfection of the lenses before overnight wear seems prudent.

  3. A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark

    2013-05-20

    The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected withinmore » a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.« less

  4. SKA weak lensing- II. Simulated performance and survey design considerations

    NASA Astrophysics Data System (ADS)

    Bonaldi, Anna; Harrison, Ian; Camera, Stefano; Brown, Michael L.

    2016-12-01

    We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimize a 2-yr weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal to noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5000 deg2 is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3π steradian) and sensitivity improves both the signal to noise and the dark energy metrics by two orders of magnitude.

  5. 75 FR 53971 - Guidance for Industry and Food and Drug Administration Staff; Impact-Resistant Lenses: Questions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... questions on impact-resistant lenses, including questions on test procedures, lens testing apparatus, record..., lens testing apparatus, record maintenance, and exemptions to testing. This document also contains more...

  6. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  7. Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method

    NASA Astrophysics Data System (ADS)

    Nakajima, Reiko; Bernstein, Gary

    2007-04-01

    We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.

  8. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  9. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    DOE PAGES

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; ...

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N 200, and fitting to an NFW cluster mass density profile, wemore » have made three independent estimates of the mass M 200 which are all very consistent with each other. The combination of the results from the three methods gives M 200 = (5.1 x 1.3) x 10 14 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c 200 from the combined fit is c 200 = 5.4 -1.1 +1.4. We have compared our measurements of M 200 and c 200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  10. THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT z = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.

    2011-11-20

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in 2006 October during a BCS observing run. Follow-up spectroscopic observations with the Gemini Multi-Object Spectrograph instrument on the Gemini-South 8 m telescope confirmed the lensing nature of this system. Using weak-plus-strong lensing, velocity dispersion, cluster richness N{sub 200}, and fitting to a Navarro-Frenk-White (NFW) cluster mass density profile,more » we have made three independent estimates of the mass M{sub 200} which are all very consistent with each other. The combination of the results from the three methods gives M{sub 200} = (5.1 {+-} 1.3) Multiplication-Sign 10{sup 14} M{sub Sun }, which is fully consistent with the individual measurements. The final NFW concentration c{sub 200} from the combined fit is c{sub 200} = 5.4{sup +1.4}{sub -1.1}. We have compared our measurements of M{sub 200} and c{sub 200} with predictions for (1) clusters from {Lambda}CDM simulations, (2) lensing-selected clusters from simulations, and (3) a real sample of cluster lenses. We find that we are most compatible with the predictions for {Lambda}CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to {Lambda}CDM. Finally, using the flux measured from the [O II]3727 line we have determined the star formation rate of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  11. Illumination-redistribution lenses for non-circular spots

    NASA Astrophysics Data System (ADS)

    Parkyn, William A.; Pelka, David G.

    2005-08-01

    The design of illumination lenses is far easier under the regime of the small-source approximation, whereby central rays are taken as representative of the entire source. This implies that the lens is much larger than the source's active emitter, and its entire interior surface is nowhere close to the source. Also, a given source luminance requires a minimum lens area to achieve the candlepower necessary for target illumination. We introduce two-surface aspheric lenses for specific illuminations tasks involving ceiling-mounted downlights, lenses that achieve uniform illuminance at the output aperture as well as at the target. This means that squared-off lenses will produce square spots. In particular, a semicircular lens and a vertical mirror will produce a semicircular spot suitable for gambling tables.

  12. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Chantry, V.; Sluse, D.; Magain, P.

    2010-11-01

    Aims: We attempt to place very accurate positional constraints on seven gravitationally lensed quasars currently being monitored by the COSMOGRAIL collaboration, and shape parameters for the light distribution of the lensing galaxy. We attempt to determine simple mass models that reproduce the observed configuration and predict time delays. We finally test, for the quads, whether there is evidence of astrometric perturbations produced by substructures in the lensing galaxy, which may preclude a good fit with the simple models. Methods: We apply the iterative MCS deconvolution method to near-IR HST archival data of seven gravitationally lensed quasars. This deconvolution method allows us to differentiate the contributions of the point sources from those of extended structures such as Einstein rings. This method leads to an accuracy of 1-2 mas in the relative positions of the sources and lens. The limiting factor of the method is the uncertainty in the instrumental geometric distortions. We then compute mass models of the lensing galaxy using state-of-the-art modeling techniques. Results: We determine the relative positions of the lensed images and lens shape parameters of seven lensed quasars: HE 0047-1756, RX J1131-1231, SDSS J1138+0314, SDSS J1155+6346, SDSS J1226-0006, WFI J2026-4536, and HS 2209+1914. The lensed image positions are derived with 1-2 mas accuracy. Isothermal and de Vaucouleurs mass models are calculated for the whole sample. The effect of the lens environment on the lens mass models is taken into account with a shear term. Doubly imaged quasars are equally well fitted by each of these models. A large amount of shear is necessary to reproduce SDSS J1155+6346 and SDSS J1226-006. In the latter case, we identify a nearby galaxy as the dominant source of shear. The quadruply imaged quasar SDSS J1138+0314 is reproduced well by simple lens models, which is not the case for the two other quads, RX J1131-1231 and WFI J2026-4536. This might be the signature

