On the local well-posedness of Lovelock and Horndeski theories
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
Crossover from weak to strong localization in quasi-1D = conductors.
NASA Astrophysics Data System (ADS)
Gershenson, M. E.; Khavin, Y. B.; Mikhalchuk, A. G.; Bozler, H. M.; Bogdanov, A. L.
1997-03-01
A crossover from weak localization (WL) to strong localization (SL) with decreasing temperature has been observed in the resistance of quasi-1D channels in Si delta-doped GaAs structures. The crossover occurs when the phase-breaking length becomes comparable to the localization length. In the SL regime, an activation temperature dependence R(T) is observed. The activation energy is very close to the spacing between the energy levels of the localized electrons within the localization domain. The activation energy decreases by half in strong magnetic fields, as a result, an exponentially strong negative magnetoresistance is developed. All the features of the magnetoresistance in the SL regime are in good agreement with the theory of doubling of the localization length in quasi-1D conductors in strong fields. The magnetoresistance provides a direct measurement of the localization length. Supported by RNFBR, INTAS 943862, and NSF DRM-9623716 (A.G.M. and H.M.B.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in; Department of Physics, College of Engineering, Pune 411005, Maharashtra; Tanty, Narendra
2016-08-22
We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.
Semimetallization of dielectrics in strong optical fields
Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I.; Kim, D.
2016-01-01
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics. PMID:26888147
Semimetallization of dielectrics in strong optical fields
Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; ...
2016-02-18
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drivemore » this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Lastly, our results may blaze a trail to PHz-rate optoelectronics.« less
Semimetallization of dielectrics in strong optical fields.
Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I; Kim, D
2016-02-18
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.
NASA Technical Reports Server (NTRS)
Russell, C. T.; Von Dornum, M.; Scarf, F. L.
1990-01-01
Impulsive VLF signals at low altitudes in the night ionosphere of Venus occur both above and below the electron gyro frequency. The strength of the magnetic field has a very strong influence on the occurrence rates of these impulsive emissions at all frequencies. Above about one-quarter of the local electron gyro frequency the waves occur most frequently for strong magnetic fields and much less frequently for weak fields. However, below about one-quarter of the electron gyro frequency, the occurrence rate is much less sensitive to field strength. At all frequencies the occurrence rate depends little on the direction of the magnetic field. The occurrence rate is strongly dependent on local time especially above the electron gyro frequency. Here, the occurrence rate peaks sharply at 2100 LT. Below the local electron gyro frequency the occurrence rate also shows a maximum near 2100 LT but decreases much more slowly with increasing local time. The rate of occurrence of low frequency signals varies little with altitude but the occurrence of the higher frequency signals decreases rapidly. These properties are consistent with a broadband source of VLF waves in the Venus atmosphere such as would be provided by intracloud lightning.
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Influence of a large-scale field on energy dissipation in magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne
2017-07-01
In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. This is done, for example, in reduced models of plasmas, such as reduced MHD, reduced-dimension kinetic models, gyrokinetics, etc., which make theoretical calculations easier and numerical computations cheaper. Recently, however, it has become clear that the turbulent energy dissipation is concentrated in the regions of strong magnetic field variations. A significant fraction of the energy dissipation may be localized in very small volumes corresponding to the boundaries between strongly magnetized domains. In these regions, the reduced models are not applicable. This has important implications for studies of particle heating and acceleration in magnetic plasma turbulence. The goal of this work is to systematically investigate the relationship between local magnetic field variations and magnetic energy dissipation, and to understand its implications for modelling energy dissipation in realistic turbulent plasmas.
Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.
2012-01-01
A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1985-01-01
On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.
Morphology dependent near-field response in atomistic plasmonic nanocavities.
Chen, Xing; Jensen, Lasse
2018-06-21
In this work we examine how the atomistic morphologies of plasmonic dimers control the near-field response by using an atomistic electrodynamics model. At large separations, the field enhancement in the junction follows a simple inverse power law as a function of the gap separation, which agrees with classical antenna theory. However, when the separations are smaller than 0.8 nm, the so-called quantum size regime, the field enhancement is screened and thus deviates from the simple power law. Our results show that the threshold distance for the deviation depends on the specific morphology of the junction. The near field in the junction can be localized to an area of less than 1 nm2 in the presence of an atomically sharp tip, but the separation distances leading to a large confinement of near field depend strongly on the specific atomistic configuration. More importantly, the highly confined fields lead to large field gradients particularly in a tip-to-surface junction, which indicates that such a plasmonic structure favors observing strong field gradient effects in near-field spectroscopy. We find that for atomically sharp tips the field gradient becomes significant and depends strongly on the local morphology of a tip. We expect our findings to be crucial for understanding the origin of high-resolution near-field spectroscopy and for manipulating optical cavities through atomic structures in the strongly coupled plasmonic systems.
NASA Technical Reports Server (NTRS)
Gonzalez, W. D.; Pinto, O., Jr.; Mendes, O., Jr.; Mozer, F. S.
1986-01-01
Large plasmaspheric electric fields at L is approximately 2 measured by the S3-3 satellite during strong geomagnetic activity are reported. Since these measurements have amplitudes comparable to those of the local corotation electric field, during such events the plasmasphere is expected to get strongly altered event at such low L-values. Furthermore, those measurements could contribute to the understanding of the physics of the convection/electric field penetration to the low latitude plasmaphere as well as the disturbed dynamo, during strong geomagnetic activity. For this purpose, critical parameters related to geomagnetic activity are also presented for the reported electric field events.
Instability in strongly magnetized accretion discs: a global perspective
NASA Astrophysics Data System (ADS)
Das, Upasana; Begelman, Mitchell C.; Lesur, Geoffroy
2018-01-01
We examine the properties of strongly magnetized accretion discs in a global framework, with particular focus on the evolution of magnetohydrodynamic instabilities such as the magnetorotational instability (MRI). Work by Pessah & Psaltis showed that MRI is stabilized beyond a critical toroidal field in compressible, differentially rotating flows and, also, reported the appearance of two new instabilities beyond this field. Their results stemmed from considering geometric curvature effects due to the suprathermal background toroidal field, which had been previously ignored in weak-field studies. However, their calculations were performed under the local approximation, which poses the danger of introducing spurious behaviour due to the introduction of global geometric terms in an otherwise local framework. In order to avoid this, we perform a global eigenvalue analysis of the linearized MHD equations in cylindrical geometry. We confirm that MRI indeed tends to be highly suppressed when the background toroidal field attains the Pessah-Psaltis limit. We also observe the appearance of two new instabilities that emerge in the presence of highly suprathermal toroidal fields. These results were additionally verified using numerical simulations in PLUTO. There are, however, certain differences between the the local and global results, especially in the vertical wavenumber occupancies of the various instabilities, which we discuss in detail. We also study the global eigenfunctions of the most unstable modes in the suprathermal regime, which are inaccessible in the local analysis. Overall, our findings emphasize the necessity of a global treatment for accurately modelling strongly magnetized accretion discs.
Graphene as a local probe to investigate near-field properties of plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie
2018-04-01
Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).
Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.
Samin, Sela; Tsori, Yoav; Holm, Christian
2013-05-01
We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.
Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal
NASA Astrophysics Data System (ADS)
Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hoja, Johannes; Tkatchenko, Alexandre
2017-09-01
The nonlinear response of soft-mode excitations in polycrystalline acetylsalicylic acid (aspirin) is studied with two-dimensional terahertz spectroscopy. We demonstrate that the correlation of CH3 rotational modes with collective oscillations of π electrons drives the system into the nonperturbative regime of light-matter interaction, even for a moderate strength of the THz driving field on the order of 50 kV /cm . Nonlinear absorption around 1.1 THz leads to a blueshifted coherent emission at 1.7 THz, revealing the dynamic breakup of the strong electron-phonon correlations. The observed behavior is reproduced by theoretical calculations including dynamic local-field correlations.
Measures of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence
NASA Astrophysics Data System (ADS)
Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.; Chen, C. H. K.; Horbury, T. S.; Wicks, R. T.; Greenan, C. C.
2016-06-01
We measure the local anisotropy of numerically simulated strong Alfvénic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are `ribbon-like' - statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the nth-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran, Schekochihin & Mallet, while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of the perpendicular anisotropy (I.e. of the aspect ratio of the Alfvénic structures in the plane perpendicular to the mean magnetic field) depends on the amplitude of the fluctuations. This is shown to be equivalent to the anticorrelation of fluctuation amplitude and alignment at each scale. The dependence of the anisotropy on amplitude is shown to be more significant for the anisotropy between the perpendicular and fluctuation-direction scales than it is between the perpendicular and parallel scales.
Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Peter Gwin
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it wouldmore » be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.« less
Acoustic localization of breakdown in radio frequency accelerating cavities
NASA Astrophysics Data System (ADS)
Lane, Peter
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.
Local electric field direct writing – Electron-beam lithography and mechanism
Jiang, Nan; Su, Dong; Spence, John C. H.
2017-08-24
Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less
Local electric field direct writing – Electron-beam lithography and mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Nan; Su, Dong; Spence, John C. H.
Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less
The effect of external magnetic field changing on the correlated quantum dot dynamics
NASA Astrophysics Data System (ADS)
Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.
2018-06-01
The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.
Olfactory source localization in the open field using one or both nostrils.
Welge-Lussen, A; Looser, G L; Westermann, B; Hummel, T
2014-03-01
This study aims to examine humans ́ abilities to localize odorants within the open field. Young participants were tested on a localization task using a relatively selective olfactory stimulus (2-phenylethyl-alcohol, PEA) and cineol, an odorant with a strong trigeminal component. Participants were blindfolded and had to localize an odorant source at 2 m distance (far-field condition) and a 0.4 m distance (near-field condition) with either two nostrils open or only one open nostril. For the odorant with trigeminal properties, the number of correct trials did not differ when one or both nostrils were used, while more PEA localization trials were correctly completed with both rather than one nostril. In the near-field condition, correct localization was possible in 72-80% of the trials, irrespective of the odorant and the number of nostrils used. Localization accuracy, measured as spatial deviation from the olfactory source, was significantly higher in the near-field compared to the far-field condition, but independent of the odorant being localized. Odorant localization within the open field is difficult, but possible. In contrast to the general view, humans seem to be able to exploit the two-nostril advantage with increasing task difficulty.
Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions
NASA Astrophysics Data System (ADS)
Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.
2018-05-01
We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.
Lightning measurements from the Pioneer Venus Orbiter
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Russell, C. T.
1983-01-01
The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.
Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2011-01-01
The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909
NASA Astrophysics Data System (ADS)
Shuler, Robert
2018-04-01
The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one theory to mimic another implying that such estimates or distributions should be first obtained from weakfield measurements before being used to discriminate verification candidates. By this method theorists gain insight into the local constraints on space-time, and GR verification gains strong-field comparative objectives.
Loop corrections in double field theory: non-trivial dilaton potentials
NASA Astrophysics Data System (ADS)
Lv, Songlin; Wu, Houwen; Yang, Haitang
2014-10-01
It is believed that the invariance of the generalised diffeomorphisms prevents any non-trivial dilaton potential from double field theory. It is therefore difficult to include loop corrections in the formalism. We show that by redefining a non-local dilaton field, under strong constraint which is necessary to preserve the gauge invariance of double field theory, the theory does permit non-constant dilaton potentials and loop corrections. If the fields have dependence on only one single coordinate, the non-local dilaton is identical to the ordinary one with an additive constant.
MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields
NASA Technical Reports Server (NTRS)
Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.;
2016-01-01
Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.
Optical studies of the charge localization and delocalization in conducting polymers
NASA Astrophysics Data System (ADS)
Kim, Youngmin
A systematic charge transport study on the thermochromism of polyaniline (PAN) doped with a plasticizing dopant, and on a field effect device using conducting poly (3,4-ethylenedioxythiophene) (PEDOT) as its active material, was made at optical (20--45,000 cm-1) frequencies to probe the charge localization and delocalization phenomena and the insulator to metal transition (IMT) in the inhomogeneous conducting polymer system. Temperature dependent reflectance [20--8000 cm -1 (2.5 meV--1eV)] of the PAN sample, together with absorbance and do transport study done by Dr. Pron at the Laboratoire de Physique des Metaux Synthetiques in Grenoble, France, shows spectral weight loss in the infrared region but the reflectance in the very low frequency (below 100 cm-1) remains unaffected. There are two localization transitions. The origin of the 200 K localization transition that affect >˜15% of the electrons is the glass transition emanating from the dopants. The transition principally affects the IR response in the range of 200--8000 cm -1. The low temperature (<75K) localization transition affects the few electrons that provide the high conductivity. It is suggested that these electrons are localized by disorder at the lowest temperature and become delocalized through phonon induced delocalization as the temperature increases to 75K. It is noted that this temperature is typical of a Debye temperature in many organic materials. The thermocromism is attributed to the weak localization to strong localization transition through the glass transition temperature. Below the glass transition temperature (Tg), the lattice is "frozen" in configuration that reduces the charge delocalization and lead to cause increase of strongly localized polarons. Time variation of source-drain current, real-time IR reflectance [20--8000 cm-1 (2.5 meV--1eV)] modulation, and real-time UV/VIS/NIR absorbance [380--2400 nm (0.5--3.3 eV)] modulation were measured to investigate the field induced charge localization of PEDOT field effect device. Layer by layer thin film analysis showed strong localization of free carriers. The temperature dependence of the do conductivity changes with application of the gate voltage demonstrating that the electric field effect has changed bulk charge transport in the active channel despite the expected screening due to mobile charge carriers. Mid IR (500--8000 cm-1) reflectance showed little change in the vibrational modes, which distinguish this phenomenon from the doping-dedoping induced electrochemical MIT. UV/Vis/NIR absorbance modulation clearly showed that the increase of the strong localization of charges with the pi-pi* bandgap transition unchanged. It is proposed that conducting polymer is near the metal to insulator transition and that the applied gate voltage leads to this transition through field induced ion motion.
Seismotectonic implications of sand blows in the southern Mississippi Embayment
Cox, R.T.; Hill, A.A.; Larsen, D.; Holzer, T.; Forman, S.L.; Noce, T.; Gardner, C.; Morat, J.
2007-01-01
We explore seismically-induced sand blows from the southern Mississippi Embayment and their implications in resolving the question of near or distal epicentral source region. This was accomplished using aerial photography, field excavations, and cone penetration tests. Our analysis shows that three sand blow fields exhibit a distinct chronology of strong ground motion for the southern embayment: (1) The Ashley County, Arkansas sand blow field, near the Arkansas/Louisiana state border, experienced four Holocene sand venting episodes; (2) to the north, the Desha County field experienced at least three episodes of liquefaction; and (3) the Lincoln-Jefferson Counties field experienced at least one episode. Cone penetration tests (CPT) conducted in and between the sand blow fields suggest that the fields may not be distal liquefaction associated with New Madrid seismic zone earthquakes but rather are likely associated with strong earthquakes on local faults. This conclusion is consistent with the differences in timing of the southern embayment sand venting episodes and those in the New Madrid seismic zone. These results suggest that active tectonism and strong seismicity in intraplate North America may not be localized at isolated weak spots, but rather widespread on fault systems that are favorably oriented for slip in the contemporary stress field. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook
2017-09-01
Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.
Experimental observation of spatially localized dynamo magnetic fields.
Gallet, B; Aumaître, S; Boisson, J; Daviaud, F; Dubrulle, B; Bonnefoy, N; Bourgoin, M; Odier, Ph; Pinton, J-F; Plihon, N; Verhille, G; Fauve, S; Pétrélis, F
2012-04-06
We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode. © 2012 American Physical Society
Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes
2013-11-21
Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.
Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices
2016-03-01
where barriers, tunneling , scattering, strong polarization-induced fields, or carrier localization due to Type I or Type II quantum-well structures can... tunneling across junctions, scattering at heterointerfaces, and internal fields. For light-emitting devices, poor charge transport across multilayer...localization of holes and rapid electron tunneling .5 However, direct transport properties were Approved for public release; distribution is
Süßmann, F.; Seiffert, L.; Zherebtsov, S.; Mondes, V.; Stierle, J.; Arbeiter, M.; Plenge, J.; Rupp, P.; Peltz, C.; Kessel, A.; Trushin, S. A.; Ahn, B.; Kim, D.; Graf, C.; Rühl, E.; Kling, M. F.; Fennel, T.
2015-01-01
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena. PMID:26264422
Süßmann, F; Seiffert, L; Zherebtsov, S; Mondes, V; Stierle, J; Arbeiter, M; Plenge, J; Rupp, P; Peltz, C; Kessel, A; Trushin, S A; Ahn, B; Kim, D; Graf, C; Rühl, E; Kling, M F; Fennel, T
2015-08-12
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.
Modulation of circular current and associated magnetic field in a molecular junction: A new approach
NASA Astrophysics Data System (ADS)
Patra, Moumita; Maiti, Santanu K.
2017-03-01
A new proposal is given to control local magnetic field in a molecular junction. In presence of finite bias a net circular current is established in the molecular ring which induces a magnetic field at its centre. Allowing a direct coupling between two electrodes, due to their close proximity, and changing its strength we can regulate circular current as well as magnetic field for a wide range, without disturbing any other physical parameters. We strongly believe that our proposal is quite robust compared to existing approaches of controlling local magnetic field and can be verified experimentally.
Equatorial disc and dawn-dusk currents in the frontside magnetosphere of Jupiter - Pioneer 10 and 11
NASA Technical Reports Server (NTRS)
Jones, D. E.; Thomas, B. T.; Melville, J. G., II
1981-01-01
Observations by Pioneer 10 and 11 show that the strongest azimuthal fields are observed near the dawn meridian (Pioneer 10) while the weakest occur near the noon meridian (Pioneer 11), suggesting a strong local time dependence for the corresponding radial current system. Modeling studies of the radial component of the field observed by both spacecraft suggest that the corresponding azimuthal current system must also be a strong function of local time. Both the azimuthal and the radial field component signatures exhibit sharp dips and reversals, requiring thin radial and azimuthal current systems. There is also a suggestion that these two current systems either are interacting or are due, at least in part, to the same current. It is suggested that a plausible current model consists of the superposition of a thin, local-time-independent azimuthal current system plus the equatorial portion of a tail-like current system that extends into the dayside magnetosphere.
Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.
Postma, Froukje M; Ågren, Jon
2016-07-05
The magnitude and genetic basis of local adaptation is of fundamental interest in evolutionary biology. However, field experiments usually do not consider early life stages, and therefore may underestimate local adaptation and miss genetically based tradeoffs. We examined the contribution of differences in seedling establishment to adaptive differentiation and the genetic architecture of local adaptation using recombinant inbred lines (RIL) derived from a cross between two locally adapted populations (Italy and Sweden) of the annual plant Arabidopsis thaliana We planted freshly matured, dormant seeds (>180 000) representing >200 RILs at the native field sites of the parental genotypes, estimated the strength of selection during different life stages, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on seed dormancy. We found that selection during the seedling establishment phase contributed strongly to the fitness advantage of the local genotype at both sites. With one exception, local alleles of the eight distinct establishment QTL were favored. The major QTL for establishment and total fitness showed evidence of a fitness tradeoff and was located in the same region as the major seed dormancy QTL and the dormancy gene DELAY OF GERMINATION 1 (DOG1). RIL seed dormancy could explain variation in seedling establishment and fitness across the life cycle. Our results demonstrate that genetically based differences in traits affecting performance during early life stages can contribute strongly to adaptive differentiation and genetic tradeoffs, and should be considered for a full understanding of the ecology and genetics of local adaptation.
Extensive electron transport and energization via multiple, localized dipolarizing flux bundles
NASA Astrophysics Data System (ADS)
Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei
2017-05-01
Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.
2013-12-01
In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.
Plasphonics: local hybridization of plasmons and phonons.
Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Tripathy, Sudhiranjan
2013-02-25
We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.
Theoretical investigations of the local distortion and spectral properties for VO2+ in SiO2 Glass
NASA Astrophysics Data System (ADS)
Li, Mu-Neng; Zhang, Zhi-Hong; Wu, Shao-Yi
2017-11-01
The local distortions and the spin Hamiltonian parameters g factors g∥, g⊥ and the hyperfine structure constants A∥ and A⊥ for isolated vanadyl ions VO2+ doped in SiO2 glass at 700°C are theoretically investigated from the perturbation formulas of these parameters for a 3d1 ion in tetragonally compressed octahedra. In these formulas, the relationships between local structure of VO2+ ions center and the tetragonal crystal field parameters are established. As a result, the distortion of the ligand octahedron is attributed to the strong axial crystal-fields associated with the short V4+-O2- bond due to the strong V=O bonding in the silica matrix. The theoretical spin Hamiltonian parameters obtained in this work show reasonable agreement with the experimental data.
Li, Sha; Jones, R. R.
2016-01-01
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm
Park, Changwon; Ryou, Junga; Hong, Suklyun; ...
2015-07-02
Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. Lastly, we further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.
Directional x-ray dark-field imaging of strongly ordered systems
NASA Astrophysics Data System (ADS)
Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz
2010-12-01
Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
NASA Astrophysics Data System (ADS)
Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.
2018-04-01
Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.
SuBmann, F.; Seiffert, L.; Zherebtsov, S.; ...
2015-08-12
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
SuBmann, F.; Seiffert, L.; Zherebtsov, S.
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less
MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.
2016-03-01
Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.
Complementary bowtie aperture for localizing and enhancing optical magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan
2011-08-01
Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, A. M.; Kumar, A.; Gregg, J. M.
Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
NASA Technical Reports Server (NTRS)
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
NASA Technical Reports Server (NTRS)
Holtet, J. A.; Maynard, N. C.; Heppner, J. P.
1976-01-01
Recordings from OGO 6 show that electric field irregularities are frequently present between + or - 35 deg geomagnetic latitude in the 2000 - 0600 local time sector. The signatures are very clear, and are easily distinguished from the normal AC background noise, and whistler and emission activity. The spectral appearance of the fields makes it meaningful to distinguish between 3 different types of irregularities: strong irregularities, weak irregularities, and weak irregularities with a rising spectrum. Strong irregularities seem most likely to occur in regions where gradients in ionization are present. Changes in plasma composition, resulting in an increase in the mean ion mass, are also often observed in the irregularity regions. Comparison with ground based ionosondes indicates a connection between strong irregularities and low latitude spread F. A good correlation is also present between strong fields and small scale fluctuations in ionization, delta N/N 1 percent. From the data it appears as if a gradient driven instability is the most likely source of the strong irregularities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.
The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + {sigma} approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamicmore » conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition.« less
NASA Astrophysics Data System (ADS)
Hütter, Markus; Svendsen, Bob
2017-12-01
The purpose of the current work is the formulation of models for conservative and non-conservative dynamics in solid systems with the help of the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger, Phys. Rev. E 56(6), 6620 (1997); Öttinger and Grmela, Phys. Rev. E 56(6), 6633 (1997)). In this context, the resulting models are inherently spatially strongly non-local (i.e., functional) and non-isothermal in character. They are applicable in particular to the modeling of phase transitions as well as mass and heat transport in multiphase, multicomponent solids. In the last part of the work, the strongly non-local model formulation is reduced to weakly non-local form with the help of generalized gradient approximation of the energy and entropy functionals. On this basis, the current model formulation is shown to be consistent with and reduce to a recent non-isothermal generalization (Gladkov et al., J. Non-Equilib. Thermodyn. 41(2), 131 (2016)) of the well-known phase-field models of Cahn and Hilliard (J. Chem. Phys. 28(2), 258 (1958)) for conservative dynamics and of Allen and Cahn (Acta Metall. 27(6), 1085 (1979)) for non-conservative dynamics. Finally, the current approach is applied to derive a non-isothermal generalization of a phase-field crystal model for binary alloys (see, e.g., Elder et al., Phys. Rev. B 75(6), 064107 (2007)).
Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F
2014-08-13
Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.
NASA Astrophysics Data System (ADS)
Hardiyanto, M.; Ermawaty, I. R.
2018-01-01
We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.
Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials
NASA Astrophysics Data System (ADS)
Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun
2016-06-01
Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.
Local cooling and warming effects of forests based on satellite observations.
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-03-31
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.
Local cooling and warming effects of forests based on satellite observations
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-01-01
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529
A single molecule rectifier with strong push-pull coupling
NASA Astrophysics Data System (ADS)
Saraiva-Souza, Aldilene; Macedo de Souza, Fabricio; Aleixo, Vicente F. P.; Girão, Eduardo Costa; Filho, Josué Mendes; Meunier, Vincent; Sumpter, Bobby G.; Souza Filho, Antônio Gomes; Del Nero, Jordan
2008-11-01
We theoretically investigate the electronic charge transport in a molecular system composed of a donor group (dinitrobenzene) coupled to an acceptor group (dihydrophenazine) via a polyenic chain (unsaturated carbon bridge). Ab initio calculations based on the Hartree-Fock approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. For small bridge lengths (n =0-3) we find a homogeneous distribution of the frontier molecular orbitals, while for n >3 a strong localization of the lowest unoccupied molecular orbital is found. The localized orbitals in between the donor and acceptor groups act as conduction channels when an external electric field is applied. We also calculate the rectification behavior of this system by evaluating the charge accumulated in the donor and acceptor groups as a function of the external electric field. Finally, we propose a phenomenological model based on nonequilibrium Green's function to rationalize the ab initio findings.
SHORT-WAVELENGTH MAGNETIC BUOYANCY INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizerski, K. A.; Davies, C. R.; Hughes, D. W., E-mail: kamiz@igf.edu.pl, E-mail: tina@maths.leeds.ac.uk, E-mail: d.w.hughes@leeds.ac.uk
2013-04-01
Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by Gilman of the short-wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schroedinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by k, is large (i.e., short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction asmore » k is increased. The growth rates are determined by a function of the vertical coordinate z since, in the large k limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field, which, for sufficiently strong field gradients, are the most unstable. The results of our analysis are backed up by comparison with a series of initial value problems. Finally, we extend the analysis to three-dimensional perturbations.« less
Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging.
Cang, Hu; Labno, Anna; Lu, Changgui; Yin, Xiaobo; Liu, Ming; Gladden, Christopher; Liu, Yongmin; Zhang, Xiang
2011-01-20
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps
NASA Astrophysics Data System (ADS)
Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.
2017-12-01
The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.
Localized basis sets for unbound electrons in nanoelectronics.
Soriano, D; Jacob, D; Palacios, J J
2008-02-21
It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
Roquelet, Cyrielle; Vialla, Fabien; Diederichs, Carole; Roussignol, Philippe; Delalande, Claude; Deleporte, Emmanuelle; Lauret, Jean-Sébastien; Voisin, Christophe
2012-10-23
Energy transfer in noncovalently bound porphyrin/carbon nanotube compounds is investigated at the single-nanocompound scale. Excitation spectroscopy of the luminescence of the nanotube shows two resonances arising from intrinsic excitation of the nanotube and from energy transfer from the porphyrin. Polarization diagrams show that both resonances are highly anisotropic, with a preferred direction along the tube axis. The energy transfer is thus strongly anisotropic despite the almost isotropic absorption of porphyrins. We account for this result by local field effects induced by the large optical polarizability of nanotubes. We show that the local field correction extends over several nanometers outside the nanotubes and drives the overall optical response of functionalized nanotubes.
NoSOCS in SDSS - VI. The environmental dependence of AGN in clusters and field in the local Universe
NASA Astrophysics Data System (ADS)
Lopes, P. A. A.; Ribeiro, A. L. B.; Rembold, S. B.
2017-11-01
We investigated the variation in the fraction of optical active galactic nuclei (AGNs) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z ≤ 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGN) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGN with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of cluster-centric distance we verify that FAGN is roughly constant for R > R200, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behaviour for low mass systems (σP ≲ 650-700 km s-1). However, there is a strong decline in FAGN for higher mass clusters (>700 km s-1). When comparing the FAGN in clusters with or without substructure, we only find different results for objects at large radii (R > R200), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGN and their phase-space distribution, we interpret AGN to be the result of galaxy interactions, favoured in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.
Caselli, Niccolò; La China, Federico; Bao, Wei; ...
2015-06-05
Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less
Lu, Yu-Wei; Li, Ling-Yan; Liu, Jing-Feng
2018-05-08
We investigate the quantum optical properties of strong light-matter interaction between a quantum emitter and a metallic nanoparticle beyond idealized structures with a smooth surface. Based on the local coupling strength and macroscopic Green's function, we derived an exact quantum optics approach to obtain the field enhancement and light-emission spectrum of a quantum emitter. Numerical simulations show that the surface roughness has a greater effect on the near-field than on the far-field, and slightly increases the vacuum Rabi splitting on average. Further, we verified that the near-field enhancement is mainly determined by the surface features of hot-spot area.
Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.
2012-06-01
The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
NASA Astrophysics Data System (ADS)
Goldman, H.; Mulligan, M.; Raghu, S.; Torroba, G.; Zimet, M.
2017-12-01
We study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U (1 ) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Is there scale-dependent bias in single-field inflation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Putter, Roland; Doré, Olivier; Green, Daniel, E-mail: rdputter@caltech.edu, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: drgreen@cita.utoronto.ca
2015-10-01
Scale-dependent halo bias due to local primordial non-Gaussianity provides a strong test of single-field inflation. While it is universally understood that single-field inflation predicts negligible scale-dependent bias compared to current observational uncertainties, there is still disagreement on the exact level of scale-dependent bias at a level that could strongly impact inferences made from future surveys. In this paper, we clarify this confusion and derive in various ways that there is exactly zero scale-dependent bias in single-field inflation. Much of the current confusion follows from the fact that single-field inflation does predict a mode coupling of matter perturbations at the levelmore » of f{sub NL}{sup local}; ≈ −5/3, which naively would lead to scale-dependent bias. However, we show explicitly that this mode coupling cancels out when perturbations are evaluated at a fixed physical scale rather than fixed coordinate scale. Furthermore, we show how the absence of scale-dependent bias can be derived easily in any gauge. This result can then be incorporated into a complete description of the observed galaxy clustering, including the previously studied general relativistic terms, which are important at the same level as scale-dependent bias of order f{sub NL}{sup local} ∼ 1. This description will allow us to draw unbiased conclusions about inflation from future galaxy clustering data.« less
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Thomsen, M. F.; Bame, S. J.; Elphic, R. C.; Russell, C. T.
