Sample records for strong motion program

  1. Strong-Motion Program report, January-December 1985

    USGS Publications Warehouse

    Porcella, R. L.

    1989-01-01

    This Program Report contains preliminary information on the nature and availability of strong-motion data recorded by the U.S. Geological Survey (USGS). The Strong-Motion Program is operated by the USGS in cooperation with numerous Federal, State, and local agencies and private organizations. Major objective of this program are to record both strong ground motion and the response of various types of engineered structures during earthquakes, and to disseminate this information and data to the international earthquake-engineering research and design community. This volume contains a summary of the accelerograms recovered from the USGS National Strong-Motion Instrumentation Network during 1985, summaries of recent strong-motion publications, notes on the availability of digitized data, and general information related to the USGS and other strong-motion programs. The data summary in table 1 contains information on all USGS accelerograms recovered (though not necessarily recorded) during 1985; event data are taken from "Preliminary Determination of Epicenters," published by the USGS.

  2. Strong motion instrumentation of an RC building structure

    USGS Publications Warehouse

    Li, H.-J.; Celebi, M.

    2001-01-01

    The strong-motion instrumentation scheme of a reinforced concrete building observed by California Strong-Motion Instrumentation Program (CSMIP) is introduced in this paper. The instrumented building is also described and the recorded responses during 1994 Northridge earthquake are provided.

  3. Vision for the Future of the US National Strong-Motion Program

    USGS Publications Warehouse

    ,

    1997-01-01

    This document provides the requested vision for the future of the National Strong-Motion Program operated by the US Geological Survey. Options for operation of the program are presented in a companion document. Each of the three major charges of the EHRP, program council pertaining to the vision document is addressed here. The 'Vision Summary' through a series of answers to specific questions is intended to provide a complete synopsis of the committees response to program council charges. The Vision for the Future of the NSMP is presented as section III of the Summary. Analysis and detailed discussion supporting the answers in the summary are presented as sections organized according to the charges of the program council. The mission for the program is adopted from that developed at the national workshop entitled 'Research Needs for Strong Motion Data to Support Earthquake Engineering' sponsored by the National Science Foundation.

  4. Strong Motion Recording in the United States

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Fletcher, J. B.; Shakal, A. F.

    2014-12-01

    The United States strong motion program began in 1932 when the Coast and Geodetic Survey (C&GS) installed eight strong motion accelerographs in California. During the March 1933 Long Beach earthquake, three of these produced the first strong motion records. With this success the C&GS expanded the number of accelerographs to 71 by 1964. With development of less expensive, mass-produced accelerographs the number of strong motion accelerographs expanded to ~575 by 1972. Responsibilities for operating the network and disseminating data were transferred to the National Oceanic and Atmospheric Administration in 1970 and then to the U.S. Geological Survey in 1973. In 1972 the California Legislature established the California Strong Motion Instrumentation Program (CSMIP). CSMIP operates accelerographs at 812 ground stations, with multi-channel accelerographs in 228 buildings, 125 lifelines and 37 geotechnical arrays, in California. The USGS and the ANSS effort operate accelerographs at 1584 ground stations, 96 buildings, 14 bridges, 70 dams, and 15 multi-channel geotechnical arrays. The USC Los Angeles array has 78 ground stations; UCSB operates 5 geotechnical arrays; other government and private institutions also operate accelerographs. Almost all accelerographs are now digital with a sampling rate of 200 Hz. Most of the strong motion data can be downloaded from the Center for Engineering Strong Motion Data (http://strongmotioncenter.org). As accelerographs have become more sophisticated, the concept of what constitutes strong motion has blurred because small earthquakes (M ~3) are well recorded on accelerometers as well as seismometers. However, when accelerations are over ~10%g and velocities over ~1 cm/s, the accelerometers remain on scale, providing the unclipped data necessary to analyze the ground motion and its consequences. Strong motion data are essential to the development of ground motion prediction equations, understanding structural response, performance based engineering, soil response, and inversions for earthquake rupture parameters. While an important number of stations have been installed, many areas of the US are significantly deficient, e.g., recordings were obtained from only 2 stations within 60 km of the Mineral earthquake that damaged the nation's capital and other areas.

  5. Strong ground motion from the michoacan, Mexico, earthquake.

    PubMed

    Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M

    1986-09-05

    The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.

  6. Puerto Rico Strong Motion Seismic Network

    NASA Astrophysics Data System (ADS)

    Huerta-Lopez, C. I.; Martínez-Cruzado, J. A.; Martínez-Pagan, J.; Santana-Torres, E. X.; Torres-O, D. M.

    2014-12-01

    The Puerto Rico Strong Motion Seismic Network is currently in charge of the operation of: (i) free-field (ff) strong motion stations, (ii) instrumented structures (STR) (Dams, Bridges, Buildings), and (iii) the data acquisition/monitoring and analysis of earthquakes considered strong from the point of view of their intensity and magnitude. All these instruments are deployed in the Puerto Rico Island (PRI), US-, and British-Virgin Islands (BVI), and Dominican Republic (DR). The Puerto Rico Island and the Caribbean region have high potential to be affected by earthquakes that could be catastrophic for the area. The Puerto Rico Strong Motion Seismic Network (actually Puerto Rico Strong Motion Program, PRSMP) has grown since 1970's from 7 ff strong motion stations and one instrumented building with analog accelerographs to 111 ff strong motion stations and 16 instrumented buildings with digital accelerographs: PRI: 88 ff, 16 STR., DR: 13 ff, BVI: 5 ff, 2 STR collecting data via IP (internet), DU (telephone), and stand alone stations The current stage of the PRSMP seismic network, the analysis of moderate earthquakes that were recorded and/or occurred on the island, results of the intensity distribution of selected earthquakes, as well as results of dynamic parameter identification of some of the instrumented structures are here presented.

  7. Motion sickness: a negative reinforcement model.

    PubMed

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  8. Seismic design and engineering research at the U.S. Geological Survey

    USGS Publications Warehouse

    1988-01-01

    The Engineering Seismology Element of the USGS Earthquake Hazards Reduction Program is responsible for the coordination and operation of the National Strong Motion Network to collect, process, and disseminate earthquake strong-motion data; and, the development of improved methodologies to estimate and predict earthquake ground motion.  Instrumental observations of strong ground shaking induced by damaging earthquakes and the corresponding response of man-made structures provide the basis for estimating the severity of shaking from future earthquakes, for earthquake-resistant design, and for understanding the physics of seismologic failure in the Earth's crust.

  9. Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP

    USGS Publications Warehouse

    Huang, M.J.; Shakal, A.F.

    2009-01-01

    The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.

  10. Safe-Taipei a Program Project for Strong Motions, Active Faults, and Earthquakes in the Taipei Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Wang, Jeen-Hwa

    Strong collision between the Eurasian and Philippine Sea Plates causes high seismicity in the Taiwan region, which is often attacked by large earthquakes. Several cities, including three mega-cities, i.e., Taipei, Taichung, and Kaoshung, have been constructed on western Taiwan, where is lying on thick sediments. These cities, with a high-population density, are usually a regional center of culture, economics, and politics. Historically, larger-sized earthquakes, e.g. the 1935 Hsingchu—Taichung earthquake and the 1999 Chi—Chi earthquake, often caused serious damage on the cities. Hence, urban seismology must be one of the main subjects of Taiwan's seismological community. Since 2005, a program project, sponsored by Academia Sinica, has been launched to investigate seismological problems in the Taipei Metropolitan Area. This program project is performed during the 2005—2007 period. The core research subjects are: (1) the deployment of the Taipei Down-hole Seismic Array; (2) the properties of earthquakes and active faults in the area; (3) the seismogenic-zone structures, including the 3-D velocity and Q structures, of the area; (4) the characteristics of strong-motions and sites affects; and (5) strong-motion prediction. In addition to academic goals, the results obtained from the program project will be useful for seismic hazard mitigation not only for the area but also for others.

  11. Acceleration and volumetric strain generated by the Parkfield 2004 earthquake on the GEOS strong-motion array near Parkfield, California

    USGS Publications Warehouse

    Borcherdt, Rodger D.; Johnston, Malcolm J.S.; Dietel, Christopher; Glassmoyer, Gary; Myren, Doug; Stephens, Christopher

    2004-01-01

    An integrated array of 11 General Earthquake Observation System (GEOS) stations installed near Parkfield, CA provided on scale broad-band, wide-dynamic measurements of acceleration and volumetric strain of the Parkfield earthquake (M 6.0) of September 28, 2004. Three component measurements of acceleration were obtained at each of the stations. Measurements of collocated acceleration and volumetric strain were obtained at four of the stations. Measurements of velocity at most sites were on scale only for the initial P-wave arrival. When considered in the context of the extensive set of strong-motion recordings obtained on more than 40 analog stations by the California Strong-Motion Instrumentation Program (Shakal, et al., 2004 http://www.quake.ca.gov/cisn-edc) and those on the dense array of Spudich, et al, (1988), these recordings provide an unprecedented document of the nature of the near source strong motion generated by a M 6.0 earthquake. The data set reported herein provides the most extensive set of near field broad band wide dynamic range measurements of acceleration and volumetric strain for an earthquake as large as M 6 of which the authors are aware. As a result considerable interest has been expressed in these data. This report is intended to describe the data and facilitate its use to resolve a number of scientific and engineering questions concerning earthquake rupture processes and resultant near field motions and strains. This report provides a description of the array, its scientific objectives and the strong-motion recordings obtained of the main shock. The report provides copies of the uncorrected and corrected data. Copies of the inferred velocities, displacements, and Psuedo velocity response spectra are provided. Digital versions of these recordings are accessible with information available through the internet at several locations: the National Strong-Motion Program web site (http://agram.wr.usgs.gov/), the COSMOS Virtual Data Center Web site (http://www.cosmos-eq.org), and the CISN Engineering and Berkeley data centers (http://www.quake.ca.gov/cisn-edc). They are also accessible together with recordings on the GEOS Strong-motion Array near Parkfield, CA since its installation in 1987 through the USGS GEOS web site ( http://nsmp.wr.usgs.gov/GEOS).

  12. Update on the Center for Engineering Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Haddadi, H. R.; Shakal, A. F.; Stephens, C. D.; Oppenheimer, D. H.; Huang, M.; Leith, W. S.; Parrish, J. G.; Savage, W. U.

    2010-12-01

    The U.S. Geological Survey (USGS) and the California Geological Survey (CGS) established the Center for Engineering Strong-Motion Data (CESMD, Center) to provide a single access point for earthquake strong-motion records and station metadata from the U.S. and international strong-motion programs. The Center has operational facilities in Sacramento and Menlo Park, California, to receive, process, and disseminate records through the CESMD web site at www.strongmotioncenter.org. The Center currently is in the process of transitioning the COSMOS Virtual Data Center (VDC) to integrate its functions with those of the CESMD for improved efficiency of operations, and to provide all users with a more convenient one-stop portal to both U.S. and important international strong-motion records. The Center is working with COSMOS and international and U.S. data providers to improve the completeness of site and station information, which are needed to most effectively employ the recorded data. The goal of all these and other new developments is to continually improve access by the earthquake engineering community to strong-motion data and metadata world-wide. The CESMD and its Virtual Data Center (VDC) provide tools to map earthquakes and recording stations, to search raw and processed data, to view time histories and spectral plots, to convert data files formats, and to download data and a variety of information. The VDC is now being upgraded to convert the strong-motion data files from different seismic networks into a common standard tagged format in order to facilitate importing earthquake records and station metadata to the CESMD database. An important new feature being developed is the automatic posting of Internet Quick Reports at the CESMD web site. This feature will allow users, and emergency responders in particular, to view strong-motion waveforms and download records within a few minutes after an earthquake occurs. Currently the CESMD and its Virtual Data Center provide selected strong-motion records from 17 countries. The Center has proved to be significantly useful for providing data to scientists, engineers, policy makers, and emergency response teams around the world.

  13. WHITTIER NARROWS, CALIFORNIA EARTHQUAKE OF OCTOBER 1, 1987-PRELIMINARY ASSESSMENT OF STRONG GROUND MOTION RECORDS.

    USGS Publications Warehouse

    Brady, A.G.; Etheredge, E.C.; Porcella, R.L.

    1988-01-01

    More than 250 strong-motion accelerograph stations were triggered by the Whittier Narrows, California earthquake of 1 October 1987. Considering the number of multichannel structural stations in the area of strong shaking, this set of records is one of the more significant in history. Three networks, operated by the U. S. Geological Survey, the California Division of Mines and Geology, and the University of Southern California produced the majority of the records. The excellent performance of the instruments in these and the smaller arrays is attributable to the quality of the maintenance programs. Readiness for a magnitude 8 event is directly related to these maintenance programs. Prior to computer analysis of the analog film records, a number of important structural resonant modes can be identified, and frequencies and simple mode shapes have been scaled.

  14. Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing

    USGS Publications Warehouse

    Kalkan, Erol; Stephens, Christopher

    2017-02-23

    A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.

  15. Using SW4 for 3D Simulations of Earthquake Strong Ground Motions: Application to Near-Field Strong Motion, Building Response, Basin Edge Generated Waves and Earthquakes in the San Francisco Bay Are

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.

    2016-12-01

    Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.

  16. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    USGS Publications Warehouse

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill gaps in catalogs from regional broadband networks and teleseismic networks.

  17. Unusual downhole and surface free-field records near the Carquinez Strait bridges during the 24 August 2014 Mw6.0 South Napa, California earthquake

    USGS Publications Warehouse

    Çelebi, Mehmet; Ghahari, S. Farid; Taciroglu, Ertugrul

    2015-01-01

    This paper reports the results of Part A of a study of the recorded strong-motion accelerations at the well-instrumented network of the two side-by-side parallel bridges over the Carquinez Strait during the 24 August 2014 (Mw6.0 ) South Napa, Calif. earthquake that occurred at 03:20:44 PDT with epicentral coordinates 38.22N, 122.31W. (http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140824.php, last accessed on October 17, 2014). Both bridges and two boreholes were instrumented by the California Strong motion Instrumentation Program (CSMIP) of California Geological Survey (CGS) (Shakal et al., 2014). A comprehensive comparison of several ground motion prediction equations as they relate to recorded ground motions of the earthquake is provided by Baltay and Boatright (2015).

  18. User manual for the NTS ground motion data base retrieval program: ntsgm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    App, F.N.; Tunnell, T.W.

    1994-05-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and theremore » are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.« less

  19. Enhancement of the national strong-motion network in Turkey

    USGS Publications Warehouse

    Gulkan, Polat; Ceken, U.; Colakoglu, Z.; Ugras, T.; Kuru, T.; Apak, A.; Anderson, J.G.; Sucuoglu, H.; Celebi, M.; Akkar, D.S.; Yazgan, U.; Denizlioglu, A.Z.

    2007-01-01

    Two arrays comprising 20 strong-motion sensors were established in western Turkey. The 14 stations of BYTNet follow a N-S trending line about 65 km in length, normal to strands of the North Anatolian fault that runs between the cities of Bursa and Yalova. Here the dominant character of the potential fault movement is a right-lateral transform slip. The DATNet array, comprising a total of eight stations, is arranged along a 110-km-long E-W trending direction along the Menderes River valley between Denizli and Aydin. (Two stations in this array were incorporated from the existing Turkish national strong-motion network.) This is an extensional tectonic environment, and the network mornitors potential large normal-faulting earthquakes on the faults in the valley. The installation of the arrays was supported by the North Atlantic Treaty Organization (NATO) under its Science for Peace Program. Maintenance and calibration is performed by the General Directorate of Disaster Affairs (GDDA) according to a protocol between Middle East Technical University (METU) and GDDA. Many young engineers and scientists have been trained in network operation and evaluation during the course of the project, and an international workshop dealing with strong-motion instrumentation has been organized as part of the project activities.

  20. TSPP - A Collection of FORTRAN Programs for Processing and Manipulating Time Series

    USGS Publications Warehouse

    Boore, David M.

    2008-01-01

    This report lists a number of FORTRAN programs that I have developed over the years for processing and manipulating strong-motion accelerograms. The collection is titled TSPP, which stands for Time Series Processing Programs. I have excluded 'strong-motion accelerograms' from the title, however, as the boundary between 'strong' and 'weak' motion has become blurred with the advent of broadband sensors and high-dynamic range dataloggers, and many of the programs can be used with any evenly spaced time series, not just acceleration time series. This version of the report is relatively brief, consisting primarily of an annotated list of the programs, with two examples of processing, and a few comments on usage. I do not include a parameter-by-parameter guide to the programs. Future versions might include more examples of processing, illustrating the various parameter choices in the programs. Although these programs have been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy or functioning of the programs and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. The programs are distributed on an 'as is' basis, with no warranty of support from me. These programs were written for my use and are being publically distributed in the hope that others might find them as useful as I have. I would, however, appreciate being informed about bugs, and I always welcome suggestions for improvements to the codes. Please note that I have made little effort to optimize the coding of the programs or to include a user-friendly interface (many of the programs in this collection have been included in the software usdp (Utility Software for Data Processing), being developed by Akkar et al. (personal communication, 2008); usdp includes a graphical user interface). Speed of execution has been sacrificed in favor of a code that is intended to be easy to understand, although on modern computers speed of execution is rarely a problem. I will be pleased if users incorporate portions of my programs into their own applications; I only ask that reference be made to this report as the source of the programs.

  1. Historical Review of Uncommanded Lateral-Directional Motions at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.; Hall, Robert M.

    2003-01-01

    This paper presents the results of a survey of past experiences with uncommanded lateral-directional motions at transonic speeds during specific military aircraft programs. The effort was undertaken to provide qualitative and quantitative information on past airplane programs that might be of use to the participants in the joint NASA/Navy/Air Force Abrupt Wing Stall (AWS) Program. The AWS Program was initiated because of the experiences of the F/A-l8E/F development program, during which unexpected, severe wing-drop motions were encountered by preproduction aircraft at transonic conditions. These motions were judged to be significantly degrading to the primary mission requirements of the aircraft. Although the problem was subsequently solved for the production version of the F/A-l8E/F, a high-level review panel emphasized the poor understanding of such phenomena and issued a strong recommendation to: "Initiate a national research effort to thoroughly and systematically study the wing drop phenomena." A comprehensive, cooperative NASA/Navy/Air Force AWS Program was designed to respond to provide the required technology requirements. As part of the AWS Program, a work element was directed at a historical review of wing-drop experiences in past aircraft development programs at high subsonic and transonic speeds. In particular, information was requested regarding: specific aircraft configurations that exhibited uncommanded motions and the nature of the motions; geometric characteristics of the air- planes; flight conditions involved in occurrences; relevant data, including wind-tunnel, computational, and flight sources; figures of merit used for analyses; and approaches used to alleviate the problem. An attempt was also made to summarize some of the more important lessons learned from past experiences, and to recommend specific research efforts. In addition to providing technical information to assist the AWS research objectives, the study produced fundamental information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.

  2. Historical Review of Uncommanded Lateral-Directional Motions At Transonic Conditions (Invited)

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.; Hall, Robert M.

    2003-01-01

    This paper presents the results of a survey of past experiences with uncommanded lateral-directional motions at transonic speeds during specific military aircraft programs. The effort was undertaken to provide qualitative and quantitative information on past airplane programs that might be of use to the participants in the joint NASA/Navy/Air Force Abrupt Wing Stall (AWS) Program. The AWS Program was initiated because of the experiences of the F/A-18E/F development program, during which unexpected, severe wing-drop motions were encountered by preproduction aircraft at transonic conditions. These motions were judged to be significantly degrading to the primary mission requirements of the aircraft. Although the problem was subsequently solved for the production version of the F/A-l8E/F, a high-level review panel emphasized the poor understanding of such phenomena and issued a strong recommendation to: Initiate a national research effort to thoroughly and systematically study the wing drop phenomena. A comprehensive, cooperative NASA/Navy/Air Force AWS Program was designed to respond to provide the required technology requirements. As part of the AWS Program, a work element was directed at a historical review of wing-drop experiences in past aircraft development programs at high subsonic and transonic speeds. In particular, information was requested regarding: specific aircraft configurations that exhibited uncommanded motions and the nature of the motions; geometric characteristics of the air- planes; flight conditions involved in occurrences; relevant data, including wind-tunnel, computational, and flight sources; figures of merit used for analyses; and approaches used to alleviate the problem. An attempt was also made to summarize some of the more important lessons learned from past experiences, and to recommend specific research efforts. In addition to providing technical information to assist the AWS research objectives, the study produced fundamental information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.

  3. Shear-wave velocity characterization of the USGS Hawaiian strong-motion network on the Island of Hawaii and development of an NEHRP site-class map

    USGS Publications Warehouse

    Wong, Ivan G.; Stokoe, Kenneth; Cox, Brady R.; Yuan, Jiabei; Knudsen, Keith L.; Terra, Fabia; Okubo, Paul G.; Lin, Yin-Cheng

    2011-01-01

    To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, spectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (VS) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. VS profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. VS30 (average VS in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new VS data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.