  13. The Future of Myopia Control Contact Lenses.

    PubMed

    Gifford, Paul; Gifford, Kate Louise

    2016-04-01

    The growing incidence of pediatric myopia worldwide has generated strong scientific interest in understanding factors leading to myopia development and progression. Although contact lenses (CLs) are prescribed primarily for refractive correction, there is burgeoning use of particular modalities for slowing progression of myopia following reported success in the literature. Standard soft and rigid CLs have been shown to have minimal or no effect for myopia control. Overall, orthokeratology and soft multifocal CLs have shown the most consistent performance for myopia control with the least side effects. However, their acceptance in both clinical and academic spheres is influenced by data limitations, required off-label usage, and a lack of clear understanding of their mechanisms for myopia control. Myopia development and progression seem to be multifactorial, with a complex interaction between genetics and environment influencing myopigenesis. The optical characteristics of the individual also play a role through variations in relative peripheral refraction, binocular vision function, and inherent higher-order aberrations that have been linked to different refractive states. Contact lenses provide the most viable opportunity to beneficially modify these factors through their close alignment with the eye and consistent wearing time. Contact lenses also have potential to provide a pharmacological delivery device and a possible feedback mechanism for modification of a visual environmental risk. An examination of current patents on myopia control provides a window to the future development of an ideal myopia-controlling CL, which would incorporate the broadest treatment of all currently understood myopigenic factors. This ideal lens must also satisfy safety and comfort aspects, along with overcoming practical issues around U.S. Food and Drug Administration approval, product supply, and availability to target populations. Translating the broad field of myopia research

  14. Nanoplasmonic lenses for bacteria sorting (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangchao; Yanik, Ahmet A.

    2015-08-01

    We demonstrate that patches of two dimensional arrays of circular plasmonic nanoholes patterned on gold-titanium thin film enables subwavelength focusing of visible light in far field region. Efficient coupling of the light with the excited surface plasmon at metal dielectric interface results in strong light transmission. As a result, surface plasmon plays an important role in the far field focusing behavior of the nanohole-aperture patches device. Furthermore, the focal length of the focused beam was found to be predominantly dependent on the overall size of the patch, which is in good agreement with that calculated by Rayleigh-Sommerfield integral formula. The focused light beam can be utilized to separate bio-particles in the dynamic range from 0.1 μm to 1 μm through mainly overcoming the drag force induced by fluid flow. In our proposed model, focused light generated by our plasmonic lenses will push the larger bio-particles in size back to the source of fluid flow and allow the smaller particles to move towards the central aperture of the patch. Such a new kind of plasmonic lenses open up possibility of sorting bacterium-like particles with plasmonic nanolenses, and also represent a promising tool in the field of virology.

  15. Bacterial adhesion to unworn and worn silicone hydrogel lenses.

    PubMed

    Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P

    2012-08-01

    The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.

  16. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 degmore » $$^{2}$$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $$z_{\\rm med} {\\sim} 0.7$$, while the CMB lensing kernel is broad and peaks at $$z{\\sim}2$$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $$z{\\sim}0.44$$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$$\\times$$SPT cross-power is found to be $$A = 0.88 \\pm 0.30$$ and that from DES$$\\times$$Planck to be $$A = 0.86 \\pm 0.39$$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $$2.9 \\sigma$$ and $$2.2 \\sigma$$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $$A = 1.08 \\pm 0.36$$ for DES$$\\times$$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.« less

  17. RELICS: A Candidate Galaxy Arc at z~10 and Other Brightly Lensed z>6 Galaxies

    NASA Astrophysics Data System (ADS)

    Salmon, Brett; Coe, Dan; Bradley, Larry; Bradac, Marusa; Huang, Kuang-Han; Oesch, Pascal; Brammer, Gabriel; Stark, Daniel P.; Sharon, Keren; Trenti, Michele; Avila, Roberto J.; Ogaz, Sara; Acebron, Ana; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Cibirka, Nathália; Dawson, William; Frye, Brenda; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Paterno-Mahler, Rachel; Rodney, Steven; Umetsu, Keiichi; Zitrin, Adi; RELICS

    2018-01-01

    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here some of the most brightly lensed z>6 galaxy candidates known from the Reionization Lensing Cluster Survey (RELICS) and the discovery of a particularly fortuitous z~10 galaxy candidate which has been arced by the effects of strong gravitational lensing. The z~10 candidate has a lensed H-band magnitude of 25.8 AB mag and a high lensing magnification (~4-7). The inferred upper limits on the stellar mass (log [M_star /M_Sun]=9.5) and star formation rate (log [SFR/(M_Sun/yr)]=1.5) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M_star relation. We rule out the only low-z solution as unphysical based on the required stellar mass, dust attenuation, size, and [OIII] EW needed for a z~2 SED to match the data. Finally, we reconstruct the source-plane image and estimate the candidate's physical size at z~10, finding a half-light radius of r_e < 0.8 kpc that is in line with the sizes of other z>9 candidates. While the James Webb Space Telescope will detect z>10 with ease, this rare candidate offers the potential for unprecedented spatial resolution less than 500 Myr after the Big Bang.

  18. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter.