1991-01-01
Results are presented of ISEE 2 observations of plasma accelerations obtained at the high-latitude (lobe) magnetopause at a time when the local magnetosheath and magnetospheric magnetic fields were nearly oppositely directed and the flow speed in the magnetosheath, V(s), was nearly equal to the local Alfven speed, V(A). The observations provide direct evidence for the rereconnection of the open field lines of the tail lobes with the IMF, when the magnetic field shear is large. It is pointed out, however, that, since V(s) was almost equal to V(A), it is unlikely that the rereconnection is associated with the strong sunward convection in the polar cap.
Crres Observations of Particle Flux Dropout Events
NASA Technical Reports Server (NTRS)
Fennell, J.; Roeder, J.; Spence, H.; Singer, H.; Korth, A.; Grande, M.; Vampola, A.
1999-01-01
The complete disappearance of energetic electrons was observed by CRRES in the near geosynchronous region in 7.5% of the orbits examined. These total flux dropouts were defined by the fluxes rapidly dropping to levels below the sensitivity of the MEA energetic electron spectrometer on the CRRES satellite. They were separated into those that were only energetic electron dropouts and those that were associated with energetic ion and plasma dropouts. Approximately 20% of the events showed dropouts of 0 particle fluxes, and these were usually coincident with large increases in the local magnetic intensity and signatures of strong current systems. The energetic particle instruments and magnetometer on CRRES provide a detailed picture of the particle and field responses to these unusual conditions. Both the local morning and dusk events were associated with strong azimuthal (eastward) and radial changes in the magnetic field indicative of a strong current system approaching and sometimes crossing the CRRES position at the time of the flux dropouts. The direction of the field changes and the details of particle observations are consistent with CRRES passing through the plasma sheet boundary layer and entering the tail lobe for a significant number of the events.
Modular Hamiltonians on the null plane and the Markov property of the vacuum state
NASA Astrophysics Data System (ADS)
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-09-01
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.
Bounds on strong field magneto-transport in three-dimensional composites
NASA Astrophysics Data System (ADS)
Briane, Marc; Milton, Graeme W.
2011-10-01
This paper deals with bounds satisfied by the effective non-symmetric conductivity of three-dimensional composites in the presence of a strong magnetic field. On the one hand, it is shown that for general composites the antisymmetric part of the effective conductivity cannot be bounded solely in terms of the antisymmetric part of the local conductivity, contrary to the columnar case studied by Briane and Milton [SIAM J. Appl. Math. 70(8), 3272-3286 (2010), 10.1137/100798090]. Thus a suitable rank-two laminate, the conductivity of which has a bounded antisymmetric part together with a high-contrast symmetric part, may generate an arbitrarily large antisymmetric part of the effective conductivity. On the other hand, bounds are provided which show that the antisymmetric part of the effective conductivity must go to zero if the upper bound on the antisymmetric part of the local conductivity goes to zero, and the symmetric part of the local conductivity remains bounded below and above. Elementary bounds on the effective moduli are derived assuming the local conductivity and the effective conductivity have transverse isotropy in the plane orthogonal to the magnetic field. New Hashin-Shtrikman type bounds for two-phase three-dimensional composites with a non-symmetric conductivity are provided under geometric isotropy of the microstructure. The derivation of the bounds is based on a particular variational principle symmetrizing the problem, and the use of Y-tensors involving the averages of the fields in each phase.
NASA Astrophysics Data System (ADS)
Font, J. A.; Ibanez, J. M.; Marti, J. M.
1993-04-01
Some numerical solutions via local characteristic approach have been obtained describing multidimensional flows. These solutions have been used as tests of a two- dimensional code which extends some high-resolution shock-captunng methods, designed recently to solve nonlinear hyperbolic systems of conservation laws. K words: HYDRODYNAMICS - BLACK HOLE - RELATIVITY - SHOCK WAVES
Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.
Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; ...
2017-03-23
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.
Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}.
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel
2017-03-24
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO_{2} and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ_{8} and extended Γ_{7} electrons.
NASA Astrophysics Data System (ADS)
Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole
2014-10-01
We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, P.
A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The wavesmore » in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.« less
Dynamo magnetic-field generation in turbulent accretion disks
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1991-01-01
Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.
Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T
NASA Astrophysics Data System (ADS)
Shchelokova, Alena V.; Slobozhanyuk, Alexey P.; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A.; Webb, Andrew
2018-01-01
In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.
NASA Astrophysics Data System (ADS)
Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong
2017-08-01
Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction.
Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong
2017-08-01
Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction. Copyright © 2017. Published by Elsevier Inc.
Liu, Chong; Dobrynin, Danil; Fridman, Alexander
2014-01-01
In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294
Liu, Chong; Dobrynin, Danil; Fridman, Alexander
2014-06-25
In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.
Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall
NASA Astrophysics Data System (ADS)
Medan, Ilija; Andersson, B.-G.
2018-01-01
Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.
Joint quantum measurement using unbalanced array detection.
Beck, M; Dorrer, C; Walmsley, I A
2001-12-17
We have measured the joint Q-function of a highly multimode field using unbalanced heterodyne detection with a charge-coupled device array detector. We use spectral interferometry between a weak signal field and a strong, 100 fs duration local oscillator pulse to reconstruct the joint quadrature amplitude statistics of about 25 temporal modes. By adjusting the time delay between the signal and local oscillator pulses we are able to shift all the classical noise to modes distinct from the signal. This obviates the need to use a balanced detector.
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin
2017-03-01
This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
Goldman, H.; Mulligan, M.; Raghu, S.; ...
2017-12-27
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, H.; Mulligan, M.; Raghu, S.
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
NASA Astrophysics Data System (ADS)
Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio
2018-04-01
We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.
3 CFR 9059 - Proclamation 9059 of November 19, 2013. National Child's Day, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
... all children—including high-quality preschool, strong education in key fields like math and science... healthier lives, and we are partnering with businesses, local governments, and non-profit organizations to...
Ultrafine and Smooth Full Metal Nanostructures for Plasmonics
NASA Astrophysics Data System (ADS)
Zhu, Xinli; Zhang, Jaseng; Xu, Jun; Liao, Zhimin; Wu, Xiaosong; Yu, Dapeng
2013-03-01
Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons, and quality factors can be directly acquired. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.
Photocurrent mapping of near-field optical antenna resonances
NASA Astrophysics Data System (ADS)
Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.
2011-09-01
An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (~50 nm) and wavelength-scale (~1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooperstock, F.I., E-mail: cooperst@uvic.ca; Dupre, M.J., E-mail: mdupre@tulane.edu
We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy–momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system.more » The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum. -- Highlights: •We present a totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. •Demand for the general expression to reduce to the Tolman integral for stationary systems supports the Ricci integral as energy–momentum. •Localized energy via the Ricci integral is consistent with the energy localization hypothesis. •New localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. •Suggest the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum in strong gravity extreme.« less
Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T.
Shchelokova, Alena V; Slobozhanyuk, Alexey P; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A; Webb, Andrew
2018-01-01
In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Chekhov, Alexander L; Stognij, Alexander I; Satoh, Takuya; Murzina, Tatiana V; Razdolski, Ilya; Stupakiewicz, Andrzej
2018-05-09
We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.
Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai
2016-05-01
This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.
Brain science: from the very small to the very large.
Kreiman, Gabriel
2007-09-04
We still lack a clear understanding of how brain imaging signals relate to neuronal activity. Recent work shows that the simultaneous activity of neuronal ensembles strongly correlates with local field potentials and imaging measurements.
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole
2011-11-29
Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.
Wannier-Stark localization of a strongly coupled asymmetric double-well GaAs/AlAs superlattice
NASA Astrophysics Data System (ADS)
Kawashima, Kenji; Matsumoto, Takeshi; Arima, Kiyotoku; Ohsumi, Takahiro; Nogami, Takamitsu; Satoh, Kazuo; Fujiwara, Kenzo
2000-06-01
A novel new type of superlattice (SL) structure which consists of strongly coupled asymmetric double-well (ADW) in one period have been investigated to introduce a new degree of freedom for the device funtionality. The GaAs/A1As ADS-SL contained in a p-i-n diode structure was grown by molecular beam epitaxy, and the electroabsorption properties were measured by low temperature photocurrent spectroscopy. It is found that the introduction of the confinement potential asymmetry with respect to electric field will lead to the selectivity of spatially indirect Stark-ladder transitions associated with two different types of the localized hole states, thus providing a new way of modulating the oscillator strengths. Assignment of the possible optical transitions from the miniband to the Stark-ladder regimes as a function of field strength is elucidated in detail by transfer matrix calculations.
Local hysteresis and grain size effect in Pb(Mg1/3Nb2/3)O3- PbTiO3 thin films
NASA Astrophysics Data System (ADS)
Shvartsman, V. V.; Emelyanov, A. Yu.; Kholkin, A. L.; Safari, A.
2002-07-01
The local piezoelectric properties of relaxor ferroelectric films of solid solutions 0.9Pb(Mg1/3Nb2/3)O3- 0.1PbTiO3 were investigated by scanning force microscopy (SFM) in a piezoelectric contact mode. The piezoelectric hysteresis loops were acquired in the interior of grains of different sizes. A clear correlation between the values of the effective piezoelectric coefficients, deff, and the size of the respective grains is observed. Small grains exhibit slim piezoelectric hysteresis loops with low remanent deff, whereas relatively strong piezoelectric activity is characteristic of larger grains. Part of the grains (approx20-25%) is strongly polarized without application of a dc field. The nature of both phenomena is discussed in terms of the internal bias field and grain size effects on the dynamics of nanopolar clusters.
Stable solitary waves in super dense plasmas at external magnetic fields
NASA Astrophysics Data System (ADS)
Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen
2015-07-01
Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.
Bencsik, Martin; Bowtell, Richard; Bowley, Roger
2007-05-07
The spatial distributions of the electric fields induced in the human body by switched magnetic field gradients in MRI have been calculated numerically using the commercial software package, MAFIA, and the three-dimensional, HUGO body model that comprises 31 different tissue types. The variation of |J|, |E| and |B| resulting from exposure of the body model to magnetic fields generated by typical whole-body x-, y- and z-gradient coils has been analysed for three different body positions (head-, heart- and hips-centred). The magnetic field varied at 1 kHz, so as to produce a rate of change of gradient of 100 T m(-1) s(-1) at the centre of each coil. A highly heterogeneous pattern of induced electric field and current density was found to result from the smoothly varying magnetic field in all cases, with the largest induced electric fields resulting from application of the y-gradient, in agreement with previous studies. By applying simple statistical analysis to electromagnetic quantities within axial planes of the body model, it is shown that the induced electric field is strongly correlated to the local value of resistivity, and the induced current density exhibits even stronger correlation with the local conductivity. The local values of the switched magnetic field are however shown to bear little relation to the local values of the induced electric field or current density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Pingbing; Feng, Xueshang; Wang, Yi
In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs atmore » different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.« less
Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity
NASA Astrophysics Data System (ADS)
Lai, Timothy Yu
2002-01-01
Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.
Gupta, Kishan; Beer, Nathan J.; Keller, Lauren A.; Hasselmo, Michael E.
2014-01-01
Prior studies of head direction (HD) cells indicate strong landmark control over the preferred firing direction of these cells, with few studies exhibiting shifts away from local reference frames over time. We recorded spiking activity of grid and HD cells in the medial entorhinal cortex of rats, testing correlations of local environmental cues with the spatial tuning curves of these cells' firing fields as animals performed continuous spatial alternation on a T-maze that shared the boundaries of an open-field arena. The environment was rotated into configurations the animal had either seen or not seen in the past recording week. Tuning curves of both cell types demonstrated commensurate shifts of tuning with T-maze rotations during less recent rotations, more so than recent rotations. This strongly suggests that animals are shifting their reference frame away from the local environmental cues over time, learning to use a different reference frame more likely reliant on distal or idiothetic cues. In addition, grid fields demonstrated varying levels of “fragmentation” on the T-maze. The propensity for fragmentation does not depend on grid spacing and grid score, nor animal trajectory, indicating the cognitive treatment of environmental subcompartments is likely driven by task demands. PMID:23382518
NASA Astrophysics Data System (ADS)
Contadakis, M. E.; Arambelos, D.; Asteriadis, G.; Pikridas, Ch.; Spatalas, S.; Chatzinikos, M.
2006-04-01
Atmospheric and underground explosions as well as shallow earthquakes producing strong vertical ground displacement, are known to produce pressure waves that propagates at infrasonic speeds in the atmosphere. At ionospheric altitudes these waves are coupled to ionospheric gravity waves and induce variations in the ionospheric electron density. On the other hand local lithospheric density, ion inhalation, temperature or electromagnetic field variations, produced by the local tectonic activity during the earthquake preparation period, induces near surface atmospheric variations and affect the ionospheric density through the Lithospher-Atmosphere- Ionosphere Coupling. That is the lithospheric near surface tectonic activity results to local pre- co- and post seismic disturbances on the ionospheric Total Electron Content (TEC). Nevertheless these disturbances are mixed with disturbances induced to the ionospher by a number of agents such as tropospheric jets, magnetic storms and sub-storms, solar activity, ionosphere-magnetosphere coupling etc, and a major problem is to discriminate the influence of those agents from the influence of the local tectonic activity. In this paper we present the results of the wavelet analysis of TVEC variations over a network of 4 GPS stations, depicted from EUREF-EPN network, covering the whole area of Greece. Our results indicate that 1) Disturbances with period higher than 3 hours have a Universal origin i.e. earth-tides, Aurora or Equatorial anomaly. 2) Disturbances with periods equal or smaller than 3 hours are of local origin. 3) Strong Variations of geomagnetic field affect the disturbances of all periods. 4) Disturbances with period 3 hours present a good coherency in the measurements of more than one GPS stations. In concluding disturbances with period equal or less than 3 hours are suitable for de
Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain
NASA Astrophysics Data System (ADS)
Wang, Luxia; May, Volkhard
2017-08-01
The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.
Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan
2009-10-01
We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.
Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.
2008-03-01
Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.
The role of local repulsion in superconductivity in the Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo
2017-01-01
We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
NASA Astrophysics Data System (ADS)
Wang, Wei; Coombs, Tim
2018-04-01
We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.
Environmental quenching of low-mass field galaxies
NASA Astrophysics Data System (ADS)
Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral
2018-07-01
In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5-8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 < R/Rvir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.
Environmental Quenching of Low-Mass Field Galaxies
NASA Astrophysics Data System (ADS)
Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral
2018-04-01
In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 < R/Rvir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.
Correlation Between Fracture Network Properties and Stress Variability in Geological Media
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Gao, Ke
2018-05-01
We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.
2006-01-31
nanoring [10], the Au nanocrescent has a higher local field enhancement factor in the near infrared wavelength region due to the simultaneous...incorporation of SERS hot spots including sharp nanotip and nanoring geometries and thus the strong hybrid resonance modes from nanocavity resonance mode and tip...Raman, "A change of wave-length in light scattering," Nature 121, 619-619 (1928). 22. Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle
Molecular polarizability of water from local dielectric response theory
Ge, Xiaochuan; Lu, Deyu
2017-08-08
Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less
NASA Astrophysics Data System (ADS)
Hong, Xia
2016-03-01
Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.
The local stability of the magnetized advection-dominated discs with the radial viscous force
NASA Astrophysics Data System (ADS)
Ghoreyshi, S. M.; Shadmehri, M.
2018-06-01
We study local stability of the advection-dominated optically thick (slim) and optically thin discs with purely toroidal magnetic field and the radial viscous force using a linear perturbation analysis. Our dispersion relation indicates that the presence of magnetic fields and radial viscous force cannot give rise to any new mode of the instability. We find, however, that growth rate of the thermal mode in the slim discs and that of the acoustic modes in the slim and optically thin discs are dramatically affected by the radial viscous force. This force tends to strongly decrease the growth rate of the outward-propagating acoustic mode (O-mode) in the short-wavelength limit, but it causes a slim disc to become thermally more unstable. This means that growth rate of the thermal mode increases in the presence of radial viscous force. This enhancement is more significant when the viscosity parameter is large. The growth rates of the thermal and acoustic modes depend on the magnetic field. Although the instability of O-mode for a stronger magnetic field case has a higher growth rate, the thermal mode of the slim discs can be suppressed when the magnetic field is strong. The inertial-acoustic instability of a magnetized disc may explain the quasi-periodic oscillations (QPOs) from the black holes.
NASA Astrophysics Data System (ADS)
Enciso, Alberto; Poyato, David; Soler, Juan
2018-05-01
Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness properties for these sequences of approximate solutions. Some of the parts of the proof are of independent interest.
High-field magnetoconductance in Anderson insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, A.; Frydman, A.; Ovadyahu, Z.
1996-11-01
We report on high-field magnetoconductance measurements made on indium-oxide films as a function of temperature and static disorder. Special emphasis is given to the strong-localization regime where the magnetoconductance reveals a negative contribution associated with a spin-alignment mechanism in addition to the positive contribution associated with orbital, quantum-coherence effects. While the overall features of the theoretically expected effects are observed in our experiments, they depart in certain ways from the detailed predictions. We discuss the merits and shortcomings of current models to describe them, in particular, as they apply to the regime where the localized wave functions become larger thanmore » the Bohr radius. The main results of this paper are both quantum interference and spin effects contribute to the magnetoconductance throughout the entire range studied. In the limit of very strong disorder, the quantum interference effects are faithfully described by the Nguyen {ital et} {ital al}. model. The spin effects, on the other hand, show only qualitative agreement with current models which are unable to account for the saturation field being insensitive to changes in disorder. {copyright} {ital 1996 The American Physical Society.}« less
Organic fields sustain weed metacommunity dynamics in farmland landscapes.
Henckel, Laura; Börger, Luca; Meiss, Helmut; Gaba, Sabrina; Bretagnolle, Vincent
2015-06-07
Agro-ecosystems constitute essential habitat for many organisms. Agricultural intensification, however, has caused a strong decline of farmland biodiversity. Organic farming (OF) is often presented as a more biodiversity-friendly practice, but the generality of the beneficial effects of OF is debated as the effects appear often species- and context-dependent, and current research has highlighted the need to quantify the relative effects of local- and landscape-scale management on farmland biodiversity. Yet very few studies have investigated the landscape-level effects of OF; that is to say, how the biodiversity of a field is affected by the presence or density of organically farmed fields in the surrounding landscape. We addressed this issue using the metacommunity framework, with weed species richness in winter wheat within an intensively farmed landscape in France as model system. Controlling for the effects of local and landscape structure, we showed that OF leads to higher local weed diversity and that the presence of OF in the landscape is associated with higher local weed biodiversity also for conventionally farmed fields, and may reach a similar biodiversity level to organic fields in field margins. Based on these results, we derive indications for improving the sustainable management of farming systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement
Liu, Feifei; Zhang, Xinping; Fang, Xiaohui
2017-01-01
Plasmonic nanocavity arrays were achieved by producing isolated silver semi-cylindrical nanoshells periodically on a continuous planar gold film. Hybridization between localized surface plasmon resonance (LSPR) in the Ag semi-cylindrical nanoshells (SCNS) and surface plasmon polaritons (SPP) in the gold film was observed as split bonding and anti-bonding resonance modes located at different spectral positions. This led to strong local field enhancement and confinement in the plano-concave nanocavites. Narrow-band optical extinction with an amplitude as high as 1.5 OD, corresponding to 97% reduction in the transmission, was achieved in the visible spectrum. The resonance spectra of this hybrid device can be extended from the visible to the near infrared by adjusting the structural parameters. PMID:28074853
McLeod, K A; Scascitelli, M; Vellend, M
2012-08-01
Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection's ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype-environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype-environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells: Effect of self-localization
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Godde, T.; Kavokin, K. V.; Yakovlev, D. R.; Reshina, I. I.; Sedova, I. V.; Sorokin, S. V.; Ivanov, S. V.; Kusrayev, Yu. G.; Bayer, M.
2017-04-01
We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se diluted-magnetic-semiconductor quantum wells by using time-resolved photoluminescence (PL). The magnetic-field and temperature dependencies of this dynamics allow us to separate the nonmagnetic and magnetic contributions to the exciton localization. We deduce the EMP energy of 14 meV, which is in agreement with time-integrated measurements based on selective excitation and the magnetic-field dependence of the PL circular polarization degree. The polaron formation time of 500 ps is significantly longer than the corresponding values reported earlier. We propose that this behavior is related to strong self-localization of the EMP, accompanied with a squeezing of the heavy-hole envelope wave function. This conclusion is also supported by the decrease of the exciton lifetime from 600 ps to 200-400 ps with increasing magnetic field and temperature.
Linear Optical and SERS Study on Metallic Membranes with Subwavelength Complementary Patterns
NASA Astrophysics Data System (ADS)
Hao, Qingzhen; Zeng, Yong; Jensen, Lasse; Werner, Douglas; Crespi, Vincent; Huang, Tony Jun; Interdepartmental Collaboration
2011-03-01
An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds in the optical domain. A discrete-dipole approximation can qualitatively describe their spectral dependence on the geometry of the constituent particles and the illuminating polarization. Using pyridine as probe molecules, we studied surface-enhanced Raman spectroscopy (SERS) from the complementary structure. Although the complementary structure posses closely related linear spectra, they have quite different near-field behaviors. For hole arrays, their averaged local field gains as well as the SERS enhancements are strongly correlated to their transmission spectra. We therefore can use cos 4 θ to approximately describe the dependence of the Raman intensity on the excitation polarization angle θ , while the complementary particle arrays present maximal local field gains at wavelengths generally much bigger than their localized surface plasmonic resonant wavelengths.
2015-08-14
stream (SAPS) E field had been strong. During these E field events, the repeated development of equatorial ionization anomaly ( EIA ), storm-enhanced...density (SED) bulge and SED plume occurred in those longitude sectors that covered the local dusk-midnight hours. Thus, a well-formed EIA - SED...Observational results and CTIPe simulated wind vector maps suggest that 1) the enhanced growth of the EIA transported solar produced plasma to the
NASA Astrophysics Data System (ADS)
Gavazzi, G.; Consolandi, G.; Dotti, M.; Fanali, R.; Fossati, M.; Fumagalli, M.; Viscardi, E.; Savorgnan, G.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.
2015-08-01
A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star-forming galaxies. Many processes have been advocated as being responsible for this trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. In order to improve our insight into the mechanisms regulating the star formation in normal star-forming galaxies across cosmic epochs, we determine a refined star formation versus stellar mass relation in the local Universe. To this end we use the Hα narrow-band imaging follow-up survey (Hα3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z = 3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass Mknee that evolves with redshift as ∝ (1 + z)2. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above Mknee. We test this hypothesis using a simple but physically motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed redshift evolution for Mknee. Our study highlights how the formation of strong bars in massive galaxies is an important mechanism in regulating the redshift evolution of the sSFR for field main-sequence galaxies. Based on observations taken at the observatory of San Pedro Martir (Baja California, Mexico), belonging to the Mexican Observatorio Astronómico Nacional.
Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.
Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal
2013-06-11
Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.
Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface
Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal
2013-01-01
Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable. PMID:23708121
Magnetic Doppler imaging of Ap stars
NASA Astrophysics Data System (ADS)
Silvester, J.; Wade, G. A.; Kochukhov, O.; Landstreet, J. D.; Bagnulo, S.
2008-04-01
Historically, the magnetic field geometries of the chemically peculiar Ap stars were modelled in the context of a simple dipole field. However, with the acquisition of increasingly sophisticated diagnostic data, it has become clear that the large-scale field topologies exhibit important departures from this simple model. Recently, new high-resolution circular and linear polarisation spectroscopy has even hinted at the presence of strong, small-scale field structures, which were completely unexpected based on earlier modelling. This project investigates the detailed structure of these strong fossil magnetic fields, in particular the large-scale field geometry, as well as small scale magnetic structures, by mapping the magnetic and chemical surface structure of a selected sample of Ap stars. These maps will be used to investigate the relationship between the local field vector and local surface chemistry, looking for the influence the field may have on the various chemical transport mechanisms (i.e., diffusion, convection and mass loss). This will lead to better constraints on the origin and evolution, as well as refining the magnetic field model for Ap stars. Mapping will be performed using high resolution and signal-to-noise ratio time-series of spectra in both circular and linear polarisation obtained using the new-generation ESPaDOnS (CFHT, Mauna Kea, Hawaii) and NARVAL spectropolarimeters (Pic du Midi Observatory). With these data we will perform tomographic inversion of Doppler-broadened Stokes IQUV Zeeman profiles of a large variety of spectral lines using the INVERS10 magnetic Doppler imaging code, simultaneously recovering the detailed surface maps of the vector magnetic field and chemical abundances.
NASA Astrophysics Data System (ADS)
Khaerdinov, N. S.; Lidvansky, A. S.; Petkov, V. B.
2005-07-01
We present the data on correlations of the intensity of the soft component of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a.s.l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the 'electric mill' type (rain-protected) is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000-2002. We observe strong enhancements of the soft component intensity before some lightning strokes. At the same time, the analysis of the regression curve 'intensity versus field' discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons. It is interpreted as a signature of runaway electrons from the region of the strong field (with opposite sign) overhead.
Glimpsing the imprint of local environment on the galaxy stellar mass function
NASA Astrophysics Data System (ADS)
Tomczak, Adam R.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy R.; Wu, Po-Feng; Holden, Bradford; Kocevski, Dale D.; Mei, Simona; Pelliccia, Debora; Rumbaugh, Nicholas; Shen, Lu
2017-12-01
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 109 M⊙. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct three-dimensional density maps between 0.55 < z < 1.3 using a Voronoi tessellation approach. We find that the shape of the SMF depends strongly on local environment exhibited by a smooth, continual increase in the relative numbers of high- to low-mass galaxies towards denser environments. A straightforward implication is that local environment proportionally increases the efficiency of (a) destroying lower mass galaxies and/or (b) growth of higher mass galaxies. We also find a presence of this environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments, we devise a simple semi-empirical model. The model begins with a sample of ≈106 galaxies at zstart = 5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to zfinal = 0.8 following empirical prescriptions for star-formation, quenching and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Pachter, Ruth
2018-03-01
We study theoretically the optical response of a WS2 monolayer located near periodic metal nanostructured arrays in two and three dimensions. The emphasis of the simulations is on the strong coupling between excitons supported by WS2 and surface plasmon-polaritons supported by various periodic plasmonic interfaces. It is demonstrated that a monolayer of WS2 placed in close proximity of periodic arrays of either slits or holes results in a Rabi splitting of the corresponding surface plasmon-polariton resonance as revealed in calculated transmission and reflection spectra. The nonlinear regime, at which the few-layer WS2 exhibits experimentally third harmonic generation (THG), is studied in detail. Monolayer transition metal dichalcogenides (TMDs) do not exhibit THG because they are non-centrosymmetric, but here we use the monolayer as an approximation to a thin TMD nanostructure. We show that in the strong coupling regime the third harmonic signal is significantly affected by plasmon-polaritons and the symmetry of hybrid exciton-plasmon modes. It is also shown that the local electromagnetic field induced by plasmons is the major contributor to the enhancement of the third harmonic signal in three dimensions. The local electromagnetic fields resulting from the third harmonic generation are greatly localized and highly sensitive to the environment, thus making it a great tool for nano-probes.
NASA Astrophysics Data System (ADS)
Blumenfeld, Raphael; Bergman, David J.
1991-10-01
A class of strongly nonlinear composite dielectrics is studied. We develop a general method to reduce the scalar-potential-field problem to the solution of a set of linear Poisson-type equations in rescaled coordinates. The method is applicable for a large variety of nonlinear materials. For a power-law relation between the displacement and the electric fields, it is used to solve explicitly for the value of the bulk effective dielectric constant ɛe to second order in the fluctuations of its local value. A simlar procedure for the vector potential, whose curl is the displacement field, yields a quantity analogous to the inverse dielectric constant in linear dielectrics. The bulk effective dielectric constant is given by a set of linear integral expressions in the rescaled coordinates and exact bounds for it are derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sha; Jones, R. R.
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less
Li, Sha; Jones, R. R.
2016-11-10
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less
Ultra-fast magnetic vortex core reversal by a local field pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.
2014-02-03
Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less
Field-Induced Disorder and Carrier Localization in Molecular Organic Transistors
NASA Astrophysics Data System (ADS)
Ando, M.; Minakata, T.; Duffy, C.; Sirringhaus, H.
2009-06-01
We propose a "field-induced polymorphous disorder" model to explain bias-stress instability in molecular organic thin-film transistors, based on the experimental results showing the strong correlation between the micro-structural change in semiconductor layer composed of penrtacene molecules and the threshold voltage (Vth) shift due to electron trapping in a reversible manner under the successive bias-stress, thermal annealing, and light irradiation.
Raine, Nigel E; Chittka, Lars
2007-06-20
Innate sensory biases could play an important role in helping naïve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-naïve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases.
Raine, Nigel E.; Chittka, Lars
2007-01-01
Innate sensory biases could play an important role in helping naïve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-naïve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases. PMID:17579727
Path planning for robotic truss assembly
NASA Technical Reports Server (NTRS)
Sanderson, Arthur C.