  4. Seismic Monitoring with NetQuakes: The First 75 in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Vidale, J. E.; Luetgert, J. H.; Malone, S. D.; Delorey, A. A.; Steele, W. P.; Gibbons, D. A.; Walsh, L. K.

    2011-12-01

    NetQuakes accelerographs are relatively inexpensive Internet-aware appliances that we are using as part of our regional seismic monitoring program in the Pacific Northwest Seismic Network (PNSN). To date we have deployed approximately 65 units. By the end of 2011, we will have at least 75 systems sited and operating. The instruments are made by Swiss manufacturer GeoSig, Ltd., and have been obtained by PNSN through several cooperative programs with the US Geological Survey (USGS). The NetQuakes systems have increased the number of strong-motion stations in the Pacific Northwest by ~50%. NetQuakes instruments connect to the Internet via wired or wireless telemetry, obtain accurate timing vie Network Time Protocol, and are designed to be located in the ground floor of houses or small buildings. At PNSN we have concentrated on finding NetQuakes hosts by having technologically savvy homeowners self-identify as a response to news reports about the NetQuakes project. Potential hosts are prioritized by their proximity to target sites provided by a regional panel of experts who studied the region's strong-ground-motion monitoring needs. Recorded waveforms, triggered by strong motion or retrieved from a buffer of continuous data, are transmitted to Menlo Park, and then on to PNSN in Seattle. Data are available with latency of a few minutes to a little over an hour, and are automatically incorporated with the rest of PNSN network data for analysis and the generation of earthquake products. Triggered data may also be viewed by the public via the USGS website, [http://earthquake.usgs.gov/monitoring/netquakes/map/pacnw]. We present examples of ground motion recordings returned to date. Local earthquakes up to M4 (at a distance of ~60 km) reveal interesting patterns of local site effects. The 11 March M9 Tohoku, Japan earthquake produced ground motions recorded on the PNSN accelerographs, including many NetQuakes systems, that reveal the extent and severity of basin-related shaking amplification.

  5. PRISM software—Processing and review interface for strong-motion data

    USGS Publications Warehouse

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-11-28

    Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.

  6. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    NASA Astrophysics Data System (ADS)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network's monitoring capabilities.

  7. Seismic switch for strong motion measurement

    DOEpatents

    Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  8. Seismic switch for strong motion measurement

    DOEpatents

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  9. Towards an integrated European strong motion data distribution

    NASA Astrophysics Data System (ADS)

    Luzi, Lucia; Clinton, John; Cauzzi, Carlo; Puglia, Rodolfo; Michelini, Alberto; Van Eck, Torild; Sleeman, Reinhoud; Akkar, Sinan

    2013-04-01

    Recent decades have seen a significant increase in the quality and quantity of strong motion data collected in Europe, as dense and often real-time and continuously monitored broadband strong motion networks have been constructed in many nations. There has been a concurrent increase in demand for access to strong motion data not only from researchers for engineering and seismological studies, but also from civil authorities and seismic networks for the rapid assessment of ground motion and shaking intensity following significant earthquakes (e.g. ShakeMaps). Aside from a few notable exceptions on the national scale, databases providing access to strong motion data has not appeared to keep pace with these developments. In the framework of the EC infrastructure project NERA (2010 - 2014), that integrates key research infrastructures in Europe for monitoring earthquakes and assessing their hazard and risk, the network activity NA3 deals with the networking of acceleration networks and SM data. Within the NA3 activity two infrastructures are being constructed: i) a Rapid Response Strong Motion (RRSM) database, that following a strong event, automatically parameterises all available on-scale waveform data within the European Integrated waveform Data Archives (EIDA) and makes the waveforms easily available to the seismological community within minutes of an event; and ii) a European Strong Motion (ESM) database of accelerometric records, with associated metadata relevant to earthquake engineering and seismology research communities, using standard, manual processing that reflects the state of the art and research needs in these fields. These two separate repositories form the core infrastructures being built to distribute strong motion data in Europe in order to guarantee rapid and long-term availability of high quality waveform data to both the international scientific community and the hazard mitigation communities. These infrastructures will provide the access to strong motion data in an eventual EPOS seismological service. A working group on Strong Motion data is being created at ORFEUS in 2013. This body, consisting of experts in strong motion data collection, processing and research from across Europe, will provide the umbrella organisation that will 1) have the political clout to negotiate data sharing agreements with strong motion data providers and 2) manage the software during a transition from the end of NERA to the EPOS community. We expect the community providing data to the RRSM and ESM will gradually grow, under the supervision of ORFEUS, and eventually include strong motion data from networks from all European countries that can have an open data policy.

  10. Dynamics of a Two-Link Vehicle in an L-Shaped Corridor Revisited

    NASA Astrophysics Data System (ADS)

    Antonyuk, E. Ya.; Zabuga, A. T.

    2014-03-01

    The kinematics of a two-link mobile robot with three steerable wheels moving in an L-shaped corridor is analyzed. A smooth (with continuous first derivative) path is designed maintaining the optimal maneuverability of the vehicle. The motion of the vehicle along this path is planned. Analytical expressions for the reactions at the contact of the wheels with the ground are given in the general case of motion. The radius of curvature of the programmed path is shown to have a strong influence on the reactions.

  11. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is amore » stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.« less

  12. The California Integrated Seismic Network

    NASA Astrophysics Data System (ADS)

    Hellweg, M.; Given, D.; Hauksson, E.; Neuhauser, D.; Oppenheimer, D.; Shakal, A.

    2007-05-01

    The mission of the California Integrated Seismic Network (CISN) is to operate a reliable, modern system to monitor earthquakes throughout the state; to generate and distribute information in real-time for emergency response, for the benefit of public safety, and for loss mitigation; and to collect and archive data for seismological and earthquake engineering research. To meet these needs, the CISN operates data processing and archiving centers, as well as more than 3000 seismic stations. Furthermore, the CISN is actively developing and enhancing its infrastructure, including its automated processing and archival systems. The CISN integrates seismic and strong motion networks operated by the University of California Berkeley (UCB), the California Institute of Technology (Caltech), and the United States Geological Survey (USGS) offices in Menlo Park and Pasadena, as well as the USGS National Strong Motion Program (NSMP), and the California Geological Survey (CGS). The CISN operates two earthquake management centers (the NCEMC and SCEMC) where statewide, real-time earthquake monitoring takes place, and an engineering data center (EDC) for processing strong motion data and making it available in near real-time to the engineering community. These centers employ redundant hardware to minimize disruptions to the earthquake detection and processing systems. At the same time, dual feeds of data from a subset of broadband and strong motion stations are telemetered in real- time directly to both the NCEMC and the SCEMC to ensure the availability of statewide data in the event of a catastrophic failure at one of these two centers. The CISN uses a backbone T1 ring (with automatic backup over the internet) to interconnect the centers and the California Office of Emergency Services. The T1 ring enables real-time exchange of selected waveforms, derived ground motion data, phase arrivals, earthquake parameters, and ShakeMaps. With the goal of operating similar and redundant statewide earthquake processing systems at both real-time EMCs, the CISN is currently adopting and enhancing the database-centric, earthquake processing and analysis software originally developed for the Caltech/USGS Pasadena TriNet project. Earthquake data and waveforms are made available to researchers and to the public in near real-time through the CISN's Northern and Southern California Eathquake Data Centers (NCEDC and SCEDC) and through the USGS Earthquake Notification System (ENS). The CISN partners have developed procedures to automatically exchange strong motion data, both waveforms and peak parameters, for use in ShakeMap and in the rapid engineering reports which are available near real-time through the strong motion EDC.

  13. Motion Tracker: Camera-Based Monitoring of Bodily Movements Using Motion Silhouettes

    PubMed Central

    Westlund, Jacqueline Kory; D’Mello, Sidney K.; Olney, Andrew M.

    2015-01-01

    Researchers in the cognitive and affective sciences investigate how thoughts and feelings are reflected in the bodily response systems including peripheral physiology, facial features, and body movements. One specific question along this line of research is how cognition and affect are manifested in the dynamics of general body movements. Progress in this area can be accelerated by inexpensive, non-intrusive, portable, scalable, and easy to calibrate movement tracking systems. Towards this end, this paper presents and validates Motion Tracker, a simple yet effective software program that uses established computer vision techniques to estimate the amount a person moves from a video of the person engaged in a task (available for download from http://jakory.com/motion-tracker/). The system works with any commercially available camera and with existing videos, thereby affording inexpensive, non-intrusive, and potentially portable and scalable estimation of body movement. Strong between-subject correlations were obtained between Motion Tracker’s estimates of movement and body movements recorded from the seat (r =.720) and back (r = .695 for participants with higher back movement) of a chair affixed with pressure-sensors while completing a 32-minute computerized task (Study 1). Within-subject cross-correlations were also strong for both the seat (r =.606) and back (r = .507). In Study 2, between-subject correlations between Motion Tracker’s movement estimates and movements recorded from an accelerometer worn on the wrist were also strong (rs = .801, .679, and .681) while people performed three brief actions (e.g., waving). Finally, in Study 3 the within-subject cross-correlation was high (r = .855) when Motion Tracker’s estimates were correlated with the movement of a person’s head as tracked with a Kinect while the person was seated at a desk (Study 3). Best-practice recommendations, limitations, and planned extensions of the system are discussed. PMID:26086771

  14. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  15. Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake

    NASA Astrophysics Data System (ADS)

    Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus

    2014-05-01

    High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.

  16. Damage assessment of RC buildings subjected to the different strong motion duration

    NASA Astrophysics Data System (ADS)

    Mortezaei, Alireza; mohajer Tabrizi, Mohsen

    2015-07-01

    An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.

  17. Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)

    NASA Astrophysics Data System (ADS)

    Pavlenko, Olga V.

    2016-07-01

    To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.

  18. Atypical soil hardening during the Tohoku earthquake of March 11, 2011 ( M w = 9.0)

    NASA Astrophysics Data System (ADS)

    Pavlenko, O. V.

    2017-10-01

    Based on the records of KiK-net vertical arrays, models of soil behavior down to depths of 100-200 m in the near-fault zones during the Tohoku earthquake are examined. In contrast to the regular pattern observed during strong earthquakes, soft soils have not broadly demonstrated nonlinear behavior, or a reduction (with the onset of strong motions) and recovery (after strong motions finished) of the shear modulus in soil layers. At the stations where anomalously high peak ground accelerations were recorded (PGA > 1g), the values of the shear modulus in soil layers increased with the onset of strong motions and reached a maximum when motions were the most intensive, which indicated hardening of soils. Soil behavior was close to linear, here. The values of the shear moduli decrease along with a decrease in intensity of strong ground motions, and at soft soil stations, this was accompanied by a stepwise decrease in the frequency of motion.

  19. Java Programs for Using Newmark's Method and Simplified Decoupled Analysis to Model Slope Performance During Earthquakes

    USGS Publications Warehouse

    Jibson, Randall W.; Jibson, Matthew W.

    2003-01-01

    Landslides typically cause a large proportion of earthquake damage, and the ability to predict slope performance during earthquakes is important for many types of seismic-hazard analysis and for the design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane provides a useful method for predicting approximate landslide displacements. Newmark's method estimates the displacement of a potential landslide block as it is subjected to earthquake shaking from a specific strong-motion record (earthquake acceleration-time history). A modification of Newmark's method, decoupled analysis, allows modeling landslides that are not assumed to be rigid blocks. This open-file report is available on CD-ROM and contains Java programs intended to facilitate performing both rigorous and simplified Newmark sliding-block analysis and a simplified model of decoupled analysis. For rigorous analysis, 2160 strong-motion records from 29 earthquakes are included along with a search interface for selecting records based on a wide variety of record properties. Utilities are available that allow users to add their own records to the program and use them for conducting Newmark analyses. Also included is a document containing detailed information about how to use Newmark's method to model dynamic slope performance. This program will run on any platform that supports the Java Runtime Environment (JRE) version 1.3, including Windows, Mac OSX, Linux, Solaris, etc. A minimum of 64 MB of available RAM is needed, and the fully installed program requires 400 MB of disk space.

  20. Rrsm: The European Rapid Raw Strong-Motion Database

    NASA Astrophysics Data System (ADS)

    Cauzzi, C.; Clinton, J. F.; Sleeman, R.; Domingo Ballesta, J.; Kaestli, P.; Galanis, O.

    2014-12-01

    We introduce the European Rapid Raw Strong-Motion database (RRSM), a Europe-wide system that provides parameterised strong motion information, as well as access to waveform data, within minutes of the occurrence of strong earthquakes. The RRSM significantly differs from traditional earthquake strong motion dissemination in Europe, which has focused on providing reviewed, processed strong motion parameters, typically with significant delays. As the RRSM provides rapid open access to raw waveform data and metadata and does not rely on external manual waveform processing, RRSM information is tailored to seismologists and strong-motion data analysts, earthquake and geotechnical engineers, international earthquake response agencies and the educated general public. Access to the RRSM database is via a portal at http://www.orfeus-eu.org/rrsm/ that allows users to query earthquake information, peak ground motion parameters and amplitudes of spectral response; and to select and download earthquake waveforms. All information is available within minutes of any earthquake with magnitude ≥ 3.5 occurring in the Euro-Mediterranean region. Waveform processing and database population are performed using the waveform processing module scwfparam, which is integrated in SeisComP3 (SC3; http://www.seiscomp3.org/). Earthquake information is provided by the EMSC (http://www.emsc-csem.org/) and all the seismic waveform data is accessed at the European Integrated waveform Data Archive (EIDA) at ORFEUS (http://www.orfeus-eu.org/index.html), where all on-scale data is used in the fully automated processing. As the EIDA community is continually growing, the already significant number of strong motion stations is also increasing and the importance of this product is expected to also increase. Real-time RRSM processing started in June 2014, while past events have been processed in order to provide a complete database back to 2005.

  1. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  2. Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan; McDonald, Adrian; Rack, Wolfgang

    2016-04-01

    Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.

  3. Analysis of Earthquake Recordings Obtained from the Seafloor Earthquake Measurement System (SEMS) Instruments Deployed off the Coast of Southern California

    USGS Publications Warehouse

    Boore, D.M.; Smith, C.E.

    1999-01-01

    For more than 20 years, a program has been underway to obtain records of earthquake shaking on the seafloor at sites offshore of southern California, near oil platforms. The primary goal of the program is to obtain data that can help determine if ground motions at offshore sites are significantly different than those at onshore sites; if so, caution may be necessary in using onshore motions as the basis for the seismic design of oil platforms. We analyze data from eight earthquakes recorded at six offshore sites; these are the most important data recorded on these stations to date. Seven of the earthquakes were recorded at only one offshore station; the eighth event was recorded at two sites. The earthquakes range in magnitude from 4.7 to 6.1. Because of the scarcity of multiple recordings from any one event, most of the analysis is based on the ratio of spectra from vertical and horizontal components of motion. The results clearly show that the offshore motions have very low vertical motions compared to those from an average onshore site, particularly at short periods. Theoretical calculations find that the water layer has little effect on the horizontal components of motion but that it produces a strong spectral null on the vertical component at the resonant frequency of P waves in the water layer. The vertical-to-horizontal ratios for a few selected onshore sites underlain by relatively low shear-wave velocities are similar to the ratios from offshore sites for frequencies less than about one-half the water layer P-wave resonant frequency, suggesting that the shear-wave velocities beneath a site are more important than the water layer in determining the character of the ground motions at lower frequencies.

  4. A Generalized-Compliant-Motion Primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1993-01-01

    Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.

  5. Engineering applications of strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Somerville, Paul

    1993-02-01

    The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the design response spectra for crustal earthquakes at a power plant site in California and for subduction earthquakes in the Seattle-Portland region. We also demonstrate the use of simulation methods for modeling the attenuation of strong ground motion, and show evidence of the effect of critical reflections from the lower crust in causing the observed flattening of the attenuation of strong ground motion from the 1988 Saguenay, Quebec, and 1989 Loma Prieta earthquakes.

  6. Real time numerical shake prediction incorporating attenuation structure: a case for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Ogiso, M.; Hoshiba, M.; Shito, A.; Matsumoto, S.

    2016-12-01

    Needless to say, heterogeneous attenuation structure is important for ground motion prediction, including earthquake early warning, that is, real time ground motion prediction. Hoshiba and Ogiso (2015, AGU Fall meeting) showed that the heterogeneous attenuation and scattering structure will lead to earlier and more accurate ground motion prediction in the numerical shake prediction scheme proposed by Hoshiba and Aoki (2015, BSSA). Hoshiba and Ogiso (2015) used assumed heterogeneous structure, and we discuss the effect of them in the case of 2016 Kumamoto Earthquake, using heterogeneous structure estimated by actual observation data. We conducted Multiple Lapse Time Window Analysis (Hoshiba, 1993, JGR) to the seismic stations located on western part of Japan to estimate heterogeneous attenuation and scattering structure. The characteristics are similar to the previous work of Carcole and Sato (2010, GJI), e.g. strong intrinsic and scattering attenuation around the volcanoes located on the central part of Kyushu, and relatively weak heterogeneities in the other area. Real time ground motion prediction simulation for the 2016 Kumamoto Earthquake was conducted using the numerical shake prediction scheme with 474 strong ground motion stations. Comparing the snapshot of predicted and observed wavefield showed a tendency for underprediction around the volcanic area in spite of the heterogeneous structure. These facts indicate the necessity of improving the heterogeneous structure for the numerical shake prediction scheme.In this study, we used the waveforms of Hi-net, K-NET, KiK-net stations operated by the NIED for estimating structure and conducting ground motion prediction simulation. Part of this study was supported by the Earthquake Research Institute, the University of Tokyo cooperative research program and JSPS KAKENHI Grant Number 25282114.

  7. Borehole P- and S-wave velocity at thirteen stations in Southern California

    USGS Publications Warehouse

    Gibbs, James F.; Boore, David M.; Tinsley, John C.; Mueller, Charles S.

    2001-01-01

    The U.S. Geological Survey (USGS), as part of a program to acquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g., Gibbs et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California, and one is located in San Bernardino, California. Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG), and Southwestern Academy (SWA) recorded significant aftershock data. These portable sites, with the exception of Santa Anita Golf Course, were co-sited with strong-motion recorders. Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (partially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame. Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples was obtained from the two 90-meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers et al., 1998). No drill samples or cuttings were obtained from the other six sites, but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above. The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake (ML = 5.9), making it important from a scientific and engineering prospective (Brady et al., 1988; Shakal et al., 1988).

  8. Report on progress at the Center for Engineering Strong Motion Data (CESMD)

    USGS Publications Warehouse

    Haddadi, H.; Shakal, A.; Huang, M.; Parrish, J.; Stephens, C.; Savage, William U.; Leith, William S.

    2012-01-01

    The CESMD now provides strong-motion records from lower magnitude (

  9. Ground Motions Due to Earthquakes on Creeping Faults

    NASA Astrophysics Data System (ADS)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  10. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.

  11. Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.; Desmarais, R. N.

    1984-01-01

    A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.

  12. Numerical Simulation of Strong Ground Motion at Mexico City:A Hybrid Approach for Efficient Evaluation of Site Amplification and Path Effects for Different Types of Earthquakes

    NASA Astrophysics Data System (ADS)

    Cruz, H.; Furumura, T.; Chavez-Garcia, F. J.

    2002-12-01

    The estimation of scenarios of the strong ground motions caused by future great earthquakes is an important problem in strong motion seismology. This was pointed out by the great 1985 Michoacan earthquake, which caused a great damage in Mexico City, 300 km away from the epicenter. Since the seismic wavefield is characterized by the source, path and site effects, the pattern of strong motion damage from different types of earthquakes should differ significantly. In this study, the scenarios for intermediate-depth normal-faulting, shallow-interplate thrust faulting, and crustal earthquakes have been estimated using a hybrid simulation technique. The character of the seismic wavefield propagating from the source to Mexico City for each earthquake was first calculated using the pseudospectral method for 2D SH waves. The site amplifications in the shallow structure of Mexico City are then calculated using the multiple SH wave reverberation theory. The scenarios of maximum ground motion for both inslab and interplate earthquakes obtained by the simulation show a good agreement with the observations. This indicates the effectiveness of the hybrid simulation approach to investigate the strong motion damage for future earthquakes.

  13. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  14. Options for the Future of the US National Strong-Motion Program

    USGS Publications Warehouse

    ,

    1997-01-01

    This report constitutes the requested 'Options Document'. This report considers three options. Option I assumes a constant level of financial support for Operating Expenses (OE) with not additional personnel support. Option II assumes a slight increase in OE support of $150K for FY 99 and beyond. Option III considers the role that a NSMP must play if the nation's urgent need to record the main earthquake at locations of significance for society is to be met. Two parts of Option III are considered. The first part of this option, termed Option III A, considers the role that strong-motion recording in and near man-made structures must play if a near-real time hazard initiative is to be implemented in the United States; The second part of Option III; termed Option III B, considers the scope of a NSMP needed to address society's needs to record the main earthquake in locations of significance for future public earthquake safety.