    PubMed

    Muñoz, Julian B; Kovetz, Ely D; Dai, Liang; Kamionkowski, Marc

    2016-08-26

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20-100  M_{⊙} window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ∼20  M_{⊙} would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass M_{L} induces two images, separated by a typical time delay ∼few×(M_{L}/30  M_{⊙})  msec. Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 10^{4} FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 10^{4} FRBs would constrain the fraction f_{DM} of dark matter in MACHOs to f_{DM}≲0.08 for M_{L}≳20  M_{⊙}.

  19. Focusing properties of x-ray polymer refractive lenses from SU-8 resist layer

    NASA Astrophysics Data System (ADS)

    Snigirev, Anatoly A.; Snigireva, Irina; Drakopoulos, Michael; Nazmov, Vladimir; Reznikova, Elena; Kuznetsov, Sergey; Grigoriev, Maxim; Mohr, Jurgen; Saile, Volker

    2003-12-01

    Compound refractive lenses printed in Al and Be are becoming the key X-ray focusing and imaging components of beamline optical layouts at the 3rd generation synchrotron radiation sources. Recently proposed planar optical elements based on Si, diamond etc. may substantially broaden the spectrum of the refractive optics applicability. Planar optics has focal distances ranging from millimeters to tens of meters offering nano- and micro-focusing lenses, as well as beam condensers and collimators. Here we promote deep X-ray lithography and LIGA-type techniques to create high aspect-ratio lens structures for different optical geometries. Planar X-ray refractive lenses were manufactured in 1 mm thick SU-8 negative resist layer by means of deep synchrotron radiation lithography. The focusing properties of lenses were studied at ID18F and BM5 beamlines at the ESRF using monochromatic radiation in the energy range of 10 - 25 keV. By optimizing lens layout, mask making and resist processing, lenses of good quality were fabricated. The resolution of about 270 nm (FWHM) with gain in the order of 300 was measured at 14 keV. In-line holography of B-fiber was realized in imaging and projection mode with a magnification of 3 and 20, respectively. Submicron features of the fiber were clearly resolved. A radiation stability test proved that the fabricated lenses don't change focusing characteristics after dose of absorbed X-ray radiation of about 2 MJ/cm3. The unique radiation stability along with the high effficiency of SU8 lenses opens wide range of their synchrotron radiation applications such as microfocusing elements, condensers and collimators.

  20. Cosmic curvature tested directly from observations

    NASA Astrophysics Data System (ADS)

    Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman

    2018-03-01

    Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.

  1. The DES Science Verification Weak Lensing Shear Catalogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, M.

    We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less

  2. The DES Science Verification Weak Lensing Shear Catalogs

    DOE PAGES

    Jarvis, M.

    2016-05-01

    We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less

  3. Modified Gravity and its test on galaxy clusters

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau

    2018-05-01

    The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.

  4. Quantity of protein deposited on hydrogel contact lenses and its relation to visible protein deposits.

    PubMed

    Myers, R I; Larsen, D W; Tsao, M; Castellano, C; Becherer, L D; Fontana, F; Ghormley, N R; Meier, G

    1991-10-01

    The purposes of this study were to determine if the quantity of protein deposited (QPD) upon hydrogel lenses was affected by enzymatic cleaning and to test the potential relation between QPD and visible protein deposition (VPD) and change. Seventy-four contact lens patients classified as "heavy depositors" wore new lenses for an average of 80 (SD = 32) days. Cleaning and disinfection solutions varied. One lens was cleaned weekly by a papain enzymatic treatment. The distribution of QPD measurements was bimodal and was related to the FDA material for nonionic, low water content lenses (FDA Materials Group no. 1). The mean deposition was 45 micrograms/cm2 (N = 112) compared with that of ionic, high water content lenses (FDA Materials Group no. 4), which was 1010 micrograms/cm2 (N = 30). VPD distributions were the same for the FDA Group no. 1 and no. 4 lenses. Enzymatic treatment did not significantly reduce QPD; however, enzymatic treatment did reduce VPD. Thus QPD and VPD are independent phenomena and possible reasons for this are given.

  5. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  6. Probing supervoids with weak lensing

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Inoue, Kaiki Taro

    2018-05-01

    The cosmic microwave background (CMB) has non-Gaussian features in the temperature fluctuations. An anomalous cold spot surrounded with a hot ring, called the Cold Spot, is one of such features. If a large underdense region (supervoid) resides towards the Cold Spot, we would be able to detect a systematic shape distortion in the images of background source galaxies via weak lensing effect. In order to estimate the detectability of such signals, we used the data of N-body simulations to simulate full-sky ray-tracing of source galaxies. We searched for a most prominent underdense region using the simulated convergence maps smoothed at a scale of 20° and obtained tangential shears around it. The lensing signal expected in a concordant Λ cold dark matter model can be detected at a signal-to-noise ratio S/N ˜ 3. If a supervoid with a radius of ˜200 h-1 Mpc and a density contrast δ0 ˜ -0.3 at the centre resides at a redshift z ˜ 0.2, on-going and near-future weak gravitational lensing surveys would detect a lensing signal with S/N ≳ 4 without resorting to stacking. From the tangential shear profile, we can obtain a constraint on the projected mass distribution of the supervoid.

  7. Probabilistic Cosmological Mass Mapping from Weak Lensing Shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M. D.; Dawson, W. A.; Ng, K. Y.

    2017-04-10

    We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian-distributedmore » shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.« less

  8. Probabilistic cosmological mass mapping from weak lensing shear

    DOE PAGES

    Schneider, M. D.; Ng, K. Y.; Dawson, W. A.; ...