1993-01-01
A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search.
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Spin-imbalance in a 2D Fermi-Hubbard system
NASA Astrophysics Data System (ADS)
Brown, Peter T.; Mitra, Debayan; Guardado-Sanchez, Elmer; Schauß, Peter; Kondov, Stanimir S.; Khatami, Ehsan; Paiva, Thereza; Trivedi, Nandini; Huse, David A.; Bakr, Waseem S.
2017-09-01
The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature phase diagram of the Fermi-Hubbard model as a function of both doping and spin polarization, for which many open questions remain.
Spatially: resolved heterogeneous dynamics in a strong colloidal gel
NASA Astrophysics Data System (ADS)
Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto
2015-05-01
We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Jan; Spałek, Jozef
2009-06-01
Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid composed of quasiparticles in a narrow band with the spin-dependent masses and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics is calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum |Q| in applied magnetic field in the strongly Pauli limiting case (i.e., when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper-pair spin distinguishable in the quantum-mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer vs FFLO phase is analyzed in detail on temperature-applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature unconventional superconducting phases (FFLO, for instance) in systems such as CeCoIn5 , organic metals, and possibly others.
Majorana states in prismatic core-shell nanowires
NASA Astrophysics Data System (ADS)
Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan
2017-09-01
We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
NASA Technical Reports Server (NTRS)
Barnes, Aaron; DeVincenzi, Donald (Technical Monitor)
2000-01-01
A complete model of the global interaction between the solar wind and the local interstellar medium must take account of interstellar neutral atoms, interstellar ionized gas, solar and galactic magnetic fields, galactic and anomalous cosmic rays. For now, however, in view of the many uncertainties about conditions in the interstellar medium, etc., all models must be regarded as highly idealized and incomplete. In the present review I concentrate on the role of magnetic fields of solar and interstellar origin. The former, the interior field, has negligible influence on the unshocked solar wind; the immediate post-shock solar wind is probably low-beta, so that the interior magnetic field is still unimportant, but this situation changes as the plasma flows through the heliosheath, and a ridge of strong magnetic field may form to separate materials of polar and equatorial origin. The exterior (interstellar) field is likely to play an important role in determining the global morphology of the system outside the termination shock. If the exterior field is strong enough, it can compress the heliosphere (although exterior neutral and/or ionized hydrogen may play the dominant role). Even if the interstellar magnetic field does not provide the dominant pressure, its orientation can substantially affect the configuration of the heliosphere, especially the location and orientation of the heliospheric discontinuities. The configurations can be quite different for the situations in which the field and flow are (a) aligned or (b) transverse. Obliquity of the field produces asymmetry in the geometry of the system; in particular the noses of heliopause and interstellar bow shock are shifted away from the interstellar flow direction, and in opposite directions, due to the asymmetric draping of the magnetic field.
Broad Thorny Ganglion Cells: A Candidate for Visual Pursuit Error Signaling in the Primate Retina
Manookin, Michael B.; Neitz, Jay; Rieke, Fred
2015-01-01
Functional analyses exist only for a few of the morphologically described primate ganglion cell types, and their correlates in other mammalian species remain elusive. Here, we recorded light responses of broad thorny cells in the whole-mounted macaque retina. They showed ON-OFF-center light responses that were strongly suppressed by stimulation of the receptive field surround. Spike responses were delayed compared with parasol ganglion cells and other ON-OFF cells, including recursive bistratified ganglion cells and A1 amacrine cells. The receptive field structure was shaped by direct excitatory synaptic input and strong presynaptic and postsynaptic inhibition in both ON and OFF pathways. The cells responded strongly to dark or bright stimuli moving either in or out of the receptive field, independent of the direction of motion. However, they did not show a maintained spike response either to a uniform background or to a drifting plaid pattern. These properties could be ideally suited for guiding movements involved in visual pursuit. The functional characteristics reported here permit the first direct cross-species comparison of putative homologous ganglion cell types. Based on morphological similarities, broad thorny ganglion cells have been proposed to be homologs of rabbit local edge detector ganglion cells, but we now show that the two cells have quite distinct physiological properties. Thus, our data argue against broad thorny cells as the homologs of local edge detector cells. PMID:25834063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, L. L.; Guo, X. G., E-mail: xgguo@mail.sim.ac.cn; Fu, Z. L.
Strong and sharp photocurrent peak at longitudinal optical (LO) phonon frequency (8.87 THz) is found in GaAs/(Al,Ga)As terahertz quantum-well photodetectors (QWPs). Two mesa-structure terahertz QWPs with and without one-dimensional metal grating are fabricated to investigate the behavior of such photoresponse peak. The experimental and simulation results indicate that the photocurrent peak originates from a two-step process. First, at the LO phonon frequency, a large number of non-equilibrium LO phonons are excited by the incident electromagnetic field, and the electromagnetic energy is localized and enhanced in the thin multi-quantum-well layer. Second, through the Frohlich interaction, the localized electrons are excited tomore » continuum states by absorbing the non-equilibrium LO phonons, which leads to the strong photoresponse peak. This finding is useful for exploring strong light-matter interaction and realizing high sensitive terahertz photodetectors.« less
Coherent band excitations in CePd 3: A comparison of neutron scattering and ab initio theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goremychkin, Eugene A.; Park, Hyowon; Osborn, Raymond
In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. In this work, we show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd 3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. Finally, the agreement between experiment andmore » theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.« less
NASA Astrophysics Data System (ADS)
Lu, Mai; Ueno, Shoogo
2009-04-01
In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.
Anomalous resistivity and the evolution of magnetic field topology
NASA Technical Reports Server (NTRS)
Parker, E. N.
1993-01-01
This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.
Detection of internal fields in double-metal terahertz resonators
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...
2017-02-06
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Reis, H; Papadopoulos, M G; Grzybowski, A
2006-09-21
This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.
Surface wave resonance and chirality in a tubular cavity with metasurface design
NASA Astrophysics Data System (ADS)
Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng
2018-06-01
Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.
Deciphering the Dipole Anisotropy of Galactic Cosmic Rays.
Ahlers, Markus
2016-10-07
Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120°≲l≲300° dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.
NASA Technical Reports Server (NTRS)
Klimas, Alex J.; Valdivia, J. A.; Vassiliadis, D.; Baker, D. N.; Hesse, M.; Takalo, J.
1999-01-01
Evidence is presented that suggests there is a significant self-organized criticality (SOC) component in the dynamics of substorms in the magnetosphere. Observations of BBFs, fast flows, localized dipolarizations, plasma turbulence, etc. are taken to show that multiple localized reconnection sites provide the basic avalanche phenomenon in the establishment of SOC in the plasma sheet. First results are presented from a continuing plasma physical study of this avalanche process. A one-dimensional resistive MHD model of a magnetic field reversal is discussed. Resistivity, in this model, is self-consistently generated in response to the excitation of an idealized current-driven instability. When forced by convection of magnetic flux into the field reversal region, the model yields rapid magnetic field annihilation through a dynamic behavior that is shown to exhibit many of the characteristics of SOC. Over a large range of forcing strengths, the annihilation rate is shown to self-adjust to balance the rate at which flux is convected into the reversal region. Several analogies to magnetotail dynamics are discussed: (1) It is shown that the presence of a localized criticality in the model produces a remarkable stability in the global configuration of the field reversal while simultaneously exciting extraordinarily dynamic internal evolution. (2) Under steady forcing, it is shown that a loading-unloading cycle may arise that, as a consequence of the global stability, is quasi-periodic and, therefore, predictable despite the presence of internal turbulence in the field distribution. Indeed, it is shown that the global loading-unloading cycle is a consequence of the internal turbulence. (3) It is shown that, under steady, strong forcing the loading-unloading cycle vanishes. Instead, a recovery from a single unloading persists indefinitely. The field reversal is globally very steady while internally it is very dynamic as field annihilation goes on at the rate necessary to match the strong forcing. From this result we speculate that steady magnetospheric convection events result when the plasma sheet has been driven close to criticality over an extended spatial domain. During these events, we would expect to find localized reconnection sites distributed over the spatial domain of near criticality and we would expect to find plasma sheet transport in that domain to be closely related to that of BBF and fast flow events.
Below-threshold harmonic generation from strong non-uniform fields
NASA Astrophysics Data System (ADS)
Yavuz, I.
2017-10-01
Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2004-01-01
The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.
Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach
NASA Astrophysics Data System (ADS)
Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid
2017-10-01
We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.
Local condensate depletion at trap center under strong interactions
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Yukalova, E. P.
2018-04-01
Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Band-Like Behavior of Localized States of Metal Silicide Precipitate in Silicon
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Vyvenko, Oleg
2018-03-01
Deep-level transient spectroscopy (DLTS) investigations of energy levels of charge-carrier traps associated with precipitates of metal silicide often show that they behave not like localized monoenergetic traps but as a continuous density of allowed states in the bandgap with fast carrier exchange between these states, so-called band-like behavior. This kind of behavior was ascribed to the dislocation loop bounding the platelet, which in addition exhibits an attractive potential caused by long-range elastic strain. In previous works, the presence of the dislocation-related deformation potential in combination with the external electric field of the Schottky diode was included to obtain a reasonable fit of the proposed model to experimental data. Another well-known particular property of extended defects—the presence of their own strong electric field in their vicinity that is manifested in the logarithmic kinetics of electron capture—was not taken into account. We derive herein a theoretical model that takes into account both the external electric field and the intrinsic electric field of dislocation self-charge as well as its deformation potential, which leads to strong temporal variation of the activation energy during charge-carrier emission. We performed numerical simulations of the DLTS spectra based on such a model for a monoenergetic trap, finding excellent agreement with available experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less
Varying stopping and self-focusing of intense proton beams as they heat solid density matter
NASA Astrophysics Data System (ADS)
Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.
2016-04-01
Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.
Gyrotropic response in the absence of a bias field
Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin
2012-01-01
Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials. PMID:22847403
Farley-Buneman Instability in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Gogoberidze, G.; Voitenko, Y.; Poedts, S.; Goossens, M.
2009-11-01
The Farley-Buneman instability (FBI) is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is larger than unity. By applying these results to chromospheric conditions, we show that the FBI cannot be responsible for the quasi-steady heating of the solar chromosphere. However, we do not exclude the instability development locally in the presence of strong cross-field currents and/or strong small-scale magnetic fields. In such cases, FBI should produce locally small-scale, ~0.1-3 m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.
FARLEY-BUNEMAN INSTABILITY IN THE SOLAR CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogoberidze, G.; Voitenko, Y.; Poedts, S.
2009-11-20
The Farley-Buneman instability (FBI) is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is larger than unity. By applying these results to chromospheric conditions, we show that the FBI cannot be responsible for the quasi-steady heating of the solar chromosphere. However,more » we do not exclude the instability development locally in the presence of strong cross-field currents and/or strong small-scale magnetic fields. In such cases, FBI should produce locally small-scale, approx0.1-3 m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.« less
Varying stopping and self-focusing of intense proton beams as they heat solid density matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.
2016-04-15
Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less
Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.
Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L
2015-12-01
The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.
Gyrotropic response in the absence of a bias field.
Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin
2012-08-14
Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials.
Nazikian, R; Paz-Soldan, C; Callen, J D; deGrassie, J S; Eldon, D; Evans, T E; Ferraro, N M; Grierson, B A; Groebner, R J; Haskey, S R; Hegna, C C; King, J D; Logan, N C; McKee, G R; Moyer, R A; Okabayashi, M; Orlov, D M; Osborne, T H; Park, J-K; Rhodes, T L; Shafer, M W; Snyder, P B; Solomon, W M; Strait, E J; Wade, M R
2015-03-13
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.
Nazikian, Raffi; Paz-Soldan, Carlos; Callen, James D.; ...
2015-03-12
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal which reduces the perpendicular electron flow to near zero. These events occur simultaneously with an increase in the inner wall magnetic response. These observations are consistent strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulationsmore » using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearing-like structures as the plasma transitions out of ELM suppression.« less
Electric-field-stimulated protein mechanics
Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama
2017-01-01
The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732
Singh, R R P; Young, A P
2017-08-01
We study the ±J transverse-field Ising spin-glass model at zero temperature on d-dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d=6, which is below the upper critical dimension of d=8. In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.
NASA Astrophysics Data System (ADS)
Singh, R. R. P.; Young, A. P.
2017-08-01
We study the ±J transverse-field Ising spin-glass model at zero temperature on d -dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d =6 , which is below the upper critical dimension of d =8 . In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.
NASA Astrophysics Data System (ADS)
Zorko, A.; Pregelj, M.; Berger, H.; Arčon, D.
2010-05-01
Local-probe weak-transverse-field and zero-field μSR measurements have been employed to investigate magnetic ordering in the new magnetoelectric compound FeTe2O5Br. Below the Néel transition temperature TN=10.6 K a static local magnetic field starts to develop at the μ+ sites. Fast μ+ polarization decay below TN speaks in favor of a broad distribution of internal magnetic fields, in agreement with the incommensurate magnetic structure suggested by neutron diffraction experiments. Above TN the presence of short-range order is detected as high as at 2TN, which suggests only weak interlayer magnetic coupling. On the other hand, strong Fe3+ spin fluctuations likely reflect geometrically frustrated structure of [Fe4O16]20- spin clusters, which are the main building blocks of the layered FeTe2O5Br structure.
Near-field control and imaging of free charge carrier variations in GaN nanowires
NASA Astrophysics Data System (ADS)
Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel
2016-02-01
Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.
Reagor, G.; Brewer, L.R.
1992-01-01
A field team (the tuhors) from the National Earthquake Information Center (USGS) conducted a damage survey of the epicentral area in the week following the earthquakes. Detailed information about damage and where and how strongly the earthquakes were felt was obtained through interviews with local residents and personal observations.
Anti-Weak Localization Measurements in the Ballistic Regime
NASA Astrophysics Data System (ADS)
Jayathilaka, Dilhani; Dedigama, Aruna; Murphy, Sheena; Edirisooriya, Madhavie; Goel, Niti; Mishima, Tetsuya; Santos, Michael; Mullen, Kieran
2007-03-01
Anti-weak localization dominates at low fields in systems in which spin-orbit coupling is strong. The experimental results are well described by theory [1] in low mobility systems in which the magnetic length (lB) is greater than the mean free path; however high mobility systems with strong spin-orbit interactions, such the InSb based two dimensional systems (2DESs) examined here, are not in this diffusive regime. A recently developed theory [2] addresses both the diffusive and ballistic regimes taking into account both the backscattered and non-backscattered contributions to the conductivity. We will discuss the agreement of the new theory to measurements of InSb 2DESs prepared with both strong Dresselhaus and Rashba effects. [1] S.V. Iordanskii, Yu B. Lyanda-Geller, and G.E. Pikus, JETP Lett. 60, 206 (1994). [2] L.E. Golub, Phys. Rev. B. 71, 235310 (2005).
The structure and statistics of interstellar turbulence
NASA Astrophysics Data System (ADS)
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
Fortmann, Carsten; Wierling, August; Röpke, Gerd
2010-02-01
The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.
Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams
NASA Astrophysics Data System (ADS)
Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli
2018-05-01
Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.
Positive magnetoresistance in Fe3Se4 nanowires
NASA Astrophysics Data System (ADS)
Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.
2011-04-01
We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.
A Model of Anode Sheath Potential Evolution in a Transverse Magnetic Field
NASA Astrophysics Data System (ADS)
Foster, John E.; Gallimore, Alec D.
1996-11-01
It has been conjectured that the growth in the magnitude of the anode fall voltage with changing transverse magnetic field is a function of the ratio of available transverse current to the discharge current. It has been postulated that at small values of this ratio, the anode fall voltage and thus the near-anode electric field increases in order to assure that the prescribed discharge is maintained.footnote H. Hugel, IEEE Tran. Plas. Sci., PS-8,4, 1980 In this present work, a model is presented which predicts the behavior of the anode fall voltage as a function of transverse magnetic field. The model attempts to explain why the anode fall voltage depends so strongly on this ratio. In addition, it is further shown that because of the current ratio's strong dependence on local electron number density, ultimately it is the changes in near-anode ionization processes with varying transverse magnetic field that control the anode fall voltage.
MAVEN Observations of the Effects of Crustal Magnetic Fields on the Mars Ionosphere
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Flynn, C. L.; Withers, P.; Andersson, L.; Girazian, Z.; Mitchell, D. L.; Xu, S.; Connerney, J. E. P.; Espley, J. R.
2017-12-01
Mars lacks a global intrinsic magnetic field but possesses regions of strong crustal magnetic field that influence the planetary interaction with the solar wind and affect the structure and dynamics of the ionosphere. Since entering Mars orbit in 2014, the MAVEN spacecraft has collected comprehensive measurements of the local plasma and magnetic field properties in the Martian dayside ionosphere. Here we discuss how crustal magnetic fields affect the structure, composition, and electrodynamics of the Martian ionosphere as seen by MAVEN. We present a survey of 17 months of MAVEN LPW measurements of the electron density and temperature in the dayside ionosphere and show that, above 200 km altitude, regions of strong crustal magnetic fields feature cooler electron temperatures and enhanced electron densities compared to regions with little or no crustal magnetic field. We also report on the influence of the magnetic field direction and topology on MAVEN electron density measurements in the southern crustal field areas, particularly in magnetic cusp regions. Finally, we discuss the effects of crustal magnetic fields on plasma boundaries like the ionopause, located at the top of the ionosphere and marked by a sharp and substantial gradient in the electron density.
Field gradients can control the alignment of nanorods.
Ooi, Chinchun; Yellen, Benjamin B
2008-08-19
This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2008-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.
2015-01-19
Here we present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. Furthermore, this technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry ofmore » response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Our results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search« less
Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures
NASA Astrophysics Data System (ADS)
Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald
2007-03-01
Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.
NASA Astrophysics Data System (ADS)
Ochsenfeld, Christian; Head-Gordon, Martin
1997-05-01
To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.
Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F
2015-03-27
Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, I.; Krayzman, V.; Woicik, J. C.
Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less
Reconnecting flux-rope dynamo.
Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy
2009-11-01
We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.
Raman mapping probing of tip-induced anomalous polarization behavior in V2O5 waveguiding nanoribbons
NASA Astrophysics Data System (ADS)
Yan, Bin; Du, Chaoling; Liao, Lei; You, Yumeng; Cheng, Hao; Shen, Zexiang; Yu, Ting
2010-02-01
Spatially resolved and polarized micro-Raman spectroscopy has been performed on individual V2O5 waveguiding nanoribbons. The experimental results establish that the Raman-antenna patterns are strongly correlated with the local positions of the sample, which gives rise to a pronounced intensity contrast in the polarized mapping for certain phonon modes. The suppressed phonon signals at the body of a ribbon can be enhanced at the end facets, resulting from the effective waveguiding propagation along the nanoribbon and strong local electric field intensity at the ends. The phenomena reported here, in addition to providing insight into the tip effects on optoelectronic nanodevices, will facilitate the rational design of Raman detection in nanostructures.
Local structure in BaTi O 3 - BiSc O 3 dipole glasses
Levin, I.; Krayzman, V.; Woicik, J. C.; ...
2016-03-14
Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less
On choosing the start time of binary black hole ringdowns
NASA Astrophysics Data System (ADS)
Bhagwat, Swetha; Okounkova, Maria; Ballmer, Stefan W.; Brown, Duncan A.; Giesler, Matthew; Scheel, Mark A.; Teukolsky, Saul A.
2018-05-01
The final stage of a binary black hole merger is ringdown, in which the system is described by a Kerr black hole with quasinormal mode perturbations. It is far from straightforward to identify the time at which the ringdown begins. Yet determining this time is important for precision tests of the general theory of relativity that compare an observed signal with quasinormal mode descriptions of the ringdown, such as tests of the no-hair theorem. We present an algorithmic method to analyze the choice of ringdown start time in the observed waveform. This method is based on determining how close the strong field is to a Kerr black hole (Kerrness). Using numerical relativity simulations, we characterize the Kerrness of the strong-field region close to the black hole using a set of local, gauge-invariant geometric and algebraic conditions that measure local isometry to Kerr. We produce a map that associates each time in the gravitational waveform with a value of each of these Kerrness measures; this map is produced by following outgoing null characteristics from the strong and near-field regions to the wave zone. We perform this analysis on a numerical relativity simulation with parameters consistent with GW150914—the first gravitational-wave detection. We find that the choice of ringdown start time of 3 ms after merger used in the GW150914 study [B. P. Abbott et al. (
NASA Astrophysics Data System (ADS)
Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea
2017-02-01
Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.
Wyman, Megan T.; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021
Klimley, A Peter; Wyman, Megan T; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...
2017-06-02
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Strong-field and attosecond physics in solids
Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...
2014-10-08
We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less
NASA Astrophysics Data System (ADS)
Landry, R. G.; Anderson, P. C.
2017-12-01
Subauroral ion drifts (SAID) are a phenomenon sometimes observed in the subauroral ionosphere in dusk to post-midnight magnetic local time sectors during magnetically active periods characterized by strong poleward electric fields that drive westward ion drifts greater than 1 km/s. SAIDs typically will span 1-2 degrees magnetic latitude and several hours in magnetic local time. SAIDs are often observed colocated with the midlatitude trough. The strong electric field can act to reduce the ionospheric conductivity further through enhanced recombination and vertical transport. The theory that SAIDs are generated by ionospheric Pedersen currents fed by ring current driven field-aligned currents (FAC) requires the decreased conductance associated with the midlatitude trough to produce the latitudinally narrow, large amplitude SAID electric field. Using Dynamics Explorer 2 (DE 2) plasma measurements of SAIDs from altitudes of 200 to 1000 km, we investigate the statistical variation of the ionospheric composition, temperature, and vertical ion drifts as a function of altitude. Using Defense Meteorological Satellite Program (DMSP) measurements from 1987-2012, we extend the empirical study at the DMSP altitude of 830 km to investigate how season, longitude, and any ionospheric preconditioning before SAID formation affect the likelihood of SAID occurrence and coincidence with FACs and ion density troughs.
Laboratory reconnection experiments
NASA Astrophysics Data System (ADS)
Grulke, Olaf
Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).
Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction
NASA Astrophysics Data System (ADS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2017-12-01
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of H c2( T), especially at low temperatures. In BEC limit and in the region of BCS-BEC crossover H c2( T), dependence becomes practically linear. Disordering also leads to the general growth of H c2( T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of H c2( T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of H c2( T) at low temperatures, so that the H c2( T) dependence becomes concave. In BCS-BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region H c2 ( T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase H c2 ( T = 0) also making H c2( T) dependence concave.
NASA Astrophysics Data System (ADS)
Mendez, B.; Davis, M.; Newman, J.; Madore, B. F.; Freedman, W. L.; Moustakas, J.
2002-12-01
The properties of the velocity field in the local volume (cz < 550 km s-1) have been difficult to constrain due to a lack of a consistent set of galaxy distances. The sparse observations available to date suggest a remarkably quiet flow, with little deviation from a pure Hubble law. However, velocity field models based on the distribution of galaxies in the 1.2 Jy IRAS redshift survey, predict a quadrupolar flow pattern locally with strong infall at the poles of the local Supergalactic plane. In an attempt to resolve this discrepency, we probe the local velocity field and begin to establish a consistent set of galactic distances. We have obtained images of nearby galaxies in I, V, and B bands from the W.M. Keck Observatory and in F814W and F555W filters from the Hubble Space Telescope. Where these galaxies are well resolved into stars we can use the Tip of the Red Giant Branch (TRGB) as a distance indicator. Using a maximum likelihood analysis to quantitatively measure the I magnitude of the TRGB we determine precise distances to several nearby galaxies. We supplement that dataset with published distances to local galaxies measured using Cepheids, Surface Brightness Fluctuations, and the TRGB. With these data we find that the amplitude of the local flow is roughly half that expected in linear theory and N-body simulations; thus the enigma of cold local flows persists. This work was supported in part by NASA through a grant from the Space Telescope Science Institute and a Predoctoral Fellowship for Minorities from the Ford Foundation.
Quantum Monte Carlo calculations of neutron matter with chiral three-body forces
Tews, I.; Gandolfi, Stefano; Gezerlis, A.; ...
2016-02-02
Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N 2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and formore » the energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less
NASA Astrophysics Data System (ADS)
Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua
2017-08-01
Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.
NASA Astrophysics Data System (ADS)
Al-Halbouni, Djamil; Eoghan, P. Holohan; Leila, Saberi; Hussam, Alrshdan; Thomas, Walter; Ali, Sawarieh; Torsten, Dahm
2016-04-01
The widespread development of sinkholes and land subsidence poses a major geological hazard to infrastructure, local population, agriculture and industry in the Dead Sea area. For assessment of the key physical factors in this development, repeated photogrammetric and field surveys at Ghor Al-Haditha in Jordan have been undertaken. Recent results provide evidence for subrosion based on strong periodic water flows, as the basic underlying physical process of such land subsidence phenomena. From combined Helikite- and Quatrocopter-based photogrammetric surveys, high resolution Digital Surface Models from October 2014 and October 2015 are compared. Change detection reveals: (1) active subsidence in a hundred metre-scale depression zone, (2) a highly-dynamic spring and canyon system connected with recent sinkhole collapses and (3) the rapid formation of new sinkholes both in alluvium and mud cover sediments. The formation of new sinkholes has been documented locally by means of aerial and field observations during a storm with strong rainfall. A new artesian spring formed in the former Dead Sea bed (mud-flat) at this event. The alluvial sediment load of the stream, a periodic location change of the spring and a connected uphill sinkhole cluster formation provide strong evidence for subrosion of weak material with subsequent underground void collapse. Additionally a documented lake and its' subsequent drainage forming a new canyon reveals the local penetration of the aquiclude behavior of the mud-flat in the major depression area, which can be explained by an under-saturated groundwater flow at a strong hydrostatic gradient. Furthermore an enlargement of the investigated area in the 2015 survey indicates a continuation of subsidence and sinkhole activity towards the North. It reveals several points of emanation of water streams in the mud-flat beneath the alluvial cover and vegetation as an indicator of relatively fresh groundwater inflow. This repeated photogrammetry and field survey confirms the hypothesis of a large-scale, channelized subterranean water flow in a 3d network of interconnected tubes. This subsurface karstic channel network is hence responsible for sinkhole formation and rapid land subsidence at the Ghor Al-Haditha sinkhole area and perhaps elsewhere around the Dead Sea.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Gosh, R.; Liu, Y.; Lopez, R.
2011-03-01
In recent years, various strongly correlated materials have shown sharp switching from insulator to metallic state in their I(V) transport curves. Determining if this is purely an out of equilibrium phenomena (due to the strong electric field applied throughout the sample) or simply a Joule heating issue is still an open question. To address this issue, we have first measured local I(V) curves in vanadium dioxide (VO2) Mott insulator at various temperatures using a conducting AFM setup and determined the voltage threshold of the insulator to metal switching. By lifting the tip above the surface (> 35 nm) , wehavethenmeasuredthepurelyelectrostaticforcebetweenthetipandsamplesurfaceasthevoltagebetweenthesetwowasincreased . Inaverynarrowtemperaturerange (below 360 K) , atipheightrange (below 60 nm) andavoltageappliedrange (above 8 V) , weobservedswitchingintheelectrostaticforce (telegraphicnoisevs . timeandvs . voltage) . ThispurelyelectricfieldeffectshowsthattheswitchingphenomenonisstillpresentevenwithoutJouleheatinginVO 2 .
A new type of localized fast moving electronic excitations in molecular chains
NASA Astrophysics Data System (ADS)
Korshunova, A. N.; Lakhno, V. D.
2014-06-01
It is shown that in a Holstein molecular chain placed in a strong longitudinal electric field some new types of excitations can arise. These excitations can transfer a charge over large distance (more than 1000 nucleotide pairs) along the chain retaining approximately their shapes. Excitations are formed only when a strong electric field either exists or quickly arises under especially preassigned conditions. These excitations transfer a charge even in the case when Holstein polarons are practically immobile. The results obtained are applied to synthetic homogeneous PolyG/PolyC DNA duplexes. They can also be provide the basis for explanation of famous H.W. Fink and C. Schönenberger experiment on long-range charge transfer in DNA.
On the Grain-modified Magnetic Diffusivities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Xu, Rui; Bai, Xue-Ning
2016-03-01
Weakly ionized protoplanetary disks (PPDs) are subject to nonideal magnetohydrodynamic (MHD) effects, including ohmic resistivity, the Hall effect, and ambipolar diffusion (AD), and the resulting magnetic diffusivities ({η }{{O}},{η }{{H}}, and {η }{{A}}) largely control the disk gas dynamics. The presence of grains not only strongly reduces the disk ionization fraction, but also modifies the scalings of {η }{{H}} and {η }{{A}} with magnetic field strength. We analytically derive asymptotic expressions of {η }{{H}} and {η }{{A}} in both the strong and weak field limits and show that toward a strong field, {η }{{H}} can change sign (at a threshold field strength {B}{{th}}), mimicking a flip of field polarity, and AD is substantially reduced. Applied to PPDs, we find that when small ˜0.1 (0.01)μm grains are sufficiently abundant (mass ratio ˜0.01 (10-4)), {η }{{H}} can change sign up to ˜2-3 scale heights above the midplane at a modest field strength (plasma β ˜ 100) over a wide range of disk radii. The reduction of AD is also substantial toward the AD-dominated outer disk and may activate the magnetorotational instability. We further perform local nonideal MHD simulations of the inner disk (within 10 au) and show that, with sufficiently abundant small grains, the magnetic field amplification due to the Hall-shear instability saturates at a very low level near the threshold field strength {B}{{th}}. Together with previous studies, we conclude by discussing the grain-abundance-dependent phenomenology of PPD gas dynamics.