  15. Strong-motion data from the two Pingtung, Taiwan, earthquakes of 26 December 2006

    USGS Publications Warehouse

    Wu, C.-F.; Lee, W.H.K.; Boore, D.M.

    2008-01-01

    1016 strong-motion records at 527 free-field stations and 131 records at 42 strong-motion arrays at buildings and bridges were obtained for the Pingtung earthquake doublet from the Taiwan Central Weather Bureau's dense, digital strong-motion network. We carried out standard processing of these strong-motion records at free-field stations. A data set, including the originally recorded files, processed data files, and supporting software and information, is archived online http:// tecdc.earth.sinica.edu.tw/data/EQ2006Pingtung/. We have not yet completed the processing of the strong-motion array data at buildings and bridges. However, some preliminary results and the strong-motion array data recorded at the second nearest instrumented building to the Pingtung earthquake doublet are shown. This paper is intended to document our data processing procedures and the online archived data files, so that researchers can efficiently use the data. We also include two preliminary analyses: (1) a comparison of ground motions recorded by multiple accelerographs at a common site, the TAP 117 station in Taipei, and (2) attenuation of the horizontal ground motions (peak acceleration and response spectra at periods of 0.2, 1.0, and 3.0 s) with respect to distance. Our comparison study of multiple recordings at TAP 117 indicates that waveform coherence among 20- and 24-bit accelerograph records is much higher as compared to records from 16-bit or 12-bit accelerographs, suggesting that the former are of better quality. For the 20- and 24-bit accelerographs, waveform coherence is nearly 1 over the frequency range 1 to 8 Hz for all components, and is greater than about 0.9 from 8 to 20 Hz for the horizontal component, but only from 8 to 12 Hz for the vertical component. Plots of pseudo-acceleration response spectra (PSA) as a function of distance, however, show no clear indication for a difference related to the performance level of the accelerographs. The ground-motions of the first event (Mw = 7.0) are comparable, or even somewhat lower, than those from the smaller second event (Mw = 6.9), consistent with the relative difference of the local magnitudes (ML = 6.96 and 6.99 for the first and second events, respectively). The ground motions from the first event are generally lower than those predicted from equations based on other in-slab subduction earthquakes, whereas the ground motions from the second event are closer to the predictions. Ground-motions for soil sites are generally larger than those from rock sites.

  16. Algorithm for constructing the programmed motion of a bounding vehicle for the flight phase

    NASA Technical Reports Server (NTRS)

    Lapshin, V. V.

    1979-01-01

    The construction of the programmed motion of a multileg bounding vehicle in the flight was studied. An algorithm is given for solving the boundary value problem for constructing this programmed motion. If the motion is shown to be symmetrical, a simplified use of the algorithm can be applied. A method is proposed for nonimpact of the legs during lift-off of the vehicle, and for softness at touchdown. Tables are utilized to construct this programmed motion over a broad set of standard motion conditions.

  17. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    NASA Astrophysics Data System (ADS)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available: see fulltext.

  18. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.

  19. Source parameters of the 2013 Lushan, Sichuan, Ms7.0 earthquake and estimation of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhou, L.; Liu, J.

    2013-12-01

    Abstract: The April 20, 2013 Ms 7.0 earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The Lushan earthquake caused a great of loss of property and 196 deaths. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process and calculated source spectral parameters, estimated the strong ground motion in the near-fault field based on the Brune's circle model at first. A dynamical composite source model (DCSM) has been developed further to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Based on the simulated results of the near-fault strong ground motion, described the intensity distribution of the Lushan earthquake field. The simulated intensity indicated that, the maximum intensity value is IX, and region with and above VII almost 16,000km2, which is consistence with observation intensity published online by China Earthquake Administration (CEA) on April 25. Moreover, the numerical modeling developed in this study has great application in the strong ground motion prediction and intensity estimation for the earthquake rescue purpose. In fact, the estimation methods based on the empirical relationship and numerical modeling developed in this study has great application in the strong ground motion prediction for the earthquake source process understand purpose. Keywords: Lushan, Ms7.0 earthquake; near-fault strong ground motion; DCSM; simulated intensity

  20. Model-based control strategies for systems with constraints of the program type

    NASA Astrophysics Data System (ADS)

    Jarzębowska, Elżbieta

    2006-08-01

    The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.

  1. Shear-wave velocity compilation for Northridge strong-motion recording sites

    USGS Publications Warehouse

    Borcherdt, Roger D.; Fumal, Thomas E.

    2002-01-01

    Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.

  2. Automated quantification of lumbar vertebral kinematics from dynamic fluoroscopic sequences

    NASA Astrophysics Data System (ADS)

    Camp, Jon; Zhao, Kristin; Morel, Etienne; White, Dan; Magnuson, Dixon; Gay, Ralph; An, Kai-Nan; Robb, Richard

    2009-02-01

    We hypothesize that the vertebra-to-vertebra patterns of spinal flexion and extension motion of persons with lower back pain will differ from those of persons who are pain-free. Thus, it is our goal to measure the motion of individual lumbar vertebrae noninvasively from dynamic fluoroscopic sequences. Two-dimensional normalized mutual information-based image registration was used to track frame-to-frame motion. Software was developed that required the operator to identify each vertebra on the first frame of the sequence using a four-point "caliper" placed at the posterior and anterior edges of the inferior and superior end plates of the target vertebrae. The program then resolved the individual motions of each vertebra independently throughout the entire sequence. To validate the technique, 6 cadaveric lumbar spine specimens were potted in polymethylmethacrylate and instrumented with optoelectric sensors. The specimens were then placed in a custom dynamic spine simulator and moved through flexion-extension cycles while kinematic data and fluoroscopic sequences were simultaneously acquired. We found strong correlation between the absolute flexionextension range of motion of each vertebra as recorded by the optoelectric system and as determined from the fluoroscopic sequence via registration. We conclude that this method is a viable way of noninvasively assessing twodimensional vertebral motion.

  3. Application of a net-based baseline correction scheme to strong-motion records of the 2011 Mw 9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.

    2014-06-01

    The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.

  4. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers

    PubMed Central

    2017-01-01

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers. PMID:28392603

  5. Near-Fault Ground Motion Velocity Pulses Input and Its Non-Stationary Characteristics from 2015 Gorkha Nepal Mw7.8 Earthquake KATNP Station

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wen, Zengping; Wang, Fang

    2017-04-01

    Using near-fault strong motions from Nepal Mw7.8 earthquake at KATNP station in the city center of Kathmandu, velocity-pulse and non-stationary characteristics of the strong motions are shown, and the reason and potential effect on earthquake damage for intense non-stationary characteristics of near fault velocity-pulse strong motions are mainly studied. The observed strong ground motions of main shock were collected from KATNP station located in 76 kilometers south-east away from epicenter along with forward direction of the rupture fault at an inter-montane basin of the Himalaya. Large velocity pulse show the period of velocity pulse reach up to 6.6s and peak ground velocity of the pulse ground motion is 120 cm/s. Compared with the median spectral acceleration value of NGA prediction equation, significant long-period amplification effect due to velocity pulse is detected at period more than 3.2s. Wavelet analysis shows that the two horizontal component of ground motion is intensely concentration of energy in a short time range of 25-38s and period range of 4-8s. The maximum wavelet-coefficient of horizontal component is 2455, which is about four time of vertical component of strong ground motion. On the perspective of this study, large velocity pulses are identified from two orthogonal components using wavelet method. Intense non-stationary characteristics amplitude and frequency content are mainly caused by site conditions and fault rupture mechanism, which will help to understand the damage evaluation and serve local seismic design.

  6. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  7. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers [Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymers].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less

  8. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers [Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymers].

    DOE PAGES

    Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.; ...

    2017-02-13

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less

  9. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    NASA Astrophysics Data System (ADS)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  10. Slow-motion scattering and coalescence of maximally charged black holes

    NASA Technical Reports Server (NTRS)

    Ferrell, Robert C.; Eardley, Douglas M.

    1987-01-01

    Systems consisting of several maximally charged, nonrotating black holes ('Reissner-Nordstrom' black holes) interacting with one another are studied. An effective action for the system in the slow-motion, fully strong-field regime is presented. An exact calculation of black-hole-black-hole scattering and coalescence in the slow-motion (but strong-field) limit is given.

  11. On the local well-posedness of Lovelock and Horndeski theories

    NASA Astrophysics Data System (ADS)

    Papallo, Giuseppe; Reall, Harvey S.

    2017-08-01

    We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.

  12. Processing and review interface for strong motion data (PRISM) software, version 1.0.0—Methodology and automated processing

    USGS Publications Warehouse

    Jones, Jeanne; Kalkan, Erol; Stephens, Christopher

    2017-02-23

    A continually increasing number of high-quality digital strong-motion records from stations of the National Strong-Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the United States, call for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong-motion records. When used without AQMS, PRISM provides batch-processing capabilities. The PRISM version 1.0.0 is platform independent (coded in Java), open source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine and a review tool that has a graphical user interface (GUI) to manually review, edit, and process records. To facilitate use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible in order to accommodate new processing techniques. This report provides a thorough description and examples of the record processing features supported by PRISM. All the computing features of PRISM have been thoroughly tested.

  13. Estimating Intensities and/or Strong Motion Parameters Using Civilian Monitoring Videos: The May 12, 2008, Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Wu, Zhongliang; Jiang, Changsheng; Xia, Min

    2011-05-01

    One of the important issues in macroseismology and engineering seismology is how to get as much intensity and/or strong motion data as possible. We collected and studied several cases in the May 12, 2008, Wenchuan earthquake, exploring the possibility of estimating intensities and/or strong ground motion parameters using civilian monitoring videos which were deployed originally for security purposes. We used 53 video recordings in different places to determine the intensity distribution of the earthquake, which is shown to be consistent with the intensity distribution mapped by field investigation, and even better than that given by the Community Internet Intensity Map. In some of the videos, the seismic wave propagation is clearly visible, and can be measured with the reference of some artificial objects such as cars and/or trucks. By measuring the propagating wave, strong motion parameters can be roughly but quantitatively estimated. As a demonstration of this `propagating-wave method', we used a series of civilian videos recorded in different parts of Sichuan and Shaanxi and estimated the local PGAs. The estimate is compared with the measurement reported by strong motion instruments. The result shows that civilian monitoring video provide a practical way of collecting and estimating intensity and/or strong motion parameters, having the advantage of being dynamic, and being able to be played back for further analysis, reflecting a new trend for macroseismology in our digital era.

  14. Neural Models: An Option to Estimate Seismic Parameters of Accelerograms

    NASA Astrophysics Data System (ADS)

    Alcántara, L.; García, S.; Ovando-Shelley, E.; Macías, M. A.

    2014-12-01

    Seismic instrumentation for recording strong earthquakes, in Mexico, goes back to the 60´s due the activities carried out by the Institute of Engineering at Universidad Nacional Autónoma de México. However, it was after the big earthquake of September 19, 1985 (M=8.1) when the project of seismic instrumentation assumes a great importance. Currently, strong ground motion networks have been installed for monitoring seismic activity mainly along the Mexican subduction zone and in Mexico City. Nevertheless, there are other major regions and cities that can be affected by strong earthquakes and have not yet begun their seismic instrumentation program or this is still in development.Because of described situation some relevant earthquakes (e.g. Huajuapan de León Oct 24, 1980 M=7.1, Tehuacán Jun 15, 1999 M=7 and Puerto Escondido Sep 30, 1999 M= 7.5) have not been registered properly in some cities, like Puebla and Oaxaca, and that were damaged during those earthquakes. Fortunately, the good maintenance work carried out in the seismic network has permitted the recording of an important number of small events in those cities. So in this research we present a methodology based on the use of neural networks to estimate significant duration and in some cases the response spectra for those seismic events. The neural model developed predicts significant duration in terms of magnitude, epicenter distance, focal depth and soil characterization. Additionally, for response spectra we used a vector of spectral accelerations. For training the model we selected a set of accelerogram records obtained from the small events recorded in the strong motion instruments installed in the cities of Puebla and Oaxaca. The final results show that neural networks as a soft computing tool that use a multi-layer feed-forward architecture provide good estimations of the target parameters and they also have a good predictive capacity to estimate strong ground motion duration and response spectra.

  15. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are similar to those reported in regional and global catalogs. As the network expands, it will become increasingly important to provide volunteers access to the data they collect, both to encourage continued participation in the network and to improve community engagement in scientific discourse related to seismic hazard. In the future, we hope to provide access to both images and raw data from seismograms in formats accessible to the general public through existing seismic data archives (e.g. IRIS, SCSN) and/or through the QCN project website. While encouraging community participation in seismic data collection, we can extend the capabilities of existing seismic networks to rapidly detect and characterize strong motion events. In addition, the dense waveform observations may provide high-resolution ground shaking information to improve source imaging and seismic risk assessment.

  16. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    NASA Astrophysics Data System (ADS)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  17. Comparison of damping in buildings under low-amplitude and strong motions

    USGS Publications Warehouse

    Celebi, M.

    1996-01-01

    This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.

  18. Strong motion observations and recordings from the great Wenchuan Earthquake

    USGS Publications Warehouse

    Li, X.; Zhou, Z.; Yu, H.; Wen, R.; Lu, D.; Huang, M.; Zhou, Y.; Cu, J.

    2008-01-01

    The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal. ?? 2008 Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag GmbH.

  19. A short note on ground-motion recordings from the M 7.9 Wenchuan, China, earthquake and ground-motion prediction equations in the Central and Eastern United States

    USGS Publications Warehouse

    Wang, Z.; Lu, M.

    2011-01-01

    The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.

  20. Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.

    2016-12-01

    During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.

  1. PRISM, Processing and Review Interface for Strong Motion Data Software

    NASA Astrophysics Data System (ADS)

    Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.

    2016-12-01

    A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been thoroughly tested.

  2. Andean tectonics: Implications for Satellite Geodesy

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  3. Neural representations of kinematic laws of motion: evidence for action-perception coupling.

    PubMed

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-12-18

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.

  4. Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India

    NASA Astrophysics Data System (ADS)

    Gupta, I. D.

    2018-03-01

    This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.

  5. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Zhao, Fengfan; Meng, Lingyuan

    2016-04-01

    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  6. Strong ground motion prediction using virtual earthquakes.

    PubMed

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  7. Strong motion from surface waves in deep sedimentary basins

    USGS Publications Warehouse

    Joyner, W.B.

    2000-01-01

    It is widely recognized that long-period surface waves generated by conversion of body waves at the boundaries of deep sedimentary basins make an important contribution to strong ground motion. The factors controlling the amplitude of such motion, however, are not widely understood. A study of pseudovelocity response spectra of strong-motion records from the Los Angeles Basin shows that late-arriving surface waves with group velocities of about 1 km/sec dominate the ground motion for periods of 3 sec and longer. The rate of amplitude decay for these waves is less than for the body waves and depends significantly on period, with smaller decay for longer periods. The amplitude can be modeled by the equation log y = f(M, RE) + c + bRB where y is the pseudovelocity response, f(M, RE) is an attenuation relation based on a general strong-motion data set, M is moment magnitude, RE is the distance from the source to the edge of the basin, RB is the distance from the edge of the basin to the recording site, and b and c are parameters fit to the data. The equation gives values larger by as much as a factor of 3 than given by the attenuation relationships based on general strong-motion data sets for the same source-site distance. It is clear that surface waves need to be taken into account in the design of long-period structures in deep sedimentary basins. The ground-motion levels specified by the earthquake provisions of current building codes, in California at least, accommodate the long-period ground motions from basin-edge-generated surface waves for periods of 5 sec and less and earthquakes with moment magnitudes of 7.5 or less located more than 20 km outside the basin. There may be problems at longer periods and for earthquakes located closer to the basin edge. The results of this study suggest that anelastic attenuation may need to be included in attempts to model long-period motion in deep sedimentary basins. To obtain better data on surface waves in the future, operators of strong-motion networks should take special care for the faithful recording of the long-period components of ground motion. It will also be necessary to insure that at least some selected recorders, once triggered, continue to operate for a time sufficient for the surface waves to traverse the basin. With velocities of about 1 km/sec, that time will be as long as 100 sec for a basin the size of the Los Angeles Basin.

  8. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less

  9. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    DOE PAGES

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; ...

    2017-03-06

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less

  10. Characteristics of strong motions and damage implications of M S6.5 Ludian earthquake on August 3, 2014

    NASA Astrophysics Data System (ADS)

    Xu, Peibin; Wen, Ruizhi; Wang, Hongwei; Ji, Kun; Ren, Yefei

    2015-02-01

    The Ludian County of Yunnan Province in southwestern China was struck by an M S6.5 earthquake on August 3, 2014, which was another destructive event following the M S8.0 Wenchuan earthquake in 2008, M S7.1 Yushu earthquake in 2010, and M S7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the predicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.

  11. The Role of Flow Reversals in Transition and Relaminarization of Pulsating Flows

    NASA Astrophysics Data System (ADS)

    Gomez, Joan; Goushcha, Oleg; Andreopoulos, Yiannis

    2017-11-01

    Pulsating flows, such as the flows in cardiovascular systems, exhibit a cyclic behavior of the axial velocity. They are of particular interest because at different times of the cycle the flow is laminar or turbulent, depending on the local Reynolds number. An experiment was setup to replicate the cyclic motion of the fluid in a clear, rigid tube. The flow was driven by a piston-motor assembly controlled by a computer. The motion of the piston was programmed to induce a forward-only cyclic motion of the mean flow by adjusting the amplitude of the longitudinal velocity pulsation in relation to the mean velocity. Time-Resolved Particle Image Velocimetry (TR-PIV) techniques were used to acquire velocity data on the plane of a CW laser illumination sheet. Flow reversal occurs first near the walls and the corresponding strong shearing induces transition to turbulence where the rest of the flow remains laminar. The behavior of reversed flow was analyzed under various Reynolds and Womersley numbers.

  12. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.

    PubMed

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno

    2016-11-01

    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  13. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2016-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.

  14. Renewal of K-NET (National Strong-motion Observation Network of Japan)

    NASA Astrophysics Data System (ADS)

    Kunugi, T.; Fujiwara, H.; Aoi, S.; Adachi, S.

    2004-12-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) operates K-NET (Kyoshin Network), the national strong-motion observation network, which evenly covers the whole of Japan at intervals of 25 km on average. K-NET was constructed after the Hyogoken-Nambu (Kobe) earthquake in January 1995, and began operation in June 1996. Thus, eight years have passed since K-NET started, and large amounts of strong-motion records have been obtained. As technology has progressed and new technologies have become available, NIED has developed a new K-NET with improved functionality. New seismographs have been installed at 443 observatories mainly in southwestern Japan where there is a risk of strong-motion due to the Nankai and Tonankai earthquakes. The new system went into operation in June 2004, although seismographs have still to be replaced in other areas. The new seismograph (K-NET02) consists of a sensor module, a measurement module and a communication module. A UPS, a GPS antenna and a dial-up router are also installed together with a K-NET02. A triaxial accelerometer, FBA-ES-DECK (Kinemetrics Inc.) is built into the sensor module. The measurement module functions as a conventional strong-motion seismograph for high-precision observation. The communication module can perform sophisticated processes, such as calculation of the Japan Meteorological Agency (JMA) seismic intensity, continuous recording of data and near real-time data transmission. It connects to the Data Management Center (DMC) using an ISDN line. In case of a power failure, the measurement module can control the power supply to the router and the communication module to conserve battery power. One of the main features of K-NET02 is a function for processing JMA seismic intensity. K-NET02 functions as a proper seismic intensity meter that complies with the official requirements of JMA, although the old strong-motion seismograph (K-NET95) does not calculate seismic intensity. Another feature is near real-time data transmission. When a K-NET02 detects a strong-motion, it can automatically connect to the DMC in 2 to 5 seconds and then transmits seismic data. Furthermore, the full-scale is improved from 2000 gals to 4000 gals and the dynamic range of AD conversion is more than 132 dB. Strong-motion records of the new K-NET are available at: http://www.kyoshin.bosai.go.jp/

  15. Assessing the Utility of Strong Motion Data to Determine Static Ground Displacements During Great Megathrust Earthquakes: Tohoku and Iquique

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.

    2014-12-01

    Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the rupture, supplementing teleseismic data and improving resolution of the location and timing of moment in finite fault models.

  16. SMSIM--Fortran programs for simulating ground motions from earthquakes: Version 2.0.--a revision of OFR 96-80-A

    USGS Publications Warehouse

    Boore, David M.