    2017-04-10

    Here, we infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear ormore » Gaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.« less

  9. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; hide

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  10. Transverse profile of the electron beam for the RHIC electron lenses

    DOE PAGES

    Gu, X.; Altinbas, Z.; Costanzo, M.; ...

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  11. Zoom microscope objective using electrowetting lenses.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-02-08

    We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.

  12. Temporal properties of compensation for positive and negative spectacle lenses in chicks.

    PubMed

    Zhu, Xiaoying; Wallman, Josh

    2009-01-01

    Chicks' eyes rapidly compensate for defocus imposed by spectacle lenses by changing their rate of elongation and their choroidal thickness. Compensation may involve internal emmetropization signals that rise and become saturated during episodes of lens wear and decline between episodes. The time constants of these signals were measured indirectly by measuring the magnitude of lens compensation in refractive error and ocular dimensions as a function of the duration of episodes and the intervals between the episodes. First, in a study of how quickly the signals rose, chicks were subjected to episodes of lens-wear of various durations (darkness otherwise), and the duration required to cause a half-maximum effect (rise-time) was estimated. Second, in a study of how quickly the signals declined, various dark intervals were imposed between episodes of lens-wear, and the interval required to reduce the maximum effect by half (fall-time) was estimated. The rise-times for the rate of ocular elongation and choroidal thickness were approximately 3 minutes for positive and negative lenses. The fall-times had a broad range of time courses: Positive lenses caused an enduring inhibition of ocular elongation with a fall-time of 24 hours. In contrast, negative lenses caused a transient stimulation of ocular elongation with a fall-time of 0.4 hour. The effects of episodes of defocus rise rapidly with episode duration to an asymptote and decline between episodes, with the time course depending strongly on the sign of defocus and the ocular component. The complex etiology of human myopia may reflect these temporal properties.

  13. Lensing as a probe of early universe: from CMB to galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassani, Farbod; Baghram, Shant; Firouzjahi, Hassan, E-mail: farbod@physics.sharif.edu, E-mail: baghram@sharif.edu, E-mail: firouz@ipm.ir

    The Cosmic Microwave Background (CMB) radiation lensing is a promising tool to study the physics of early universe. In this work we probe the imprints of deviations from isotropy and scale invariance of primordial curvature perturbation power spectrum on CMB lensing potential and convergence. Specifically, we consider a scale-dependent hemispherical asymmetry in primordial power spectrum. We show that the CMB lensing potential and convergence and also the cross-correlation of the CMB lensing and late time galaxy convergence can probe the amplitude and the scale dependence of the dipole modulation. As another example, we consider a primordial power spectrum with localmore » feature. We show that the CMB lensing and the cross-correlation of the CMB lensing and galaxy lensing can probe the amplitude and the shape of the local feature. We show that the cross correlation of CMB lensing convergence and galaxy lensing is capable to probe the effects of local features in power spectrum on smaller scales than the CMB lensing. Finally we showed that the current data can constrain the amplitude and moment dependence of dipole asymmetry.« less

  14. VizieR Online Data Catalog: GLASS. IV. Lensing cluster Abell 2744 (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradac, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E. Jr; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.

    2016-02-01

    The two position angles (P.A.s) of Grism Lens-Amplified Survey from Space (GLASS) data analyzed in this study were taken on 2014 August 22 and 23 (P.A.=135) and 2014 October 24 and 25 (P.A.=233), respectively. The Hubble Frontier Fields initiative (HFF, P.I. Lotz) is a Director's Discretionary Time legacy program with HST devoting 840 orbits of HST time to acquire optical ACS and NIR WFC3 imaging of six of the strongest lensing galaxy clusters on the sky. All six HFF clusters are included in the GLASS sample. The Spitzer Frontier Fields program (P.I. Soifer) is a Director's Discretionary Time program that images all six strong lensing galaxy clusters targeted by the HFF in both warm IRAC channels (3.6 and 4.5um). (2 data files).

  15. Paraboloid-aspheric lenses free of spherical aberration

    NASA Astrophysics Data System (ADS)

    Lozano-Rincón, Ninfa del C.; Valencia-Estrada, Juan Camilo

    2017-07-01

    A method to design singlet paraboloid-aspheric lenses free of all orders of spherical aberration with maximum aperture is described. This work includes all parametric formulas to describe paraboloid-aspheric or aspheric-paraboloid lenses for any finite conjugated planes. It also includes the Schwarzchilds approximations (which can be used to calculate one rigorous propagation of light waves in physic optics) to design convex paraboloid-aspheric lenses for imaging an object at infinity, with explicit formulas to calculate thicknesses easily. The results were verified with software through ray tracing.

  16. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  17. Efficacy of multipurpose solutions for rigid gas permeable lenses.