Lin, Kai-Qiang; Yi, Jun; Zhong, Jin-Hui; Hu, Shu; Liu, Bi-Ju; Liu, Jun-Yang; Zong, Cheng; Lei, Zhi-Chao; Wang, Xiang; Aizpurua, Javier; Esteban, Rubén; Ren, Bin
2017-01-01
Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates. PMID:28348368
Role of impurities on the optical properties of rectangular graphene flakes
NASA Astrophysics Data System (ADS)
Sadeq, Z. S.; Muniz, Rodrigo A.; Sipe, J. E.
2018-01-01
We study rectangular graphene flakes using mean field states as the basis for a configuration interaction calculation, which allows us to analyze the low lying electronic excited states including electron correlations beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake, but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also investigate the impact of both short and long range impurity potentials on the optical properties of these systems. We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong impurity potentials.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Farrugia, C. J.; Burlaga, L. F.
1991-01-01
On 14-15 January 1988, a magnetic cloud with a local field topology consistent with an east-west aligned cylindrical flux-rope and which formed the driver of an interplanetary shock passed the earth. Using 0.5-4 MeV/n ion data from the instrument on IMP 8, the paper addresses the question of whether or not magnetic field lines within the magnetic cloud were connected to the sun. An impulsive solar particle event was detected inside the magnetic cloud strongly suggesting that the field lines were rooted at the sun.
Minority Voices in Literary Fiction: A Case Study of Translating Multilingual Practices
ERIC Educational Resources Information Center
Nurmi, Arja
2016-01-01
Translating multilingual texts is still a new field of inquiry. Transplanting a text where the function of embraced multilingual practices is strongly related to local ethnic identities can provide challenges for translators and readers alike. This study discusses the translation strategies adopted by second-year translation students on an…
Lay, Chee Leng; Koh, Charlynn Sher Lin; Wang, Jing; Lee, Yih Hong; Jiang, Ruibin; Yang, Yijie; Yang, Zhe; Phang, In Yee; Ling, Xing Yi
2018-01-03
The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically fabricate structurally uniform Al nanostructures which enable homogeneous adsorption of various probe molecules. Individual Al nanostructures exhibit strong local electromagnetic field enhancements, in turn leading to intense SERS activity. The average SERS enhancement factor (EF) for individual nanostructures exceeds 10 4 for non-resonant probe molecules in the visible spectrum. These Al nanostructures also retain more than 70% of their original SERS intensities after one-month storage, displaying superb stability under ambient conditions. We further achieve tunable polarization-dependent SERS responses using anisotropic Al nanostructures, facilitating the design of sophisticated SERS-based security labels. Our micron-sized security label comprises two-tier security features, including a machine-readable hybrid quick-response (QR) code overlaid with a set of ciphertexts. Our work demonstrates the versatility of Al-based structures in low-cost modern chemical nano-analytics and forgery protection.
Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.
Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike
2015-08-12
We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.
NASA Astrophysics Data System (ADS)
Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid
2018-03-01
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
Strong field localization in subwavelength metal-dielectric optical waveguides
NASA Astrophysics Data System (ADS)
Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.
2011-08-01
Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.
Gradiometry and gravitomagnetic field detection
NASA Technical Reports Server (NTRS)
Mashhoon, Bahram
1989-01-01
Gravitomagnetism was apparently first introduced into physics about 120 years ago when major developments in electrodynamics and the strong similarity between Coulomb's law of electricity and Newton's law of gravity led to the hypothesis that mass current generates a fundamental force of gravitational origin analogous to the magnetic force caused by charge current. According to general relativity, the rotation of a body leads to the dragging of the local inertial frames. In the weak-field approximation, the dragging frequency can be interpreted, up to a constant proportionality factor, as a gravitational magnetic field. There is, as yet, no direct evidence regarding the existence of such a field. The possibility is examined of detecting the gravitomagnetic field of the Earth by gravity gradiometry.
Serrano, Ismael García; Sesé, Javier; Guillamón, Isabel; Suderow, Hermann; Vieira, Sebastián; Ibarra, Manuel Ricardo; De Teresa, José María
2016-01-01
We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).
Origin of nonsaturating linear magnetoresistivity
NASA Astrophysics Data System (ADS)
Kisslinger, Ferdinand; Ott, Christian; Weber, Heiko B.
2017-01-01
The observation of nonsaturating classical linear magnetoresistivity has been an enigmatic phenomenon in solid-state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric field are misaligned by a nonlocal mechanism. A finite-element model of a two-dimensional conductor is suited to display the situations that create such deviating currents. Besides edge effects next to electrodes, charge carrier density fluctuations are efficiently generating this effect. However, mobility fluctuations that have frequently been related to linear magnetoresistivity are barely relevant. Despite its rare observation, linear magnetoresitivity is rather the rule than the exception in a regime of low charge carrier densities, misaligned current pathways and strong magnetic field.
Effects of landscape features on waterbird use of rice fields
King, S.; Elphick, C.S.; Guadagnin, D.; Taft, O.; Amano, T.
2010-01-01
Literature is reviewed to determine the effects of landscape features on waterbird use of fields in regions where rice (Oryza sativa) is grown. Rice-growing landscapes often consist of diverse land uses and land cover, including rice fields, irrigation ditches, other agricultural fields, grasslands, forests and natural wetlands. Numerous studies indicate that local management practices, such as water depth and timing of flooding and drawdown, can strongly influence waterbird use of a given rice field. However, the effects of size and distribution of rice fields and associated habitats at a landscape scale have received less attention. Even fewer studies have focused on local and landscape effects simultaneously. Habitat connectivity, area of rice, distance to natural wetlands, and presence and distance to unsuitable habitat can be important parameters influencing bird use of rice fields. However, responses to a given landscape vary with landscape structure, scale of analysis, among taxa and within taxa among seasons. A lack of multi-scale studies, particularly those extending beyond simple presence and abundance of a given species, and a lack of direct tests comparing the relative importance of landscape features with in-field management activities limits understanding of the importance of landscape in these systems and hampers waterbird conservation and management.
NASA Astrophysics Data System (ADS)
Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing
2017-08-01
We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.
Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...
2015-06-01
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less
The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Zank, G. P.; Du, S.; Hunana, P.
2017-06-01
Voyager 1 observed compressible magnetic turbulence in the very local interstellar medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP are strongly refracted on crossing the HP and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance < δ {\\hat{B}}2> since < δ {\\hat{B}}{fz}2> \
Solid-state nanopore localization by controlled breakdown of selectively thinned membranes
NASA Astrophysics Data System (ADS)
Carlsen, Autumn T.; Briggs, Kyle; Hall, Adam R.; Tabard-Cossa, Vincent
2017-02-01
We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.
Many-body localization in a long range XXZ model with random-field
NASA Astrophysics Data System (ADS)
Li, Bo
2016-12-01
Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.
Controlling phase separation in vanadium dioxide thin films via substrate engineering
NASA Astrophysics Data System (ADS)
Gilbert Corder, Stephanie N.; Jiang, Jianjuan; Chen, Xinzhong; Kittiwatanakul, Salinporn; Tung, I.-Cheng; Zhu, Yi; Zhang, Jiawei; Bechtel, Hans A.; Martin, Michael C.; Carr, G. Lawrence; Lu, Jiwei; Wolf, Stuart A.; Wen, Haidan; Tao, Tiger H.; Liu, Mengkun
2017-10-01
The strong electron-lattice interactions in correlated electron systems provide unique opportunities for altering the material properties with relative ease and flexibility. In this Rapid Communication, we use localized strain control via a focused-ion-beam patterning of Ti O2 substrates to demonstrate that one can selectively engineer the insulator-to-metal transition temperature, the fractional component of the insulating and metallic phases, and the degree of optical anisotropy down to the length scales of the intrinsic phase separation in V O2 thin films without altering the quality of the films. The effects of localized strain control on the strongly correlated electron system are directly visualized by state-of-the-art IR near-field imaging and spectroscopy techniques and x-ray microdiffraction measurements.
Controlling phase separation in vanadium dioxide thin films via substrate engineering
Gilbert Corder, Stephanie N.; Jiang, Jianjuan; Chen, Xinzhong; ...
2017-10-23
The strong electron-lattice interactions in correlated electron systems provide unique opportunities for altering the material properties with relative ease and flexibility. Here in this Rapid Communication, we use localized strain control via a focused-ion-beam patterning of TiO 2 substrates to demonstrate that one can selectively engineer the insulator-to-metal transition temperature, the fractional component of the insulating and metallic phases, and the degree of optical anisotropy down to the length scales of the intrinsic phase separation in VO 2 thin films without altering the quality of the films. The effects of localized strain control on the strongly correlated electron system aremore » directly visualized by state-of-the-art IR near-field imaging and spectroscopy techniques and x-ray microdiffraction measurements.« less
Electric field distribution and current emission in a miniaturized geometrical diode
NASA Astrophysics Data System (ADS)
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris
2016-09-01
Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.
Strain-Induced Pseudomagnetic Fields in Twisted Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Zhang, Dong-Bo; Seifert, Gotthard; Chang, Kai
2014-03-01
We present, for the first time, an atomic-level and quantitative study of a strain-induced pseudomagnetic field in graphene nanoribbons with widths of hundreds of nanometers. We show that twisting strongly affects the band structures of graphene nanoribbons with arbitrary chirality and generates well-defined pseudo-Landau levels, which mimics the quantization of massive Dirac fermions in a magnetic field up to 160 T. Electrons are localized either at ribbon edges forming the edge current or at the ribbon center forming the snake orbit current, both being valley polarized. Our result paves the way for the design of new graphene-based nanoelectronics.
Manipulating Traveling Brain Waves with Electric Fields: From Theory to Experiment.
NASA Astrophysics Data System (ADS)
Gluckman, Bruce J.
2004-03-01
Activity waves in disinhibited neocortical slices have been used as a biological model for epileptic seizure propagation [1]. Such waves have been mathematically modeled with integro-differential equations [2] representing non-local reaction diffusion dynamics of an excitable medium with an excitability threshold. Stability and propagation speed of traveling pulse solutions depend strongly on the threshold in the following manner: propagation speed should decrease with increased threshold over a finite range, beyond which the waves become unstable. Because populations of neurons can be polarized with an applied electric field that effectively shifts their threshold for action potential initiation [3], we predicted, and have experimentally verified, that electric fields could be used globally or locally to speed up, slow down and even block wave propagation. [1] Telfeian and Conners, Epilepsia, 40, 1499-1506, 1999. [2] Pinto and Ermentrout, SIAM J. App. Math, 62, 206-225, 2001. [3] Gluckman, et. al. J Neurophysiol. 76, 4202-5, 1996.
On the Lamb vector divergence as a momentum field diagnostic employed in turbulent channel flow
NASA Astrophysics Data System (ADS)
Hamman, Curtis W.; Kirby, Robert M.; Klewicki, Joseph C.
2006-11-01
Vorticity, enstrophy, helicity, and other derived field variables provide invaluable information about the kinematics and dynamics of fluids. However, whether or not derived field variables exist that intrinsically identify spatially localized motions having a distinct capacity to affect a time rate of change of linear momentum is seldom addressed in the literature. The purpose of the present study is to illustrate the unique attributes of the divergence of the Lamb vector in order to qualify its potential for characterizing such spatially localized motions. Toward this aim, we describe the mathematical properties, near-wall behavior, and scaling characteristics of the divergence of the Lamb vector for turbulent channel flow. When scaled by inner variables, the mean divergence of the Lamb vector merges to a single curve in the inner layer, and the fluctuating quantities exhibit a strong correlation with the Bernoulli function throughout much of the inner layer.
2017-01-01
Strong electric fields are known to influence the properties of molecules as well as materials. Here we show that by changing the orientation of an externally applied electric field, one can locally control the mixing behavior of two molecules physisorbed on a solid surface. Whether the starting two-component network evolves into an ordered two-dimensional (2D) cocrystal, yields an amorphous network where the two components phase separate, or shows preferential adsorption of only one component depends on the solution stoichiometry. The experiments are carried out by changing the orientation of the strong electric field that exists between the tip of a scanning tunneling microscope and a solid substrate. The structure of the two-component network typically changes from open porous at negative substrate bias to relatively compact when the polarity of the applied bias is reversed. The electric-field-induced mixing behavior is reversible, and the supramolecular system exhibits excellent stability and good response efficiency. When molecular guests are adsorbed in the porous networks, the field-induced switching behavior was found to be completely different. Plausible reasons behind the field-induced mixing behavior are discussed. PMID:29112378
Local transformations of the hippocampal cognitive map.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2018-03-09
Grid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the "universal metric for space." However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary. The grid remained primarily anchored to the unchanged stable walls and showed a nonuniform rescaling. Shifts in simultaneously recorded colocalized grid fields were strongly correlated, which suggests that the readout of the animal's position might still be intact. Similar field shifts were also observed in place and boundary cells-albeit of greater magnitude and more pronounced closer to the reconfigured boundary-which suggests that there is no simple one-to-one relationship between these three different cell types. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Parsa, Soroush; Ccanto, Raúl; Olivera, Edgar; Scurrah, María; Alcázar, Jesús; Rosenheim, Jay A.
2012-01-01
Background Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a “facilitated ecoinformatics” approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. Methodology/Principal Findings We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2–46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. Conclusions/Significance Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives. PMID:22693551
Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikhzada, Ahmad
As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less
Magnetic proximity control of spin currents and giant spin accumulation in graphene
NASA Astrophysics Data System (ADS)
Singh, Simranjeet
Two dimensional (2D) materials provide a unique platform to explore the full potential of magnetic proximity driven phenomena. We will present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to the ferromagnetic-insulator (FMI) magnetization in graphene/FMI heterostructures. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. We also discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the non-local spin signals in graphene, which is due to spin relaxation by thermally-induced transverse fluctuations of the FMI magnetization. Additionally, it has been a challenge to grow a smooth, robust and pin-hole free tunnel barriers on graphene, which can withstand large current densities for efficient electrical spin injection. We have experimentally demonstrated giant spin accumulation in graphene lateral spin valves employing SrO tunnel barriers. Nonlocal spin signals, as large as 2 mV, are observed in graphene lateral spin valves at room temperature. This high spin accumulations observed using SrO tunnel barriers puts graphene on the roadmap for exploring the possibility of achieving a non-local magnetization switching due to the spin torque from electrically injected spins. Financial support from ONR (No. N00014-14-1-0350), NSF (No. DMR-1310661), and C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.
Williamson, Ross S; Ahrens, Misha B; Linden, Jennifer F; Sahani, Maneesh
2016-07-20
Sensory neurons are customarily characterized by one or more linearly weighted receptive fields describing sensitivity in sensory space and time. We show that in auditory cortical and thalamic neurons, the weight of each receptive field element depends on the pattern of sound falling within a local neighborhood surrounding it in time and frequency. Accounting for this change in effective receptive field with spectrotemporal context improves predictions of both cortical and thalamic responses to stationary complex sounds. Although context dependence varies among neurons and across brain areas, there are strong shared qualitative characteristics. In a spectrotemporally rich soundscape, sound elements modulate neuronal responsiveness more effectively when they coincide with sounds at other frequencies, and less effectively when they are preceded by sounds at similar frequencies. This local-context-driven lability in the representation of complex sounds-a modulation of "input-specific gain" rather than "output gain"-may be a widespread motif in sensory processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Properties of Radio Sources in the FRB 121102 Field
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Chatterjee, Shami; Wharton, Robert; Law, Casey J.; Hessels, Jason; Spolaor, Sarah; Abruzzo, Matthew W.; Bassa, Cees; Butler, Bryan J.; Cordes, James M.; Demorest, Paul; Kaspi, Victoria M.; McLaughlin, Maura; Ransom, Scott M.; Scholz, Paul; Seymour, Andrew; Spitler, Laura; Tendulkar, Shriharsh P.; PALFA Survey; VLA+AO FRB121102 Simultaneous Campaign Team; EVN FRB121102 Campaign Team; Realfast Team
2017-01-01
Fast radio bursts are millisecond duration radio pulses of unknown origin. With dispersion measures substantially in excess of expected Galactic contributions, FRBs are inferred to originate extragalactically, implying very high luminosities. Models include a wide range of high energy systems such as magnetars, merging neutron star binaries, black holes, and strong stellar magnetic fields driving coherent radio emission. Central to the mystery of FRB origins are the absence of confirmed host objects at any wavelength. This is primarily the result of the poor localization from single dish detection of FRBs. Of the approximately 20 known examples, only one, FRB 121102, has been observed to repeat. This repetition presents an opportunity for detailed follow-up if interferometric localization to arcsecond accuracy can be obtained. The Very Large Array has previously been used to localize individual pulses from pulsars and rotating radio transients to arcsecond localizaiton. We present here the results of radio observations of the field of FRB 121102 that permit us to constrain models of possible progenitors of this bursting source. These observations can characterize active galactic nuclei, stars, and other progenitor objects.
Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H
1997-08-01
Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.
EPR paradox, quantum nonlocality and physical reality
NASA Astrophysics Data System (ADS)
Kupczynski, M.
2016-03-01
Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced in irreducible random way.
Improvement of cardiac CT reconstruction using local motion vector fields.
Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael
2009-03-01
The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model
NASA Astrophysics Data System (ADS)
Vučičević, J.; Ayral, T.; Parcollet, O.
2017-09-01
We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.
Caviton dynamics in strong Langmuir turbulence
NASA Astrophysics Data System (ADS)
Dubois, Don; Rose, Harvey A.; Russell, David
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear caviton excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation collapse burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.
Caviton dynamics in strong Langmuir turbulence
NASA Astrophysics Data System (ADS)
DuBois, Don; Rose, Harvey A.; Russell, David
1990-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.
NASA Astrophysics Data System (ADS)
Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.
2017-12-01
Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.
A map of local adaptation in Arabidopsis thaliana.
Fournier-Level, A; Korte, A; Cooper, M D; Nordborg, M; Schmitt, J; Wilczek, A M
2011-10-07
Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems
NASA Astrophysics Data System (ADS)
Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel
The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.
Lunar magnetic fields - Implications for utilization and resource extraction
NASA Technical Reports Server (NTRS)
Hood, Lon L.
1992-01-01
Numerical simulations are used to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases, as well as decreases, in the implantation rate of solar wind hydrogen. Model simulations suggest that the ability of magnetic anomalies to shield the surface from incident ions increases with the angle of incidence and therefore for most particle sources, with selenographic latitude. The possibility that relatively strong anomalies can provide significant protection of materials and men against major solar flare particle events is found to be unlikely.
Polarization-Directed Surface Plasmon Polariton Launching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.
The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less
The correlation of local deformation and stress-assisted local phase transformations in MMC foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de; Ballaschk, U.; Aneziris, C.G.
2015-09-15
Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they canmore » trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.« less
Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik
2016-01-01
Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356
Rapid tsunami models and earthquake source parameters: Far-field and local applications
Geist, E.L.
2005-01-01
Rapid tsunami models have recently been developed to forecast far-field tsunami amplitudes from initial earthquake information (magnitude and hypocenter). Earthquake source parameters that directly affect tsunami generation as used in rapid tsunami models are examined, with particular attention to local versus far-field application of those models. First, validity of the assumption that the focal mechanism and type of faulting for tsunamigenic earthquakes is similar in a given region can be evaluated by measuring the seismic consistency of past events. Second, the assumption that slip occurs uniformly over an area of rupture will most often underestimate the amplitude and leading-wave steepness of the local tsunami. Third, sometimes large magnitude earthquakes will exhibit a high degree of spatial heterogeneity such that tsunami sources will be composed of distinct sub-events that can cause constructive and destructive interference in the wavefield away from the source. Using a stochastic source model, it is demonstrated that local tsunami amplitudes vary by as much as a factor of two or more, depending on the local bathymetry. If other earthquake source parameters such as focal depth or shear modulus are varied in addition to the slip distribution patterns, even greater uncertainty in local tsunami amplitude is expected for earthquakes of similar magnitude. Because of the short amount of time available to issue local warnings and because of the high degree of uncertainty associated with local, model-based forecasts as suggested by this study, direct wave height observations and a strong public education and preparedness program are critical for those regions near suspected tsunami sources.
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Phase transition transistors based on strongly-correlated materials
NASA Astrophysics Data System (ADS)
Nakano, Masaki
2013-03-01
The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
Compensation of Gradient-Induced Magnetic Field Perturbations
Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2008-01-01
Pulsed magnetic field gradients are essential for MR imaging and localized spectroscopy applications. However, besides the desired linear field gradients, pulsed currents in a strong external magnetic field also generate unwanted effects like eddy currents, gradient coil vibrations and acoustic noise. While the temporal magnetic field perturbations associated with eddy currents lead to spectral line shape distortions and signal loss, the vibration-related modulations lead to anti-symmetrical sidebands of any large signal (i.e. water), thereby obliterating the signals from smaller signals (i.e. metabolites). Here the measurement, characterization and compensation of vibrations-related magnetic field perturbations is presented. Following a quantitative evaluation of the various temporal components of the main magnetic field, a digital B0 magnetic field waveform is generated which reduces all temporal variations of the main magnetic field to within the spectral noise level. PMID:18329304
Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp
NASA Technical Reports Server (NTRS)
Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.
1979-01-01
Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.
Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP
NASA Astrophysics Data System (ADS)
Liu, Chang; Fox, Will; Bhattacharjee, Amitava
2016-10-01
Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.
An infrared small target detection method based on multiscale local homogeneity measure
NASA Astrophysics Data System (ADS)
Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen
2018-05-01
Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.
Reports from the Field: Elementary Teacher Candidates Describe the Teaching of Social Studies
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Sunal, Dennis W.
2008-01-01
Recent research indicates that social studies is being de-emphasized in the elementary school, particularly in favor of greater attention to reading. Historically, there is evidence that social studies has not been a strong component of the curriculum in elementary classrooms although it often appears in state and local courses of study. In the…
Excitations of interface pinned domain walls in constrained geometries
NASA Astrophysics Data System (ADS)
Martins, S. M. S. B.; Oliveira, L. L.; Rebouças, G. O. G.; Dantas, Ana L.; Carriço, A. S.
2018-05-01
We report a theoretical investigation of the equilibrium pattern and the spectra of head-to-head and Neel domain walls of flat Fe and Py stripes, exchange coupled with a vicinal antiferromagnetic substrate. We show that the domain wall excitation spectrum is tunable by the strength of the interface field. Furthermore, strong interface coupling favors localized wall excitations.
ERIC Educational Resources Information Center
Moss, Peter
2017-01-01
The field of early childhood education is increasingly dominated by a strongly positivistic and regulatory discourse, the story of quality and high returns, which has spread from its local origins in the favourable environment provided by a global regime of neoliberalism. But though dominant, this is not the only discourse in early childhood…
A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect
NASA Astrophysics Data System (ADS)
Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai
2016-06-01
In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.
Single-particle dynamics of the Anderson model: a local moment approach
NASA Astrophysics Data System (ADS)
Glossop, Matthew T.; Logan, David E.
2002-07-01
A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.
2012-01-01
Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler , and M. G. Bawendi, “Optical Gain and Stimulated Emission in...electronics,” Phys. Rev. Lett. 58, 2059 ( 1987 ). 5 S. John, “Strong localization of photons in certain disordered superlattices,” Phys. Rev. Lett. 58, 2486... 1987 ). 6 J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton Univ. Press, 1995). 7 M
Fisk-Gloeckler Suprathermal Proton Spectrum in the Heliosheath and the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Cooper, John F.; Kasprzak, W. T.; Mahaffy, P. R.; Niemann, H. B.; Hartle, R. E.; Paschalidis, N.; Chornay, D.; Coplan, M.; Johnson, R. E.
2010-01-01
Convergence of suprathermal keV-MeV proton and ion spectra approximately to the Fisk-Gloeckler (F-G) form j(E) = j(sub 0) E(sup -1.5) in Voyager land 2 heliosheath measurements is suggestive of distributed acceleration in Kolmogorov turbulence which may extend well beyond the heliopause into the local interstellar medium (LISM). Turbulence of this type is already indicated by interstellar radio scintillation measurements of electron density power spectra. Previously published extrapolations (Cooper et al., 2003, 2006) of the LISM proton spectrum from eV to GeV energies are highly consistent with the F-G power-law and further indicative of such turbulence and LISM effectiveness of the F-G cascade acceleration process. The LISM pressure computed from this spectrum well exceeds that from current estimates for the LISM magnetic field, so exchange of energy between the protons and the magnetic field would likely have a strong role in evolution of the turbulence as per the F-G theory and as long ago proposed for cosmic ray energies by Parker and others. Pressure-dependent estimates of the LISM field strength should not ignore this potentially strong and even dominant contribution from the plasma. Presence of high-beta suprathermal plasma on LISM field lines could significantly affect interactions with the heliospheric outer boundary region and might potentially account for distributed and more discrete features in ongoing measurements of energetic neutral emission from the Interstellar Boundary Explorer (IBEX) mission.
The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei
2017-11-01
In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.
Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.
Ou, Qingdong; Zhang, Yupeng; Wang, Ziyu; Yuwono, Jodie A; Wang, Rongbin; Dai, Zhigao; Li, Wei; Zheng, Changxi; Xu, Zai-Quan; Qi, Xiang; Duhm, Steffen; Medhekar, Nikhil V; Zhang, Han; Bao, Qiaoliang
2018-04-01
A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH 3 NH 3 PbI 3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO 3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam
We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance,more » we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.« less
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
Pulse shape optimization for electron-positron production in rotating fields
NASA Astrophysics Data System (ADS)
Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve
2017-07-01
We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.
Alonso-González, Pablo; Albella, Pablo; Golmar, Federico; Arzubiaga, Libe; Casanova, Félix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer
2013-01-14
We directly visualize and identify the capacitive coupling of infrared dimer antennas in the near field by employing scattering-type scanning near-field optical microscopy (s-SNOM). The coupling is identified by (i) resolving the strongly enhanced nano-localized near fields in the antenna gap and by (ii) tracing the red shift of the dimer resonance when compared to the resonance of the single antenna constituents. Furthermore, by modifying the illumination geometry we break the symmetry, providing a means to excite both the bonding and the "dark" anti-bonding modes. By spectrally matching both modes, their interference yields an enhancement or suppression of the near fields at specific locations, which could be useful in nanoscale coherent control applications.
Ising versus XY anisotropy in frustrated R(2)Ti(2)O(7) compounds as "Seen" by Polarized Neutrons.
Cao, H; Gukasov, A; Mirebeau, I; Bonville, P; Decorse, C; Dhalenne, G
2009-07-31
We studied the field induced magnetic order in R(2)Ti(2)O(7) pyrochlore compounds with either uniaxial (R=Ho, Tb) or planar (R=Er, Yb) anisotropy, by polarized neutron diffraction. The determination of the local susceptibility tensor {chi(parallel to),chi(perpendicular)} provides a universal description of the field induced structures in the paramagnetic phase (2-270 K), whatever the field value (1-7 T) and direction. Comparison of the thermal variations of chi(parallel to) and chi(perpendicular) with calculations using the rare earth crystal field shows that exchange and dipolar interactions must be taken into account. We determine the molecular field tensor in each case and show that it can be strongly anisotropic.
Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization.
De Luca, Andrea; Rosso, Alberto
2015-08-21
Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.
Surface electric fields for North America during historical geomagnetic storms
Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.
2013-01-01
To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.
2015-06-29
A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less
The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study
NASA Astrophysics Data System (ADS)
Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.
1996-04-01
We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic fluctuations within those features are closely aligned, representing Alfvén waves propagating locally downstream. The flux tubes surround a low-density channel of hot gas that contains most of the excess entropy generated through the relaxation process.
Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt
NASA Astrophysics Data System (ADS)
Sax, C. R.; Schönfeld, B.; Ruban, A. V.
2015-08-01
Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.
Local probing of thermal energy transfer and conversion processes in VO2 nanostructures
NASA Astrophysics Data System (ADS)
Menges, Fabian
Nanostructures of strongly correlated materials, such as metal-insulator transition (MIT) oxides, enable unusual coupling of charge and heat transport. Hence, they provide an interesting pathway to the development of non-linear thermal devices for active heat flux control. Here, we will report the characterization of local thermal non-equilibrium processes in vanadium dioxide (VO2) thin films and single-crystalline nanobeams. Using a scanning thermal microscope and calorimetric MEMS platforms, we studied the MIT triggered by electrical currents, electrical fields, near-field thermal radiation and thermal conduction. Based on out recently introduced scanning probe thermometry method, which enables direct imaging of local Joule and Peltier effects, we quantified self-heating processes in VO2 memristors using the tip of a resistively heated scanning probe both as local sensor and nanoscopic heat source. Finally, we will report on recent approaches to build radiative thermal switches and oscillators using VO2 nanostructures. We quantified variations of near-field radiative thermal transport between silicon dioxide and VO2 down to nanoscopic gap sizes, and will discuss its implications for the development of phonon polariton based radiative thermal devices. Funding of the Swiss Federal Office of Energy under Grant Agreement No. SI/501093-01 is gratefully acknowledged.
Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field
NASA Technical Reports Server (NTRS)
Richards, P. G.; Torr, D. G.
1986-01-01
The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.
Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.
1992-01-01
Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.
Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field
Buck, Patrick M.; Bystroff, Christopher
2015-01-01
Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613
Local support against gravity in magnetoturbulent fluids
NASA Astrophysics Data System (ADS)
Schmidt, W.; Collins, D. C.; Kritsuk, A. G.