    2000-01-01

    A simple and powerful method for simulating ground motions is based on the assumption that the amplitude of ground motion at a site can be specified in a deterministic way, with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers, and it is widely used to predict ground motions for regions of the world in which recordings of motion from damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms that can be used to predict ground motions. SMSIM is a set of programs for simulating ground motions based on the stochastic method. This Open-File Report is a revision of an earlier report (Boore, 1996) describing a set of programs for simulating ground motions from earthquakes. The programs are based on modifications I have made to the stochastic method first introduced by Hanks and McGuire (1981). The report contains source codes, written in Fortran, and executables that can be used on a PC. Programs are included both for time-domain and for random vibration simulations. In addition, programs are included to produce Fourier amplitude spectra for the models used in the simulations and to convert shear velocity vs. depth into frequency-dependent amplification. The revision to the previous report is needed because the input and output files have changed significantly, and a number of new programs have been included in the set.

  17. Processing of strong-motion accelerograms: Needs, options and consequences

    USGS Publications Warehouse

    Boore, D.M.; Bommer, J.J.

    2005-01-01

    Recordings from strong-motion accelerographs are of fundamental importance in earthquake engineering, forming the basis for all characterizations of ground shaking employed for seismic design. The recordings, particularly those from analog instruments, invariably contain noise that can mask and distort the ground-motion signal at both high and low frequencies. For any application of recorded accelerograms in engineering seismology or earthquake engineering, it is important to identify the presence of this noise in the digitized time-history and its influence on the parameters that are to be derived from the records. If the parameters of interest are affected by noise then appropriate processing needs to be applied to the records, although it must be accepted from the outset that it is generally not possible to recover the actual ground motion over a wide range of frequencies. There are many schemes available for processing strong-motion data and it is important to be aware of the merits and pitfalls associated with each option. Equally important is to appreciate the effects of the procedures on the records in order to avoid errors in the interpretation and use of the results. Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application. ?? 2004 Elsevier Ltd. All rights reserved.

  18. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  19. Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.

  20. Rupture process and strong ground motions of the 2007 Niigataken Chuetsu-Oki earthquake -Directivity pulses striking the Kashiwazaki-Kariwa Nuclear Power Plant-

    NASA Astrophysics Data System (ADS)

    Irikura, K.; Kagawa, T.; Miyakoshi, K.; Kurahashi, S.

    2007-12-01

    The Niigataken Chuetsu-Oki earthquake occurred on July 16, 2007, northwest-off Kashiwazaki in Niigata Prefecture, Japan, causing severe damages of ten people dead, about 1300 injured, about 1000 collapsed houses and major lifelines suspended. In particular, strong ground motions from the earthquake struck the Kashiwazaki-Kariwa nuclear power plant (hereafter KKNPP), triggering a fire at an electric transformer and other problems such as leakage of water containing radioactive materials into air and the sea, although the radioactivity levels of the releases are as low as those of the radiation which normal citizens would receive from the natural environment in a year. The source mechanism of this earthquake is a reverse fault, but whether it is the NE-SW strike and NW dip or the SW-NE strike and SE dip are still controversial from the aftershock distribution and geological surveys near the source. Results of the rupture processes inverted by using the GPS and SAR data, tsunami data and teleseismic data so far did not succeed in determining which fault planes moved. Strong ground motions were recorded at about 390 stations by the K-NET of NIED including the stations very close to the source area. There was the KKNPP which is probably one of buildings and facilities closest to the source area. They have their own strong motion network with 22 three-components' accelerographs locating at ground-surface, underground, buildings and basements of reactors. The PGA attenuation-distance relationships made setting the fault plane estimated from the GPS data generally follow the empirical relations in Japan, for example, Fukushima and Tanaka (1990) and Si and Midorikawa (1999), even if either fault plane, SE dip or NW dip, is assumed. However, the strong ground motions in the site of the KKNPP had very large accelerations and velocities more than those expected from the empirical relations. The surface motions there had the PGA of more than 1200 gals and even underground motions at the basements of the reactors locating five stories below the ground had the PGA of 680 gals. We simulated ground motions using the characterized source model (Kamae and Irikura, 1998) with three asperities and the empirical Green's function method (Irikura, 1986). Then, we found that the source model should be a reverse fault with the NE-SW strike and NW dip to explain the strong motion records obtained near the source area. In particular, strong ground motions in the site of the KKNPP had three significant pulses which are generated as directivity pulses in forward direction of rupture propagation. This is the reason why the strong ground motions in the site of the KKNPP had very large accelerations and velocities. The source model is also verified comparing the observed records at the KKNPP with the numerical simulations by the discrete wavenumber method (Bouchon, 1981).

  1. Data dictionary and formatting standard for dissemination of geotechnical data

    USGS Publications Warehouse

    Benoit, J.; Bobbitt, J.I.; Ponti, D.J.; Shimel, S.A.; ,

    2004-01-01

    A pilot system for archiving and web dissemination of geotechnical data collected and stored by various agencies is currently under development. Part of the scope of this project, sponsored by the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) and by the Pacific Earthquake Engineering Research Center (PEER) Lifelines Program, is the development of a data dictionary and formatting standard. This paper presents the data model along with the basic structure of the data dictionary tables for this pilot system.

  2. A Framework for the Validation of Probabilistic Seismic Hazard Analysis Maps Using Strong Ground Motion Data

    NASA Astrophysics Data System (ADS)

    Bydlon, S. A.; Beroza, G. C.

    2015-12-01

    Recent debate on the efficacy of Probabilistic Seismic Hazard Analysis (PSHA), and the utility of hazard maps (i.e. Stein et al., 2011; Hanks et al., 2012), has prompted a need for validation of such maps using recorded strong ground motion data. Unfortunately, strong motion records are limited spatially and temporally relative to the area and time windows hazard maps encompass. We develop a framework to test the predictive powers of PSHA maps that is flexible with respect to a map's specified probability of exceedance and time window, and the strong motion receiver coverage. Using a combination of recorded and interpolated strong motion records produced through the ShakeMap environment, we compile a record of ground motion intensity measures for California from 2002-present. We use this information to perform an area-based test of California PSHA maps inspired by the work of Ward (1995). Though this framework is flexible in that it can be applied to seismically active areas where ShakeMap-like ground shaking interpolations have or can be produced, this testing procedure is limited by the relatively short lifetime of strong motion recordings and by the desire to only test with data collected after the development of the PSHA map under scrutiny. To account for this, we use the assumption that PSHA maps are time independent to adapt the testing procedure for periods of recorded data shorter than the lifetime of a map. We note that accuracy of this testing procedure will only improve as more data is collected, or as the time-horizon of interest is reduced, as has been proposed for maps of areas experiencing induced seismicity. We believe that this procedure can be used to determine whether PSHA maps are accurately portraying seismic hazard and whether discrepancies are localized or systemic.

  3. The upper spatial limit for perception of displacement is affected by preceding motion.

    PubMed

    Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim

    2009-03-01

    The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.

  4. Construction of Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2013-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Iwata and Asano (2012, AGU) summarized the scaling relationships of large slip area of heterogeneous slip model and total SMGA sizes on seismic moment for subduction earthquakes and found the systematic change between the ratio of SMGA to the large slip area and the seismic moment. They concluded this tendency would be caused by the difference of period range of source modeling analysis. In this paper, we try to construct the methodology of construction of the source model for strong ground motion prediction for huge subduction earthquakes. Following to the concept of the characterized source model for inland crustal earthquakes (Irikura and Miyake, 2001; 2011) and intra-slab earthquakes (Iwata and Asano, 2011), we introduce the proto-type of the source model for huge subduction earthquakes and validate the source model by strong ground motion modeling.

  5. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    USGS Publications Warehouse

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  6. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    NASA Astrophysics Data System (ADS)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid-frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  7. Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2012-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Irikura and Miyake (2001, 2011) proposed the characterized source model for strong ground motion prediction, which consists of plural strong ground motion generation area (SMGA, Miyake et al., 2003) patches on the source fault. We obtained the SMGA source models for many events using the empirical Green's function method and found the SMGA size has an empirical scaling relationship with seismic moment. Therefore, the SMGA size can be assumed from that empirical relation under giving the seismic moment for anticipated earthquakes. Concerning to the setting of the SMGAs position, the information of the fault segment is useful for inland crustal earthquakes. For the 1995 Kobe earthquake, three SMGA patches are obtained and each Nojima, Suma, and Suwayama segment respectively has one SMGA from the SMGA modeling (e.g. Kamae and Irikura, 1998). For the 2011 Tohoku earthquake, Asano and Iwata (2012) estimated the SMGA source model and obtained four SMGA patches on the source fault. Total SMGA area follows the extension of the empirical scaling relationship between the seismic moment and the SMGA area for subduction plate-boundary earthquakes, and it shows the applicability of the empirical scaling relationship for the SMGA. The positions of two SMGAs are in Miyagi-Oki segment and those other two SMGAs are in Fukushima-Oki and Ibaraki-Oki segments, respectively. Asano and Iwata (2012) also pointed out that all SMGAs are corresponding to the historical source areas of 1930's. Those SMGAs do not overlap the huge slip area in the shallower part of the source fault which estimated by teleseismic data, long-period strong motion data, and/or geodetic data during the 2011 mainshock. This fact shows the huge slip area does not contribute to strong ground motion generation (10-0.1s). The information of the fault segment in the subduction zone, or historical earthquake source area is also applicable for the construction of SMGA settings for strong ground motion prediction for future earthquakes.

  8. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  9. Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2016-12-01

    The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.

  10. Extension of Characterized Source Model for Broadband Strong Ground Motion Simulations (0.1-50s) of M9 Earthquake

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.

    2014-12-01

    After the 2011 Tohoku earthquake in Japan (Mw9.0), many papers on the source model of this mega subduction earthquake have been published. From our study on the modeling of strong motion waveforms in the period 0.1-10s, four isolated strong motion generation areas (SMGAs) were identified in the area deeper than 25 km (Asano and Iwata, 2012). The locations of these SMGAs were found to correspond to the asperities of M7-class events in 1930's. However, many studies on kinematic rupture modeling using seismic, geodetic and tsunami data revealed that the existence of the large slip area from the trench to the hypocenter (e.g., Fujii et al., 2011; Koketsu et al., 2011; Shao et al., 2011; Suzuki et al., 2011). That is, the excitation of seismic wave is spatially different in long and short period ranges as is already discussed by Lay et al.(2012) and related studies. The Tohoku earthquake raised a new issue we have to solve on the relationship between the strong motion generation and the fault rupture process, and it is an important issue to advance the source modeling for future strong motion prediction. The previous our source model consists of four SMGAs, and observed ground motions in the period range 0.1-10s are explained well by this source model. We tried to extend our source model to explain the observed ground motions in wider period range with a simple assumption referring to the previous our study and the concept of the characterized source model (Irikura and Miyake, 2001, 2011). We obtained a characterized source model, which have four SMGAs in the deep part, one large slip area in the shallow part and background area with low slip. The seismic moment of this source model is equivalent to Mw9.0. The strong ground motions are simulated by the empirical Green's function method (Irikura, 1986). Though the longest period limit is restricted by the SN ratio of the EGF event (Mw~6.0) records, this new source model succeeded to reproduce the observed waveforms and Fourier amplitude spectra in the period range 0.1-50s. The location of this large slip area seems to overlap the source regions of historical events in 1793 and 1897 off Sanriku area. We think the source model for strong motion prediction of Mw9 event could be constructed by the combination of hierarchical multiple asperities or source patches related to histrorical events in this region.

  11. A determination of the external forces required to move the benchmark active controls testing model in pure plunge and pure pitch

    NASA Technical Reports Server (NTRS)

    Dcruz, Jonathan

    1993-01-01

    In view of the strong need for a well-documented set of experimental data which is suitable for the validation and/or calibration of modern Computational Fluid Dynamics codes, the Benchmark Models Program was initiated by the Structural Dynamics Division of the NASA Langley Research Center. One of the models in the program, the Benchmark Active Controls Testing Model, consists of a rigid wing of rectangular planform with a NACA 0012 profile and three control surfaces (a trailing-edge control surface, a lower-surface spoiler, and an upper-surface spoiler). The model is affixed to a flexible mount system which allows only plunging and/or pitching motion. An approximate analytical determination of the forces required to move this model, with its control surfaces fixed, in pure plunge and pure pitch at a number of test conditions is included. This provides a good indication of the type of actuator system required to generate the aerodynamic data resulting from pure plunging and pure pitching motion, in which much interest was expressed. The analysis makes use of previously obtained numerical results.

  12. SLAMMER: Seismic LAndslide Movement Modeled using Earthquake Records

    USGS Publications Warehouse

    Jibson, Randall W.; Rathje, Ellen M.; Jibson, Matthew W.; Lee, Yong W.

    2013-01-01

    This program is designed to facilitate conducting sliding-block analysis (also called permanent-deformation analysis) of slopes in order to estimate slope behavior during earthquakes. The program allows selection from among more than 2,100 strong-motion records from 28 earthquakes and allows users to add their own records to the collection. Any number of earthquake records can be selected using a search interface that selects records based on desired properties. Sliding-block analyses, using any combination of rigid-block (Newmark), decoupled, and fully coupled methods, are then conducted on the selected group of records, and results are compiled in both graphical and tabular form. Simplified methods for conducting each type of analysis are also included.

  13. Directional bias of illusory stream caused by relative motion adaptation.

    PubMed

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Strong motion deficits in dyslexia associated with DCDC2 gene alteration.

    PubMed

    Cicchini, Guido Marco; Marino, Cecilia; Mascheretti, Sara; Perani, Daniela; Morrone, Maria Concetta

    2015-05-27

    Dyslexia is a specific impairment in reading that affects 1 in 10 people. Previous studies have failed to isolate a single cause of the disorder, but several candidate genes have been reported. We measured motion perception in two groups of dyslexics, with and without a deletion within the DCDC2 gene, a risk gene for dyslexia. We found impairment for motion particularly strong at high spatial frequencies in the population carrying the deletion. The data suggest that deficits in motion processing occur in a specific genotype, rather than the entire dyslexia population, contributing to the large variability in impairment of motion thresholds in dyslexia reported in the literature. Copyright © 2015 the authors 0270-6474/15/358059-06$15.00/0.

  15. Fluid Dynamics of Underwater Flight in Sea Butterflies: Insights from Computational Modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuoyu; Mittal, Rajat; Yen, Jeannette; Webster, Donald

    2014-11-01

    Sea butterflies such as Limacine helicina swim by flapping their wing-like parapodia, in a stroke that exhibits a clap-and-fling type kinematics as well as a strong interaction between the parapodia and the body of the animal at the end of downstroke. We used numerical simulations based on videogrammetric data to examine the fluid dynamics and force generation associated with this swimming motion. The unsteady lift-generating mechanism of clap-and-fling results in a sawtooth trajectory with a characteristic ``wobble'' in pitch. We employ coupled flow-body-dynamics simulations to model the free-swimming motion of the organism and explore the efficiency of propulsion as well the factors such as shell weight, that affect its sawtooth swimming trajectory. This work is funded by NSF Grant 1246317 from the Division of Polar Programs.

  16. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    PubMed

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  17. Strong Ground Motion Generation during the 2011 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.

    2011-12-01

    Strong ground motions during the 2011 Tohoku-Oki earthquake (Mw9.0) were densely observed by the strong motion observation networks all over Japan. Seeing the acceleration and velocity waveforms observed at strong stations in northeast Japan along the source region, those ground motions are characterized by plural wave packets with duration of about twenty seconds. Particularly, two wave packets separated by about fifty seconds could be found on the records in the northern part of the damaged area, whereas only one significant wave packets could be recognized on the records in the southern part of the damaged area. The record section shows four isolated wave packets propagating from different locations to north and south, and it gives us a hint of the strong motion generation process on the source fault which is related to the heterogeneous rupture process in the scale of tens of kilometers. In order to solve it, we assume that each isolated wave packet is contributed by the corresponding strong motion generation area (SMGA). It is a source patch whose slip velocity is larger than off the area (Miyake et al., 2003). That is, the source model of the 2011 Tohoku-Oki earthquake consists of four SMGAs. The SMGA source model has succeeded in reproducing broadband strong ground motions for past subduction-zone events (e.g., Suzuki and Iwata, 2007). The target frequency range is set to be 0.1-10 Hz in this study as this range is significantly related to seismic damage generation to general man-made structures. First, we identified the rupture starting points of each SMGA by picking up the onset of individual packets. The source fault plane is set following the GCMT solution. The first two SMGAs were located approximately 70 km and 30 km west of the hypocenter. The third and forth SMGAs were located approximately 160 km and 230 km southwest of the hypocenter. Then, the model parameters (size, rise time, stress drop, rupture velocity, rupture propagation pattern) of these four SMGAs were determined by waveform modeling using the empirical Green's function method (Irikura, 1986). The first and second SMGAs are located close to each other, and they are partially overlapped though the difference in the rupture time between them is more than 40 s. Those two SMGA appear to be included in the source region of the past repeating Miyagi-Oki subduction-zone event in 1936. The third and fourth SMGAs appear to be located in the source region of the past Fukushima-Oki events in 1938. Each of Those regions has been expected to cause next major earthquakes in the long-term evaluation. The obtained source model explains the acceleration, velocity, and displacement time histories in the target frequency range at most stations well. All of four SMGAs exist apparently outside of the large slip area along the trench east of the hypocenter, which was estimated by the seismic, geodetic, and tsunami inversion analyses, and this large slip zone near the trench does not contribute to strong motion much. At this point, we can conclude that the 2011 Tohoku-Oki earthquake has a possibility to be a complex event rupturing multiple preexisting asperities in terms of strong ground motion generation. It should be helpful to validate and improve the applicability of the strong motion prediction recipe for great subduction-zone earthquakes.

  18. Classification of coronary artery calcifications according to motion artifacts in chest CT using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Šprem, Jurica; de Vos, Bob D.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2017-02-01

    Coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events (CVEs). CAC can be quantified in chest CT scans acquired in lung screening. However, in these images the reproducibility of CAC quantification is compromised by cardiac motion that occurs during scanning, thereby limiting the reproducibility of CVE risk assessment. We present a system for the identification of CACs strongly affected by cardiac motion artifacts by using a convolutional neural network (CNN). This study included 125 chest CT scans from the National Lung Screening Trial (NLST). Images were acquired with CT scanners from four different vendors (GE, Siemens, Philips, Toshiba) with varying tube voltage, image resolution settings, and without ECG synchronization. To define the reference standard, an observer manually identified CAC lesions and labeled each according to the presence of cardiac motion: strongly affected (positive), mildly affected/not affected (negative). A CNN was designed to automatically label the identified CAC lesions according to the presence of cardiac motion by analyzing a patch from the axial CT slice around each lesion. From 125 CT scans, 9201 CAC lesions were analyzed. 8001 lesions were used for training (19% positive) and the remaining 1200 (50% positive) were used for testing. The proposed CNN achieved a classification accuracy of 85% (86% sensitivity, 84% specificity). The obtained results demonstrate that the proposed algorithm can identify CAC lesions that are strongly affected by cardiac motion. This could facilitate further investigation into the relation of CAC scoring reproducibility and the presence of cardiac motion artifacts.

  19. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2015-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.

  20. Comparison of strong-motion spectra with teleseismic spectra for three magnitude 8 subduction-zone earthquakes

    NASA Astrophysics Data System (ADS)

    Houston, Heidi; Kanamori, Hiroo

    1990-08-01

    A comparison of strong-motion spectra and teleseismic spectra was made for three Mw 7.8 to 8.0 earthquakes: the 1985 Michoacan (Mexico) earthquake, the 1985 Valparaiso (Chile) earthquake, and the 1983 Akita-Oki (Japan) earthquake. The decay of spectral amplitude with the distance from the station was determined, considering different measures of distance from a finite fault, and it was found to be different for these three events. The results can be used to establish empirical relations between the observed spectra and the half-space responses depending on the distance and the site condition, making it possible to estimate strong motions from source spectra determined from teleseismic records.

  1. Proceedings of Workshop XVI; The dynamic characteristics of faulting inferred from recordings of strong ground motion

    USGS Publications Warehouse

    Boatwright, John; Jacobson, Muriel L.

    1982-01-01

    The strong ground motions radiated by earthquake faulting are controlled by the dynamic characteristics of the faulting process. Although this assertion seems self-evident, seismologists have only recently begun to derive and test quantitative relations between common measures of strong ground motion and the dynamic characteristics of faulting. Interest in this problem has increased dramatically in past several years, however, resulting in a number of important advances. The research presented in this workshop is a significant part of this scientific development. Watching this development occur through the work of many scientists is exciting; to be able to gather a number of these scientists together in one workshop is a remarkable opportunity.

  2. Summary of key benefits 1989-2015

    DOT National Transportation Integrated Search

    2017-01-01

    The LTPP program relies on data collected by weigh-in-motion systems that measure the traffic stream The LTPP program receives and analyzes data from weigh-in-motion systems that measure traffic streams. For example, weigh-in-motion measurements coll...