    PubMed

    Boost, Maureen; Cho, Pauline; Lai, Sindy

    2006-09-01

    The use of multipurpose solutions for cleaning and disinfecting rigid gas permeable lenses has replaced single purpose solutions, but there are no reports of the efficacy of these multipurpose solutions, or of the effects of storage conditions on their disinfecting capacities. This study investigated activity against four bacterial and two fungal species, and the effects of storage in a refrigerator, at room temperature, at elevated temperature in both dry and humid conditions and with exposure to sunlight. The disinfecting solutions were challenged with the micro-organisms initially upon opening and then at 2-weekly intervals up to 12 weeks after being stored under the different conditions. Solutions were opened daily to simulate use. One solution failed to meet Food and Drug Administration (FDA) criteria to reduce numbers of bacteria by three log dilutions and of fungi by one log dilution. Storage reduced activity of all solutions over the 12-week period, but not below the requirements of the FDA. Storage in the refrigerator tended to reduce disinfecting capacity more quickly. Multipurpose solutions for rigid gas permeable (RGP) lenses lose activity over the 3 months recommended time of use but remain satisfactory for use over this time in the conditions tested. Practitioners need to remind patients to replace their solutions regularly and should advise against storage in the refrigerator. Multipurpose solutions for RGP lenses have simplified cleaning and disinfecting processes and the current formulations have improved disinfecting capacity compared to former disinfecting solutions, which is particularly important for wearers of orthokeratology lenses.

  18. Weak Gravitational Lensing by the Nearby Cluster Abell 3667.

    PubMed

    Joffre; Fischer; Frieman; McKay; Mohr; Nichol; Johnston; Sheldon; Bernstein

    2000-05-10

    We present two weak lensing reconstructions of the nearby (zcl=0.055) merging cluster Abell 3667, based on observations taken approximately 1 yr apart under different seeing conditions. This is the lowest redshift cluster with a weak lensing mass reconstruction to date. The reproducibility of features in the two mass maps demonstrates that weak lensing studies of low-redshift clusters are feasible. These data constitute the first results from an X-ray luminosity-selected weak lensing survey of 19 low-redshift (z<0.1) southern clusters.

  19. Cluster Lensing with the BTC

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    1997-12-01

    Weak distortions of background galaxies are rapidly emerging as a powerful tool for the measurement of galaxy cluster mass distributions. Lensing based studies have the advantage of being direct measurements of mass and are not model-dependent as are other techniques (X-ray, radial velocities). To date studies have been limited by CCD field size meaning that full coverage of the clusters out to the virial radii and beyond has not been possible. Probing this large radius region is essential for testing models of large scale structure formation. New wide field CCD mosaics, for the first time, allow mass measurements out to very large radius. We have obtained images for a sample of clusters with the ``Big Throughput Camera'' (BTC) on the CTIO 4m. This camera comprises four thinned SITE 2048(2) CCDs, each 15arcmin on a side for a total area of one quarter of a square degree. We have developed an automated reduction pipeline which: 1) corrects for spatial distortions, 2) corrects for PSF anisotropy, 3) determines relative scaling and background levels, and 4) combines multiple exposures. In this poster we will present some preliminary results of our cluster lensing study. This will include radial mass and light profiles and 2-d mass and galaxy density maps.

  20. BICEP2/Keck Array VIII: Measurement of Gravitational Lensing from Large-scale B-mode Polarization

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Grayson, J.; Halpern, M.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2016-12-01

    We present measurements of polarization lensing using the 150 GHz maps, which include all data taken by the BICEP2 and Keck Array Cosmic Microwave Background polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (˜ 0.5°), the excellent sensitivity (˜3μK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales ({ℓ}≤700). From the auto-spectrum of the reconstructed potential, we measure an amplitude of the spectrum to be ALφ φ=1.15+/- 0.36 (Planck ΛCDM prediction corresponds to ALφ φ =1) and reject the no-lensing hypothesis at 5.8σ , which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields ALφ φ =1.13+/- 0.20. These direct measurements of ALφ φ are consistent with the ΛCDM cosmology and with that derived from the previously reported BK14 B-mode auto-spectrum (AL{BB}=1.20+/- 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B modes previously reported by BICEP/Keck at intermediate angular scales (150≲ ℓ ≲ 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B modes at these angular scales.

  1. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    PubMed

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P < 0.01). The OD value of XO-P was also much lower than that of XO after incubation with P. aeruginosa (P < 0.01). Colony-forming unit counting revealed that a significantly lower number of bacterial colonies attached to the XO-P versus XO lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P < 0.01). Fewer bacterial colonies attached to the XO-P versus XO lenses incubated with P. aeruginosa (P < 0.01). Further, scanning electron microscopy suggested different bacterial adhesion morphology on plasma-treated versus control lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  2. The effect of fractal contact lenses on peripheral refraction in myopic model eyes.

    PubMed

    Rodriguez-Vallejo, Manuel; Benlloch, Josefa; Pons, Amparo; Monsoriu, Juan A; Furlan, Walter D