2013-06-01
Comparisons of the integrated thermal pressure support of gas against its gravitational potential energy lead to critical mass scales for gravitational instability such as the Jeans and the Bonnor-Ebert masses, which play an important role in the analysis of many physical systems, including the heuristics of numerical simulations. In a strict theoretical sense, however, neither the Jeans nor the Bonnor-Ebert mass is meaningful when applied locally to substructure in a self-gravitating turbulent medium. For this reason, we investigate the local support by thermal pressure, turbulence and magnetic fields against gravitational compression through an approach that is independent of these concepts. At the centre of our approach is the dynamical equation for the divergence of the velocity field. We carry out a statistical analysis of the source terms of the local compression rate (the negative time derivative of the divergence) for simulations of forced self-gravitating turbulence in periodic boxes with zero, weak and moderately strong mean magnetic fields (measured by the averages of the magnetic and thermal pressures). We also consider the amplification of the magnetic field energy by shear and by compression. Thereby, we are able to demonstrate that the support against gravity is dominated by thermal pressure fluctuations, although magnetic pressure also yields a significant contribution. The net effect of turbulence in the highly supersonic regime, however, is to enhance compression rather than supporting overdense gas even if the vorticity is very high. This is incommensurate with the support of the highly dynamical substructures in magnetoturbulent fluids being determined by local virial equilibria of volume energies without surface stresses.
The topology of Double Field Theory
NASA Astrophysics Data System (ADS)
Hassler, Falk
2018-04-01
We describe the doubled space of Double Field Theory as a group manifold G with an arbitrary generalized metric. Local information from the latter is not relevant to our discussion and so G only captures the topology of the doubled space. Strong Constraint solutions are maximal isotropic submanifold M in G. We construct them and their Generalized Geometry in Double Field Theory on Group Manifolds. In general, G admits different physical subspace M which are Poisson-Lie T-dual to each other. By studying two examples, we reproduce the topology changes induced by T-duality with non-trivial H-flux which were discussed by Bouwknegt, Evslin and Mathai [1].
Magnetic Field Apparatus (MFA) Hardware Test
NASA Technical Reports Server (NTRS)
Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave
1999-01-01
The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.
Integrating teaching and authentic research in the field and laboratory settings
NASA Astrophysics Data System (ADS)
Daryanto, S.; Wang, L.; Kaseke, K. F.; Ravi, S.
2016-12-01
Typically authentic research activities are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research activities both in the field and in the laboratory. We worked with students from both US and abroad without strong science background to utilize advanced environmental sensors and statistical tool to conduct innovative projects. The students include one from Namibia and two local high school students in Indianapolis (through Project SEED, Summer Experience for the Economically Disadvantaged). They conducted leaf potential measurements, isotope measurements and meta-analysis. The experience showed us the great potential of integrating teaching and research in both field and laboratory settings.
Quantum transport in topological semimetals under magnetic fields
NASA Astrophysics Data System (ADS)
Lu, Hai-Zhou; Shen, Shun-Qing
2017-06-01
Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.
Observation of superconducting vortex clusters in S/F hybrids
Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; ...
2016-12-09
While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopymore » is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Here, our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.« less
Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip
2017-06-14
Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO 2 /Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.
Observation of superconducting vortex clusters in S/F hybrids.
Di Giorgio, C; Bobba, F; Cucolo, A M; Scarfato, A; Moore, S A; Karapetrov, G; D'Agostino, D; Novosad, V; Yefremenko, V; Iavarone, M
2016-12-09
While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2 . This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.
Observation of superconducting vortex clusters in S/F hybrids
Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; Scarfato, A.; Moore, S. A.; Karapetrov, G.; D’Agostino, D.; Novosad, V.; Yefremenko, V.; Iavarone, M.
2016-01-01
While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed. PMID:27934898
Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Li; Kaluarachchi, Udhara; Bohmer, Anna
2017-07-18
The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe ( Se 1 - x S x ) . We performed resistance measurements on single crystals with three substitution levels ( x = 0.043 , 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe ( Se 1 - x S x ). Furthermore, on increasing sulfur content, magnetic order inmore » the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. But, T s is much less suppressed by sulfur substitution, and T c of Fe ( Se 1 - x S x ) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x . The local maximum in T c coincides with the emergence of the magnetic order above T c . At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of T c correlates with a broad maximum of the upper critical field slope normalized by T c .« less
NASA Astrophysics Data System (ADS)
Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.
2015-12-01
The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.
Tunable Kondo physics in a carbon nanotube double quantum dot.
Chorley, S J; Galpin, M R; Jayatilaka, F W; Smith, C G; Logan, D E; Buitelaar, M R
2012-10-12
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
NASA Astrophysics Data System (ADS)
Young, Andrea; Dean, Cory; Meric, Inanc; Hone, Jim; Shepard, Ken; Kim, Philip
2010-03-01
Using a transfer procedure and single crystal hexagonal Boron Nitride gate dielectric, we are able to fabricate high mobility graphene devices with local top and back gates. The novel geometry of these devices allows us to measure the spatially averaged compressibility of mono- and bilayer graphene using the ``penetration field'' technique [Eisenstein, J.P. et al. Phys. Rev. Lett. 68, 674 (1992)]. In particular, we analyze the the effects of strong transverse electric fields on the compressibility of graphenes, especially as pertains to charged impurity scattering in single layer graphene and the opening of an energy gap in bilayer.
Determination of the orbital moment and crystal-field splitting in LaTiO3.
Haverkort, M W; Hu, Z; Tanaka, A; Ghiringhelli, G; Roth, H; Cwik, M; Lorenz, T; Schüssler-Langeheine, C; Streltsov, S V; Mylnikova, A S; Anisimov, V I; de Nadai, C; Brookes, N B; Hsieh, H H; Lin, H-J; Chen, C T; Mizokawa, T; Taguchi, Y; Tokura, Y; Khomskii, D I; Tjeng, L H
2005-02-11
Utilizing a sum rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO3 is strongly reduced from its ionic value, both below and above the Ne el temperature. Using Ti L2,3 x-ray absorption spectroscopy as a local probe, we found that the crystal-field splitting in the t2g subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid.
Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.
de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael
2017-02-20
Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.
On the influence of wall roughness in particle-laden flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milici, Barbara; De Marchis, Mauro
2015-03-10
The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the local dynamics of the turbulent structures of the underlying carrier flow field. In wall-bounded flows, wall roughness strongly affects the turbulent flow field, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing direct numerical simulations of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivarova, A.; Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia-bg; Lishev, St.
2016-02-15
The study is in the scope of a recent activity on modeling of SPIDER (Source for Production of Ions of Deuterium Extracted from RF plasma) which is under development regarding the neutral beam injection heating system of ITER. The regime of non-ambipolarity in the source, established before, is completed here by introducing in the model the steady state magnetic field, self-induced in the discharge due to the dc current flowing in it. Strong changes in the discharge structure are reported.
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-07-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.
Positron annihilation in perovskite superconductors; Theory and experiment
NASA Astrophysics Data System (ADS)
Turchi, P. E. A.; Wachs, A. L.; Jean, Y. C.; Howell, R. H.; Wetzler, K. H.; Fluss, M. J.
1988-06-01
Positron Annihilation Spectroscopy is shown to be of potential value for probing the electronic structure and the changes accompanying the superconducting transition of the new high T c materials. The experimental results of electron-positron momentum distribution for La 2CuO 4 agree with a ligand field approach, suggesting a strong electron localization and the importance of the covalency.
Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake
NASA Astrophysics Data System (ADS)
Lin, Xuchuan; Zhang, Haoyu; Chen, Hongfu; Chen, Hao; Lin, Junqi
2015-03-01
The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.
Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions
NASA Astrophysics Data System (ADS)
Schwan, Logan; Umnova, Olga; Boutin, Claude; Groby, Jean-Philippe
2018-03-01
The propagation of long-wavelength sound in the presence of a metasurface made by arranging acoustic resonators periodically upon or slightly above an impervious substrate is studied. The method of two-scale asymptotic homogenization is used to derive effective boundary conditions, which account for both the surface corrugation and the low-frequency resonance. This method is applied to periodic arrays of resonators of any shape operating in the long-wavelength regime. The approach relies on the existence of a locally periodic boundary layer developed in the vicinity of the metasurface, where strong near-field interactions of the resonators with each other and with the substrate take place. These local effects give rise to an effective surface admittance supplemented by nonlocal contributions from the simple and double gradients of the pressure at the surface. These phenomena are illustrated for the periodic array of cylindrical Helmholtz resonators with an extended inner duct. Effects of the centre-to-centre spacing and orientation of the resonators' opening on the nonlocality and apparent resonance frequency are studied. The model could be used to design metasurfaces with specific effective boundary conditions required for particular applications.
NASA Astrophysics Data System (ADS)
Sánchez, J.; Acedo, M.; Alonso, A.; Alonso, J.; Alvarez, P.; de Aragón, F.; Ascasíbar, E.; Baciero, A.; Balbín, R.; Barrera, L.; Blanco, E.; Botija, J.; Brañas, B.; de la Cal, E.; Calderón, E.; Calvo, I.; Cappa, A.; Carmona, J. A.; Carreras, B. A.; Carrasco, R.; Castejón, F.; Catalán, G.; Chmyga, A. A.; Dreval, N. B.; Chamorro, M.; Eguilior, S.; Encabo, J.; Eliseev, L.; Estrada, T.; Fernández, A.; Fernández, R.; Ferreira, J. A.; Fontdecaba, J. M.; Fuentes, C.; de la Gama, J.; García, A.; García, L.; García-Cortés, I.; García-Regaña, J. M.; Gonçalves, B.; Guasp, J.; Herranz, J.; Hidalgo, A.; Hidalgo, C.; Jiménez-Gómez, R.; Jiménez, J. A.; Jiménez, D.; Kirpitchev, I.; Komarov, A. D.; Kozachok, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; López-Bruna, D.; López-Fraguas, A.; López-Rázola, J.; López-Sánchez, A.; de la Luna, E.; Marcon, G.; Martín, F.; Martínez-Fresno, L.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melnikov, A. V.; Méndez, P.; Mirones, E.; van Milligen, B.; Nedzelskiy, I. S.; Ochando, M.; Olivares, J.; Orozco, R.; Ortiz, P.; de Pablos, J. L.; Pacios, L.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Pérez-Risco, D.; Petrov, A.; Petrov, S.; Portas, A.; Rapisarda, D.; Ríos, L.; Rodríguez, C.; Rodríguez-Rodrigo, L.; Rodríguez-Solano, E.; Romero, J.; Ros, A.; Salas, A.; Sánchez, E.; Sánchez, M.; Sánchez-Sarabia, E.; Sarasola, X.; Sarksian, K.; Silva, C.; Schchepetov, S.; Skvortsova, N.; Soleto, A.; Tabarés, F.; Tafalla, D.; Tera, J.; Tolkachev, A.; Tribaldos, V.; Vargas, V. I.; Vega, J.; Velasco, G.; Weber, M.; Wolfers, G.; Zweben, S. J.; Zurro, B.
2007-10-01
This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices.
Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; ...
2014-12-16
Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less
NASA Astrophysics Data System (ADS)
Zhu, Tao; Shu, Fu-Wen; Wu, Qiang; Wang, Anzhong
2012-02-01
We consider an extended theory of Horava-Lifshitz gravity with the detailed balance condition softly breaking, but without the projectability condition. With the former, the number of independent coupling constants is significantly reduced. With the latter and by extending the original foliation-preserving diffeomorphism symmetry Diff(M,F) to include a local U(1) symmetry, the spin-0 gravitons are eliminated. Thus, all the problems related to them disappear, including the instability, strong coupling, and different speeds in the gravitational sector. When the theory couples to a scalar field, we find that the scalar field is not only stable in both the ultraviolet and infrared, but also free of the strong coupling problem, because of the presence of high-order spatial derivative terms of the scalar field. Furthermore, applying the theory to cosmology, we find that due to the additional U(1) symmetry, the Friedmann-Robertson-Walker (FRW) universe is necessarily flat. We also investigate the scalar, vector, and tensor perturbations of the flat FRW universe, and derive the general linearized field equations for each kind of the perturbations.
Alignments of the galaxies in and around the Virgo cluster with the local velocity shear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jounghun; Rey, Soo Chang; Kim, Suk, E-mail: jounghun@astro.snu.ac.kr
2014-08-10
Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor ismore » almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.« less
NASA Astrophysics Data System (ADS)
Aman, Fazlina; Mohamad Khazim, Wan Nor Hafizah Wan; Mansur, Syahira
2017-09-01
Interaction of motile microorganisms and nanoparticles along with buoyancy forces will produce nanofluid bioconvection. Bioconvection happened because of the microorganisms are imposed into the nanofluid to stabilize the nanoparticles to suspend. In this paper, we investigated the problem of mixed convection flow of a nanofluid combined with gyrotactic microorganisms over a stretching/shrinking sheet under the influence of magnetic field. The nonlinear partial differential equations are transformed into a set of five similarities nonlinear ordinary differential equations by using similarity transformation, before being solved numerically. Some of the governing parameters involve in this problem are magnetic parameter, stretching/shrinking parameter, Brownian motion parameter, thermophoresis parameter and Prandtl number. Using tables and graphs, the consequences of numerous parameters on the flow and heat transfer features are examined and discussed. The results indicate that the skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms are strongly affected by the governing parameters.
Spreading Speed of Magnetopause Reconnection X-Lines Using Ground-Satellite Coordination
NASA Astrophysics Data System (ADS)
Zou, Ying; Walsh, Brian M.; Nishimura, Yukitoshi; Angelopoulos, Vassilis; Ruohoniemi, J. Michael; McWilliams, Kathryn A.; Nishitani, Nozomu
2018-01-01
Conceptual and numerical models predict that magnetic reconnection starts at a localized region and then spreads out of the reconnection plane. At the Earth's magnetopause this spreading would occur primarily in local time along the boundary. Different simulations have found the spreading to occur at different speeds such as the Alfvén speed and speed of the current carriers. We use conjugate Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and Super Dual Auroral Radar Network (SuperDARN) radar measurements to observationally determine the X-line spreading speed at the magnetopause. THEMIS probes the reconnection parameters locally, and SuperDARN tracks the reconnection development remotely. Spreading speeds under different magnetopause boundary conditions are obtained and compared with model predictions. We find that while spreading under weak guide field could be explained by either the current carriers or the Alfvén waves, spreading under strong guide field is consistent only with the current carriers.
NASA Astrophysics Data System (ADS)
Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.
2018-01-01
We have studied the influence of a spacer introduced into a Bragg multihelicoidal fiber with a twist defect on the existence of defect-localized states. We have shown that in the presence of a Gaussian pump the energy of the electromagnetic field stored in topologically charged defect-localized modes essentially depends on the length of the spacer. We have demonstrated that by changing this length on the wavelength scale it is possible to strongly modulate such energy. This property can be used for generation and controlled emission of topologically charged light. We have also shown that if the value of an isotropic spacer’s refractive index deviates from the optimal value defined by the parameters of the multihelicoidal fiber parts the effect of localization disappears.
Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.
The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less
Quantum simulation of strongly correlated condensed matter systems
NASA Astrophysics Data System (ADS)
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Entanglement and magnetism in high-spin graphene nanodisks
NASA Astrophysics Data System (ADS)
Hagymási, I.; Legeza, Ö.
2018-01-01
We investigate the ground-state properties of triangular graphene nanoflakes with zigzag edge configurations. The description of zero-dimensional nanostructures requires accurate many-body techniques since the widely used density-functional theory with local density approximation or Hartree-Fock methods cannot handle the strong quantum fluctuations. Applying the unbiased density-matrix renormalization group algorithm we calculate the magnetization and entanglement patterns with high accuracy for different interaction strengths and compare them to the mean-field results. With the help of quantum information analysis and subsystem density matrices we reveal that the edges are strongly entangled with each other. We also address the effect of electron and hole doping and demonstrate that the magnetic properties of triangular nanoflakes can be controlled by an electric field, which reveals features of flat-band ferromagnetism. This may open up new avenues in graphene based spintronics.
Designing asymmetric multiferroics with strong magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team
2015-03-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
Designing asymmetric multiferroics with strong magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Lu, X. Z.; Xiang, H. J.
2014-09-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the "asymmetric multiferroic." In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
NASA Astrophysics Data System (ADS)
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Sources and Losses of Ring Current Ions
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis
2010-01-01
During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.
Towards a Decentralized Magnetic Indoor Positioning System
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2015-01-01
Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145
Towards a Decentralized Magnetic Indoor Positioning System.
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2015-12-04
Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.
A local model of warped magnetized accretion discs
NASA Astrophysics Data System (ADS)
Paris, J. B.; Ogilvie, G. I.
2018-06-01
We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.
Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.
Khani, Mohammad Hossein; Gollisch, Tim
2017-12-01
Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. Copyright © 2017 the American Physiological Society.
Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells
Khani, Mohammad Hossein
2017-01-01
Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. PMID:28904106
Three-dimensional wave evolution on electrified falling films
NASA Astrophysics Data System (ADS)
Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg
2016-11-01
We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).
Wide-Field Structure of Local Group Dwarf Irregular Galaxy IC1613
NASA Astrophysics Data System (ADS)
Pucha, Ragadeepika; Carlin, Jeffrey; Willman, Beth; Sand, David J.; Bechtol, Keith
2018-01-01
IC1613 is a typical dwarf irregular galaxy in the Local Group. Being an isolated dwarf, as opposed to the dwarfs around the Milky Way, it is likely to be subjected to fewer strong environmental effects. As a result, it serves as a good prototype for the study of the structure and evolution of dwarf galaxies. We present g- and i- band photometry from deep imaging of four fields around IC1613, that resolved stars up to ~ 4 magnitudes fainter than the tip of the RGB. This photometry was obtained using Hyper-Suprime Cam (HSC) on the Subaru Telescope. The large (1.5o) field-of-view of HSC provides us with a unique opportunity to study the wide-field structure of this dwarf galaxy. This project explores the structure of IC1613 to radii of about ~ 25 kpc using different types of stellar tracers. The aim is to search for evidence of a stellar halo or stellar over-densities around IC1613. The relative contributions of the different stellar populations as a function of position in IC1613 are also shown.
Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.
Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert
2015-11-01
In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.
Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures
NASA Astrophysics Data System (ADS)
Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa
2015-06-01
In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.
NASA Astrophysics Data System (ADS)
Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.
2010-11-01
Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing
2016-01-01
Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yung-Ya
1998-11-01
Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest tomore » the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by the lattice fluctuations in an extended time scale. Lowtemperature measurements and classical-spin simulations are carried out to verify the above analysis. To promote the implementation and future study on the topics described in this thesis, program packages of advanced NMR signal processing and many-spin FID simulations are summarized and listed in the Appendix.« less
Multi-domain electromagnetic absorption of triangular quantum rings
NASA Astrophysics Data System (ADS)
Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei
2016-06-01
We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.
Multi-domain electromagnetic absorption of triangular quantum rings.
Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei
2016-06-03
We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.
The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.
NASA Astrophysics Data System (ADS)
Moore, C. B.; Aulich, G. D.; Rison, William
2003-07-01
Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.
Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.
Chan, Jasper; Eichenfield, Matt; Camacho, Ryan; Painter, Oskar
2009-03-02
Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of lambda?= 1.5 microm indicate that such structures can simultaneously realize an optical Q-factor of 7x10(6), motional mass m(u) approximately 40 picograms, mechanical mode frequency Omega(M)/2pi approximately 170 MHz, and an optomechanical coupling factor (g(OM) identical with domega(c)/dx = omega(c)/L(OM)) with effective length L(OM) approximately lambda= 1.5 microm.
Dephasing effects on ac-driven triple quantum dot systems
NASA Astrophysics Data System (ADS)
Maldonado, I.; Villavicencio, J.; Contreras-Pulido, L. D.; Cota, E.; Maytorena, J. A.
2018-05-01
We analyze the effect of environmental dephasing on the electrical current in an ac-driven triple quantum dot system in a symmetric Λ configuration. The current is explored by solving the time evolution equation of the density matrix as a function of the frequency and amplitude of the driving field. Two characteristic spectra are observed depending on the field amplitude. At the resonance condition, when the frequency matches the interdot energy difference, one spectrum shows a distinctive Fano-type peak, while the other, occurring at larger values of the field amplitude, exhibits a strong current suppression due to dynamic localization. In the former case we observe that the current maximum is reduced due to dephasing, while in the latter it is shown that dephasing partially alleviates the localization. In both cases, away from resonance, we observe current oscillations which are dephasing-enhanced for a wide range of frequencies. These effects are also discussed using Floquet theory, and analytical expressions for the electrical current are obtained within the rotating wave approximation.
Schoenball, Martin; Davatzes, Nicholas C.; Glen, Jonathan M. G.
2015-01-01
A remarkable characteristic of earthquakes is their clustering in time and space, displaying their self-similarity. It remains to be tested if natural and induced earthquakes share the same behavior. We study natural and induced earthquakes comparatively in the same tectonic setting at the Coso Geothermal Field. Covering the preproduction and coproduction periods from 1981 to 2013, we analyze interevent times, spatial dimension, and frequency-size distributions for natural and induced earthquakes. Individually, these distributions are statistically indistinguishable. Determining the distribution of nearest neighbor distances in a combined space-time-magnitude metric, lets us identify clear differences between both kinds of seismicity. Compared to natural earthquakes, induced earthquakes feature a larger population of background seismicity and nearest neighbors at large magnitude rescaled times and small magnitude rescaled distances. Local stress perturbations induced by field operations appear to be strong enough to drive local faults through several seismic cycles and reactivate them after time periods on the order of a year.
NASA Technical Reports Server (NTRS)
Eriksson, S.; Lavraud, B.; Wilder, F. D.; Stawarz, J. E.; Giles, B. L.; Burch, J. L.; Baumjohann, W.; Ergun, R. E.; Lindqvist, P.-A.; Magnes, W.;
2016-01-01
The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvln-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1, 2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
Holography and off-center collisions of localized shock waves
Chesler, Paul M.; Yaffe, Laurence G.
2015-10-12
Using numerical holography, we study the collision, at non-zero impact parameter, of bounded, localized distributions of energy density chosen to mimic relativistic heavy ion collisions, in strongly coupled N=4 supersymmetric Yang-Mills theory. Both longitudinal and transverse dynamics in the dual field theory are properly described. Using the gravitational description, we solve 5D Einstein equations with no dimensionality reducing symmetry restrictions to find the asymptotically anti-de Sitter spacetime geometry. Here, the implications of our results on the understanding of early stages of heavy ion collisions, including the development of transverse radial flow, are discussed.
Impact of surface morphology on the properties of light emission in InGaN epilayers
NASA Astrophysics Data System (ADS)
Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas
2018-05-01
Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.
On Electron-Positron Pair Production by a Spatially Inhomogeneous Electric Field
NASA Astrophysics Data System (ADS)
Chervyakov, A.; Kleinert, H.
2018-05-01
A detailed analysis of electron-positron pair creation induced by a spatially non-uniform and static electric field from vacuum is presented. A typical example is provided by the Sauter potential. For this potential, we derive the analytic expressions for vacuum decay and pair production rate accounted for the entire range of spatial variations. In the limit of a sharp step, we recover the divergent result due to the singular electric field at the origin. The limit of a constant field reproduces the classical result of Euler, Heisenberg and Schwinger, if the latter is properly averaged over the width of a spatial variation. The pair production by the Sauter potential is described for different regimes from weak to strong fields. For all these regimes, the locally constant-field rate is shown to be the upper limit.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.
1985-01-01
Energy spectra of photons emitted from Bremsstrahlung (BR) of energetic electrons with matter, is obtained from the deconvolution of the electron energy spectra. It can be inferred that the scenario for the production of X-rays and gamma rays in solar flares may vary from event to event. However, it is possible in many cases to associated low energy events to impulsive acceleration, and the high energy phase of some events to stochastic acceleration. In both cases, flare particles seem to be strongly modulated by local energy losses. Electric field acceleration, associated to neutral current sheets is a suitable candidate for impulsive acceleration. Finally, that the predominant radiation process of this radiation is the inverse Compton effect due to the local flare photon field.
Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.
2015-05-01
Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01277e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zobov, V. E., E-mail: rsa@iph.krasn.ru; Kucherov, M. M.
2017-01-15
The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components aremore » described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.« less
NASA Astrophysics Data System (ADS)
Tan, R. P.; Carrey, J.; Respaud, M.
2014-12-01
Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately 1.3 times the mean distance between two neighbors. The amplitude and sign of this variation is explained. Finally, implications of these various findings are discussed in the framework of magnetic hyperthermia optimization. It is concluded that feedback on two specific points from biology experiments is required for further advancement of the optimization of magnetic NPs for magnetic hyperthermia. The present simulations will be an advantageous tool to optimize magnetic NPs heating power and interpret experimental results.
NASA Astrophysics Data System (ADS)
Fuchs, Matthias
2017-08-01
The nature of the glass transition is one of the frontier questions in Statistical Physics and Materials Science. Highly cooperative structural processes develop in glass-forming melts exhibiting relaxational dynamics which is spread out over many decades in time. While considerable progress has been made in recent decades towards understanding dynamical slowing-down in quiescent systems, the interplay of glassy dynamics with external fields reveals a wealth of novel phenomena yet to be explored. This special issue focuses on recent results obtained by the Research Unit FOR 1394 `Nonlinear response to probe vitrification' which was funded by the German Science Foundation (DFG). In the projects of the research unit, strong external fields were used in order to gain insights into the complex structural and transport phenomena at the glass transition under far-from-equilibrium conditions. This aimed inter alia to test theories of the glass transition developed for quiescent systems by pushing them beyond their original regime. Combining experimental, simulational, and theoretical efforts, the eight projects within the FOR 1394 measured and determined aspects of the nonlinear response of supercooled metallic, polymeric, and silica melts, of colloidal dispersions, and of ionic liquids. Applied fields included electric and mechanic fields, and forced active probing (`micro-rheology'), where a single probe is forced through the glass-forming host. Nonlinear stress-strain and force-velocity relations as well as nonlinear dielectric susceptibilities and conductivities were observed. While the physical manipulation of melts and glasses is interesting in its own right, especially technologically, the investigations performed by the FOR 1394 suggest to use the response to strong homogeneous and inhomogeneous fields as technique to explore on the microscopic level the cooperative mechanisms in dense melts of strongly interacting constituents. Questions considered concern the (de-)coupling of different dynamical degrees of freedom in an external field, and the ensuing state diagrams. What forces are required to detach a localized probe particle from its initial environment in a supercooled liquid, in a glassy or granular system? Do metallic and colloidal glasses yield homogeneously or by strain localization under differently applied stresses? Which mechanisms determine field-dependent susceptibilities in dielectric and ionically conducting glass formers?
NASA Astrophysics Data System (ADS)
Chen, M. W.; Schulz, M.; Lu, G.
2001-12-01
We obtain distributions of precipitating electrons by tracing drift shells of plasmasheet electrons in the limit of strong pitch angle diffusion in Dungey's model magnetosphere, which consists of a dipolar magnetic field plus a uniform southward field. Under strong pitch-angle diffusion particles drift so as to conserve an adiabatic invariant Λ equal to the enclosed phase-space volume (i.e., the cube of the particle momentum p times the occupied flux-tube volume per unit magnetic flux). In the past we applied a quiescent Stern-Volland electric-field model with a cross-tail potential drop of 25 kV and added to it a storm-associated Brice-Nishida cross-magnetospheric electric field with impulses to represent substorm effects. For the present study we use the more realistic Assimilative Model of Ionospheric Electrodynamics (AMIE). We use an analytical expansion to express the AMIE ionospheric potential as a function of latitude and magnetic local time. We map this AMIE potential to latitudes >= 50^o to magnetospheric field lines with (L \\ge 2.5) in Dungey's magnetic field model. We trace the bounce-averaged drift motion of representative plasmasheet electrons for values of \\Lambda corresponding to energies of 0.25-64 keV on field lines of equatorial radial distance r = 6 R_E (L = 5.7), which maps to \\approx 65^o$ latitude in the ionosphere. We use the simulation results to map stormtime phase space distributions taking into account loss due to precipitation. We consider 2 models of electron scattering: (1) the limit of strong scattering everywhere, and (2) an MLT-dependent scattering that is less than everywhere strong in the plasma sheet. From the phase space distributions we calculate the total precipitating electron energy flux into the ionosphere. For this study we focus on the October 19, 1998, storm. We compare qualitatively the simulated energy flux with X-ray intensity from Polar/PIXIE images during this storm.
NASA Astrophysics Data System (ADS)
Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham
2010-03-01
In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.
Local Earthquake Tomography in the Eifel Region, Middle Europe
NASA Astrophysics Data System (ADS)
Gaensicke, H.
2001-12-01
The aim of the Eifel Plume project is to verify the existence of an assumed mantle plume responsible for the Tertiary and Quaternary volcanism in the Eifel region of midwest Germany. During a large passive and semi-active seismological experiment (November 1997 - June 1998) about 160 mobil broadband and short period stations were operated in addition to about 100 permanent stations in the area of interest. The stations registered teleseismic and local events. Local events are used to obtain a threedimensional tomographic model of seismic velocities in the crust. Since local earthquake tomography requires a large set of crustal travel paths, seismograms of local events recorded from July 1998 to June 2001 by permanent stations were added to the Eifel Plume data set. In addition to travel time corrections for the teleseismic tomography of the upper mantle, the new 3D velocity model should improve the precision for location of local events. From a total of 832 local seismic events, 172 were identified as tectonic earthquakes. The other events were either quarry blasts or shallow mine-induced seismic events. The locations of 60 quarry blasts are known and for 30 of them the firing time was measured during the field experiment. Since the origin time and location of these events are known with high precision, they are used to validate inverted velocity models. Station corrections from simultaneous 1D-inversion of local earthquake traveltimes and hypocenters are in good agreement with travel time residuals calculated from teleseismic rays. A strong azimuthal dependency of travel time residuals resulting from a 1D velocity model was found for quarry blasts with hypocenters in the volcanic field in the center of the Eifel. Simultaneous 3D-inversion calculations show strong heterogeneities in the upper crust and a negative anomaly for p-wave velocities in the lower crust. The latter either could indicate a low velocity zone close to the Moho or subsidence of the Moho. We present preliminary results obtained by simultaneous inversion of earthquake and velocity parameters constrained by known geological parameters and the controlled source information from calibrated quarry blasts.
Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G
2017-01-25
Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.
Long range spin qubit interaction mediated by microcavity polaritons
NASA Astrophysics Data System (ADS)
Piermarocchi, Carlo; Quinteiro, Guillermo F.; Fernandez-Rossier, Joaquin
2007-03-01
Planar microcavities are semiconductor devices that confine the electromagnetic field by means of two parallel semiconductor mirrors. When a quantum well (QW) is placed inside a planar microcavity, the excitons in the QW couple to confined electromagnetic modes. In the strong-coupling regime, excitons and cavity photons give rise to new states, cavity polaritons, which appear in two branches separated by a vacuum Rabi splitting. We study theoretically the dynamics of localized spins in the QW interacting with cavity polaritons. Our calculations consider localized electron spins of shallow neutral donors in GaAs (e.g., Si), but the theory is valid for other impurities and host semiconductors, as well as to charged quantum dots. In the strong-coupling regime, the vacuum Rabi splitting introduces anisotropies in the spin coupling. Moreover, due to their photon-like mass, polaritons provide an extremely long spin coupling range. This suggests the realization of two-qubit all-optical quantum operations within tens of picoseconds with spins localized as far as hundreds of nanometers apart. [G. F. Quinteiro et al., Phys. Rev. Lett. 97 097401, (2006)].
Population dynamics in non-homogeneous environments
NASA Astrophysics Data System (ADS)
Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico
2014-11-01
For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.
NASA Astrophysics Data System (ADS)
Li, Bing; Shi, Xuefa; Wang, Jixin; Yan, Quanshu; Liu, Chenguang; DY125-21 (Leg 3) Science Party; DY125-22 (Legs 2-5) Science Party; DY125-26 (Leg 3) Science Party
2018-05-01
Systematic hydrothermal exploration and multi-beam bathymetry mapping have been conducted along a 220-km-long section of the Southern Mid-Atlantic Ridge (SMAR) from 12°S (Bode Verde Fracture Zone) to 14°S (Cardno Fracture Zone), and previously reported deposits (Tao et al., 2011) are now being thoroughly investigated. Here, we present the characterization of three possible hydrothermal fields, a complete bathymetry data set of the ridge segment, gravity data, and the petrologic characteristics of collected rock samples. The magmatism characteristics, evolution of the ridge segment, and the local geological controls of the possible hydrothermal fields are then discussed. The studied segment can be divided into two segments by a Non-Transform Discontinuity (NTD). Our morphotectonic analysis shows significant along-axis heterogeneity in the surveyed segments: three distinctive cross-axis grabens were identified in the northern segment, and two were identified in the southern segment. Moreover, based on the gravity data (a relatively low spherical Bouguer anomaly) and petrologic data (low Mg# values and relatively low FeO and relatively high Al2O3 and CaO contents compared to nearby seafloor samples), a volcanic feature, the ZouYu seamount, on this segment is considered to be associated with strong magmatic activity, and the magmatic activity of the inside corner at the southern end of the segment has increased and decreased. The three possible hydrothermal fields occur in different local geological settings: a shallow magmatic seamount (ZouYu), an NTD (TaiJi), and an inside-corner high (CaiFan). These potential hydrothermal fields are significantly different from other fields in similar tectonic settings in terms of local geologic controls and products. The ZouYu field is primarily related to a newly formed cone, resulting in the production of sulfides, and differs from other fields on shallow magmatic seamounts. The TaiJi field is largely controlled by the tectonic evolution of the NTD and is based on mafic rocks. The inside corner containing the CaiFan field is a magmatic seamount rather than an Ocean Core Complex, making it strikingly different from other inside corner-related fields.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2007-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L>5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L<5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
Anti-levitation in integer quantum Hall systems
NASA Astrophysics Data System (ADS)
Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2014-01-01
The evolution of extended states of two-dimensional electron gas with white-noise randomness and field is numerically investigated by using the Anderson model on square lattices. Focusing on the lowest Landau band we establish an anti-levitation scenario of the extended states: As either the disorder strength W increases or the magnetic field strength B decreases, the energies of the extended states move below the Landau energies pertaining to a clean system. Moreover, for strong enough disorder, there is a disorder-dependent critical magnetic field Bc(W) below which there are no extended states at all. A general phase diagram in the W-1/B plane is suggested with a line separating domains of localized and delocalized states.
Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions
NASA Astrophysics Data System (ADS)
Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri; Abanin, Dmitry A.; Levitov, Leonid S.; Kim, Philip
2007-10-01
We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the p and n regions. These fractional plateaus, originating from chiral edge states equilibration at the p-n interfaces, exhibit sensitivity to interedge backscattering which is found to be strong for some of the plateaus and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.
NASA Astrophysics Data System (ADS)
Diyanah Samsuri, Nurul; Maisarah Mukhtar, Wan; Rashid, Affa Rozana Abdul; Dasuki, Karsono Ahmad; Awangku Yussuf, Awangku Abdul Rahman Hj.
2017-11-01
Gold nanoparticles (GNPs) have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR) sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR) and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.
NASA Astrophysics Data System (ADS)
Kervalishvili, G.; Lühr, H.
2016-12-01
This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame for both signs of IMF By, but speeds are larger for positive By. FAC shows a systematic imbalance between downward (upward) and upward (downward) peaks equatorward and poleward of the reference point for positive (negative) IMF By. The influence of upflow events depends strongly on the amplitude of IMF By, to a lesser extend on Bz.
Study of UV surface plasmons on metallic nanostructures and its applications to nanophotonics
NASA Astrophysics Data System (ADS)
Zhou, Liangcheng
Modern nanotechnology requires the characterization ability in the order of 100 nm or smaller. This resolution requirement cannot be met by using conventional optical microscopy. Nowadays, the mainstream technique that is universally adopted to characterize optical properties on this length scale is Near-field Scanning Optical Microscopy (NSOM). In the effort to improve the resolution and efficiency of NSOM techniques, both nanoscopic fabrication and imaging techniques are critical because the light field strongly intereacts with the metallic NSOM probe or other surfaces to form surface plasmons (SPs). However, much is still unknown about the behavior of light interacting with metallic nanostructures. This calls for research that develops the tool set, methodology and that includes both experimental characterization, and numerical simulations, for the investigation of SPs. The short wavelength of UV light makes it particularly desirable for many industrial processes. So far, little research has been carried out to understand surface plasmon in the UV spectral region. Like conventional optics, UV SPs have unique properties and optical behavior. For this purpose, we modified our existing NSOM into a Photon Scanning Tunneling Microscope (PTSM) and demonstrate its power for the imaging of UV SPs. We present what we believe to be the first direct mapping of the UV SPs on an Al2O3/Al surface. UV SP modes launched by one-dimensional slits or two-dimensional groove arrays and corresponding interference phenomenon were both observed. We then use the same methodology in the engineering of optimized nano aperture such as UV bowtie nanoantenna. For the latter, we find a strong UV intensity profile which is localized to less than 50nm caused by a localized surface plasmon resonance. The relationship of optical field enhancement and antenna geometric shape is studied using numerical simulations and NSOM experiments. In another project, we examine the propagation of light from near-field to far-field. For that purpose, a micro-lens with bull's-eye ring structure, similar to a Fresnel zone plate, is fabricated. We mapped the far-field light distribution from the micro-lens' output by using confocal microscope, which shows that this ring structure exhibit focusing ability as well. Furthermore, we study the ultraviolet (UV) extraordinary optical transmission through nanoslit structures into the far field as well as the localized field enhancement in the near field. The experimental results are compared to numerical modeling results showing good agreement.
Dynamo Tests for Stratification Below the Core-Mantle Boundary
NASA Astrophysics Data System (ADS)
Olson, P.; Landeau, M.
2017-12-01
Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.
Zabusky, N J; Deem, G S
1979-01-01
We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570
Local elasticity map and plasticity in a model Lennard-Jones glass.
Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis
2009-08-01
In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang
2018-04-01
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Kochurin, E. A.
2018-03-01
Nonlinear dynamics of the interface of dielectric liquids under the conditions of suppression of the Kelvin-Helmholz instability by a tangential electric field has been investigated. Two broad classes of exact analytical solutions to the equations of motion describing the evolution of spatially localized and periodic interface perturbations have been found. Both classes of solutions tend to the formation of strong singularities: interface discontinuities with formally infinite amplitudes. The discontinuity sign is determined by the sign of liquid velocity jump at the interface.
Gyrokinetic simulations of turbulent transport in a ring dipole plasma.
Kobayashi, Sumire; Rogers, Barrett N; Dorland, William
2009-07-31
Gyrokinetic flux-tube simulations of turbulent transport due to small-scale entropy modes are presented in a ring-dipole magnetic geometry relevant to the Columbia-MIT levitated dipole experiment (LDX) [J. Kesner, Plasma Phys. J. 23, 742 (1997)]. Far from the current ring, the dipolar magnetic field leads to strong parallel variations, while close to the ring the system becomes nearly uniform along circular magnetic field lines. The transport in these two limits are found to be quantitatively similar given an appropriate normalization based on the local out-board parameters. The transport increases strongly with the density gradient, and for small eta=L(n)/L(T)<1, T(i) approximately T(e), and typical LDX parameters, can reach large levels. Consistent with linear theory, temperature gradients are stabilizing, and for T(i) approximately T(e) can completely cut off the transport when eta greater or similar to 0.6.
Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity
NASA Astrophysics Data System (ADS)
Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.
2018-05-01
We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.
SQCRAMscope imaging of transport in an iron-pnictide superconductor
NASA Astrophysics Data System (ADS)
Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin
2017-04-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.
Electronic spin transport in gate-tunable black phosphorus spin valves
NASA Astrophysics Data System (ADS)
Liu, Jiawei; Avsar, Ahmet; Tan, Jun You; Oezyilmaz, Barbaros
High charge mobility, the electric field effect and small spin-orbit coupling make semiconducting black phosphorus (BP) a promising material for spintronics device applications requiring long spin distance spin communication with all rectification and amplification actions. Towards this, we study the all electrical spin injection, transport and detection under non-local spin valve geometry in fully encapsulated ultra-thin BP devices. We observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. These values are an order of magnitude higher than what have been measured in typical graphene spin valve devices. Moreover, the spin transport depends strongly on charge carrier concentration and can be manipulated in a spin transistor-like manner by controlling electric field. This behaviour persists even at room temperature. Finally, we will show that similar to its electrical and optical properties, spin transport property is also strongly anisotropic.
NASA Astrophysics Data System (ADS)
Cotic, M.; Chiu, A. W. L.; Jahromi, S. S.; Carlen, P. L.; Bardakjian, B. L.
2011-08-01
To study cell-field dynamics, physiologists simultaneously record local field potentials and the activity of individual cells from animals performing cognitive tasks, during various brain states or under pathological conditions. However, apart from spike shape and spike timing analyses, few studies have focused on elucidating the common time-frequency structure of local field activity relative to surrounding cells across different periods of phenomena. We have used two algorithms, multi-window time frequency analysis and wavelet phase coherence (WPC), to study common intracellular-extracellular (I-E) spectral features in spontaneous seizure-like events (SLEs) from rat hippocampal slices in a low magnesium epilepsy model. Both algorithms were applied to 'pairs' of simultaneously observed I-E signals from slices in the CA1 hippocampal region. Analyses were performed over a frequency range of 1-100 Hz. I-E spectral commonality varied in frequency and time. Higher commonality was observed from 1 to 15 Hz, and lower commonality was observed in the 15-100 Hz frequency range. WPC was lower in the non-SLE region compared to SLE activity; however, there was no statistical difference in the 30-45 Hz band between SLE and non-SLE modes. This work provides evidence of strong commonality in various frequency bands of I-E SLEs in the rat hippocampus, not only during SLEs but also immediately before and after.
Litovsky, Ruth Y.; Godar, Shelly P.
2010-01-01
The precedence effect refers to the fact that humans are able to localize sound in reverberant environments, because the auditory system assigns greater weight to the direct sound (lead) than the later-arriving sound (lag). In this study, absolute sound localization was studied for single source stimuli and for dual source lead-lag stimuli in 4–5 year old children and adults. Lead-lag delays ranged from 5–100 ms. Testing was conducted in free field, with pink noise bursts emitted from loudspeakers positioned on a horizontal arc in the frontal field. Listeners indicated how many sounds were heard and the perceived location of the first- and second-heard sounds. Results suggest that at short delays (up to 10 ms), the lead dominates sound localization strongly at both ages, and localization errors are similar to those with single-source stimuli. At longer delays errors can be large, stemming from over-integration of the lead and lag, interchanging of perceived locations of the first-heard and second-heard sounds due to temporal order confusion, and dominance of the lead over the lag. The errors are greater for children than adults. Results are discussed in the context of maturation of auditory and non-auditory factors. PMID:20968369
Rocha, Alexandre B; de Moura, Carlos E V
2011-12-14
Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics
Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation
NASA Astrophysics Data System (ADS)
Feranchuk, Ilya D.; Feranchuk, Sergey I.
2007-12-01
The self-localized quasi-particle excitation of the electron-positron field (EPF) is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron) and it allows one to solve the following problems: i) to express the ''primary'' charge e0 and the mass m0 of the ''bare'' electron in terms of the observed values of e and m of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii) to consider μ-meson as another self-localized EPF state and to estimate the ratio mμ/m; iii) to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass m; iv) to show that the expansion in a power of the observed charge e << 1 corresponds to the strong coupling e! xpansion in a power of the ''primary'' charge e-10 ~ e when the interaction between the ``physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.
NASA Astrophysics Data System (ADS)
Char, Chelia
Children represent the future and thus by providing them with effective environmental educational experiences, educators may be taking a critical step in preventing "the probable serious environmental problems in the future" (Gokhan, 2010, p. 56). The Meaningful Watershed Educational Experience (MWEE) is an excellent example of one such education program. MWEEs aim to educate and enhance the students' relationship with the Chesapeake Bay Watershed through an integration of classroom activities and fieldwork. As environmental educators and role models, field interpreters are a major component and significant influence on the local MWEE programs, however their perspective as to how they have impacted the programs has yet to be examined. Through a qualitative analysis and specific focus on the behavioral, emotional, and cognitive dimensions of student engagement, the researcher intended to address this void. The focus of the study was to examine how the local MWEE field interpreters understood and addressed student engagement in a field setting. This was measured via data collected from observations of and semi-structured, one-on-one interviews with each field interpreter involved with the local MWEE programs. Data analysis uncovered that field interpreters demonstrated a strong awareness of student engagement. Furthermore, they defined, recognized, and addressed student engagement within the constructs of the emotional, behavioral, and cognitive dimensions. Ultimately, the individual experiences of each MWEE field interpreter provides insight into the phenomenon, however further research is required to strengthen the awareness of how, if at all, their perspectives of student engagement directly impact student outcomes.
NASA Astrophysics Data System (ADS)
Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Hipps, Lawrence E.; Evett, Steven R.; Basara, Jeffrey B.; Neale, Christopher M. U.; French, Andrew N.; Colaizzi, Paul; Agam, Nurit; Cosh, Michael H.; Chavez, José L.; Howell, Terry A.
2012-12-01
Discrepancies can arise among surface flux measurements collected using disparate techniques due to differences in both the instrumentation and theoretical underpinnings of the different measurement methods. Using data collected primarily within a pair of irrigated cotton fields as a part of the 2008 Bushland Evapotranspiration and Remote Sensing Experiment (BEAREX08), flux measurements collected with two commonly-used methods, eddy covariance (EC) and lysimetry (LY), were compared and substantial differences were found. Daytime mean differences in the flux measurements from the two techniques could be in excess of 200 W m-2 under strongly advective conditions. Three causes for this disparity were found: (i) the failure of the eddy covariance systems to fully balance the surface energy budget, (ii) flux divergence due to the local advection of warm, dry air over the irrigated cotton fields, and (iii) the failure of lysimeters to accurately represent the surface properties of the cotton fields as a whole. Regardless of the underlying cause, the discrepancy among the flux measurements underscores the difficulty in collecting these measurements under strongly advective conditions. It also raises awareness of the uncertainty associated with in situ micrometeorological measurements and the need for caution when using such data for model validation or as observational evidence to definitively support or refute scientific hypotheses.
Strong Recurrent Networks Compute the Orientation-Tuning of Surround Modulation in Primate V1
Shushruth, S.; Mangapathy, Pradeep; Ichida, Jennifer M.; Bressloff, Paul C.; Schwabe, Lars; Angelucci, Alessandra
2012-01-01
In macaque primary visual cortex (V1) neuronal responses to stimuli inside the receptive field (RF) are modulated by stimuli in the RF surround. This modulation is orientation-specific. Previous studies suggested that for some cells this specificity may not be fixed, but changes with the stimulus orientation presented to the RF. We demonstrate, in recording studies, that this tuning behavior is instead highly prevalent in V1 and, in theoretical work, that it arises only if V1 operates in a regime of strong local recurrence. Strongest surround suppression occurs when the stimuli in the RF and the surround are iso-oriented, and strongest facilitation when the stimuli are cross-oriented. This is the case even when the RF is sub-optimally activated by a stimulus of non-preferred orientation, but only if this stimulus can activate the cell when presented alone. This tuning behavior emerges from the interaction of lateral inhibition (via the surround pathways), which is tuned to the RF’s preferred orientation, with weakly-tuned, but strong, local recurrent connections, causing maximal withdrawal of recurrent excitation at the feedforward input orientation. Thus, horizontal and feedback modulation of strong recurrent circuits allows the tuning of contextual effects to change with changing feedforward inputs. PMID:22219292
Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi
2017-07-18
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.
Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.
Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. Avery strong correlation ofmore » the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.« less
Flare onset at sites of maximum magnetic shear
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Smith, J. B., Jr.
1988-01-01
Observations of the transverse component of the Sun's photospheric magnetic field obtained with the MSFC vector magnetograph show where the fields are nonpotential. The correlation was studied between locations of nonpotential fields and sites of flare onset for four different active regions. The details of the active region AR 4711 are outlined. Similar results are presented for three other regions: AR 2372 (April 1980), AR 2776 (November 1980), and AR 4474 (April 1984). For all four regions it is shown that flares initiate at sites on the magnetic neutral line where the local field deviates the most from the potential field. The results of this study suggest that flares are likely to erupt where the shear is equal to or greater than 85 degrees, the field is equal to or greater than 10000 G, and there is strong shear (equal to or greater then 80 degress) extending over a length equal to or greater than 8000 km.
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.
Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I
2015-08-28
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1 mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings.
NASA Astrophysics Data System (ADS)
Sun, Anbang; Teunissen, Jannis; Ebert, Ute
2014-11-01
We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.
NASA Technical Reports Server (NTRS)
Latter, William B.; Schmidt, Gary D.; Green, Richard F.
1987-01-01
Detailed analyses are performed of high-quality, phase-resolved CCD spectroscopy of the absorption-line spectrum throughout its rotation period of the new white dwarf PG 1031 + 234. The spectral variations are discussed and compared with new theoretical calculations of the behavior of hydrogen in strong magnetic fields. This analysis is then extended through a modeling procedure which produces a synthetic magnetically distorted spectrum for a star of arbitrary field strength and structure. The results confirm that PG 1031 + 234 possesses the strongest field yet detected on a white dwarf, with regions on the surface spanning the range of about 200 to nearly 1000 MG. The spectroscopic data reflect a field pattern containing a slightly offset global component of polar field strength of about 500 MG together with a localized magnetic 'spot' whose central field approaches 2000 MG.
Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field
NASA Astrophysics Data System (ADS)
Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François
2016-01-01
Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.
NASA Technical Reports Server (NTRS)
Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari
1995-01-01
We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.
Integrating teaching and research in the field and laboratory settings
NASA Astrophysics Data System (ADS)
Wang, L.; Kaseke, K. F.; Daryanto, S.; Ravi, S.
2015-12-01
Field observations and laboratory measurements are great ways to engage students and spark students' interests in science. Typically these observations are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research in the field and laboratory setting in both US and abroad and worked with students without strong science background to utilize simple laboratory equipment and various environmental sensors to conduct innovative projects. We worked with students in Namibia and two local high school students in Indianapolis to conduct leaf potential measurements, soil nutrient extraction, soil infiltration measurements and isotope measurements. The experience showed us the potential of integrating teaching and research in the field setting and working with people with minimum exposure to modern scientific instrumentation to carry out creative projects.
Murbach, Manuel; Neufeld, Esra; Kainz, Wolfgang; Pruessmann, Klaas P; Kuster, Niels
2014-02-01
Radiofrequency energy deposition in magnetic resonance imaging must be limited to prevent excessive heating of the patient. Correlations of radiofrequency absorption with large-scale anatomical features (e.g., height) are investigated in this article. The specific absorption rate (SAR), as the pivotal parameter for quantifying absorbed radiofrequency, increases with the radial dimension of the patient and therefore with the large-scale anatomical properties. The absorbed energy in six human models has been modeled in different Z-positions (head to knees) within a 1.5T bodycoil. For a fixed B1+ incident field, the whole-body SAR can be up to 2.5 times higher (local SAR up to seven times) in obese adult models compared to children. If the exposure is normalized to 4 W/kg whole-body SAR, the local SAR can well-exceed the limits for local transmit coils and shows intersubject variations of up to a factor of three. The correlations between anatomy and induced local SAR are weak for normalized exposure, but strong for a fixed B1+ field, suggesting that anatomical properties could be used for fast SAR predictions. This study demonstrates that a representative virtual human population is indispensable for the investigation of local SAR levels. Copyright © 2013 Wiley Periodicals, Inc.
Strong coupling of a single electron in silicon to a microwave photon
NASA Astrophysics Data System (ADS)
Mi, Xiao; Cady, Jeffrey; Zajac, David; Petta, Jason
We demonstrate a hybrid circuit quantum electrodynamics (cQED) architecture in which a single electron in a Si/SiGe double quantum dot is dipole-coupled to the electric field of microwave photons in a superconducting cavity. Vacuum Rabi splitting is observed in the cavity transmission when the transition energy of the single-electron charge qubit matches that of a cavity photon, demonstrating that our device is in the strong coupling regime. The achievement of strong coupling is largely facilitated by an exceptionally low charge decoherence rate of 5 MHz and paves the way toward a wide range of cQED experiments with quantum dots, such as non-local qubit interactions, strong spin-cavity coupling and single photon generation . Research sponsored by ARO Grant No. W911NF-15-1-0149, the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4535, and the NSF (DMR-1409556 and DMR-1420541).
The Structure of the Local Universe and the Coldness of the Cosmic Flow
NASA Astrophysics Data System (ADS)
van de Weygaert, R.; Hoffman, Y.
Unlike the substantial coherent bulk motion in which our local patch of the Cosmos is participating, the amplitude of the random motions around this large scale flow seems to be surprisingly low. Attempts to invoke global explanations to account for this coldness of the local cosmic velocity field have not yet been succesfull. Here we propose a different view on this cosmic dilemma, stressing the repercussions of our cosmic neighbourhood embodying a rather uncharacteristic region of the Cosmos. Suspended between two huge mass concentrations, the Great Attractor region and the Perseus-Pisces chain, we find ourselves in a region of relatively low density yet with a very strong tidal shear. By means of constrained realizations of our local Universe, based on Wiener-filtered reconstructions inferred from the Mark III catalogue of galaxy peculiar velocities, we show that indeed this configuration may induce locally cold regions. Hence, the coldness of the local flow may be a cosmic variance effect.
NASA Astrophysics Data System (ADS)
Basu, Aritra; Roychowdhury, Sambit; Heesen, Volker; Beck, Rainer; Brinks, Elias; Westcott, Jonathan; Hindson, Luke
2017-10-01
We present the highest sensitivity and angular resolution study at 0.32 GHz of the dwarf irregular galaxy IC 10, observed using the Giant Metrewave Radio Telescope, probing ˜45 pc spatial scales. We find the galaxy-averaged radio continuum spectrum to be relatively flat, with a spectral index α = -0.34 ± 0.01 (Sν ∝ να), mainly due to a high contribution from free-free emission. At 0.32 GHz, some of the H II regions show evidence of free-free absorption as they become optically thick below ˜0.41 GHz with corresponding free electron densities of ˜ 11-22 cm- 3. After removing the free-free emission, we studied the radio-infrared (IR) relations on 55, 110 and 165 pc spatial scales. We find that on all scales the non-thermal emission at 0.32 and 6.2 GHz correlates better with far-infrared (FIR) emission at 70 μm than mid-IR emission at 24 μm. The dispersion of the radio-FIR relation arises due to variations in both magnetic field and dust temperature, and decreases systematically with increasing spatial scale. The effect of cosmic ray transport is negligible as cosmic ray electrons were only injected ≲5 Myr ago. The average magnetic field strength (B) of 12 μG in the disc is comparable to that of large star-forming galaxies. The local magnetic field is strongly correlated with local star formation rate (SFR) as B ∝ SFR0.35 ± 0.03, indicating a starburst-driven fluctuation dynamo to be efficient (˜10 per cent) in amplifying the field in IC 10. The high spatial resolution observations presented here suggest that the high efficiency of magnetic field amplification and strong coupling with SFR likely sets up the radio-FIR correlation in cosmologically young galaxies.
NASA Technical Reports Server (NTRS)
Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy
2013-01-01
Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.
Second harmonic generation from small particle aggregates
NASA Astrophysics Data System (ADS)
Mochan, W. Luis; Ortiz, Guillermo P.; Mendoza, Bernardo S.; Brudny, Vera L.
2001-03-01
Novel nanofabrication techniques are capable of producing nanoparticles with controled structures which include small clusters, self-assembled particles, quantum dots, vesicles, etc. The non-linear optical scattering of these structures are important for applications, and can be used for their physical characterization. The second harmonic (SH) field radiated by a single small spherical particle has surface and bulk, dipolar and quadrupolar contributions of similar intensities and is strongly dependent of the local environment of the particle [1], in contrast to the linear case. In this work we calculate the nonlinear scattering by particle aggregates and we investigate the effects on the SH generation of the disorder induced field fluctuations and of the localization of light. We acknowledge the partial support from DGAPA-UNAM (grant IN110999), Conacyt (31120-E and 26651-E), CIP and UBACyT. [1] Vera L. Brudny, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev. B 62, 11152 (2000).
A high-efficiency spin polarizer based on edge and surface disordered silicene nanoribbons
NASA Astrophysics Data System (ADS)
Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Chen, Qiao; Ding, Jianwen
2018-07-01
Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.
Time-resolved energy transduction in a quantum capacitor
Jung, Woojin; Cho, Doohee; Kim, Min-Kook; Choi, Hyoung Joon; Lyo, In-Whan
2011-01-01
The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions. We show that sudden switching of a localized field induces a transiently empty quantum dot at the surface and that the dot acts as a tunable excitation source with subangstrom site selectivity. The timescale in the deexcitation of the dot suggests the formation of long-lived, excited states. Our study illustrates that a quantum capacitor has serious implications not only for the bottom-up nanotechnology but also for future switching devices. PMID:21817067
Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer.
Yan, Wei; He, Wen-Yu; Chu, Zhao-Dong; Liu, Mengxi; Meng, Lan; Dou, Rui-Fen; Zhang, Yanfeng; Liu, Zhongfan; Nie, Jia-Cai; He, Lin
2013-01-01
It is well established that strain and geometry could affect the band structure of graphene monolayer dramatically. Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature, which are found to strongly affect the local band structures of the twisted graphene bilayer. The energy difference of the two low-energy van Hove singularities decreases with increasing lattice deformation and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive chiral fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.
Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4
NASA Astrophysics Data System (ADS)
Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team
Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.
2014-08-26
Indium, Rhodium, Ruthenium, Tungsten, Titanium, Chromium, Palladium, Copper, Platinum and Magnesium . These have been chosen because all of them...performance. vii. Considering that the observed behaviors occur precisely where UV surface-enhanced Raman spectra indicated strong local field...research objective was centered on the UV plasmonic properties of Rh NPs by means of surface-enhanced Raman spectroscopy, surface-enhanced
Revealing the origin of the cold ISM in massive early-type galaxies
NASA Astrophysics Data System (ADS)
Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.
2013-07-01
Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.
Nieto-Diego, Javier; Malmierca, Manuel S.
2016-01-01
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883
Ying, Liming; White, Samuel S.; Bruckbauer, Andreas; Meadows, Lisa; Korchev, Yuri E.; Klenerman, David
2004-01-01
The study of the properties of DNA under high electric fields is of both fundamental and practical interest. We have exploited the high electric fields produced locally in the tip of a nanopipette to probe the motion of double- and single-stranded 40-mer DNA, a 1-kb single-stranded DNA, and a single-nucleotide triphosphate (dCTP) just inside and outside the pipette tip at different frequencies and amplitudes of applied voltages. We used dual laser excitation and dual color detection to simultaneously follow two fluorophore-labeled DNA sequences with millisecond time resolution, significantly faster than studies to date. A strong trapping effect was observed during the negative half cycle for all DNA samples and also the dCTP. This effect was maximum below 1 Hz and decreased with higher frequency. We assign this trapping to strong dielectrophoresis due to the high electric field and electric field gradient in the pipette tip. Dielectrophoresis in electrodeless tapered nanostructures has potential applications for controlled mixing and manipulation of short lengths of DNA and other biomolecules, opening new possibilities in miniaturized biological analysis. PMID:14747337
Full superconducting dome of strong Ising protection in gated monolayer WS2.