  3. Site correction of stochastic simulation in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lun Huang, Cong; Wen, Kuo Liang; Huang, Jyun Yan

    2014-05-01

    Peak ground acceleration (PGA) of a disastrous earthquake, is concerned both in civil engineering and seismology study. Presently, the ground motion prediction equation is widely used for PGA estimation study by engineers. However, the local site effect is another important factor participates in strong motion prediction. For example, in 1985 the Mexico City, 400km far from the epicenter, suffered massive damage due to the seismic wave amplification from the local alluvial layers. (Anderson et al., 1986) In past studies, the use of stochastic method had been done and showed well performance on the simulation of ground-motion at rock site (Beresnev and Atkinson, 1998a ; Roumelioti and Beresnev, 2003). In this study, the site correction was conducted by the empirical transfer function compared with the rock site response from stochastic point-source (Boore, 2005) and finite-fault (Boore, 2009) methods. The error between the simulated and observed Fourier spectrum and PGA are calculated. Further we compared the estimated PGA to the result calculated from ground motion prediction equation. The earthquake data used in this study is recorded by Taiwan Strong Motion Instrumentation Program (TSMIP) from 1991 to 2012; the study area is located at south-western Taiwan. The empirical transfer function was generated by calculating the spectrum ratio between alluvial site and rock site (Borcheret, 1970). Due to the lack of reference rock site station in this area, the rock site ground motion was generated through stochastic point-source model instead. Several target events were then chosen for stochastic point-source simulating to the halfspace. Then, the empirical transfer function for each station was multiplied to the simulated halfspace response. Finally, we focused on two target events: the 1999 Chi-Chi earthquake (Mw=7.6) and the 2010 Jiashian earthquake (Mw=6.4). Considering the large event may contain with complex rupture mechanism, the asperity and delay time for each sub-fault is to be concerned. Both the stochastic point-source and the finite-fault model were used to check the result of our correction.

  4. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng

    2012-06-01

    This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.

  5. "Did you feel it?" Intensity data: A surprisingly good measure of earthquake ground motion

    USGS Publications Warehouse

    Atkinson, G.M.; Wald, D.J.

    2007-01-01

    The U.S. Geological Survey is tapping a vast new source of engineering seismology data through its "Did You Feel It?" (DYFI) program, which collects online citizen responses to earthquakes. To date, more than 750,000 responses have been compiled in the United States alone. The DYFI data make up in quantity what they may lack in scientific quality and offer the potential to resolve longstanding issues in earthquake ground-motion science. Such issues have been difficult to address due to the paucity of instrumental ground-motion data in regions of low seismicity. In particular, DYFI data provide strong evidence that earthquake stress drops, which control the strength of high-frequency ground shaking, are higher in the central and eastern United States (CEUS) than in California. Higher earthquake stress drops, coupled with lower attenuation of shaking with distance, result in stronger overall shaking over a wider area and thus more potential damage for CEUS earthquakes in comparison to those of equal magnitude in California - a fact also definitively captured with these new DYFI data and maps.

  6. Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena

    2015-01-01

    Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  7. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less

  8. Rupture History of the 2001 Nisqually Washington Earthquake

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Creager, K. C.; Crosson, R. S.

    2001-12-01

    We analyze the temporal-spatial rupture history of the magnitude 6.8 February 28, 2001 Nisqually earthquake using about two dozen 3-component strong-motion records from the Pacific Northwest Seismic Network (PNSN) and the USGS National Strong Motion Program (NSMP) network. We employ a finite-fault inversion scheme similar to Hartzell and Heaton [Bull. Seism. Soc. Am., 1983] to recover the slip history. We assume rupture initiates at the epicenter and origin time determined using PNSN P arrival times and a high-resolution 3-D velocity model. Hypocentral depth is 54 km based on our analysis of teleseismic pP-P times and the regional 3-D model. Using the IASP91 standard Earth model to explain the pP-P times gives a depth of 58 km. Three-component strong motion accelerograms are integrated to obtain velocity, low-pass filtered at 4 s period and windowed to include the direct P- and S- wave arrivals. Theoretical Green's functions are calculated using the Direct Solution Method (DSM) [Cummins, etal, Geophys. Res. Lett., 1994] for each of 169, 4km x 4km, subfaults which lie on one of the two fault plates specified by the Harvard CMT solution. A unique 1-D model that gives an adequate representation of velocity structure for each station is obtained by path averaging the 3-D tomographic model. The S velocity model is generated from the P velocity model. For Vp larger than 4.5 km/s, We use the linear relationship Vs=0.18+0.52Vp obtained from laboratory measurements of local mafic rock samples. For slower velocities, probably associated with sedimentary rocks, we derived Vs=Vp/2.04 which best fits the strong-motion S-arrival times. The resulting source model indicates unilateral rupture along a fault that is elongated in the north-south direction. Inversion for the near vertical (strike 1° , dip 72° ) and horizontal (strike 183° , dip 18° ) fault planes reveal the same source directivity, however, the horizontal fault plane gives a slightly better fit to the data than the vertical one. We will also incorporate teleseismic P pP and sP waves into the waveform modeling to provide additional constraints on vertical source directivity.

  9. Physics-based real time ground motion parameter maps: the Central Mexico example

    NASA Astrophysics Data System (ADS)

    Ramirez Guzman, L.; Contreras Ruiz Esparza, M. G.; Quiroz Ramirez, A.; Carrillo Lucia, M. A.; Perez Yanez, C.

    2013-12-01

    We present the use of near real time ground motion simulations in the generation of ground motion parameter maps for Central Mexico. Simple algorithm approaches to predict ground motion parameters of civil protection and risk engineering interest are based on the use of observed instrumental values, reported macroseismic intensities and their correlations, and ground motion prediction equations (GMPEs). A remarkable example of the use of this approach is the worldwide Shakemap generation program of the United States Geological Survey (USGS). Nevertheless, simple approaches rely strongly on the availability of instrumental and macroseismic intensity reports, as well as the accuracy of the GMPEs and the site effect amplification calculation. In regions where information is scarce, the GMPEs, a reference value in a mean sense, provide most of the ground motion information together with site effects amplification using a simple parametric approaches (e.g. the use of Vs30), and have proven to be elusive. Here we propose an approach that includes physics-based ground motion predictions (PBGMP) corrected by instrumental information using a Bayesian Kriging approach (Kitanidis, 1983) and apply it to the central region of Mexico. The method assumes: 1) the availability of a large database of low and high frequency Green's functions developed for the region of interest, using fully three-dimensional and representative one-dimension models, 2) enough real time data to obtain the centroid moment tensor and a slip rate function, and 3) a computational infrastructure that can be used to compute the source parameters and generate broadband synthetics in near real time, which will be combined with recorded instrumental data. By using a recently developed velocity model of Central Mexico and an efficient finite element octree-based implementation we generate a database of source-receiver Green's functions, valid to 0.5 Hz, that covers 160 km x 300 km x 700 km of Mexico, including a large portion of the Pacific Mexican subduction zone. A subset of the velocity and strong ground motion data available in real time is processed to obtain the source parameters to generate broadband ground motions in a dense grid ( 10 km x 10 km cells). These are interpolated later with instrumental values using a Bayesian Kriging method. Peak ground velocity and acceleration, as well as SA (T=0.1, 0.5, 1 and 2s) maps, are generated for a small set of medium to large magnitude Mexican earthquakes (Mw=5 to 7.4). We evaluate each map by comparing against stations not considered in the computation.

  10. The INGV Real Time Strong Motion Database

    NASA Astrophysics Data System (ADS)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121.185 waveforms) Italian earthquakes with ML≥3.0, recorded since the 1st January 2012, besides 204 accelerometric stations belonging to the INGV strong motion network and regional partner.

  11. New strong motion network in Georgia: basis for specifying seismic hazard

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented with strong motion sensors and possible earthquake precursors will be studied using complex methods of observation and data analysis.

  12. Application and API for Real-time Visualization of Ground-motions and Tsunami

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are limited and it is not practical to regularly visualize all the data. The application has automatic starting (pop-up) function triggered by EEW. Similar WebAPI and application for tsunami are being prepared using the pressure data recorded by dense offshore observation network (S-net), which is under construction along the Japan Trench.

  13. KALI - An environment for the programming and control of cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Hayward, Vincent; Hayati, Samad

    1988-01-01

    A design description is given of a controller for cooperative robots. The background and motivation for multiple arm control are discussed. A set of programming primitives which permit a programmer to specify cooperative tasks are described. Motion primitives specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues are discussed and the authors' implementation briefly described. The relations between programming and control in the case of multiple robots are examined. The allocation of various tasks among a multiprocessor computer is described.

  14. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  15. Collective atomic scattering and motional effects in a dense coherent medium

    PubMed Central

    Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.

    2016-01-01

    We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles. PMID:26984643

  16. Astronomy Simulation with Computer Graphics.

    ERIC Educational Resources Information Center

    Thomas, William E.

    1982-01-01

    "Planetary Motion Simulations" is a system of programs designed for students to observe motions of a superior planet (one whose orbit lies outside the orbit of the earth). Programs run on the Apple II microcomputer and employ high-resolution graphics to present the motions of Saturn. (Author/JN)

  17. Coupling motion between rearfoot and hip and knee joints during walking and single-leg landing.

    PubMed

    Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Okunuki, Takumi; Ishida, Tomoya; Samukawa, Mina; Tohyama, Harukazu

    2017-12-01

    The objective of the current study was to investigate the kinematic relationships between the rearfoot and hip/knee joint during walking and single-leg landing. Kinematics of the rearfoot relative to the shank, knee and hip joints during walking and single-leg landing were analyzed in 22 healthy university students. Kinematic relationships between two types of angular data were assessed by zero-lag cross-correlation coefficients and coupling angles, and were compared between joints and between tasks. During walking, rearfoot eversion/inversion and external/internal rotation were strongly correlated with hip adduction/abduction (R=0.69 and R=0.84), whereas correlations with knee kinematics were not strong (R≤0.51) and varied between subjects. The correlations with hip adduction/abduction were stronger than those with knee kinematics (P<0.001). Most coefficients during single-leg landing were strong (R≥0.70), and greater than those during walking (P<0.001). Coupling angles indicated that hip motion relative to rearfoot motion was greater than knee motion relative to rearfoot motion during both tasks (P<0.001). Interventions to control rearfoot kinematics may affect hip kinematics during dynamic tasks. The coupling motion between the rearfoot and hip/knee joints, especially in the knee, should be considered individually. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  19. Review: Progress in rotational ground-motion observations from explosions and local earthquakes in Taiwan

    USGS Publications Warehouse

    Lee, William H K.; Huang, Bor-Shouh; Langston, Charles A.; Lin, Chin-Jen; Liu, Chun-Chi; Shin, Tzay-Chyn; Teng, Ta-Liang; Wu, Chien-Fu

    2009-01-01

    Rotational motions generated by large earthquakes in the far field have been successfully measured, and observations agree well with the classical elasticity theory. However, recent rotational measurements in the near field of earthquakes in Japan and in Taiwan indicate that rotational ground motions are 10 to 100 times larger than expected from the classical elasticity theory. The near-field strong-motion records of the 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake suggest that the ground motions along the 100 km rupture are complex. Some rather arbitrary baseline corrections are necessary in order to obtain reasonable displacement values from double integration of the acceleration data. Because rotational motions can contaminate acceleration observations due to the induced perturbation of the Earth’s gravitational field, we started a modest program to observe rotational ground motions in Taiwan.Three papers have reported the rotational observations in Taiwan: (1) at the HGSD station (Liu et al., 2009), (2) at the N3 site from two TAiwan Integrated GEodynamics Research (TAIGER) explosions (Lin et al., 2009), and (3) at the Taiwan campus of the National Chung-Cheng University (NCCU) (Wu et al., 2009). In addition, Langston et al. (2009) reported the results of analyzing the TAIGER explosion data. As noted by several authors before, we found a linear relationship between peak rotational rate (PRR in mrad/sec) and peak ground acceleration (PGA in m/sec2) from local earthquakes in Taiwan, PRR=0.002+1.301 PGA, with a correlation coefficient of 0.988.

  20. Nonlinear soil response in the vicinity of the Van Norman Complex following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Cultrera, G.; Boore, D.M.; Joyner, W.B.; Dietel, C.M.

    1999-01-01

    Ground-motion recordings obtained at the Van Norman Complex from the 1994 Northridge, California, mainshock and its aftershocks constitute an excellent data set for the analysis of soil response as a function of ground-motion amplitude. We searched for nonlinear response by comparing the Fourier spectral ratios of two pairs of sites for ground motions of different levels, using data from permanent strong-motion recorders and from specially deployed portable instruments. We also compared the amplitude dependence of the observed ratios with the amplitude dependence of the theoretical ratios obtained from 1-D linear and 1-D equivalent-linear transfer functions, using recently published borehole velocity profiles at the sites to provide the low-strain material properties. One pair of sites was at the Jensen Filtration Plant (JFP); the other pair was the Rinaldi Receiving Station (RIN) and the Los Angeles Dam (LAD). Most of the analysis was concentrated on the motions at the Jensen sites. Portable seismometers were installed at the JFP to see if the motions inside the structures housing the strong-motion recorders differed from nearby free-field motions. We recorded seven small earthquakes and found that the high-frequency, low-amplitude motions in the administration building were about 0.3 of those outside the building. This means that the lack of high frequencies on the strong-motion recordings in the administration building relative to the generator building is not due solely to nonlinear soil effects. After taking into account the effects of the buildings, however, analysis of the suite of strong- and weak-motion recordings indicates that nonlinearity occurred at the JFP. As predicted by equivalent-linear analysis, the largest events (the mainshock and the 20 March 1994 aftershock) show a significant deamplification of the high-frequency motion relative to the weak motions from aftershocks occurring many months after the mainshock. The weak-motion aftershocks recorded within 12 hours of the mainshock, however, show a relative deamplification similar to that in the mainshock. The soil behavior may be a consequence of a pore pressure buildup during large-amplitude motion that was not dissipated until sometime later. The motions at (RIN) and (LAD) are from free-field sites. The comparison among spectral ratios of the mainshock, weak-motion coda waves of the mainshock, and an aftershock within ten minutes of the mainshock indicate that some nonlinearity occurred, presumably at (RIN) because it is the softer site. The spectral ratio for the mainshock is between that calculated for pure linear response and that calculated from the equivalent-linear method, using commonly used modulus reduction and damping ratio curves. In contrast to the Jensen sites, the ratio of motions soon after the high-amplitude portion of the mainshock differs from the ratio of the mainshock motions, indicating the mechanical properties of the soil returned to the low-strain values as the high-amplitude motion ended. This may indicate a type of nonlinear soil response different from that affecting motion at the Jensen administration building.

  1. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    NASA Astrophysics Data System (ADS)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large-magnitude aftershocks.

  2. North Anna Nuclear Power Plant Strong Motion Records of the Mineral, Virginia Earthquake of August 23, 2011

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2012-12-01

    The MW 5.8 Mineral, Virginia earthquake was recorded at a relatively short epicentral distance of about 18 km at the North Anna Nuclear Power Plant (NPP) by the SMA-3 magnetic tape digital accelerographs installed inside the plant's containment at the foundation and deck levels. The North Anna NPP is operated by the Virginia Electric and Power Company (VEPCO) and has two pressurized water reactors (PWR) units that began operation in 1978 and 1980, respectively. Following the earthquake, both units were safely shutdown. The strong-motion records were processed to get velocity, displacement, Fourier and 5% damped response spectra. The basemat record demonstrated relatively high amplitudes of acceleration of 0.26 g and velocity of 13.8 cm/sec with a relatively short duration of strong motion of 2-3 sec. Recorded 5% damped Response Spectra exceed Design Basis Earthquake for the existing Units 1 and 2, while comprehensive plant inspections performed by VEPCO and U.S. Nuclear Regulatory Commission have concluded that the damage to the plant was minimal not affecting any structures and equipment significant to plant operation. This can be explained in part by short duration of the earthquake ground motion at the plant. The North Anna NPP did not have free-field strong motion instrumentation at the time of the earthquake. Since the containment is founded on rock there is a tendency to consider basemat record as an approximation of the free-field recording. However, comparisons of deck and basemat records demonstrate that the basemat recording is also affected by structural resonance frequencies higher than 3 Hz. Structural resonances in the frequency range of 3-4 Hz can at least partially explain significant exceedance of observed motions relative to ground motion calculated using ground motion prediction equations.cceleration, velocity and displacement at the North Anna NPP basemat level. Amplitudes of acceleration, velocity and displacement at basemat and deck levels

  3. 38 CFR 52.120 - Quality of care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (f) Range of motion. Based on the comprehensive assessment of a participant, the program management must ensure that— (1) A participant who enters the program without a limited range of motion does not experience reduction in range of motion unless the participant's clinical condition demonstrates that a...

  4. 38 CFR 52.120 - Quality of care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (f) Range of motion. Based on the comprehensive assessment of a participant, the program management must ensure that— (1) A participant who enters the program without a limited range of motion does not experience reduction in range of motion unless the participant's clinical condition demonstrates that a...

  5. Lagrangian circulation study near Cape Henry, Virginia. [Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1981-01-01

    A study of the circulation near Cape Henry, Virginia, was made using surface and seabed drifters and radar tracked surface buoys coupled to subsurface drag plates. Drifter releases were conducted on a line normal to the beach just south of Cape Henry. Surface drifter recoveries were few; wind effects were strongly noted. Seabed drifter recoveries all exhibited onshore motion into Chesapeake Bay. Strong winds also affected seabed recoveries, tending to move them farther before recovery. Buoy trajectories in the vicinity of Cape Henry appeared to be of an irrotational nature, showing a clockwise rotary tide motion. Nearest the cape, the buoy motion elongated to almost parallel depth contours around the cape. Buoy motion under the action of strong winds showed that currents to at least the depth of the drag plates substantially are altered from those of low wind conditions near the Bay mouth. Only partial evidence could be found to support the presence of a clockwise nontidal eddy at Virginia Beach, south of Cape Henry.

  6. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  7. Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii

    NASA Astrophysics Data System (ADS)

    Reverey, Julia F.; Jeon, Jae-Hyung; Bao, Han; Leippe, Matthias; Metzler, Ralf; Selhuber-Unkel, Christine

    2015-06-01

    Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.

  8. The ShakeOut earthquake source and ground motion simulations

    USGS Publications Warehouse

    Graves, R.W.; Houston, Douglas B.; Hudnut, K.W.

    2011-01-01

    The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).

  9. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    The 1995 Hyogo-ken Nambu Earthquake (1995) near Kobe, Japan, spurred research on strong motion prediction. To mitigate damage caused by large earthquakes, a highly precise method of predicting future strong motion waveforms is required. In this study, we applied empirical Green's function method to forward modeling in order to simulate strong ground motion in the Noubi Fault zone and examine issues related to strong motion prediction for large faults. Source models for the scenario earthquakes were constructed using the recipe of strong motion prediction (Irikura and Miyake, 2001; Irikura et al., 2003). To calculate the asperity area ratio of a large fault zone, the results of a scaling model, a scaling model with 22% asperity by area, and a cascade model were compared, and several rupture points and segmentation parameters were examined for certain cases. A small earthquake (Mw: 4.6) that occurred in northern Fukui Prefecture in 2004 were examined as empirical Green's function, and the source spectrum of this small event was found to agree with the omega-square scaling law. The Nukumi, Neodani, and Umehara segments of the 1891 Noubi Earthquake were targeted in the present study. The positions of the asperity area and rupture starting points were based on the horizontal displacement distributions reported by Matsuda (1974) and the fault branching pattern and rupture direction model proposed by Nakata and Goto (1998). Asymmetry in the damage maps for the Noubi Earthquake was then examined. We compared the maximum horizontal velocities for each case that had a different rupture starting point. In the case, rupture started at the center of the Nukumi Fault, while in another case, rupture started on the southeastern edge of the Umehara Fault; the scaling model showed an approximately 2.1-fold difference between these cases at observation point FKI005 of K-Net. This difference is considered to relate to the directivity effect associated with the direction of rupture propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  10. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    NASA Astrophysics Data System (ADS)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  11. Before and after retrofit - response of a building during ambient and strong motions

    USGS Publications Warehouse

    Celebi, M.; Liu, Huaibao P.; ,

    1998-01-01

    This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County Office Building (SCCOB) before being retrofitted by visco-elastic dampers and from ambient vibration response following the retrofit. Understanding the cumulative structural and site characteristics that affect the response of SCCOB before and after the retrofit is important in assessing earthquake hazards to other similar buildings and decision making in retrofitting them. The results emphasize the need to better evaluate structural and site characteristics in developing earthquake resisting designs that avoid resonating effects. Various studies of the strong-motion response records from the SCCOB during the 24 April 1984 (MHE) Morgan Hill (MS = 6.1), the 31 March 1986 (MLE) Mt. Lewis (MS = 6.1) and the 17 October 1989 (LPE) Loma Prieta (MS = 7.1) earthquakes show that the dynamic characteristics of the building are such that it (a) resonated (b) responded with a beating effect due to close-coupling of its translational and torsional frequencies, and (c) had a long-duration response due to low-damping. During each of these earthquakes, there was considerable contents damage and the occupants felt the rigorous vibration of the building. Ambient tests of SCCOB performed following LPE showed that both translational and torsional periods of the building are smaller than those derived from strong motions. Ambient tests performed following the retrofit of the building with visco-elastic dampers show that the structural fundamental mode frequency of the building has increased. The increased frequency implies a stiffer structure. Strong-motion response of the building during future earthquakes will ultimately validate the effectiveness of the retrofit method.This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County Office Building (SCCOB) before being retrofitted by visco-elastic dampers and from ambient vibration response following the retrofit. Understanding the cumulative structural and site characteristics that affect the response of SCCOB before and after the retrofit is important in assessing earthquake hazards to other similar buildings and decision making in retrofitting them. The results emphasize the need to better evaluate structural and site characteristics in developing earthquake resisting designs that avoid resonating effects. Various studies of the strong-motion response records from the SCCOB during the 24 April 1984 (MHE) Morgan Hill (Ms = 6.1), the 31 March 1986 (MLE) Mt. Lewis (Ms = 6.1) and the 17 October 1989(LPE) Loma Prieta (Ms = 7.1) earthquakes show that the dynamic characteristics of the building are such that it (a) resonated (b) responded with a beating effect due to close-coupling of its translational and torsional frequencies, and (c) had a long-duration response due to low-damping. During each of these earthquakes, there was considerable contents damage and the occupants felt the rigorous vibration of the building. Ambient tests of SCCOB performed following LPE showed that both translational and torsional periods of the building are smaller than those derived from strong motions. Ambient tests performed following the retrofit of the building with visco-elastic dampers show that the structural fundamental mode frequency of the building has increased. The increased frequency implies a stiffer structure. Strong-motion response of the building during future earthquakes will ultimately validate the effectiveness of the retrofit method.