    2014-12-01

    To test multizone contact lenses in model eyes: Fractal Contact Lenses (FCLs), designed to induce myopic peripheral refractive error (PRE). Zemax ray-tracing software was employed to simulate myopic and accommodation-dependent model eyes fitted with FCLs. PRE, defined in terms of mean sphere M and 90°-180° astigmatism J180, was computed at different peripheral positions, ranging from 0 to 35° in steps of 5°, and for different pupil diameters (PDs). Simulated visual performance and changes in the PRE were also analyzed for contact lens decentration and model eye accommodation. For comparison purposes, the same simulations were performed with another commercially available contact lens designed for the same intended use: the Dual Focus (DF). PRE was greater with FCL than with DF when both designs were tested for a 3.5 mm PD, and with and without decentration of the lenses. However, PRE depended on PD with both multizone lenses, with a remarkable reduction of the myopic relative effect for a PD of 5.5 mm. The myopic PRE with contact lenses decreased as the myopic refractive error increased, but this could be compensated by increasing the power of treatment zones. A peripheral myopic shift was also induced by the FCLs in the accommodated model eye. In regard to visual performance, a myopia under-correction with reference to the circle of least confusion was obtained in all cases for a 5.5 mm PD. The ghost images, generated by treatment zones of FCL, were dimmer than the ones produced with DF lens of the same power. FCLs produce a peripheral myopic defocus without compromising central vision in photopic conditions. FCLs have several design parameters that can be varied to obtain optimum results: lens diameter, number of zones, addition and asphericity; resulting in a very promising customized lens for the treatment of myopia progression.

  3. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE PAGES

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; ...

    2017-07-10

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  4. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  5. Light scatter on the surface of AcrySof intraocular lenses: part I. Analysis of lenses retrieved from pseudophakic postmortem human eyes.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J

    2008-01-01

    To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.

  6. A gravitationally lensed quasar discovered in OGLE

    NASA Astrophysics Data System (ADS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ≈ -102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ≈ 20.0 mag and I ≈ 19.6 mag, respectively, and a lensing galaxy that becomes detectable as I ≈ 21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z = 2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  7. A clinical study of patient acceptance and satisfaction of Varilux Plus and Varilux Infinity lenses.

    PubMed

    Cho, M H; Barnette, C B; Aiken, B; Shipp, M

    1991-06-01

    An independent study was conducted at the UAB School of Optometry to determine the clinical success with Varilux Plus (Varilux 2) and Varilux Infinity progressive addition lenses (PAL). Two hundred eighty patients (280) were fit between June 1988 and May 1989. The acceptance rate of 97.5 percent was based on the number of lenses ordered versus the number of lenses returned. Patients were contacted by telephone and asked to rate their level of satisfaction with their PALs. A chi-square (non-parametric) test revealed no statistically significant differences in levels of satisfaction with respect to gender, PAL type, or degree of presbyopia. Also, neither refractive error nor previous lens history had a measurable impact on patient satisfaction.

  8. Effect of Masked Regions on Weak-lensing Statistics

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi

    2013-09-01

    Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation. We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple χ2 analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg2 survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting χ2/n dof = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard ΛCDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.

  9. EFFECT OF MASKED REGIONS ON WEAK-LENSING STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp

    2013-09-10

    Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation.more » We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple {chi}{sup 2} analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg{sup 2} survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting {chi}{sup 2}/n{sub dof} = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard {Lambda}CDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.« less

  10. Functionalized patchy particles using colloidal lenses

    NASA Astrophysics Data System (ADS)

    Middleton, Christine

    2014-03-01

    Colloidal assembly had been limited by the isotropic, nonspecific nature of interactions between spherical colloidal particles. By giving particles patches functionalized with single stranded DNA, these interactions can be made both directional and specific. We create patchy particles by adding patches to spherical emulsion droplets using the depletion interaction. First we make polystyrene particles in the shape of contact lenses to be the patches. The lenses are functionalized with single stranded DNA on their convex side. Then we put the lenses on the surface of oil emulsion droplets using the depletion interaction, creating a patch (or multiple patches) on the surface of each emulsion droplet. The emulsion droplets can now interact with each other in a specific, directional way through DNA functionalized patches.

  11. Gravitational Lensing from a Spacetime Perspective.

    PubMed

    Perlick, Volker

    2004-01-01

    The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.

  12. The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses.

    PubMed

    Santos, Lívia; Rodrigues, Diana; Lira, Madalena; Oliveira, M Elisabete C D Real; Oliveira, Rosário; Vilar, Eva Yebra-Pimentel; Azeredo, Joana

    2007-07-01

    To evaluate the influence of surface treatment of silicone-hydrogel CL on lens hydrophobicity, protein adsorption and microbial colonisation by studying several silicone hydrogel contact lenses (CL) with and without surface treatment. The lenses used in this study were Balafilcon A, Lotrafilcon A, Lotrafilcon B and Galyfilcon A. A conventional hydrogel CL (Etafilcon A) was also tested. Hydrophobicity was determined through contact angle measurement using the advancing type technique on air. The type and quantity of proteins adsorbed were assessed through SDS-PAGE and fluorescence spectroscopy, respectively. Microbial colonisation was studied by removing the microbes from the lenses through sonication, and counting the colony-forming units on agar plates. Regarding hydrophobicity, both surface and non-surface-treated silicone hydrogel CL were found to be hydrophobic, and the conventional hydrogel CL was found to be hydrophilic. Concerning protein adsorption, different protein profiles were observed on the several lenses tested. Nevertheless, the presence of proteins with the same molecular weight as lysozyme and lactoferrin was common to all lenses, which is probably related to their abundance in tears. In terms of total protein adsorption, silicone hydrogel CL did not exhibit any differences between themselves. However, the conventional hydrogel Etafilcon A adsorbed a larger amount of proteins. Regarding microbial colonisation, Balafilcon A exhibited the greatest amount of colonising microbes, which can be due to its superior hydrophobicity and higher electron acceptor capacity. This study suggests that silicone hydrogel lenses adsorb a lower amount of proteins than the conventional hydrogel lenses and that this phenomenon is independent of the presence of surface treatment. Concerning microbial colonisation, the surface treated Balafilcon A, exhibited a greater propensity, a fact that may compromise the lens wearer's ocular health.