Lu, Jianming; Zheliuk, Oleksandr; Chen, Qihong; Leermakers, Inge; Hussey, Nigel E; Zeitler, Uli; Ye, Jianting
2018-04-03
Many recent studies show that superconductivity not only exists in atomically thin monolayers but can exhibit enhanced properties such as a higher transition temperature and a stronger critical field. Nevertheless, besides being unstable in air, the weak tunability in these intrinsically metallic monolayers has limited the exploration of monolayer superconductivity, hindering their potential in electronic applications (e.g., superconductor-semiconductor hybrid devices). Here we show that using field effect gating, we can induce superconductivity in monolayer WS 2 grown by chemical vapor deposition, a typical ambient-stable semiconducting transition metal dichalcogenide (TMD), and we are able to access a complete set of competing electronic phases over an unprecedented doping range from band insulator, superconductor, to a reentrant insulator at high doping. Throughout the superconducting dome, the Cooper pair spin is pinned by a strong internal spin-orbit interaction, making this material arguably the most resilient superconductor in the external magnetic field. The reentrant insulating state at positive high gating voltages is attributed to localization induced by the characteristically weak screening of the monolayer, providing insight into many dome-like superconducting phases observed in field-induced quasi-2D superconductors.
Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei
2016-04-28
Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.
Holmes, Charles B.; Sikazwe, Izukanji; Raelly, Roselyne; Freeman, Bethany; Wambulawae, Inonge; Silwizya, Geoffrey; Topp, Stephanie; Chilengi, Roma; Henostroza, German; Kapambwe, Sharon; Simbeye, Darius; Sibajene, Sheila; Chi, Harmony; Godfrey, Katy; Chi, Benjamin; Moore, Carolyn Bolton
2014-01-01
Multiple funding sources provide research and program implementation organizations a broader base of funding and facilitate synergy, but also entail challenges that include varying stakeholder expectations, unaligned grant cycles, and highly variable reporting requirements. Strong governance and strategic planning are essential to ensure alignment of goals and agendas. Systems to track budgets and outputs as well as procurement and human resources are required. A major goal is to transition leadership and operations to local ownership. This article details successful approaches used by the newly independent non-governmental organization, the Centre for Infectious Disease Research in Zambia (CIDRZ). PMID:24321983
Anomalous diffusion in a dynamical optical lattice
NASA Astrophysics Data System (ADS)
Zheng, Wei; Cooper, Nigel R.
2018-02-01
Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.
Nonlinear Optical Interactions in Plasmas at JILA
NASA Astrophysics Data System (ADS)
Dollar, F.; Hickstein, D. D.; Popmintchev, D.; Becker, A.; Ellis, J.; Hernandez-Garcia, C.; Jaron-Becker, A.; Popmintchev, T.; Xiong, W.; Murnane, M. M.; Kapteyn, H. C.; Dukovic, G.; Jimenez, J.; Palm, B.; Schnitzenbaumer, K.; Perez-Hernandez, J.; Gaeta, A.; Gao, X.; Shim, B.; Plaja, L.; Levis, R.; Tarazkar, M.; Foord, M. E.; Gaffney, J. A.; Libby, S. B.
2014-10-01
We present data from two recent experiments. First, we demonstrate direct observations of localized light absorption in a single nanoparticle irradiated by a strong femtosecond laser field. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Secondly, we show the high linear and nonlinear UV refractive indices of both neutral atoms and ions compensate for plasma dispersion, even in multiply-ionized gases. The experimental work was primarily funded by DOE Grant Number: DE-SC0008803, the DARPA PULSE program, and ARO W911NF-12-1-0436.
Holmes, Charles B; Sikazwe, Izukanji; Raelly, Roselyne L; Freeman, Bethany L; Wambulawae, Inonge; Silwizya, Geoffrey; Topp, Stephanie M; Chilengi, Roma; Henostroza, German; Kapambwe, Sharon; Simbeye, Darius; Sibajene, Sheila; Chi, Harmony; Godfrey, Katy; Chi, Benjamin; Moore, Carolyn Bolton
2014-01-01
Multiple funding sources provide research and program implementation organizations a broader base of funding and facilitate synergy, but also entail challenges that include varying stakeholder expectations, unaligned grant cycles, and highly variable reporting requirements. Strong governance and strategic planning are essential to ensure alignment of goals and agendas. Systems to track budgets and outputs, as well as procurement and human resources are required. A major goal of funders is to transition leadership and operations to local ownership. This article details successful approaches used by the newly independent nongovernmental organization, the Centre for Infectious Disease Research in Zambia.
Low-Energy Theory of Disordered Graphene
NASA Astrophysics Data System (ADS)
Altland, Alexander
2006-12-01
At low values of external doping, graphene displays a wealth of unconventional transport properties. Perhaps most strikingly, it supports a robust “metallic” regime, with universal conductance of the order of the conductance quantum. We here apply a combination of mean-field and bosonization methods to explore the large scale transport properties of the system. We find that, irrespective of the doping level, disordered graphene is subject to the common mechanisms of Anderson localization. However, at low doping a number of renormalization mechanisms conspire to protect the conductivity of the system, to an extend that strong localization may not be seen even at temperatures much smaller than those underlying present experimental work.
Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect
NASA Astrophysics Data System (ADS)
Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur
2017-06-01
Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.
The local density of optical states of a metasurface
NASA Astrophysics Data System (ADS)
Lunnemann, Per; Koenderink, A. Femius
2016-02-01
While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice.
Image Comparisons of Black Hole vs. Neutron Dark Star by Ray Tracing
NASA Astrophysics Data System (ADS)
Froedge, D. T.
2015-04-01
In previous papers we have discussed the concept of a theory of gravitation with local energy conservation, and the properties of a large neutron star resulting when the energy of gravitation resides locally with the particle mass and not in the gravitational field. A large neutron star's surface radius grows closer to the gravitational radius as the mass increases. Since the localization of energy applies to the photon, they do not decrease energy rising in a gravitational field, and can escape. Photon trajectories in a strong gravitational field can be investigated by the use of ray tracing procedures. Only a fraction of the blackbody radiation emitted from the surface escapes into space (about 0.00004% for Sag A*). Because of the low % of escaping radiation, the heavy neutron stars considered in this paper will be referred to as a Neutron Dark Star (NDS). In contrast to the Black Hole (BH) which should be totally dark inside the photon shadow, the NDS will appear as a fuzzy low luminosity ball. For Sag A* a full width half maximum diameter is about 3.85 Schwarzschild radii inside the shadow. (http://www.arxdtf.org/css/Image%20Comparisons.pdf). The Event Horizon Telescope should be able to distinguish the difference between the theories.
Mora, Cordula V; Walker, Michael M
2009-09-22
How homing pigeons (Columba livia) return to their loft from distant, unfamiliar sites has long been a mystery. At many release sites, untreated birds consistently vanish from view in a direction different from the home direction, a phenomenon called the release-site bias. These deviations in flight direction have been implicated in the position determination (or map) step of navigation because they may reflect local distortions in information about location that the birds obtain from the geophysical environment at the release site. Here, we performed a post hoc analysis of the relationship between vanishing bearings and local variations in magnetic intensity using previously published datasets for pigeons homing to lofts in Germany. Vanishing bearings of both experienced and naïve birds were strongly associated with magnetic intensity variations at release sites, with 90 per cent of bearings lying within +/-29 degrees of the magnetic intensity slope or contour direction. Our results (i) demonstrate that pigeons respond in an orderly manner to the local structure of the magnetic field at release sites, (ii) provide a mechanism for the occurrence of release-site biases and (iii) suggest that pigeons may derive spatial information from the magnetic field at the release site that could be used to estimate their current position relative to their loft.
Long-term stability of Cu surface nanotips
NASA Astrophysics Data System (ADS)
Jansson, V.; Baibuz, E.; Djurabekova, F.
2016-07-01
Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the < 110> crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 {{μ }}{{s}} at room temperature. Moreover, the nanotips built up along the < 110> crystallographic directions were found to be significantly more stable than those oriented in the < 100> or < 111> crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
The implementation of knowledge dissemination in the prevention of occupational skin diseases.
Wilke, A; Bollmann, U; Cazzaniga, S; Hübner, A; John, S M; Karadzinska-Bislimovska, J; Mijakoski, D; Šimić, D; Simon, D; Sonsmann, F; Stoleski, S; Weinert, P; Wulfhorst, B
2018-03-01
Occupational skin diseases (OSD) have a high medical, social, economic and political impact. Knowledge dissemination from research activities to key stakeholders involved in health care is a prerequisite to make prevention effective. To study and prioritize different activity fields and stakeholders that are involved in the prevention of OSD, to reflect on their inter-relationships, to develop a strategic approach for knowledge dissemination and to develop a hands-on tool for OSD prevention projects METHODS: Seven different activity fields that are relevant in the prevention of OSD have been stepwise identified. This was followed by an impact analysis. Fifty-five international OSD experts rated the impact and the influence of the activity fields for the prevention of OSD with a standardized questionnaire. Activity fields identified to have a high impact in OSD prevention are the political system, mass media and industry. The political system has a strong but more indirect effect on the general population via the educational system, local public health services or the industry. The educational system, mass media, industry and local public health services have a strong direct impact on the OSD 'at risk' worker. Finally, a hands-on tool for future OSD prevention projects has been developed that addresses knowledge dissemination and different stakeholder needs. Systematic knowledge dissemination is important to make OSD prevention more effective and to close the gap between research and practice. This study provides guidance to identify stakeholders, strategies and dissemination channels for systematic knowledge dissemination which need to be adapted to country-specific structures, for example the social security system and healthcare systems. A key for successful knowledge dissemination is building linkages among different stakeholders, building strategic partnerships and gaining their support right from the inception phase of a project. © 2017 European Academy of Dermatology and Venereology.
NASA Astrophysics Data System (ADS)
Byeon, Hye-Hyeon; Lee, Woo Chul; Kim, Wonbin; Kim, Seong Keun; Kim, Woong; Yi, Hyunjung
2017-01-01
Single-walled carbon nanotubes (SWNTs) are one of the promising electronic components for nanoscale electronic devices such as field-effect transistors (FETs) owing to their excellent device characteristics such as high conductivity, high carrier mobility and mechanical flexibility. Localized gating gemometry of FETs enables individual addressing of active channels and allows for better electrostatics via thinner dielectric layer of high k-value. For localized gating of SWNTs, it becomes critical to define SWNTs of controlled nanostructures and functionality onto desired locations in high precision. Here, we demonstrate that a biologically templated approach in combination of microfabrication processes can successfully produce a nanostructured channels of SWNTs for localized active devices such as local bottom-gated FETs. A large-scale nanostructured network, nanomesh, of SWNTs were assembled in solution using an M13 phage with strong binding affinity toward SWNTs and micrometer-scale nanomesh channels were defined using negative photolithography and plasma-etching processes. The bio-fabrication approach produced local bottom-gated FETs with remarkably controllable nanostructures and successfully enabled semiconducting behavior out of unsorted SWNTs. In addition, the localized gating scheme enhanced the device performances such as operation voltage and I on/I off ratio. We believe that our approach provides a useful and integrative method for fabricating electronic devices out of nanoscale electronic materials for applications in which tunable electrical properties, mechanical flexibility, ambient stability, and chemical stability are of crucial importance.
Disposable gold coated pyramidal SERS sensor on the plastic platform.
Oo, S Z; Siitonen, S; Kontturi, V; Eustace, D A; Charlton, M D B
2016-01-11
In this paper we investigate suitability of arrays of gold coated pyramids for surface-enhanced Raman scattering (SERS) sensing applications. Pyramidarrays composed of 1000 nm pit size with 1250 nm pitch lengthwerereplicated on a plastic substrate by roll-to-roll (R2R) ultraviolet (UV) embossing. The level of SERS enhancement, and qualitative performance provided by the new substrate is investigated by comparing Raman spectrum of benzenethiol (BTh) test molecules to the benchmark Klarite SERS substrate which comprises inverted pyramid arrays(1500 nm pit size with 2000 nm pitch length) fabricated on a silicon substrate. The new substrate is found to provide upto 11 times increase in signal in comparison to the inverted pyramid (IV-pyramid) arrays fabricated on an identical plastic substrate. Numerical simulation and experimental evidence suggest that strongly confined electromagnetic fields close to the base of the pyramids, are mainly responsible for the Raman enhancement factor, instead of the fields localized around the tip. Unusually strong plasmon fields are projected upto 200nm from the sidewalls at the base of the pyramid increasing the cross sectional sensing volume.
Electronic structure of metals and semiconductors: bulk, surface, and interface properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louie, S.G.S.
1976-09-01
A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less
NASA Astrophysics Data System (ADS)
Cassak, P. A.; Genestreti, K. J.; Burch, J. L.; Phan, T.-D.; Shay, M. A.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Ergun, R. E.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.
2017-11-01
We use theory and simulations to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations (Genestreti et al., 2017). For weak guide fields, energy conversion is maximum on the magnetospheric side of the X line, midway between the X line and electron stagnation point. As the guide field increases, the electron stagnation point gets closer to the X line, and energy conversion occurs closer to the electron stagnation point. We motivate one possible nonrigorous approach to extend the theory of the stagnation point location to include a guide field. The predictions are compared to two-dimensional particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three events observed with Magnetospheric Multiscale (MMS). The predictions agree reasonably well with the simulation results, capturing trends with the guide field. The theory correctly predicts that the X line and stagnation points approach each other as the guide field increases. The results are compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and a global resistive-magnetohydrodynamics simulation of the 16 October 2015 event. The PIC simulation results agree well with the global observations and simulation but differ in the strong electric fields and energy conversion rates found in MMS observations. The observational, theoretical, and numerical results suggest that the strong electric fields observed by MMS do not represent a steady global reconnection rate.
NASA Astrophysics Data System (ADS)
Cassak, P.; Genestreti, K.; Burch, J. L.; Shay, M.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.; Phan, T.; Ergun, R.
2017-12-01
We use theoretical and computational techniques to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations by Genestreti et al. (J. Geophys. Res, submitted). For weak guide fields, the energy conversion rate is maximum midway between the X-line and electron stagnation point. As the guide field increases, it moves towards the electron stagnation point. We motivate how to extend the theory of the location of the stagnation points to include the effect of a guide field. The predictions are compared to two-dimensional (2D) particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three reconnection events observed with MMS. The predictions agree reasonably well with the simulation results, having captured trends with the guide field. The theory correctly predicts that the energy conversion is closer to the X-line in the absolute sense as the guide field increases. The results are then compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and global resistive magnetohydrodynamics simulations of the 2015 Oct 16 event. The PIC simulation results agree well with the global observations and simulations, but differ in the strong electric fields and energy conversion rates found in the MMS observations. The results suggest that the strong electric fields observed by MMS do not represent a steady global rate.
Field-aligned electrostatic potential differences on the Martian night side
NASA Astrophysics Data System (ADS)
Lillis, Rob; Collinson, Glyn; Mitchell, David
2017-04-01
Field-aligned electrostatic potential differences on the Martian night side above 170 km can be inferred with the aid of a kinetic electron transport model and in a statistical sense, by energy-dependent angular shifts in electron loss cones measured in Mars orbit. Potentials between 170 km and 400 km derived from pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/ Electron Reflectometer experiment (MAG/ER) at 2 a.m. local time are typically small (-10 V to 10 V) but can reach magnitudes of >100 V. Geographically, the strongest negative potential differences (with mean values up to -50 V) are preferentially observed at the boundaries between open and closed strong magnetic field regions, while positive potential differences are preferentially observed further from open field lines. These characteristics may reflect current systems closing at high altitude through cross-tail currents and at low altitude in the conducting night side ionosphere. We will present a synthesis of potentials derived from pitch angle distributions measured by both MGS MAG/ER as mentioned above, and by the MAVEN Solar Wind Electron Analyzer (SWEA) collected at a range of local times and altitudes.
Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots
Zhang, Yusheng; Han, Zhanghua
2015-01-01
Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials. PMID:26691003
NASA Technical Reports Server (NTRS)
Belen'kaia, Elena
1993-01-01
Comment is presented on the results of measurements, reported by Gosling et al. (1991), that were made on ISEE in the vicinity of the high-latitude dusk magnetopause near the terminator plane, at a time when the local magnetosheath and tail lobe magnetic fields were nearly oppositely directed. The character of the observed plasma flowing both tailward and sunward within the high-latitude magnetopause current layer presented real evidence for the local reconnection process. Gosling et al. argued that this process may be a manifestation of different global magnetospheric topology structures. In the comment, a global magnetospheric convection pattern is constructed for the northward IMF and for the case of a large azimuthal component of the IMF with small Bz, irrespective of its sign. The suggested scheme provides a simple explanation for the observed sunward convection in the polar caps both for the northward and for strong By with small Bz. According to the present model, for the magnetosheath field at 2300 UT on June 11, 1978, the reconnection between the open field lines appears at the northern neutral point.
Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Brain, D. A.
2012-12-01
Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.
NASA Astrophysics Data System (ADS)
Sutherland, Michael Stephen
2010-12-01
The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise the first measurements of the Galactic magnetic field using ultra-high energy cosmic rays and supplement existing radio astronomical measurements of the Galactic magnetic field.
Localized AdS_{5}×S^{5} Black Holes.
Dias, Óscar J C; Santos, Jorge E; Way, Benson
2016-10-07
According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.
NASA Astrophysics Data System (ADS)
Kim, Shin Ae; Byun, Kyung Min; Kim, Kyujung; Jang, Sung Min; Ma, Kyungjae; Oh, Youngjin; Kim, Donghyun; Kim, Sung Guk; Shuler, Michael L.; Kim, Sung June
2010-09-01
We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.
NASA Astrophysics Data System (ADS)
Farokhnezhad, M.; Esmaeilzadeh, M.; Shakouri, Kh.
2017-11-01
Strained two-dimensional crystals often offer novel physical properties that are usable to improve their electronic performance. Here we show by the theory of elasticity combined with the tight-binding approximation that local strains in silicene can open up new prospects for generating fully polarized spin and valley currents. The trajectory of electrons flowing through locally strained regions obeys the same behavior as light waves propagating in uniaxial anisotropic materials. The refraction angle of electrons at local strain boundaries exhibits a strong dependence on the valley degree of freedom, allowing for valley filtering based on the strain direction. The ability to control the spin polarization direction additionally requires a perpendicular electric field to be involved in combination with the local strain. Further similarities of the problem with optics of anisotropic materials are elucidated and possible applications in spin- and valleytronic nanodevices are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xin; Tu Chuanyi; He Jiansen
The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These resultsmore » confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.« less
Classical gluon fields and collective dynamics of color-charge systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronyuk, V.; Goloviznin, V. V.; Zinovjev, G. M.
2015-03-15
An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by amore » high nonequilibrium parton density and by strong local color fluctuations.« less
Conductance oscillations of core-shell nanowires in transversal magnetic fields
NASA Astrophysics Data System (ADS)
Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar
2016-05-01
We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.
Rhythm sensitivity in macaque monkeys
Selezneva, Elena; Deike, Susann; Knyazeva, Stanislava; Scheich, Henning; Brechmann, André; Brosch, Michael
2013-01-01
This study provides evidence that monkeys are rhythm sensitive. We composed isochronous tone sequences consisting of repeating triplets of two short tones and one long tone which humans perceive as repeating triplets of two weak and one strong beat. This regular sequence was compared to an irregular sequence with the same number of randomly arranged short and long tones with no such beat structure. To search for indication of rhythm sensitivity we employed an oddball paradigm in which occasional duration deviants were introduced in the sequences. In a pilot study on humans we showed that subjects more easily detected these deviants when they occurred in a regular sequence. In the monkeys we searched for spontaneous behaviors the animals executed concomitant with the deviants. We found that monkeys more frequently exhibited changes of gaze and facial expressions to the deviants when they occurred in the regular sequence compared to the irregular sequence. In addition we recorded neuronal firing and local field potentials from 175 sites of the primary auditory cortex during sequence presentation. We found that both types of neuronal signals differentiated regular from irregular sequences. Both signals were stronger in regular sequences and occurred after the onset of the long tones, i.e., at the position of the strong beat. Local field potential responses were also significantly larger for the durational deviants in regular sequences, yet in a later time window. We speculate that these temporal pattern-selective mechanisms with a focus on strong beats and their deviants underlie the perception of rhythm in the chosen sequences. PMID:24046732
Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor
NASA Astrophysics Data System (ADS)
Sadanandan, R.; Stöhr, M.; Meier, W.
2008-03-01
In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.
Giant magneto-impedance and magneto-inductive effects in amorphous alloys
NASA Astrophysics Data System (ADS)
Panina, L. V.; Mohri, K.; Bushida, K.; Noda, M.
1994-11-01
Recent experiments have discovered giant and sensitive magneto-impedance and magneto-inductive effects in FeCoSiB amorphous wires. These effects include a sensitive change in an ac wire voltage with the application of a small dc longitudinal magnetic field. At low frequencies (1-10 kHz) the inductive voltage drops by 50% for a field of 2 Oe (25%/Oe) reflecting a strong field dependence of the circumferential permeability. At higher frequencies (0.1-10 MHz) when the skin effect is essential, the amplitude of the total wire voltage decreases by 40%-60% for fields of 3-10 Oe (about 10%/Oe). These effects exhibit no hysteresis for the variation of an applied field and can be obtained even in wires of 1 mm length and a few micrometer diameter. These characteristics are very useful to constitute a highly sensitive microsensor head to detect local fields of the order of 10(exp -5) Oe. In this paper, we review recently obtained experimental results on magneto-inductive and magneto-impedance effects and present a detailed discussion for their mechanism, developing a general approach in terms of ac complex impedance in a magnetic conductor. In the case of a strong skin effect the total wire impedance depends on the circumferential permeability through the penetration depth, resulting in the giant magneto-impedance effect.
Half-BPS Wilson loop and AdS 2/CFT 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giombi, Simone; Roiban, Radu; Tseytlin, Arkady A.
Here, we study correlation functions of local operator insertions on the 1/2-BPS Wilson line in N=4 super Yang–Mills theory. These correlation functions are constrained by the 1d superconformal symmetry pre-served by the 1/2-BPS Wilson line and define a defect CFT 1 living on the line. At strong coupling, a set of elementary operator insertions with protected scaling dimensions correspond to fluctuations of the dual fundamental string in AdS 5×S 5 ending on the line at the boundary and can be thought of as light fields propagating on the AdS 2 worldsheet. We use AdS/CFT techniques to compute the tree-level AdSmore » 2 Witten diagrams describing the strong coupling limit of the four-point functions of the dual operator insertions. Using the OPE, we also extract the leading strong coupling corrections to the anomalous dimensions of the “two-particle” operators built out of elementary excitations. In the case of the circular Wilson loop, we match our results for the 4-point functions of a special type of scalar insertions to the prediction of localization to 2d Yang–Mills theory.« less
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed. PMID:27966596
Unambiguous Signature of the Berry Phase in Intense Laser Dissociation of Diatomic Molecules.
Bouakline, Foudhil
2018-05-03
We report strong evidence of Berry phase effects in intense laser dissociation of D 2 + molecules, manifested as Aharonov-Bohm-like oscillations in the photofragment angular distribution (PAD). Our calculations show that this interference pattern strongly depends on the parity of the diatom initial rotational state, (-1) j . Indeed, the PAD local maxima (minima) observed in one case ( j odd) correspond to local minima (maxima) in the other case ( j even). Using simple topological arguments, we clearly show that such interference conversion is a direct signature of the Berry phase. The sole effect of the latter on the rovibrational wave function is a sign change of the relative phase between two interfering components, which wind in opposite senses around a light-induced conical intersection (LICI). Therefore, encirclement of the LICI leads to constructive ( j odd) or destructive ( j even) self-interference of the initial nuclear wavepacket in the dissociative limit. To corroborate our theoretical findings, we suggest an experiment of strong-field indirect dissociation of D 2 + molecules, comparing the PAD of the ortho and para molecular species in directions nearly perpendicular to the laser polarization axis.
Half-BPS Wilson loop and AdS 2/CFT 1
Giombi, Simone; Roiban, Radu; Tseytlin, Arkady A.
2017-09-01
Here, we study correlation functions of local operator insertions on the 1/2-BPS Wilson line in N=4 super Yang–Mills theory. These correlation functions are constrained by the 1d superconformal symmetry pre-served by the 1/2-BPS Wilson line and define a defect CFT 1 living on the line. At strong coupling, a set of elementary operator insertions with protected scaling dimensions correspond to fluctuations of the dual fundamental string in AdS 5×S 5 ending on the line at the boundary and can be thought of as light fields propagating on the AdS 2 worldsheet. We use AdS/CFT techniques to compute the tree-level AdSmore » 2 Witten diagrams describing the strong coupling limit of the four-point functions of the dual operator insertions. Using the OPE, we also extract the leading strong coupling corrections to the anomalous dimensions of the “two-particle” operators built out of elementary excitations. In the case of the circular Wilson loop, we match our results for the 4-point functions of a special type of scalar insertions to the prediction of localization to 2d Yang–Mills theory.« less
Surface-enhanced Raman scattering on single-wall carbon nanotubes.
Kneipp, Katrin; Kneipp, Harald; Dresselhaus, Mildred S; Lefrant, Serge
2004-11-15
Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.
Controlled nanopatterning of a polymerized ionic liquid in a strong electric field
Bocharova, Vera; Agapov, Alexander L.; Tselev, Alexander; ...
2014-12-17
Nanolithography has become a driving force in advancements of the modern day's electronics, allowing for miniaturization of devices and a steady increase of the calculation, power, and storage densities. Among various nanofabrication approaches, scanning probe techniques, including atomic force microscopy (AFM), are versatile tools for creating nanoscale patterns utilizing a range of physical stimuli such as force, heat, or electric field confined to the nanoscale. In this study, the potential of using the electric field localized at the apex of an AFM tip to induce and control changes in the mechanical properties of an ion containing polymer—a polymerized ionic liquidmore » (PolyIL)—on a very localized scale is explored. In particular, it is demonstrated that by means of AFM, one can form topographical features on the surface of PolyIL-based thin films with a significantly lower electric potential and power consumption as compared to nonconductive polymer materials. Lastly,, by tuning the applied voltage and ambient air humidity, control over dimensions of the formed structures is reproducibly achieved.« less
NASA Astrophysics Data System (ADS)
Poujol, Antoine; Ritz, Jean-François; Vernant, Philippe; Huot, Sebastien; Maate, Soufian; Tahayt, Abdelilah
2017-08-01
In this paper, we present the first estimate of the Holocene deformation along the southern front of Gibraltar arc (Morocco) and the first field constraints on the local 1755 CE Fes-Meknes surface rupturing earthquake which could be associated to the "Great Lisbon Earthquake" (M > 8.5) in November 1st, 1755. Using satellite imagery, aerial photographs and field investigations, we carried out a morphotectonic study along the 150 km-long Southern Rif Front (SRF) to identify the most recent evidences of tectonic activity. Analyzed offset alluvial deposits confirm that (i) the last 5 ka cumulative deformation leading to a slip rate of 3.5 ± 1 mm/yr for this segment of the SRF is consistent with the GPS derived horizontal shortening rate of 2-4 mm/yr and (ii) a recent major earthquake ruptured a 30 km-long segment along the SRF. Based on deposits dating and historical seismicity we propose that this seismic event occurred in 1755 as a local earthquake. Even though this 1755 local event cannot be considered as a strong aftershock of the main Lisbon seismic event (M > 8.5), their temporal closeness, their occurrence under the same convergent stress regime ( NNW-SSE-oriented compression) and the fact that Fes-Meknes area was strongly shaken during the Lisbon earthquake, raises the question of the possible triggering of the Fes earthquake. Anyway, our new results suggest that most of the Nubia-Rif belt convergence is accommodated by the SRF, making it potentially the most destructive structure of the Rif.
Physical conditions of the interstellar medium in star-forming galaxies at z ˜ 1.5
NASA Astrophysics Data System (ADS)
Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki
2015-10-01
We present results from Subaru Fiber Multi Object Spectrograph near-infrared spectroscopy of 118 star-forming galaxies at z ˜ 1.5 in the Subaru Deep Field. These galaxies are selected as [O II]λ3727 emitters at z ≈ 1.47 and 1.62 from narrow-band imaging. We detect the Hα emission line in 115 galaxies, the [O III]λ5007 emission line in 45 galaxies, and Hβ, [N II]λ6584, and [S II]λλ6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate the physical conditions of the interstellar medium in star-forming galaxies at z ˜ 1.5. We find a tight correlation between Hα and [O II], which suggests that [O II] can be a good star formation rate indicator for galaxies at z ˜ 1.5. The line ratios of Hα/[O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
Theory of charge density wave depinning by electromechanical effect
NASA Astrophysics Data System (ADS)
Quémerais, P.
2017-03-01
We discuss the first theory for the depinning of low-dimensional, incommensurate, charge density waves (CDWs) in the strong electron-phonon (e-p) regime. Arguing that most real CDWs systems invariably develop a gigantic dielectric constant (GDC) at very low frequencies, we propose an electromechanical mechanism which is based on a local field effect. At zero electric field and large enough e-p coupling the structures are naturally pinned by the lattice due to its discreteness, and develop modulation functions which are characterized by discontinuities. When the electric field is turned on, we show that it exists a finite threshold value for the electric field above which the discontinuities of the modulation functions vanish due to CDW deformation. The CDW is then free to move. The signature of this pinning/depinning transition as a function of the increasing electric field can be directly observed in the phonon spectrum by using inelastic neutrons or X-rays experiments.
NASA Astrophysics Data System (ADS)
Tito, M. A.; Pusep, Yu A.