  12. Cabin location and the likelihood of motion sickness in cruise ship passengers.

    PubMed

    Gahlinger , P M

    2000-01-01

    The prevalence of motion sickness approaches 100% on rough seas. Some previous studies have reported a strong association between location on a ship and the risk of motion sickness, whereas other studies found no association. This study was undertaken to determine if there is a statistical association between the location of the passenger cabin on a ship and the risk of motion sickness in unadapted passengers. Data were collected on 260 passengers on an expedition ship traversing the Drake Passage between South America and Antarctica, during rough sea conditions. A standard scale was employed to record motion sickness severity. The risk of motion sickness was found to be statistically associated with age and sex. However, no association was found with the location of the passenger cabin. Previous research reporting a strong association of motion sickness and passenger location on a ship, studied passengers in the seated position. Passengers who are able to lie in a supine position are at considerably reduced risk of motion sickness. Expedition or cruise ships that provide ready access to berths, allow passengers to avoid the most nauseogenic positions. The location of the passenger cabin does not appear to be related to the likelihood of seasickness.

  13. Estimation of slip scenarios of mega-thrust earthquakes and strong motion simulations for Central Andes, Peru

    NASA Astrophysics Data System (ADS)

    Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.

    2012-12-01

    We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for all scenario slips for central Andes, and for an average soil condition, exhibit similar amplitudes and attenuation characteristics with distance as the PGA and PGV values observed during the 2010 Maule (Mw 8.8), and 2011 Tohoku-oki (Mw 9.0) earthquakes. Our results clearly indicate that the simulated ground motions for scenarios with deep rupture nucleations (~40 km) are consistently smaller than the ground motions obtained for shallower rupture nucleations. We also performed strong ground motion simulations in metropolitan Lima by using the aforementioned slip scenarios, and incorporating site amplifications obtained from several microtremors array surveys conducted at representative geotechnical zones in this city. Our simulated PGA and PGV in Lima reach values of 1000 cm/s^2 and 80 cm/s. Our results show that the largest values of PGA (at Puente Piedra district, Northern Lima) are related with short period site effects, whereas the largest values of PGV are related with large site amplifications for periods from 1s to 1.5s (at Callao, Villa el Salvador and La Molina districts). Our results also indicate that the simulated PGA and PGV in central Lima (Parque de la Reserva) are in average 2~3 times larger than the values recorded by a strong motion instrument installed at this location, during the 1974 (Mw8.0) and 1966 (Mw8.0) earthquakes off-shore Lima.

  14. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    USGS Publications Warehouse

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits (artificial fill and bay mud). These exceptional ground-motion data are used by the authors of the papers in this chapter to infer radiation characteristics of the earthquake source, identify dominant propagation characteristics of the Earth?s crust, quantify amplification characteristics of near-surface geologic deposits, develop general amplification factors for site-dependent building-code provisions, and revise earthquake-hazard assessments for the San Francisco Bay region. Interpretations of additional data recorded in well-instrumented buildings, dams, and freeway overpasses are provided in other chapters of this report.

  15. Use of physical culture to increase resistance of sailors to motion sickness

    NASA Technical Reports Server (NTRS)

    Salanin, I. V.

    1980-01-01

    From 50% to 70% of sailors are exposed to motion sickness in storms. A program of physical exercises is described and tested for effectiveness in preventing this problem. In comparing the results of tests of susceptibility to motion sickness given to groups before and after a program of exercises and to a control group, it is found that physical education can strengthen the vestibulary apparatus and help prevent motion sickness.

  16. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    ERIC Educational Resources Information Center

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  17. Use of the computer for research on student thinking in physics

    NASA Astrophysics Data System (ADS)

    Grayson, Diane J.; McDermott, Lillian C.

    1996-05-01

    This paper describes the use of the computer-based interview as a research technique for investigating how students think about physics. Two computer programs provide the context: one intended for instruction, the other for research. The one designed for use as an instructional aid displays the motion of a ball rolling along a track that has level and inclined segments. The associated motion graphs are also shown. The other program, which was expressly designed for use in research, is based on the simulated motion of a modified Atwood's machine. The programs require students to predict the effect of the initial conditions and system parameters on the motion or on a graph of the motion. The motion that would actually occur is then displayed. The investigation focuses on the reasoning used by the students as they try to resolve discrepancies between their predictions and observations.

  18. MPPhys—A many-particle simulation package for computational physics education

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2014-03-01

    In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent

  19. Suggested Courseware for the Non-Calculus Physics Student: Projectile Motion, Circular Motion, Rotational Dynamics, and Statics.

    ERIC Educational Resources Information Center

    Mahoney, Joyce; And Others

    1988-01-01

    Evaluates 10 courseware packages covering topics for introductory physics. Discusses the price; sub-topics; program type; interaction; possible hardware; time; calculus required; graphics; and comments on each program. Recommends two packages in projectile and circular motion, and three packages in statics and rotational dynamics. (YP)

  20. Source Model of the MJMA 6.5 Plate-Boundary Earthquake at the Nankai Trough, Southwest Japan, on April 1, 2016, Based on Strong Motion Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Asano, K.

    2017-12-01

    An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling relationship for past plate-boundary earthquakes along the Japan trench, northeast Japan. This finding implies that the source characteristics of plate-boundary events in the Nankai trough are different from those in the Japan Trench, and it could be important information to consider regional variation in ground motion prediction.

  1. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    NASA Astrophysics Data System (ADS)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of spatiotemporal velocity change due to large earthquakes. Acknowledgement: Hi-net and KiK-net seismograms (NIED), GEONET GNSS record (Geospatial Information Authority of Japan), and the JMA unified hypocenter catalog are used in this study.

  2. A fault slip model of the 2016 Meinong, Taiwan, earthquake from near-source strong motion and high-rate GPS waveforms

    NASA Astrophysics Data System (ADS)

    Rau, Ruey-Juin; Wen, Yi-Ying; Tseng, Po-Ching; Chen, Wei-Cheng; Cheu, Chi-Yu; Hsieh, Min-Che; Ching, Kuo-En

    2017-04-01

    The 6 February 2016 MW 6.5 Meinong earthquake (03:57:26.1 local time) occurred at about 30 km ESE of the Tainan city with a focal depth of 14.6 km. It is a mid-crust moderate-sized event, however, produced widespread strong shaking in the 30-km-away Tainan city and caused about 10 buildings collapsed and 117 death. Furthermore, the earthquake created a 20 x 10 km2 dome-shaped structure with a maximum uplift of 13 cm in between the epicenter and the Tainan city. We collected 81 50-Hz GPS and 130 strong motion data recorded within 60 km epicentral distances. High-rate GPS data are processed with GIPSY 6.4 and the calculated GPS displacement wavefield record section shows 40-60 cm Peak Ground Displacement (PGD) concentrated at 25-30 km WNW of the epicenter. The large PGDs correspond to 65-85 cm/sec PGV, which are significantly larger than the near-fault ground motion collected from moderate-sized earthquakes occurred worldwide. To investigate the source properties of the causative fault, considering the azimuthal coverage and data quality, we selected waveform data from 10 50-Hz GPS stations and 10 free-field 200-Hz strong motion stations to invert for the finite source parameters using the non-negative least squares approach. A bandpass filter of 0.05-0.5 Hz is applied to both high-rate GPS data and strong motion data, with sampling rate of 0.1 sec. The fault plane parameters (strike 281 degrees, dip 24 degrees) derived from Global Centroid Moment Tensor (CMT) are used in the finite fault inversion. The results of our joint GPS and strong motion data inversion indicates two major slip patches. The first large-slip patch occurred just below the hypocenter propagating westward at a 15-25 km depth range. The second high-slip patch appeared at 5-10 km depth slipping westward under the western side of the erected structure shown by InSAR image. These two large-slip patches appeared to devoid of aftershock seismicity, which concentrated mainly at the low-slip zones.

  3. A computer program to generate equations of motion matrices, L217 (EOM). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Kroll, R. I.; Clemmons, R. E.

    1979-01-01

    The equations of motion program L217 formulates the matrix coefficients for a set of second order linear differential equations that describe the motion of an airplane relative to its level equilibrium flight condition. Aerodynamic data from FLEXSTAB or Doublet Lattice (L216) programs can be used to derive the equations for quasi-steady or full unsteady aerodynamics. The data manipulation and the matrix coefficient formulation are described.

  4. Study to determine cloud motion from meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Clark, B. B.

    1972-01-01

    Processing techniques were tested for deducing cloud motion vectors from overlapped portions of pairs of pictures made from meteorological satellites. This was accomplished by programming and testing techniques for estimating pattern motion by means of cross correlation analysis with emphasis placed upon identifying and reducing errors resulting from various factors. Techniques were then selected and incorporated into a cloud motion determination program which included a routine which would select and prepare sample array pairs from the preprocessed test data. The program was then subjected to limited testing with data samples selected from the Nimbus 4 THIR data provided by the 11.5 micron channel.

  5. Earth-moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1975-01-01

    A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.

  6. Resolving High Amplitude Surface Motion with Diffusing Light

    NASA Technical Reports Server (NTRS)

    Wright, W.; Budakian, R.; Putterman, Seth J.

    1996-01-01

    A new technique has been developed for the purpose of imaging high amplitude surface motion. With this method one can quantitatively measure the transition to ripple wave turbulence. In addition, one can measure the phase of the turbulent state. These experiments reveal strong coherent structures in turbulent range of motion.

  7. Ambient Vibration and Earthquake-Data Analyses of a 62-STORY Building Using System Identification and Seismic Interferometry

    NASA Astrophysics Data System (ADS)

    Kalkan, E.; Fletcher, J. B.; Ulusoy, H. S.; Baker, L. A.

    2014-12-01

    A 62-story residential tower in San Francisco—the tallest all-residential building in California—was recently instrumented by the USGS's National Strong Motion Project in collaboration with the Strong Motion Instrumentation Program of the California Geological Survey to monitor the motion of a tall building built with specifically engineered features (including buckling-restrained braces, outrigger columns and a tuned liquid damper) to reduce its sway from seismic and wind loads. This 641-ft tower has been outfitted with 72 uni-axial accelerometers, spanning through 26 different levels of the building. For damage detection and localization through structural health monitoring, we use local micro-earthquake and ambient monitoring (background noises) to define linear-elastic (undamaged) dynamic properties of the superstructure including its modal parameters (fundamental frequencies, mode shapes and modal damping values) and shear-wave propagation profile and wave attenuation inside the building, which need to be determined in advance of strong shaking. In order to estimate the baseline modal parameters, we applied a frequency domain decomposition method. Using this method, the first three bending modes in the reference east-west direction, the first two bending modes in the reference north-south direction, and the first two torsional modes were identified. The shear-wave propagation and wave attenuation inside the building were computed using deconvolution interferometry. The data used for analyses are from ambient vibrations having 20 minutes duration, and earthquake data from a local M4.5 event located just north east of Geyserville, California. We show that application of deconvolution interferometry to data recorded inside a building is a powerful technique for monitoring structural parameters, such as velocities of traveling waves, frequencies of normal modes, and intrinsic attenuation (i.e., damping). The simplicity and similarity of the deconvolved waveforms from ambient vibrations and a small magnitude event also suggest that a one-dimensional shear velocity model is sufficiently accurate to represent the wave propagation charactersistics inside the building.

  8. A Hybrid Program for Fitting Rotationally Resolved Spectra of Floppy Molecules with One Large-Amplitude Rotatory Motion and One Large-Amplitude Oscillatory Motion

    PubMed Central

    Kleiner, Isabelle; Hougen, Jon T.

    2015-01-01

    A new hybrid-model fitting program for methylamine-like molecules has been developed, based on an effective Hamiltonian in which the ammonia-like inversion motion is treated using a tunneling formalism, while the internal-rotation motion is treated using an explicit kinetic energy operator and potential energy function. The Hamiltonian in the computer program is set up as a 2×2 partitioned matrix, where each diagonal block contains a traditional torsion-rotation Hamiltonian (as in the earlier program BELGI), and the two off-diagonal blocks contain tunneling terms. This hybrid formulation permits the use of the permutation-inversion group G6 (isomorphic to C3v) for terms in the two diagonal blocks, but requires G12 for terms in the off-diagonal blocks. The first application of the new program is to 2-methylmalonaldehyde. Microwave data for this molecule were previously fit using an all-tunneling Hamiltonian formalism to treat both large-amplitude-motions. For 2-methylmalonaldehyde, the hybrid program achieves the same quality of fit as was obtained with the all-tunneling program, but fits with the hybrid program eliminate a large discrepancy between internal rotation barriers in the OH and OD isotopologs of 2-methylmalonaldehyde that arose in fits with the all-tunneling program. This large isotopic shift in internal rotation barrier is thus almost certainly an artifact of the all-tunneling model. Other molecules for application of the hybrid program are mentioned. PMID:26439709

  9. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    NASA Astrophysics Data System (ADS)

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska

    2017-07-01

    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  10. A prototype of the procedure of strong ground motion prediction for intraslab earthquake based on characterized source model

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Sekiguchi, H.

    2011-12-01

    We propose a prototype of the procedure to construct source models for strong motion prediction during intraslab earthquakes based on the characterized source model (Irikura and Miyake, 2011). The key is the characterized source model which is based on the empirical scaling relationships for intraslab earthquakes and involve the correspondence between the SMGA (strong motion generation area, Miyake et al., 2003) and the asperity (large slip area). Iwata and Asano (2011) obtained the empirical relationships of the rupture area (S) and the total asperity area (Sa) to the seismic moment (Mo) as follows, with assuming power of 2/3 dependency of S and Sa on M0, S (km**2) = 6.57×10**(-11)×Mo**(2/3) (Nm) (1) Sa (km**2) = 1.04 ×10**(-11)×Mo**(2/3) (Nm) (2). Iwata and Asano (2011) also pointed out that the position and the size of SMGA approximately corresponds to the asperity area for several intraslab events. Based on the empirical relationships, we gave a procedure for constructing source models of intraslab earthquakes for strong motion prediction. [1] Give the seismic moment, Mo. [2] Obtain the total rupture area and the total asperity area according to the empirical scaling relationships between S, Sa, and Mo given by Iwata and Asano (2011). [3] Square rupture area and asperities are assumed. [4] The source mechanism is assumed to be the same as that of small events in the source region. [5] Plural scenarios including variety of the number of asperities and rupture starting points are prepared. We apply this procedure by simulating strong ground motions for several observed events for confirming the methodology.

  11. Revelations from a single strong-motion record retreived during the 27 June 1998 Adana (Turkey) earthquake

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    During the 27 June 1998 Adana (Turkey) earthquake, only one strong-motion record was retrieved in the region where the most damage occurred. This single record from the station in Ceyhan, approximately 15 km from the epicenter of that earthquake, exhibits characteristics that are related to the dominant frequencies of the ground and structures. The purpose of this paper is to explain the causes of the damage as inferred from both field observations and the characteristics of a single strong-motion record retrieved from the immediate epicentral area. In the town of Ceyhan there was considerable but selective damage to a significant number of mid-rise (7-12 stories high) buildings. The strong-motion record exhibits dominant frequencies that are typically similar for the mid-rise building structures. This is further supported by spectral ratios derived using Nakamura's method [QR of RTRI, 30 (1989) 25] that facilitates computation of a spectral ratio from a single tri-axial record as the ratio of amplitude spectrum of horizontal component to that of the vertical component [R = H(f)/V(f)]. The correlation between the damage and the characteristics exhibited from the single strong-motion record is remarkable. Although deficient construction practices played a significant role in the extent of damage to the mid-rise buildings, it is clear that site resonance also contributed to the detrimental fate of most of the mid-rise buildings. Therefore, even a single record can be useful to explain the effect of site resonance on building response and performance. Such information can be very useful for developing zonation criteria in similar alluvial valleys. Published by Elsevier Science Ltd.

  12. ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake

    NASA Astrophysics Data System (ADS)

    Bossu, Remy; McGilvary, Gary; Kamb, Linus

    2010-05-01

    There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.

  13. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and 100 m in horizontal and vertical, respectively. The grid spacing for the deep region is three times coarser. The total number of grid points is about three billion. The 3-D underground structure model used in the FD simulation is the Japan integrated velocity structure model (ERC, 2012). Our simulation is valid for period more than two seconds due to the lowest S-wave velocity and grid spacing. However, because the characterized source model may not sufficiently support short period components, we should be interpreted the reliable period of this simulation with caution. Therefore, we consider the period more than five seconds instead of two seconds for further analysis. We evaluate the long-period ground motions using the velocity response spectra for the period range between five and 20 second. The preliminary simulation shows a large variation of response spectra at a site. This large variation implies that the ground motion is very sensitive to different scenarios. And it requires studying the large variation to understand the seismic hazard. Our further study will obtain the hazard curves for the Nankai Trough earthquake (M 8~9) by applying the probabilistic seismic hazard analysis to the simulation results.

  14. Nonlinear Wave propagation at sediment layers

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Archuleta, R. J.; O'Connell, D. R.; Bonilla, F. L.

    2002-12-01

    Data from some large earthquakes, such as the 2000 Tottoriken-Seibu earthquake, the 1995 Kobe earthquake, and 1994 Northridge earthquake have reinforced the importance of the effect of surface soil on seismic waves. This is especially true of the Tottoriken-Seibu earthquake where the damage from the liquefaction of surface soil was very severe. The mechanism of the liquefaction of soil is understood as the result of the nonlinear soil behavior-the pore water pressure build up-during the strong shaking. The model to explain the mechanics of pore water pressure build up has been proposed by many studies. In this study, we tried to predict the pore water pressure based on the constitutive model proposed by Iai et al. (1992). This model has been already applied to predict nonlinear soil behavior by Bonilla (2000) whose simulated results showed good agreement with the laboratory data in the VELACS program. We have applied this method to simulate ground motions at Jackson Lake Dam, Wyoming. We constructed a 140 m one-dimensional shear-wave velocity/depth profile for the sediment layers. The water table is at 2 m depth. The elastic material properties are based on in situ measurements. However, the parameters needed for the nonlinear response are taken from generic data for similar materials. To check for consistency we have constructed liquefaction resistance curves using a range of parameters that will be assumed for the soil column. These curves are compared with measured point values of the liquefaction resistance. To estimate the response at Jackson Lake Dam we have used strong motion records-JMA records from the 1995 Kobe earthquake and the Pleasant Valley Pumping Plant records from the 1983 Coalinga earthquake-as input motions at 140 m depth. We have also used synthetic ground motions computed from scenario earthquakes that might occur on the Teton Fault, very close to the dam. In the case of the synthetic input motions, the calculated shear strain approaches 20% in the sand layer. The material between 0 and 10 m shows maximum strain of about 1%, which still produces an increase in the fundamental period of the layer as well as a deamplification of the amplitude of the seismic waves.

  15. SYMBOD - A computer program for the automatic generation of symbolic equations of motion for systems of hinge-connected rigid bodies

    NASA Technical Reports Server (NTRS)

    Macala, G. A.