  13. Accommodation and Phoria in Children Wearing Multifocal Contact Lenses

    PubMed Central

    Gong, Celia R; Troilo, David; Richdale, Kathryn

    2017-01-01

    Purpose To determine the effect of multifocal contact lenses on accommodation and phoria in children. Methods This was a prospective, non-dispensing, randomized, crossover, single visit study. Myopic children with normal accommodation and binocularity and no history of myopia control treatment were enrolled and fitted with Coopervision Biofinity single vision (SV) and multifocal (MF, +2.50D center distance add) contact lenses. Accommodative responses (photorefraction) and phorias (Modified Thorington) were measured at 4 distances (>3m, 100cm, 40cm, 25cm). Secondary measures included high and low contrast logMAR acuity, accommodative amplitude and facility. Differences between contact lens designs were analyzed using repeated measures regression and paired t-tests. Results A total of 16 subjects, aged 10-15 years, completed the study. There was a small decrease in high (SV: -0.08, MF: +0.01) and low illumination (SV:-0.03, MF: +0.08) (both p<0.01) visual acuity, and contrast sensitivity (SV: 2.0, MF: 1.9 log units, p=0.015) with multifocals. Subjects were more exophoric at 40 cm (SV: -0.41, MF: -2.06 Δ) and 25cm (SV: -0.83, MF: -4.30 Δ) (both p<0.01). With multifocals, subjects had decreased accommodative responses at distance (SV: -0.04; MF: -0.37 D, p=0.02), 100 cm (SV: +0.37; MF: -0.35 D, p<0.01), 40 cm (SV: +1.82; MF: +0.62 D, p<0.01), and 25 cm (SV: +3.38; MF: +1.75 D, p<0.01). There were no significant differences in accommodative amplitude (p=0.66) or facility (p=0.54). Conclusions Children wearing multifocal contact lenses exhibited reduced accommodative responses and more exophoria at increasingly higher accommodative demands than with single vision contact lenses. This suggests that children may be relaxing their accommodation and using the positive addition or increased depth of focus from added spherical aberration of the multifocals. Further studies are needed to evaluate other lens designs, different amounts of positive addition and aberrations, and

  14. Multiple use of aspheres in cine lenses

    NASA Astrophysics Data System (ADS)

    Beder, Christian; Gängler, Dietmar

    2008-09-01

    Today's high performance cine lenses rely more and more on the use of aspheres. These are as powerful in correcting aberrations as they are expensive if it is not possible to use high-volume manufacturing processes. One possible solution to meet the increasing demands of design to cost is the use of identical parts in several lenses. The biggest gain is possible with the most expensive parts: the aspheres. In this presentation a successful as well as an ineffective way of incorporating the same asphere in three lenses which differ by a factor of 1.5 in focal length will be shown.

  15. Scleral contact lenses for the management of complicated ptosis.

    PubMed

    Katsoulos, Konstantinos; Rallatos, Gerasimos Livir; Mavrikakis, Ioannis

    2018-06-01

    To present the management of three patients suffering from ptosis of various etiologies, with scleral contact lenses. Three patients (five eyes) with ptosis resulting from levator dehiscence due to long-term rigid gas permeable contact lens wear for keratoconus, phthisis bulbi, and myopathy due to Kearns-Sayre syndrome were identified during a 2-year period. They were fitted with scleral contact lenses in order to provide cosmesis by lifting the upper eyelid with the bulk of the lens, and simultaneously provide vision correction where applicable. The scleral contact lenses provided comfortable wear, significantly improved cosmesis as both palpebral aperture and marginal reflex distance were increased, and visual acuity was also subjectively and objectively improved. Two of the patients opted for the scleral contact lenses, whereas the parents of the third patient, a 10-year-old girl with Kearns-Sayre syndrome, chose to undergo ptosis surgery due to handling issues of the scleral contact lenses. Scleral contact lenses can be a useful addition to the treatment option for patients with complicated ptosis.

  16. Gravitational lensing frequencies - Galaxy cross-sections and selection effects

    NASA Technical Reports Server (NTRS)

    Fukugita, Masataka; Turner, Edwin L.

    1991-01-01

    Four issues - (1) the best currently available data on the galaxy velocity-dispersion distribution, (2) the effects of finite core radii potential ellipticity on lensing cross sections, (3) the predicted distribution of lens image separations compared to observational angular resolutions, and (4) the preferential inclusion of lens systems in flux limited samples - are considered in order to facilitate more realistic predictions of multiple image galaxy-quasar lensing frequencies. It is found that (1) the SIS lensing parameter F equals 0.047 +/-0.019 with almost 90 percent contributed by E and S0 galaxies, (2) observed E and S0 core radii are remarkably small, yielding a factor of less than about 2 reduction in total lensing cross sections, (3) 50 percent of galaxy-quasar lenses have image separations greater than about 1.3 arcsec, and (4) amplification bias factors are large and must be carefully taken into account. It is concluded that flat universe models excessively dominated by the cosmological constant are not favored by the small observed galaxy-quasar lensing rate.