2018-01-01
Time-resolved magneto-photoluminescence was employed to study the magnetic field induced quantum phase transition separating two phases with different distributions of electrons over quantum wells in an aperiodic multiple quantum well, embedded in a wide AlGaAs parabolic quantum well. Intensities, broadenings and recombination times attributed to the photoluminescence lines emitted from individual quantum wells of the multiple quantum well structure were measured as a function of the magnetic field near the transition. The presented data manifest themselves to the magnetic field driven migration of the free electrons between the quantum wells of the studied multiple quantum well structure. The observed charge transfer was found to influence the screening of the multiple quantum well and disorder potentials. Evidence of the localization of the electrons in the peripheral quantum wells in strong magnetic field is presented.
Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James
2004-01-01
An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.
Remote magnetic actuation using a clinical scale system
Stehning, Christian; Gleich, Bernhard
2018-01-01
Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions. PMID:29494647
Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking
NASA Astrophysics Data System (ADS)
Derakhti, M.; Kirby, J. T., Jr.
2016-12-01
Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.
NASA Astrophysics Data System (ADS)
Getsinger, A.; Hirth, G.
2014-12-01
Strain localization is significantly enhanced by the influx of fluid; however, processes associated with deformation in polycrystalline material, fluid infiltration, and the evolution of creep processes and rock fabric with increasing strain localization are not well constrained for many lower crust lithologies. We combine field and experimental observations of mafic rocks deforming at lower crust pressure, temperature, and water conditions to examine strain localization processes associated with the influx of fluid, strength dependence of fabric evolution, and flow law parameters for amphibolite. General shear experiments were conducted in a Griggs rig on powdered basalt (≤5 µm starting grain size) with up to 1 wt% water at lower continental crust conditions (750˚ to 850˚C, 1GPa). Amphibole formed during deformation exhibits both a strong shape preferred orientation (SPO) and lattice preferred orientation (LPO). With increasing strain, the amphibole (and clinopyroxene) LPO strengthens and rotates to [001] maximum aligned sub-parallel to the flow direction and SPO, which indicates grain rotation during deformation. Plagioclase LPO increases from random to very weak in samples deformed to high strain. As the amphibole LPO rotates and strengthens, the mechanical strength decreases. The correlation of the SPO and LPO coupled with the rheological evidence for diffusion creep (n ≈ 1.5) indicates that the amphibole fabric results from grain growth and rigid grain rotation during deformation. The coevolution of LPO (and grain rotation) and mechanical weakening coupled with the absence of grain size reduction in our samples suggests that strength depends on the formation of a strong mineral LPO. Both our field and experimental data demonstrate that fluid intrusion into the mafic lower crust initiates syn-deformational, water-consuming reactions, creating a rheological contrast between wet and dry lithologies that promotes strain localization. Additionally, the rheology of both naturally deformed amphibolite shear zones and our fine-grained experimental amphibolite is comparable to that predicted using flow laws for wet anorthite. Thus, both our experimental and field analyses indicate that wet plagioclase rheology provides a good constraint on the strength of hydrated lower continental crust.
Spatial Brain Control Interface using Optical and Electrophysiological Measures
2013-08-27
appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowal, Grzegorz; Lazarian, A., E-mail: kowal@astro.wisc.ed, E-mail: lazarian@astro.wisc.ed
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field referencemore » frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.« less
NASA Astrophysics Data System (ADS)
Barker, J. R.; Martinez, A.; Aldegunde, M.
2012-05-01
The modelling of spatially inhomogeneous silicon nanowire field-effect transistors has benefited from powerful simulation tools built around the Keldysh formulation of non-equilibrium Green function (NEGF) theory. The methodology is highly efficient for situations where the self-energies are diagonal (local) in space coordinates. It has thus been common practice to adopt diagonality (locality) approximations. We demonstrate here that the scattering kernel that controls the self-energies for electron-phonon interactions is generally non-local on the scale of at least a few lattice spacings (and thus within the spatial scale of features in extreme nano-transistors) and for polar optical phonon-electron interactions may be very much longer. It is shown that the diagonality approximation strongly under-estimates the scattering rates for scattering on polar optical phonons. This is an unexpected problem in silicon devices but occurs due to strong polar SO phonon-electron interactions extending into a narrow silicon channel surrounded by high kappa dielectric in wrap-round gate devices. Since dissipative inelastic scattering is already a serious problem for highly confined devices it is concluded that new algorithms need to be forthcoming to provide appropriate and efficient NEGF tools.
NASA Astrophysics Data System (ADS)
Hobbs, S. W.; Paull, D. J.; Clarke, J. D. A.; Roach, Ian C.
2016-03-01
Comparison of the similarities and differences between terrestrial and Martian hillside gullies promotes understanding of how surface processes operate on both planets. Here we tested the viability of subsurface flow of water as a process affecting gully evolution. We compared gullies within the Monaro Volcanic Province near Cooma, New South Wales, Australia, to gullies possessing strong structural control near Gasa Crater, Terra Cimmeria, Mars. Although cursory examination of the Monaro gullies initially suggested strong evidence for aquifer erosion, detailed field surveys showed the evidence to be ambiguous. Instead a complex regime of erosion dependent on multiple conditions and processes such as local geology, surface runoff, dry mass wasting, and animal activity emerged. We found the morphology of gullies near Gasa Crater to be consistent with erosion caused by liquid water, while also being heavily influenced by the local environment, including slope and geology. Additionally, erosion at the Martian site was not consistent with evidence of subsequent, smaller scale erosion and channel modification by dry mass wasting. Local conditions thus play an important role in gully evolution, further highlighting that processes forming Martian gullies may be more diverse than initially thought.
Localization via exchange splitting in NaFe1-xCuxAs
NASA Astrophysics Data System (ADS)
Charnukha, Aliaksei; Yin, Zhiping; Song, Yu; Cao, Chongde; Dai, Pengcheng; Basov, Dimitri
Iron-based high-temperature superconductors have emerged as a distinct material family believed to bridge the wide gap in understanding between conventional low-temperature and unconventional high-temperature copper-based superconductors. And yet, compounds that bear close resemblance to strongly correlated superconducting cuprates have been hard to come by. Recently, copper substitution in a quintessential iron pnictide, NaFeAs, has been demonstrated to result in a semiconducting transport behavior, suggesting the possibility of a strongly correlated Mott insulating electronic state. Here we use optical spectroscopy and dynamical mean-field theory to demonstrate explicitly that the excitation spectrum of NaFe0.5Cu0.5As possesses a sizable gap below the Neel temperature and remains unchanged up to room temperature due to the persistence of short-range antiferromagnetic correlations. We show that all of the observed experimental properties can be explained remarkably well as a result of exchange splitting in the predominantly Fe- d-derived electronic band structure induced by local antiferromagnetic order. On-site repulsion, on the contrary, is insufficient to drive localization. Our results paint a fuller picture of the intermediate character of correlations in iron-pnictides.
Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals
Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; ...
2016-05-13
Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sammore » ple heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm -1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres.« less
NASA Astrophysics Data System (ADS)
Schnyder, Simon K.; Skinner, Thomas O. E.; Thorneywork, Alice L.; Aarts, Dirk G. A. L.; Horbach, Jürgen; Dullens, Roel P. A.
2017-03-01
A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301 (2013), 10.1103/PhysRevLett.111.128301]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered Lorentz gas and lead to strong non-Gaussian fluctuations.
Domain switching mechanisms in polycrystalline ferroelectrics with asymmetric hysteretic behavior
NASA Astrophysics Data System (ADS)
Anton, Eva-Maria; García, R. Edwin; Key, Thomas S.; Blendell, John E.; Bowman, Keith J.
2009-01-01
A numerical method is presented to predict the effect of microstructure on the local polarization switching of bulk ferroelectric ceramics. The model shows that a built-in electromechanical field develops in a ferroelectric material as a result of the spatial coupling of the grains and the direct physical coupling between the thermomechanical and electromechanical properties of a bulk ceramic material. The built-in fields that result from the thermomechanically induced grain-grain electromechanical interactions result in the appearance of four microstructural switching mechanisms: (1) simple switching, where the c-axes of ferroelectric domains will align with the direction of the applied macroscopic electric field by starting from the core of each grain; (2) grain boundary induced switching, where the domain's switching response will initiate at grain corners and boundaries as a result of the polarization and stress that is locally generated from the strong anisotropy of the dielectric permittivity and the local piezoelectric contributions to polarization from the surrounding material; (3) negative poling, where abutting ferroelectric domains of opposite polarity actively oppose domain switching by increasing their degree of tetragonality by interacting with the surrounding domains that have already switched to align with the applied electrostatic field. Finally, (4) domain reswitching mechanism is observed at very large applied electric fields, and is characterized by the appearance of polarization domain reversals events in the direction of their originally unswitched state. This mechanism is a consequence of the competition between the macroscopic applied electric field, and the induced electric field that results from the neighboring domains (or grains) interactions. The model shows that these built-in electromechanical fields and mesoscale mechanisms contribute to the asymmetry of the macroscopic hysteretic behavior in poled samples. Furthermore, below a material-dependent operating temperature, the predicted built-in electric fields can potentially drive the aging and electrical fatigue of the system to further skew the shape of the hysteresis loops.
Extra-dimensional models on the lattice
Knechtli, Francesco; Rinaldi, Enrico
2016-08-05
In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime formore » various extra-dimensional models.« less
An interacting loop model of solar flare bursts
NASA Technical Reports Server (NTRS)
Emslie, A. G.
1981-01-01
As a result of the strong heating produced at chromospheric levels during a solar flare burst, the local gas pressure can transiently attain very large values in certain regions. The effectiveness of the surrounding magnetic field at confining this high pressure plasma is therefore reduced and the flaring loop becomes free to expand laterally. In so doing it may drive magnetic field lines into neighboring, nonflaring, loops in the same active region, causing magnetic reconnection to take place and triggering another flare burst. The features of this interacting loop model are found to be in good agreement with the energetics and time structure of flare associated solar hard X-ray bursts.
Enhanced second-harmonic generation from resonant GaAs gratings.
de Ceglia, D; D'Aguanno, G; Mattiucci, N; Vincenti, M A; Scalora, M
2011-03-01
We theoretically study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second-harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064 nm, we predict second-harmonic conversion efficiencies approximately 5 orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.
Manipulation of metal-dielectric core-shell particles in optical fields
NASA Astrophysics Data System (ADS)
Chvátal, Lukáš; Šiler, Martin; Zemánek, Pavel
2014-12-01
Metal-dielectric core-shell particles represent promising tools in nanoplasmonics. In combination with optical tweezers they can be manipulated in a contactless way through fluid and their plasmonic properties can be used to probe or modify the local environment. We perform a numerical parametric study to find the particle geometry and material parameters under which such particle can be stably confined in optical tweezers. We use the theory based on Mie scattering in the focal field of an ideal water immersion objective of numerical aperture NA=1.2. For very thin metal layers we find that strong trapping on the optical axis can be achieved.
The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braguta, V. V., E-mail: braguta@mail.ru; Buividovich, P. V., E-mail: buividovich@itep.ru; Kalaydzhyan, T., E-mail: tigran.kalaydzhyan@desy.de
2012-04-15
We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations ofmore » the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.« less
Sinonasal inverted papilloma: From diagnosis to treatment.
Lisan, Q; Laccourreye, O; Bonfils, P
2016-11-01
Inverted papilloma is a rare sinonasal tumor that mainly occurs in adults during the 5th decade. Three characteristics make this tumor very different from other sinonasal tumors: a relatively strong potential for local destruction, high rate of recurrence, and a risk of carcinomatous evolution. Etiology remains little understood, but an association with human papilloma virus has been reported in up to 40% of cases, raising the suspicions of implication in the pathogenesis of inverted papilloma. Treatment of choice is surgery, by endonasal endoscopic or external approach, depending on extension and tumoral characteristics. Follow-up is critical, to diagnose local relapse, which is often early but may also be late. The seriousness of this pathology lies in its association with carcinoma, which may be diagnosed at the outset or at recurrence during follow-up. It is important to diagnose recurrence to enable early treatment, especially in case of associated carcinoma or malignancy. A comprehensive review of the international literature was performed on PubMed and Embase, using the following search-terms: "sinonasal" [All Fields] AND ("papilloma, inverted" [MeSH Terms] OR ("papilloma" [All Fields] AND "inverted" [All Fields]) OR "inverted papilloma" [All Fields] OR ("inverted" [All Fields] AND "papilloma" [All Fields])). We reviewed all articles referring to sinonasal inverted papilloma published up to January 2015. The present article updates the state of knowledge regarding sinonasal inverted papilloma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Generalization of the slip line field theory for temperature sensitive visco-plastic materials
NASA Astrophysics Data System (ADS)
Paesold, Martin; Peters, Max; Regenauer-Lieb, Klaus; Veveakis, Manolis; Bassom, Andrew
2015-04-01
Geological processes can be a combination of various effects such as heat production or consumption, chemical reactions or fluid flow. These individual effects are coupled to each other via feedbacks and the mathematical analysis becomes challenging due to these interdependencies. Here, we concentrate solely on thermo-mechanical coupling and a main result of this work is that the coupling can depend on material parameters and boundary conditions and the coupling is more or less pronounced depending on theses parameters. The transitions from weak to strong coupling can be studied in the context of a bifurcation analysis. classically, Material instabilities in solids are approached as material bifurcations of a rate-independent, isothermal, elasto-plastic solid. However, previous research has shown that temperature and deformation rate are important factors and are fully coupled with the mechanical deformation. Early experiments in steel revealed a distinct pattern of localized heat dissipation and plastic deformation known as heat lines. Further, earth materials, soils, rocks and ceramics are known to be greatly influenced by temperature with strain localization being strongly affected by thermal loading. In this work, we provide a theoretical framework for the evolution of plastic deformation for such coupled systems, with a two-pronged approach to the prediction of localized failure. First, slip line field theory is employed to predict the geometry of the failure patterns and second, failure criteria are derived from an energy bifurcation analysis. The bifurcation analysis is concerned with the local energy balance of a material and compares the effects of heat diffusion terms and heat production terms where the heat production is due to mechanical processes. Commonly, the heat is produced locally along the slip lines and if the heat production outweighs diffusion the material is locally weakened which eventually leads to failure. The effect of diffusion and heat production is captured by a dimensionless quantity, the Gruntfest number, and only if the Gruntfest number is larger than a critical value localized failure occurs. This critical Gruntfest number depends on boundary conditions such as temperature or pressure and hence this critical value gives rise to localization criteria. We find that the results of this approach agree with earlier contributions to the theory of plasticity but gives the advantage of a unified framework which might prove useful in numerical schemes for visco-plasticity.
Regional Wave Climates along Eastern Boundary Currents
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Soares, Pedro
2016-04-01
Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.
NASA Astrophysics Data System (ADS)
Lauer, Tod
1995-07-01
We request deep, near-IR (F814W) WFPC2 images of five nearby Brightest Cluster Galaxies (BCG) to calibrate the BCG Hubble diagram by the Surface Brightness Fluctuation (SBF) method. Lauer & Postman (1992) show that the BCG Hubble diagram measured out to 15,000 km s^-1 is highly linear. Calibration of the Hubble diagram zeropoint by SBF will thus yield an accurate far-field measure of H_0 based on the entire volume within 15,000 km s^-1, thus circumventing any strong biases caused by local peculiar velocity fields. This method of reaching the far field is contrasted with those using distance ratios between Virgo and Coma, or any other limited sample of clusters. HST is required as the ground-based SBF method is limited to <3,000 km s^-1. The high spatial resolution of HST allows precise measurement of the SBF signal at large distances, and allows easy recognition of globular clusters, background galaxies, and dust clouds in the BCG images that must be removed prior to SBF detection. The proposing team developed the SBF method, the first BCG Hubble diagram based on a full-sky, volume-limited BCG sample, played major roles in the calibration of WFPC and WFPC2, and are conducting observations of local galaxies that will validate the SBF zeropoint (through GTO programs). This work uses the SBF method to tie both the Cepheid and Local Group giant-branch distances generated by HST to the large scale Hubble flow, which is most accurately traced by BCGs.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Thaller, S. A.; Breneman, A. W.; Tian, S.; Cattell, C. A.; Chaston, C. C.; Mozer, F.; Bonnell, J. W.; Kistler, L. M.; Mouikis, C.; Hudson, M. K.; Claudepierre, S. G.; Fennell, J. F.; Reeves, G. D.; Baker, D. N.; Donovan, E.; Spanswick, E.; Kletzing, C.
2015-12-01
We present measurements from the Van Allen Probes, in the near Earth tail, at the outer boundary of the plasma sheet, of a magnetic dipolarization/injection event characterized by unusually strong earthward poynting flux flowing along magnetic field lines with amplitudes of 200 mW/m2 lasting ~ 1 minute. The Poynting flux was conjugate to a 30 km wide discrete auroral arc observed by the THEMIS auroral array. The observations were obtained at 5.8 Re in the pre-midnight sector during the main phase of a geomagnetic storm on 5/01/2013. This brief interval transferred more electromagnetic energy (at the spacecraft position) than that transferred during entire remainder of the main phase of the storm. The parallel Poynting flux coincided with a local section of the "cross tail current sheet" which generated the dipolarization signature. The latitudinal width of the arc, mapped along magnetic field lines, provides an estimate of the spatial scale of the Poynting flux, the electric fields, and the current sheets (parallel and perpendicular). It is estimated that the latitudinal width of the Poynting flux "sheet" was ~600 km or ~1-2 H+ inertial lengths. An estimate of the ∫E·dl across the current sheet along the direction normal to the plasma sheet is ~20-40 kilovolts. The "normal" to the plasma sheet component of the electric field (~70 mV/m) strongly dominated the azimuthal component(which is reponsible for drift energetization). The dipolarization event resulted in the local dispersion-less injection of electrons between 50 keV and ~2 MeV at the Van Allen Probe position. The injection event involved brief (factor of two) local spike in ~2 MeV electron fluxes. Measurements from the Los Alamos geosynchronous spacecraft, displaced eastward from the Van Allen probes, provided evidence for dispersive energy-time electron signatures consistent with injection and energization at the RBSP position. The Poynting flux also coincided with the energy peak in the up-flowing dispersive ion energy-time profile and the onset of earthward ExB convection. A similar injection event during the storm on 6/1/2013 will be discussed.
Generation of BBFs and DFs, Formation of Substorm Auroras and Triggers of Substorm Onset
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2014-12-01
Substorm onset is a dynamical response of the MI coupling system to external solar wind driving conditions and to internal dynamical processes. During the growth phase, the solar wind energy and momentum are transferred into the magnetosphere via MHD mesoscale Alfvenic interactions throughout the magnetopause current sheet. A decrease in momentum transfer from the solar wind into the magnetosphere starts a preconditioning stage, and produces a strong earthward body force acting on the whole magnetotail within a short time period. The strong earthward force will cause localized transients in the tail, such as multiple BBFs, DFs, plasma bubbles, and excited MHD waves. On auroral flux tubes, FACs carried by Alfven waves are generated by Alfvenic interactions between tail earthward flows associated with BBFs/DFs/Bubbles and the ionospheric drag. Nonlinear Alfvenic interaction between the incident and reflected Alfven wave packets in the auroral acceleration region can produce localized parallel electric fields and substorm auroral arcs. During the preconditioning stage prior to substorm onset, the generation of parallel electric fields and auroral arcs can redistribute perpendicular mechanical and magnetic stresses, "decoupling" the magnetosphere from the ionosphere drag. This will enhance the tail earthward flows and rapidly build up stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release and substorm auroral poleward expansion. We suggest that in preconditioning stage, the decrease in the solar wind momentum transfer is a necessary condition of the substorm onset. Additionally, "decoupling" the magnetosphere from ionosphere drag can trigger substorm expansion onset.
Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)
NASA Astrophysics Data System (ADS)
Scheff, J.; Frierson, D. M.
2013-12-01
Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.
Lubogo, Mutaawe; Donewell, Bangure; Godbless, Lucas; Shabani, Sasita; Maeda, Justin; Temba, Herilinda; Malibiche, Theophil C; Berhanu, Naod
2015-01-01
The African Field Epidemiology Network (AFENET) is a public health network established in 2005 as a non-profit networking alliance of Field Epidemiology and Laboratory Training Programs (FELTPs) and Field Epidemiology Training Programs (FETPs) in Africa. AFENET is dedicated to supporting Ministries of Health in Africa build strong, effective and sustainable programs and capacity to improve public health systems by partnering with global public health experts. The Network's goal is to strengthen field epidemiology and public health laboratory capacity to contribute effectively to addressing epidemics and other major public health problems in Africa. The goal for the establishment of FETP and FELTP was and still is to produce highly competent multi-disciplinary public health professionals who would assume influential posts in the public health structures and tackle emerging and re-emerging communicable and non-communicable diseases. AFENET currently networks 12 FELTPs and FETPs in sub-Saharan Africa with operations in 20 countries. During the Ebola Virus Disease (EVD) outbreak in West Africa, African Union Support for the Ebola Outbreak in West Africa (ASEOWA) supported FETP graduates from Uganda, Zimbabwe, Ethiopia and Tanzania for the investigation and control of the EVD outbreak in Liberia. The graduates were posted in different counties in Liberia where they lead teams of other experts conduct EVD outbreak investigations, Infection Control and Prevention trainings among health workers and communities, Strengthening integrated disease surveillance, developing Standard Operating Procedures for infection control and case notification in the Liberian setting as well as building capacity of local surveillance officers' conduct outbreak investigation and contact tracing. The team was also responsible for EVD data management at the different Counties in Liberia. The FETP graduates have been instrumental in the earlier successes registered in various counties in Liberia in the control of the Ebola virus disease. Such efforts should be sustained by supporting local authorities develop strong health systems that are able to respond to epidemic of such magnitude in the near future.
Lubogo, Mutaawe; Donewell, Bangure; Godbless, Lucas; Shabani, Sasita; Maeda, Justin; Temba, Herilinda; Malibiche, Theophil C; Berhanu, Naod
2015-01-01
The African Field Epidemiology Network (AFENET) is a public health network established in 2005 as a non-profit networking alliance of Field Epidemiology and Laboratory Training Programs (FELTPs) and Field Epidemiology Training Programs (FETPs) in Africa. AFENET is dedicated to supporting Ministries of Health in Africa build strong, effective and sustainable programs and capacity to improve public health systems by partnering with global public health experts. The Network's goal is to strengthen field epidemiology and public health laboratory capacity to contribute effectively to addressing epidemics and other major public health problems in Africa. The goal for the establishment of FETP and FELTP was and still is to produce highly competent multi-disciplinary public health professionals who would assume influential posts in the public health structures and tackle emerging and re-emerging communicable and non-communicable diseases. AFENET currently networks 12 FELTPs and FETPs in sub-Saharan Africa with operations in 20 countries. During the Ebola Virus Disease (EVD) outbreak in West Africa, African Union Support for the Ebola Outbreak in West Africa (ASEOWA) supported FETP graduates from Uganda, Zimbabwe, Ethiopia and Tanzania for the investigation and control of the EVD outbreak in Liberia. The graduates were posted in different counties in Liberia where they lead teams of other experts conduct EVD outbreak investigations, Infection Control and Prevention trainings among health workers and communities, Strengthening integrated disease surveillance, developing Standard Operating Procedures for infection control and case notification in the Liberian setting as well as building capacity of local surveillance officers’ conduct outbreak investigation and contact tracing. The team was also responsible for EVD data management at the different Counties in Liberia. The FETP graduates have been instrumental in the earlier successes registered in various counties in Liberia in the control of the Ebola virus disease. Such efforts should be sustained by supporting local authorities develop strong health systems that are able to respond to epidemic of such magnitude in the near future. PMID:26779298
Dark current, breakdown, and magnetic field effects in a multicell, 805MHz cavity
NASA Astrophysics Data System (ADS)
Norem, J.; Wu, V.; Moretti, A.; Popovic, M.; Qian, Z.; Ducas, L.; Torun, Y.; Solomey, N.
2003-07-01
We present measurements of dark currents and x rays in a six cell 805MHz cavity, taken as part of an rf development program for muon cooling, which requires high power, high stored energy, low frequency cavities operating in a strong magnetic field. We have done the first systematic study of the behavior of high power rf in a strong (2.5 4T) magnetic field. Our measurements extend over a very large dynamic range in current and provide good fits to the Fowler-Nordheim field emission model assuming mechanical structures produce field enhancements at the surface. The locally enhanced field intensities we derive at the tips of these emitters are very large, (˜10 GV/m), and should produce tensile stresses comparable to the tensile strength of the copper cavity walls and should be capable of causing breakdown events. We also compare our data with estimates of tensile stresses from a variety of accelerating structures. Preliminary studies of the internal surface of the cavity and window are presented, which show splashes of copper with many sharp cone shaped protrusions and wires which can explain the experimentally measured field enhancements. We discuss a “cold copper” breakdown mechanism and briefly review alternatives. We also discuss a number of effects due to the 2.5T solenoidal fields on the cavity such as altered field emission due to mechanical deformation of emitters, and dark current ring beams, which are produced from the irises by E×B drifts during the nonrelativistic part of the acceleration process.
THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS
NASA Astrophysics Data System (ADS)
Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team
2018-01-01
In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic fields to determine if they occurred near open magnetic field lines. We will report on the results of these two studies, and the ramifications for Mars auroral processes.
Solar Wind - Magnetosheath - Magnetopause Interactions in Global Hybrid-Vlasov Simulations
NASA Astrophysics Data System (ADS)
Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Hietala, H.; Cassak, P.; Walsh, B.; Juusola, L.; Jarvinen, R.; von Alfthan, S.; Palmroth, M.
2017-12-01
We present results of interactions of solar wind and Earth's magnetosphere in global hybrid-Vlasov simulations carried out using the Vlasiator model. Vlasiator propagates ions as velocity distribution functions by solving the Vlasov equation and electrons are treated as charge-neutralizing massless fluid. Vlasiator simulations show a strong coupling between the ion scale and global scale physics. Global scale phenomena affect the local physics and the local phenomena impact the global system. Our results have shown that mirror mode waves growing in the quasi-perpendicular magnetosheath have an impact on the local reconnection rates at the dayside magnetopause. Furthermore, multiple X-line reconnection at the dayside magnetopause leads to the formation of magnetic islands (2D flux transfer events), which launch bow waves upstream propagating through the magnetosheath. These steep bow waves have the ability to accelerate ions in the magnetosheath. When the bow waves reach the bow shock they are able to bulge the shock locally. The bulge in the shock decreases the angle between the interplanetary magnetic field and the shock normal and allows ions to be reflected back to the solar wind along the magnetic field lines. Consequently, Vlasiator simulations show that magnetosheath fluctuations affect magnetopause reconnection and reconnection may influence particle acceleration and reflection in the magnetosheath and solar wind.
NASA Astrophysics Data System (ADS)
Moosavi, S. Amin; Montakhab, Afshin
2014-05-01
Motivated by recent experiments in neuroscience which indicate that neuronal avalanches exhibit scale invariant behavior similar to self-organized critical systems, we study the role of noisy (nonconservative) local dynamics on the critical behavior of a sandpile model which can be taken to mimic the dynamics of neuronal avalanches. We find that despite the fact that noise breaks the strict local conservation required to attain criticality, our system exhibits true criticality for a wide range of noise in various dimensions, given that conservation is respected on the average. Although the system remains critical, exhibiting finite-size scaling, the value of critical exponents change depending on the intensity of local noise. Interestingly, for a sufficiently strong noise level, the critical exponents approach and saturate at their mean-field values, consistent with empirical measurements of neuronal avalanches. This is confirmed for both two and three dimensional models. However, the addition of noise does not affect the exponents at the upper critical dimension (D =4). In addition to an extensive finite-size scaling analysis of our systems, we also employ a useful time-series analysis method to establish true criticality of noisy systems. Finally, we discuss the implications of our work in neuroscience as well as some implications for the general phenomena of criticality in nonequilibrium systems.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.
2007-01-01
Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field.
Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates
2013-01-01
Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes. PMID:23522305
Magnetic elliptical polarization of Schumann resonances
NASA Technical Reports Server (NTRS)
Sentman, D. D.
1987-01-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.
NASA Astrophysics Data System (ADS)
Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.
2006-09-01
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas
Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less
Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; ...
2018-04-14
Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less
3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?
NASA Astrophysics Data System (ADS)
Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny
2018-01-01
We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.
In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth's Magnetosheath
NASA Astrophysics Data System (ADS)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Wan, M.; Haggerty, C. C.; Pollock, C. J.; Giles, B. L.; Paterson, W. R.; Dorelli, J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Lindqvist, P.-A.; Khotyaintsev, Y.; Moore, T. E.; Ergun, R. E.; Burch, J. L.
2018-03-01
We present a study of signatures of energy dissipation at kinetic scales in plasma turbulence based on observations by the Magnetospheric Multiscale mission (MMS) in the Earth’s magnetosheath. Using several intervals, and taking advantage of the high-resolution instrumentation on board MMS, we compute and discuss several statistical measures of coherent structures and heating associated with electrons, at previously unattainable scales in space and time. We use the multi-spacecraft Partial Variance of Increments (PVI) technique to study the intermittent structure of the magnetic field. Furthermore, we examine a measure of dissipation and its behavior with respect to the PVI as well as the current density. Additionally, we analyze the evolution of the anisotropic electron temperature and non-Maxwellian features of the particle distribution function. From these diagnostics emerges strong statistical evidence that electrons are preferentially heated in subproton-scale regions of strong electric current density, and this heating is preferentially in the parallel direction relative to the local magnetic field. Accordingly, the conversion of magnetic energy into electron kinetic energy occurs more strongly in regions of stronger current density, a finding consistent with several kinetic plasma simulation studies and hinted at by prior studies using lower resolution Cluster observations.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.