    1983-01-01

    A computer program is described that can automatically generate symbolic equations of motion for systems of hinge-connected rigid bodies with tree topologies. The dynamical formulation underlying the program is outlined, and examples are given to show how a symbolic language is used to code the formulation. The program is applied to generate the equations of motion for a four-body model of the Galileo spacecraft. The resulting equations are shown to be a factor of three faster in execution time than conventional numerical subroutines.

  16. Vertical-angle control system in the LLMC

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei

    2000-10-01

    A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.

  17. Utah's Regional/Urban ANSS Seismic Network---Strategies and Tools for Quality Performance

    NASA Astrophysics Data System (ADS)

    Burlacu, R.; Arabasz, W. J.; Pankow, K. L.; Pechmann, J. C.; Drobeck, D. L.; Moeinvaziri, A.; Roberson, P. M.; Rusho, J. A.

    2007-05-01

    The University of Utah's regional/urban seismic network (224 stations recorded: 39 broadband, 87 strong-motion, 98 short-period) has become a model for locally implementing the Advanced National Seismic System (ANSS) because of successes in integrating weak- and strong-motion recording and in developing an effective real-time earthquake information system. Early achievements included implementing ShakeMap, ShakeCast, point-to- multipoint digital telemetry, and an Earthworm Oracle database, as well as in-situ calibration of all broadband and strong-motion stations and submission of all data and metadata into the IRIS DMC. Regarding quality performance, our experience as a medium-size regional network affirms the fundamental importance of basics such as the following: for data acquisition, deliberate attention to high-quality field installations, signal quality, and computer operations; for operational efficiency, a consistent focus on professional project management and human resources; and for customer service, healthy partnerships---including constant interactions with emergency managers, engineers, public policy-makers, and other stakeholders as part of an effective state earthquake program. (Operational cost efficiencies almost invariably involve trade-offs between personnel costs and the quality of hardware and software.) Software tools that we currently rely on for quality performance include those developed by UUSS (e.g., SAC and shell scripts for estimating local magnitudes) and software developed by other organizations such as: USGS (Earthworm), University of Washington (interactive analysis software), ISTI (SeisNetWatch), and IRIS (PDCC, BUD tools). Although there are many pieces, there is little integration. One of the main challenges we face is the availability of a complete and coherent set of tools for automatic and post-processing to assist in achieving the goals/requirements set forth by ANSS. Taking our own network---and ANSS---to the next level will require standardized, well-designed, and supported software. Other advances in seismic network performance will come from diversified instrumentation. We have recently shown the utility of incorporating strong-motion data (even from soil sites) into the routine analysis of local seismicity, and have also collocated an acoustic array with a broadband seismic station (in collaboration with Southern Methodist University). For the latter experiment, the purpose of collocated seismic and infrasound sensors is to (1) further an understanding of the physics associated with the generation and the propagation of seismic and low-frequency acoustic energy from shallow sources and (2) explore the potential for blast discrimination and improved source location using seismic and infrasonic data in a synergetic way.

  18. On the dependency of the decay of ground motion peak values with distance for small and large earthquakes

    NASA Astrophysics Data System (ADS)

    Dujardin, Alain; Courboulex, Françoise; Causse, Matthieu; Traversa, Paola; Monfret, Tony

    2013-04-01

    Ground motion decay with distance presents a clear magnitude dependence, PGA values of small events decreasing faster than those of larger events. This observation is now widely accepted and often taken into account in recent ground motion prediction equations (Anderson 2005, Akkar & Bommer 2010). The aim of this study is to investigate the origin of this dependence, which has not been clearly identified yet. Two main hypotheses are considered. On one hand the difference of ground motion decay is related to an attenuation effect, on the other hand the difference is related to an effect of extended fault (Anderson 2000). To study the role of attenuation, we realized synthetic tests using the stochastic simulation program SMSIM from Boore (2005). We build a set of simulations from several magnitudes and epicentral distances, and observe that the decay in PGA values is strongly dependent on the spectral shape of the Fourier spectra, which in turn strongly depends on the attenuation factor (Q(f) or kappa). We found that, for a point source approximation and an infinite value of Q (no attenuation) there is no difference between small and large events and that this difference increases when Q decreases. Theses results show that the influence of attenuation on spectral shape is different for earthquakes of different magnitude. In fact the influence of attenuation, which is more important at higher frequency, is larger for small earthquakes, whose Fourier acceleration spectrum has predominantly higher frequencies. We then study the effect of extended source using complete waveform simulations in a 1D model. We find that when the duration of the source time function increases, there is a larger probability to obtain large PGA values at equivalent distances. This effect could also play an important role in the PGA decay with magnitude and distance. Finally we compare these results with real datasets from the Japanese accelerometric network KIK-net.

  19. Distributions of strong ground motion due to dynamic ruptures across a bimaterial fault: Implications for seismic hazard analyses

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Zhu, Shoubiao

    2016-12-01

    We perform 2-D finite element calculations of mode II rupture along a bimaterial interface governed by regularized rate- and state-dependent friction law, with the goal of understanding how the bimaterial interface influences the strong ground motion. By comparison with properties of rupture in a homogeneous solid, we found that bimaterial mechanism is important for earthquake ruptures and influences the strong ground motion significantly. The simulated results show that mode II rupture evolves with propagation distance along a bimaterial interface to a unilateral wrinkle-like pulse in the direction of slip on the compliant side of the fault, namely in the positive direction. Strong ground motion caused by seismic waves emanated from the rupture propagation is asymmetrically distributed in space. The computed peak ground acceleration (PGA) is high in the near-fault region. Particularly, PGA is much larger in the region on the side in the positive direction. In addition, it is greater in the more compliant area of the model than that in the stiffer area with corresponding locations. Moreover, the differential PGA due to bimaterial effect increases with increasing degree of material contrast across the fault. It is hoped that the results obtained in this investigation will provide some implications for seismic hazard assessment and fault rupture mechanics.

  20. Computer program for investigating effects of nonlinear suspension-system elastic properties on parachute inflation loads and motions

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1972-01-01

    A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.

  1. 78 FR 13665 - L.E. Bell Construction Company, Inc.; Notice of Termination of Exemption by Implied Surrender and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ..., Protests, and Motions To Intervene Take notice that the following hydroelectric proceeding has been... . i. Deadline for filing comments, protests, and motions to intervene is 30 days from the issuance of...-8233-001) on any documents or motions filed. The Commission strongly encourages electronic filings...

  2. 78 FR 13664 - Piedmont Triad Regional Water Authority; Notice of Termination of Exemption by Implied Surrender...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ..., Protests, and Motions To Intervene Take notice that the following hydroelectric proceeding has been... (202)502-6302 or [email protected] . i. Deadline for filing comments, protests, and motions to... project number (P-7783-000) on any documents or motions filed. The Commission strongly encourages...

  3. Intertwined electron-nuclear motion in frustrated double ionization in driven heteronuclear molecules

    NASA Astrophysics Data System (ADS)

    Vilà, A.; Zhu, J.; Scrinzi, A.; Emmanouilidou, A.

    2018-03-01

    We study frustrated double ionization (FDI) in a strongly-driven heteronuclear molecule HeH+ and compare with H2. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH+. We find that this distribution has more than one peak for strongly-driven HeH+, a feature we do not find to be present for strongly-driven H2. Moreover, we compute the probability distribution of the principal quantum number n of FDI. We find that this distribution has several peaks for strongly-driven HeH+, while the respective distribution has one main peak and a ‘shoulder’ at lower principal quantum numbers n for strongly-driven H2. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.

  4. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and source parameters for the ensemble of site conditions. Elastic, equivalent linear and nonlinear simulations are implemented for the deterministic description of the base-model velocity and attenuation structures and nonlinear soil properties, to examine the variability in ground motion predictions as a function of ground motion amplitude and frequency content, and nonlinear site response methodology. The modeling site response uncertainty introduced in the broadband ground motion predictions is reported by means of the COV of site amplification, defined as the ratio of the predicted peak ground acceleration (PGA) and spectral acceleration (SA) at short and long periods to the corresponding intensity measure on the ground surface of a typical NEHRP BC boundary profile (Vs30=760m/s), for the ensemble of approximate and incremental nonlinear models implemented. A frequency index is developed to describe the frequency content of incident ground motion. In conjunction with the rock-outcrop acceleration level, this index is used to identify the site and ground motion conditions where incremental nonlinear analyses should be employed in lieu of approximate methodologies. Finally, the effects of modeling uncertainty in ground response analysis is evaluated in the estimation of site amplification factors, which are successively compared to recently published factors of the New Generation Attenuation Relations (NGA) and the currently employed Seismic Code Provisions (NEHRP).

  5. Ground motions from induced earthquakes in Oklahoma and Kansas and the implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Rennolet, S.; Thompson, E.; Yeck, W.; McNamara, D. E.; Herrmann, R. B.; Powers, P.; Hoover, S. M.

    2016-12-01

    Recent efforts to characterize the seismic hazard resulting from increased seismicity rates in Oklahoma and Kansas highlight the need for a regionalized ground motion characterization. To support these efforts, we measure and compile strong ground motions and compare these average ground motions intensity measures (IMs) with existing ground motion prediction equations (GMPEs). IMs are computed for available broadband and strong-motion records from M≥3 earthquakes occurring January 2009-April 2016, using standard strong motion processing guidelines. We verified our methods by comparing results from specific earthquakes to other standard procedures such as the USGS Shakemap system. The large number of records required an automated processing scheme, which was complicated by the extremely high rate of small-magnitude earthquakes 2014-2016. Orientation-independent IMs include peak ground motions (acceleration and velocity) and pseudo-spectral accelerations (5 percent damping, 0.1-10 s period). Metadata for the records included relocated event hypocenters. The database includes more than 160,000 records from about 3200 earthquakes. Estimates of the mean and standard deviation of the IMs are computed by distance binning at intervals of 2 km. Mean IMs exhibit a clear break in geometrical attenuation at epicentral distances of about 50-70 km, which is consistent with previous studies in the CEUS. Comparisons of these ground motions with modern GMPEs provide some insight into the relative IMs of induced earthquakes in Oklahoma and Kansas relative to the western U.S. and the central and eastern U.S. The site response for these stations is uncertain because very little is known about shallow seismic velocity in the region, and we make no attempt to correct observed IMs to a reference site conditions. At close distances, the observed IMs are lower than the predictions of the seed GMPEs of the NGA-East project (and about consistent with NGA-West-2 ground motions). This ground motion database may be used to inform future seismic hazard forecast models and in the development of regionally appropriate GMPEs.

  6. Off-line programming motion and process commands for robotic welding of Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.

    1987-01-01

    The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.

  7. Around the Sun in a Graphing Calculator.

    ERIC Educational Resources Information Center

    Demana, Franklin; Waits, Bert K.

    1989-01-01

    Discusses the use of graphing calculators for polar and parametric equations. Presents eight lines of the program for the graph of a parametric equation and 11 lines of the program for a graph of a polar equation. Illustrates the application of the programs for planetary motion and free-fall motion. (YP)

  8. On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Skarlatoudis, A.; Margaris, B.

    2005-12-01

    Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.

  9. Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2007-12-01

    Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.

  10. Operational EEW Networks in Turkey

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Pinar, Ali

    2016-04-01

    There are several EEW networks and algorithms under operation in Turkey. The first EEW system was deployed in Istanbul in 2002 after the 1999 Mw7.4 Kocaeli and Mw7.1 Duzce earthquake events. The system consisted of 10 strong motion stations located as close as possible to the main Marmara Fault line. The system was upgraded by 5 OBS (Ocean Bottom Seismometer) in 2012 located in Marmara Sea. The system works in threshold based algorithm. The alert is given according to exceedance of certain threshold levels of amplitude of ground motion acceleration in certain time interval at least in 3 stations. Currently, there are two end-users of EEW system in Istanbul. The critical facilities of Istanbul Gas Distribution Company (IGDAS) and Marmaray Tube tunnel receives the EEW information in order to activate their automatic shut-off mechanisms. The IGDAS has their own strong motion network located at their district regulators. After receiving the EEW signal if the threshold values of ground motion parameters are exceeded the gas-flow is cut automatically at the district regulators. The IGDAS has 750 district regulators distributed in Istanbul. At the moment, the 110 of them are instrumented with strong motion accelerometers. As a 2nd stage of the on-going project, the IGDAS company proposes to install strong motion accelerometers to all remaining district regulators. The Marmaray railway tube tunnel is the world's deepest immersed tube tunnel with 60m undersea depth. The tunnel has 1.4km length with 13 segments. The tunnel is monitored with 2 strong motion accelerometers in each segment, 26 in total. Once the EEW signal is received, the monitoring system is activated and the recording ground motion parameters are calculated in real-time. Depending on the exceedance of threshold levels, further actions are taken such as reducing the train speed, stopping the train before entering the tunnel etc. In Istanbul, there are also on-site EEW system applied in several high-rise buildings. As similar to threshold based algorithm, once the threshold level is exceeded in several strong motion accelerometers installed in the high-rise building, the automated shut-off mechanism is activated in order to prevent secondary damage effects of the earthquakes. In addition to the threshold based EEW system, the regional EEW algorithms Virtual Seismologist (VS) as implemented in SeisComP3 VS(SC3) and PRESTo have been also implemented in Marmara region of Turkey. These applications use the regional seismic networks. The purpose of the regional EEW systems is to determine the magnitude and location of the event from the P-wave information of the closest 3-4 stations and forward this information to interested sites. The regional EEW systems are also important for Istanbul in order to detect far distance earthquake events and provide alert especially for the high-rise buildings for their long duration shaking.

  11. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt spectrum. Amplitudes of rotations at the site depend upon the size of the base and usually decrease with depth. They are also amplified by soft material. Earthquake data used in this study were downloaded from the Center for Engineering Strong Motion Data at http://www.strongmotioncenter.org/.

  12. An Assessment of the Impact of a Science Outreach Program, Science In Motion, on Student Achievement, Teacher Efficacy, and Teacher Perception

    ERIC Educational Resources Information Center

    Herring, Phillip Allen

    2009-01-01

    The purpose of the study was to analyze the science outreach program, Science In Motion (SIM), located in Mobile, Alabama. This research investigated what impact the SIM program has on student cognitive functioning and teacher efficacy and also investigated teacher perceptions and attitudes regarding the program. To investigate student…

  13. Water entry and exit of horizontal circular cylinders

    NASA Astrophysics Data System (ADS)

    Greenhow, M.; Moyo, S.

    This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.

  14. Measures and Relative Motions of Some Mostly F. G. W. Struve Doubles

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2012-04-01

    Measures of 59 pairs of double stars with long observational histories using "lucky imaging" techniques are reported. Relative motions of 59 pairs are investigated using histories of observation, scatter plots of relative motion, ordinary least-squares (OLS) and total proper motion analyses performed in "R," an open source programming language. A scatter plot of the coefficient of determinations derived from the OLS y|epoch and OLS x|epoch clearly separates common proper motion pairs from optical pairs and what are termed "long-period binary candidates." Differences in proper motion separate optical pairs from long-term binary candidates. An Appendix is provided that details how to use known rectilinear pairs as calibration pairs for the program REDUC.

  15. Semi-automated vectorial analysis of anorectal motion by magnetic resonance defecography in healthy subjects and fecal incontinence.

    PubMed

    Noelting, J; Bharucha, A E; Lake, D S; Manduca, A; Fletcher, J G; Riederer, S J; Joseph Melton, L; Zinsmeister, A R

    2012-10-01

    Inter-observer variability limits the reproducibility of pelvic floor motion measured by magnetic resonance imaging (MRI). Our aim was to develop a semi-automated program measuring pelvic floor motion in a reproducible and refined manner. Pelvic floor anatomy and motion during voluntary contraction (squeeze) and rectal evacuation were assessed by MRI in 64 women with fecal incontinence (FI) and 64 age-matched controls. A radiologist measured anorectal angles and anorectal junction motion. A semi-automated program did the same and also dissected anorectal motion into perpendicular vectors representing the puborectalis and other pelvic floor muscles, assessed the pubococcygeal angle, and evaluated pelvic rotation. Manual and semi-automated measurements of anorectal junction motion (r = 0.70; P < 0.0001) during squeeze and evacuation were correlated, as were anorectal angles at rest, squeeze, and evacuation; angle change during squeeze or evacuation was less so. Semi-automated measurements of anorectal and pelvic bony motion were also reproducible within subjects. During squeeze, puborectalis injury was associated (P ≤ 0.01) with smaller puborectalis but not pelvic floor motion vectors, reflecting impaired puborectalis function. The pubococcygeal angle, reflecting posterior pelvic floor motion, was smaller during squeeze and larger during evacuation. However, pubococcygeal angles and pelvic rotation during squeeze and evacuation did not differ significantly between FI and controls. This semi-automated program provides a reproducible, efficient, and refined analysis of pelvic floor motion by MRI. Puborectalis injury is independently associated with impaired motion of puborectalis, not other pelvic floor muscles in controls and women with FI. © 2012 Blackwell Publishing Ltd.

  16. 45 CFR 79.28 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Motions. 79.28 Section 79.28 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.28 Motions. (a) Any application to the ALJ for an order or ruling shall be by motion. Motions shall state the...

  17. Explosion source strong ground motions in the Mississippi embayment

    USGS Publications Warehouse

    Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.

    2006-01-01

    Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.

  18. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    NASA Astrophysics Data System (ADS)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  19. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  20. Computer program for the load and trajectory analysis of two DOF bodies connected by an elastic tether: Users manual

    NASA Technical Reports Server (NTRS)

    Doyle, G. R., Jr.; Burbick, J. W.

    1973-01-01

    The derivation of the differential equations of motion of a 3 Degrees of Freedom body joined to a 3 Degrees of Freedom body by an elastic tether. The tether is represented by a spring and dashpot in parallel. A computer program which integrates the equations of motion is also described. Although the derivation of the equations of motions are for a general system, the computer program is written for defining loads in large boosters recovered by parachutes.

  1. Motions and crew responses on an offshore oil production and storage vessel.

    PubMed

    Haward, Barbara M; Lewis, Christopher H; Griffin, Michael J

    2009-09-01

    The motions of vessels may interfere with crew activities and well-being, but the relationships between motion and the experiences of crew are not well-established. Crew responses to motions of a floating production and storage offshore vessel at a fixed location in the North Sea were studied over a 5-month period to identify any changes in crew difficulties and symptoms associated with changes in vessel motion. Ship motions in all six axes (fore-aft, lateral, vertical, roll, pitch, and yaw) were recorded continuously over the 5-month period while 47 crew completed a total of 1704 daily diary entries, a participation rate of 66-78% of the crew complement. The dominant oscillations had frequencies of around 0.1 Hz, producing magnitudes of translational oscillation in accommodation areas of up to about 0.7 ms(-2)r.m.s., depending on the weather, and magnitudes up to three times greater in some other areas. The daily diaries gave ratings of difficulties with tasks, effort level, motion sickness, health symptoms, fatigue, and sleep. Problems most strongly associated with vessel motions were difficulties with physical tasks (balancing, moving and carrying), and sleep problems. Physical and mental tiredness, cognitive aspects of task performance, and stomach awareness and dizziness were also strongly associated with motion magnitude. There was a vomiting incidence of 3.1%, compared with a predicted mean vomiting incidence of 9.3% for a mixed population of unadapted adults. It is concluded that crew difficulties increase on days when vessel motions increase, with some activities and responses particularly influenced by vessel motions.

  2. Progress Towards a Comprehensive Site Database for Taiwan Strong Motion Network

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Lin, C. M.; Chang, S. C.; Wen, K. L.

    2016-12-01

    Site effect is usually treated as a simple site parameter like Vs30, which is a value of average shear wave velocity for the top 30 m of layers, in Ground Motion Prediction Equations (GMPEs) and engineering seismology. Although debates on usage of Vs30 for its advantage and disadvantage are still an open question, it has become the most widely be used site parameter in ground motion prediction, seismic hazard analysis, and building codes. Depth to the horizons with shear wave velocity of larger than 1.0 km/s (or 1.5 km/s, 2.5 km/s), the so called Z1.0 (or Z1.5, Z2.5), was recently introduced to the GMPEs of the Next Generation of Attenuation Equations (NGA) project in order to make up for the insufficient of Vs30 especially in regions covered by large thickness of sediments. However this kind of data is still rare and quite difficult to be acquired. This parameter is only available in Japan, California, and part region of Turkey at present. The high-frequency attenuation factor, i.e. kappa, is considered a significant parameter controlling attenuation of high-frequency seismic waves. High correlation is believed between kappa and local site conditions. S-wave velocity profiles of the Engineering Geology Database for TSMIP (EGDT) were measured using suspension PS-logging at more than 450 strong ground motion stations throughout Taiwan. Accurate Vs30 is therefore provided by the site database. Although the depths of most stations were only 35 m, Z1.0 still can be derived at dozens of stations near basin edges or piedmont area from EGDT. Several techniques including microtremor array, receiver function, and HVSR inversion have been used to obtain S-wave velocity profiles at strong motion stations and thus the parameter Z1.0 can be derived. A relationship between Vs30 and Z1.0 for Taiwan is consequently evaluated and further compared with those for Japan and California. Kappa at strong motion stations was calculated and a special correlation with Vs30 is found. The achievement in the progress toward a comprehensive site database for a national strong motion network is quite important for engineering seismology and national seismic hazard analysis.