  17. Mass Mapping Abell 2261 with Kinematic Weak Lensing: A Pilot Study for NASAs WFIRST mission

    NASA Astrophysics Data System (ADS)

    Eifler, Tim

    2015-02-01

    We propose to investigate a new method to extract cosmological information from weak gravitational lensing in the context of the mission design and requirements of NASAs Wide-Field Infrared Survey Telescope (WFIRST). In a recent paper (Huff, Krause, Eifler, George, Schlegel 2013) we describe a new method for reducing the shape noise in weak lensing measurements by an order of magnitude. Our method relies on spectroscopic measurements of disk galaxy rotation and makes use of the well-established Tully-Fisher (TF) relation in order to control for the intrinsic orientations of galaxy disks. Whereas shape noise is one of the major limitations for current weak lensing experiments it ceases to be an important source of statistical error in our new proposed technique. Specifically, we propose a pilot study that maps the projected mass distribution in the massive cluster Abell 2261 (z=0.225) to infer whether this promising technique faces systematics that prohibit its application to WFIRST. In addition to the cosmological weak lensing prospects, these measurements will also allow us to test kinematic lensing in the context of cluster mass reconstruction with a drastically improved signal-to-noise (S/N) per galaxy.

  18. Tonopen XL assessment of intraocular pressure through silicone hydrogel contact lenses.

    PubMed

    Schornack, Muriel; Rice, Melissa; Hodge, David

    2012-09-01

    To assess the accuracy of Tonopen XL measurement of intraocular pressure (IOP) through low-power (-0.25 to -3.00) and high power (-3.25 to -6.00) silicone hydrogel lenses of 3 different materials (galyfilcon A, senofilcon A, and lotrafilcon B). Seventy-eight patients were recruited for participation in this study. All were habitual wearers of silicone hydrogel contact lenses, and none had been diagnosed with glaucoma, ocular hypertension, or anterior surface disease. IOP was measured with and without lenses in place in the right eye only. Patients were randomized to initial measurement either with or without the lens in place. A single examiner collected all data. No statistically significant differences were noted between IOP measured without lenses and IOP measured through low-power lotrafilcon B lenses or high-power or low-power galyfilcon A and senofilcon A lenses. However, we did find a statistically significant difference between IOP measured without lenses and IOP measured through high-power lotrafilcon B lenses. In general, Tonopen XL measurement of IOP through silicone hydrogel lenses may be sufficiently accurate for clinical purposes. However, Tonopen XL may overestimate IOP if performed through a silicone hydrogel lens of relatively high modulus.

  19. Contact Lenses for Color Blindness.

    PubMed

    Badawy, Abdel-Rahman; Hassan, Muhammad Umair; Elsherif, Mohamed; Ahmed, Zubair; Yetisen, Ali K; Butt, Haider

    2018-06-01

    Color vision deficiency (color blindness) is an inherited genetic ocular disorder. While no cure for this disorder currently exists, several methods can be used to increase the color perception of those affected. One such method is the use of color filtering glasses which are based on Bragg filters. While these glasses are effective, they are high cost, bulky, and incompatible with other vision correction eyeglasses. In this work, a rhodamine derivative is incorporated in commercial contact lenses to filter out the specific wavelength bands (≈545-575 nm) to correct color vision blindness. The biocompatibility assessment of the dyed contact lenses in human corneal fibroblasts and human corneal epithelial cells shows no toxicity and cell viability remains at 99% after 72 h. This study demonstrates the potential of the dyed contact lenses in wavelength filtering and color vision deficiency management. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Corneal erosions, bacterial contamination of contact lenses, and microbial keratitis.

    PubMed

    Willcox, Mark D P; Naduvilath, Thomas J; Vaddavalli, Pravin K; Holden, Brien A; Ozkan, Jerome; Zhu, Hua

    2010-11-01

    To estimate the rate of corneal erosion coupled with gram-negative bacterial contamination of contact lenses and compare this with the rate of microbial keratitis (MK) with contact lenses. The rate of corneal erosion and contact lens contamination by gram-negative bacteria were calculated from several prospective trials. These rates were used to calculate the theoretical rate of corneal erosion happening at the same time as wearing a contact lens contaminated with gram-negative bacteria. This theoretical rate was then compared with the rates of MK reported in various epidemiological and clinical trials. Corneal erosions were more frequent during extended wear (0.6-2.6% of visits) compared with daily wear (0.01-0.05% of visits). No corneal erosions were observed for lenses worn on a daily disposable basis. Contamination rates for lenses worn on a daily disposable basis were the lowest (2.4%), whereas they were the highest for low Dk lenses worn on an extended wear basis (7.1%). The estimated rate of corneal erosions occurring at the same time as wearing lenses contaminated with gram-negative bacteria was the lowest during daily wear of low Dk lenses (1.56/10,000 [95% CI: 0.23-10.57]) and the highest during extended wear of high Dk lenses (38.55/10,000 [95% CI: 24.77-60.04]). These rates were similar in magnitude to the rates reported for MK of different hydrogel lenses worn on differing wear schedules. The coincidence of corneal erosions during lens wear with gram-negative bacterial contamination of lenses may account for the relative incidence of MK during lens wear with different lens materials and modes of use.