  3. A Survey of Motion Picture, Still Photography, and Graphic Arts Instruction.

    ERIC Educational Resources Information Center

    Horrell, C. William

    Over 2,500 U.S. and 60 Canadian schools provided data for this report on post secondary institutions offering programs in motion picture, still photography, and graphic arts instruction. Included are tables summarizing program-related data such as enrollment, institutions offering programs, and degrees offered. Also included is a directory of…

  4. Estimation of empirical site amplification factors in Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, Chi-Hsuan; Wen, Kuo-Liang; Kuo, Chun-Hsiang

    2017-04-01

    Lots of infrastructures are under construction in metropolises in Taiwan in recent years and thus leads to increasement of population density and urbanization in those area. Taiwan island is located in plate boundaries in which the high seismicity is caused by active tectonic plates. The Chi-Chi earthquake (Mw 7.6) in 1999 caused a fatality of more than 2000, and the Meinong earthquake (Mw 6.5) in 2016 caused a fatality of 117 in Tainan city as well as damages on hundreds of buildings. The cases imply seismic vulnerability of urban area. During the improvements for seismic hazard analysis and seismic design, consideration of seismic site amplifications in different site conditions is one of important issues. This study used selected and processed strong motion records observed by the TSMIP network. The site conditions considered as Vs30 used in this study were investigated at most stations (Kuo et al. 2012; Kuo et al. 2016). Since strong motion records and site conditions are both available, we are able to use the data to analyze site amplifications of seismic waves at different periods. The result may be a reference for future modification of seismic design codes to decrease potential seismic hazards and losses. We adopted the strong motion and site database of the SSHAC (Senior Seismic Hazard Analysis Committee) Level 3 project in Taiwan. The selected significant crustal and subduction events of magnitude larger than six for analysis. The amplification factors of PGA, PGV, PGD, and spectra acceleration at 0.3, 1.0, and 3.0 seconds were evaluated using the processed strong motions. According to the recommendation of SSHAC Level 3 project, the site condition of Vs30 = 760 m/s is considered as the reference rock site in this study. The stations with Vs30 between 600 m/s and 900 m/s and used as the reference rock sites in reality. For each event, we find a reference rock site and other site within a certain distance (region dependent) to calculate site amplifications of ground motions. Relationships of site amplification factors and Vs30 are therefore derived for strong motions by regression analysis. Soil nonlinearity (decrease of amplifications) has to be considered at soft soil sites during a strong shaking. We also discuss amplification factors in terms of different intensities if data is available.

  5. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-07

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less

  6. Orientation-independent measures of ground motion

    USGS Publications Warehouse

    Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.

    2006-01-01

    The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large datasets. A preliminary analysis contained in a companion article by Beyer and Bommer finds that the reduction is small-to-nonexistent for equations based on a wide range of magnitudes and distances. The results of Beyer and Bommer do suggest, however, that there is an increasing reduction as period increases. Whether the reduction increases with other subdivisions of the dataset for which strongly correlated motions might be expected (e.g., pulselike motions close to faults) awaits further analysis.

  7. Source Characteristics of the Northern Longitudinal Valley, Taiwan Derived from Broadband Strong-Motion Simulation

    NASA Astrophysics Data System (ADS)

    Wen, Yi-Ying

    2018-02-01

    The 2014 M L 5.9 Fanglin earthquake occurred at the northern end of the aftershock distribution of the 2013 M L 6.4 Ruisui event and caused strong ground shaking and some damage in the northern part of the Longitudinal Valley. We carried out the strong-motion simulation of the 2014 Fanglin event in the broadband frequency range (0.4-10 Hz) using the empirical Green's function method and then integrated the source models to investigate the source characteristics of the 2013 Ruisui and 2014 Fanglin events. The results show that the dimension of strong motion generation area of the 2013 Ruisui event is smaller, whereas that of the 2014 Fanglin event is comparable with the empirical estimation of inland crustal earthquakes, which indicates the different faulting behaviors. Furthermore, the localized high PGV patch might be caused by the radiation energy amplified by the local low-velocity structure in the northern Longitudinal Valley. Additional study issues are required for building up the knowledge of the potential seismic hazard related to moderate-large events for various seismogenic areas in Taiwan.

  8. Validation results of specifications for motion control interoperability

    NASA Astrophysics Data System (ADS)

    Szabo, Sandor; Proctor, Frederick M.

    1997-01-01

    The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.

  9. 6 CFR 13.28 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Motions. 13.28 Section 13.28 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.28 Motions. (a) Any application to the ALJ for an order or ruling will be by motion. Motions will state the relief...

  10. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake

    USGS Publications Warehouse

    Joyner, William B.; Boore, David M.

    1981-01-01

    We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence.

  11. Site classification of Indian strong motion network using response spectra ratios

    NASA Astrophysics Data System (ADS)

    Chopra, Sumer; Kumar, Vikas; Choudhury, Pallabee; Yadav, R. B. S.

    2018-03-01

    In the present study, we tried to classify the Indian strong motion sites spread all over Himalaya and adjoining region, located on varied geological formations, based on response spectral ratio. A total of 90 sites were classified based on 395 strong motion records from 94 earthquakes recorded at these sites. The magnitude of these earthquakes are between 2.3 and 7.7 and the hypocentral distance for most of the cases is less than 50 km. The predominant period obtained from response spectral ratios is used to classify these sites. It was found that the shape and predominant peaks of the spectra at these sites match with those in Japan, Italy, Iran, and at some of the sites in Europe and the same classification scheme can be applied to Indian strong motion network. We found that the earlier schemes based on description of near-surface geology, geomorphology, and topography were not able to capture the effect of sediment thickness. The sites are classified into seven classes (CL-I to CL-VII) with varying predominant periods and ranges as proposed by Alessandro et al. (Bull Seismol Soc Am 102:680-695 2012). The effect of magnitudes and hypocentral distances on the shape and predominant peaks were also studied and found to be very small. The classification scheme is robust and cost-effective and can be used in region-specific attenuation relationships for accounting local site effect.

  12. Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1996-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.

  13. A computer program for an analysis of the relative motion of a space station and a free flying experiment module

    NASA Technical Reports Server (NTRS)

    Butler, J. H.

    1971-01-01

    A preliminary analysis of the relative motion of a free flying experiment module in the vicinity of a space station under the perturbative effects of drag and earth oblateness was made. A listing of a computer program developed for determining the relative motion of a module utilizing the Cowell procedure is presented, as well as instructions for its use.

  14. Electric-field-stimulated protein mechanics

    PubMed Central

    Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama

    2017-01-01

    The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732

  15. Interpersonal Coordination of Head Motion in Distressed Couples

    PubMed Central

    Hammal, Zakia; Cohn, Jeffrey F.; George, David T.

    2015-01-01

    In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256

  16. Seeing blur: 'motion sharpening' without motion.

    PubMed Central

    Georgeson, Mark A; Hammett, Stephen T

    2002-01-01

    It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571

  17. Source complexity of the 1987 Whittier Narrows, California, earthquake from the inversion of strong motion records

    USGS Publications Warehouse

    Hartzell, S.; Iida, M.

    1990-01-01

    Strong motion records for the Whittier Narrows earthquake are inverted to obtain the history of slip. Both constant rupture velocity models and variable rupture velocity models are considered. The results show a complex rupture process within a relatively small source volume, with at least four separate concentrations of slip. Two sources are associated with the hypocenter, the larger having a slip of 55-90 cm, depending on the rupture model. These sources have a radius of approximately 2-3 km and are ringed by a region of reduced slip. The aftershocks fall within this low slip annulus. Other sources with slips from 40 to 70 cm each ring the central source region and the aftershock pattern. All the sources are predominantly thrust, although some minor right-lateral strike-slip motion is seen. The overall dimensions of the Whittier earthquake from the strong motion inversions is 10 km long (along the strike) and 6 km wide (down the dip). The preferred dip is 30?? and the preferred average rupture velocity is 2.5 km/s. Moment estimates range from 7.4 to 10.0 ?? 1024 dyn cm, depending on the rupture model. -Authors

  18. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  19. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  20. Numerical simulation analysis on Wenchuan seismic strong motion in Hanyuan region

    NASA Astrophysics Data System (ADS)

    Chen, X.; Gao, M.; Guo, J.; Li, Z.; Li, T.

    2015-12-01

    69227 deaths, 374643 injured, 17923 people missing, direct economic losses 845.1 billion, and a large number houses collapse were caused by Wenchuan Ms8 earthquake in Sichuan Province on May 12, 2008, how to reproduce characteristics of its strong ground motion and predict its intensity distribution, which have important role to mitigate disaster of similar giant earthquake in the future. Taking Yunnan-Sichuan Province, Wenchuan town, Chengdu city, Chengdu basin and its vicinity as the research area, on the basis of the available three-dimensional velocity structure model and newly topography data results from ChinaArray of Institute of Geophysics, China Earthquake Administration, 2 type complex source rupture process models with the global and local source parameters are established, we simulated the seismic wave propagation of Wenchuan Ms8 earthquake throughout the whole three-dimensional region by the GMS discrete grid finite-difference techniques with Cerjan absorbing boundary conditions, and obtained the seismic intensity distribution in this region through analyzing 50×50 stations data (simulated ground motion output station). The simulated results indicated that: (1)Simulated Wenchuan earthquake ground motion (PGA) response and the main characteristics of the response spectrum are very similar to those of the real Wenchuan earthquake records. (2)Wenchuan earthquake ground motion (PGA) and the response spectra of the Plain are much greater than that of the left Mountain area because of the low velocity of the shallow surface media and the basin effect of the Chengdu basin structure. Simultaneously, (3) the source rupture process (inversion) with far-field P-wave, GPS data and InSAR information and the Longmenshan Front Fault (source rupture process) are taken into consideration in GMS numerical simulation, significantly different waveform and frequency component of the ground motion are obtained, though the strong motion waveform is distinct asymmetric, which should be much more real. It indicated that the Longmenshan Front Fault may be also involved in seismic activity during the long time(several minutes) Wenchuan earthquake process. (4) Simulated earthquake records in Hanyuan region are indeed very strong, which reveals source mechanism is one reason of Hanyuan intensity abnormaly.

  1. User Manual for Program SCOMOT Second Part of U.S.C.G. Ship Motion Program.

    DTIC Science & Technology

    1981-02-01

    wave angle, etc. - 52 - Entry 8 - Jl - First Index Number First index for motion calculation using coordinate points or moment and force calculations using...162.4 .6500 .5434 .2942 179.8 .6786 170.0 1.0258 161.8 1.4070 144.3 .7000 .4686 .1774 179.6 .5946 167.1 1.0292 154.8 1.2598 110.5 .7500 .4082 . 0786 ...SHIP MOTION PROGRAM 77.1 02/24/81 05.49.12 PAGE 52 SL-7 - NORMAL FULL LOAD DEPARTURE SPEED = 25.000 KNOTS REGULAR WAVE LATERAL BENDING MOMENT AT STATION

  2. Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    PubMed Central

    Kim, Jejoong; Park, Sohee; Blake, Randolph

    2011-01-01

    Background Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion. Conclusion Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by healthy observers on these same tasks. The present findings fit within the context of theories of delusion involving perceptual and cognitive processes. PMID:21625492

  3. Joint Inversion of 1-Hz GPS Data and Strong Motion Records for the Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake: Objectively Determining Relative Weighting

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Kato, T.; Wang, Y.

    2015-12-01

    The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.

  4. The near-source strong-motion accelerograms recorded by an experimental array in Tangshan, China

    USGS Publications Warehouse

    Peng, K.; Xie, Lingtian; Li, S.; Boore, D.M.; Iwan, W.D.; Teng, T.L.

    1985-01-01

    A joint research project on strong-motion earthquake studies between the People's Republic of China and the United States is in progress. As a part of this project, an experimental strong-motion array, consisting of twelve Kinemetrics PDR-1 Digital Event Recorders, was deployed in the meizoseismal area of the Ms = 7.8 Tangshan earthquake of July 28, 1976. These instruments have automatic gain ranging, a specified dynamic range of 102 dB, a 2.5 s pre-event memory, programmable triggering, and are equipped with TCG-1B Time Code Generators with a stability of 3 parts in 107 over a range of 0-50??C. In 2 y of operation beginning July, 1982 a total of 603 near-source 3-component accelerograms were gathered from 243 earthquakes of magnitude ML = 1.2-5.3. Most of these accelerograms have recorded the initial P-wave. The configuration of the experimental array and a representative set of near-source strong-motion accelerograms are presented in this paper. The set of accelerograms exhibited were obtained during the ML = 5.3 Lulong earthquake of October 19, 1982, when digital event recorders were triggered. The epicentral distances ranged from 4 to 41 km and the corresponding range of peak horizontal accelerations was 0.232g to 0.009g. A preliminary analysis of the data indicates that compared to motions in the western United States, the peak acceleration attenuates much more rapidly in the Tangshan area. The scaling of peak acceleration with magnitude, however, is similar in the two regions. Data at more distant sites are needed to confirm the more rapid attenuation. ?? 1985.

  5. A source model of the 2014 South Napa Earthquake by the EGF broad-band strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2014-12-01

    The source model of the 2014 South Napa earthquake (Mw6.0) is estimated using broad band strong ground motion simulation by the empirical Green's function method (Irikura, 1986, Irikura et al., 1997). We used the CESMD strong motion data. Aftershock ground motion records of Mw3.6 which occurred at 05:33 on 24th August (PDT), are used as an empirical Green's function. We refer to the finite source model by Dreger et al. (2014) for setting the geometry of the source fault plane and the rupture velocity. We assume a single rectangular strong motion generation area (e.g. Miyake et al., 2003; Asano and Iwata, 2012). The seismic moment ratio between the target and EGF events is fixed from the moment magnitudes. As only five station data are available for the aftershock records, the size of SMGA area, rupture starting point, and the rise time on the SMGA are determined by the trial and error. Preliminary SMGA model is 6x6km2 and the rupture mainly propagates WNW and shallower directions. The SMGA size we obtained follows the empirical relationship of Mw and SMGA size for the inland crustal events (Irikura and Miyake, 2011). Waveform fittings are fairly well at the near source station NHC (Huichica creek) and 68150 (Napa Collage), where as the fitting is not good at the south-side stations, 68206 (Crockett - Carquinez Br. Geotech Array) and 68310 (Vallejo - Hwy 37/Napa River E Geo. Array). Particularly, we did not succeed in explaining the high PGA at the 68206 surface station. We will try to improve our SMGA model and will discuss the origin of the high PGA observed at that station.

  6. Motion coordination and programmable teleoperation between two industrial robots

    NASA Technical Reports Server (NTRS)

    Luh, J. Y. S.; Zheng, Y. F.

    1987-01-01

    Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.

  7. Partners In Motion And Customer Satisfaction In The Washington Dc Metropolitan Area

    DOT National Transportation Integrated Search

    1999-06-01

    PARTNERS IN MOTION IS A PROGRAM AIMED AT IMPROVING THE QUALITY, QUANTITY, AND AVAILABILITY OF TRAVEL INFORMATION TO TRANSPORTATION AGENCIES, THE MEDIA, AND, ULTIMATELY, TO THE TRAVELER IN THE WASHINGTON, D.C. METROPOLITAN AREA. THE PROGRAM WAS INITIA...

  8. Optimization of Dynamic Aperture of PEP-X Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Min-Huey; /SLAC; Cai, Yunhai

    2010-08-23

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less

  9. Kinematic Source Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake, a MW6.9 thrust earthquake in northeast Japan, using Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.

    2008-12-01

    The 2008 Iwate-Miyagi Nairiku earthquake (MJMA7.2) on June 14, 2008, is a thrust type inland crustal earthquake, which occurred in northeastern Honshu, Japan. In order to see strong motion generation process of this event, the source rupture process is estimated by the kinematic waveform inversion using strong motion data. Strong motion data of the K-NET and KiK-net stations and Aratozawa Dam are used. These stations are located 3-94 km from the epicenter. Original acceleration time histories are integrated into velocity and band- pass filtered between 0.05 and 1 Hz. For obtaining the detailed source rupture process, appropriate velocity structure model for Green's functions should be used. We estimated one dimensional velocity structure model for each strong motion station by waveform modeling of aftershock records. The elastic wave velocity, density, and Q-values for four sedimentary layers are assumed following previous studies. The thickness of each sedimentary layer depends on the station, which is estimated to fit the observed aftershock's waveforms by the optimization using the genetic algorithm. A uniform layered structure model is assumed for crust and upper mantle below the seismic bedrock. We succeeded to get a reasonable velocity structure model for each station to give a good fit of the main S-wave part in the observation of aftershocks. The source rupture process of the mainshock is estimated by the linear kinematic waveform inversion using multiple time windows (Hartzell and Heaton, 1983). A fault plane model is assumed following the moment tensor solution by F-net, NIED. The strike and dip angle is 209° and 51°, respectively. The rupture starting point is fixed at the hypocenter located by the JMA. The obtained source model shows a large slip area in the shallow portion of the fault plane approximately 6 km southwest of the hypocenter. The rupture of the asperity finishes within about 9 s. This large slip area corresponds to the area with surface break reported by the field survey group (e.g., AIST/GSJ, 2008), which supports the existence of the large slip close to the ground surface. But, most of surface offset found by the field survey are less than 0.5 m whereas the slip amount of the shallow asperity of the source inversion result is 3-4 m. In north of the hypocenter, the estimated slip amount is small. Slip direction is almost pure dip-slip for the entire fault (Northwest side goes up against southeast side). Total seismic moment is 2.6× 1019 Nm (MW 6.9). Acknowledgments: Strong motion data of K-NET and KiK-net operated by the National Research Institute for Earth Science and Disaster Prevention are used. Strong motion data of Aratozawa Dam obtained by Miyagi prefecture government is also used in the study.

  10. 40 CFR 78.15 - Motions in evidentiary hearings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Motions in evidentiary hearings. 78.15 Section 78.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPEAL PROCEDURES § 78.15 Motions in evidentiary hearings. (a) Any party may make a motion to the...

  11. Phase transition transistors based on strongly-correlated materials

    NASA Astrophysics Data System (ADS)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  12. Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data

    USGS Publications Warehouse

    Ji, C.; Larson, K.M.; Tan, Y.; Hudnut, K.W.; Choi, K.

    2004-01-01

    The slip history of the 2003 San Simeon earthquake is constrained by combining strong motion and teleseismic data, along with GPS static offsets and 1-Hz GPS observations. Comparisons of a 1-Hz GPS time series and a co-located strong motion data are in very good agreement, demonstrating a new application of GPS. The inversion results for this event indicate that the rupture initiated at a depth of 8.5 km and propagated southeastwards with a speed ???3.0 km/sec, with rake vectors forming a fan structure around the hypocenter. We obtained a peak slip of 2.8 m and total seismic moment of 6.2 ?? 1018 Nm. We interpret the slip distribution as indicating that the hanging wall rotates relative to the footwall around the hypocenter, in a sense that appears consistent with the shape of the mapped fault trace. Copyright 2004 by the American Geophysical Union.

  13. Courseware Review.

    ERIC Educational Resources Information Center

    Risley, John S.

    1983-01-01

    Reviews "Laws of Motion" computer program produced by Educational Materials and Equipment Company. The program (language unknown), for Apple II/II+, is a simulation of an inclined plane, free fall, and Atwood machine in Newtonian/Aristotelian worlds. Suggests use as supplement to discussion of motion by teacher who fully understands the…

  14. Strong Motion Seismograph Based On MEMS Accelerometer

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The application program layer mainly concludes: earthquake parameter module, local database managing module, data transmission module, remote monitoring, FTP service and so on. The application layer adopted multi-thread process. The whole strong motion seismograph was encapsulated in a small aluminum box, which size is 80mm×120mm×55mm. The inner battery can work continuesly more than 24 hours. The MEMS accelerograph uses modular design for its software part and hardware part. It has remote software update function and can meet the following needs: a) Auto picking up the earthquake event; saving the data on wave-event files and hours files; It may be used for monitoring strong earthquake, explosion, bridge and house health. b) Auto calculate the earthquake parameters, and transferring those parameters by 3G wireless broadband network. This kind of seismograph has characteristics of low cost, easy installation. They can be concentrated in the urban region or areas need to specially care. We can set up a ground motion parameters quick report sensor network while large earthquake break out. Then high-resolution-fine shake-map can be easily produced for the need of emergency rescue. c) By loading P-wave detection program modules, it can be used for earthquake early warning for large earthquakes; d) Can easily construct a high-density layout seismic monitoring network owning remote control and modern intelligent earthquake sensor.

  15. Motions and functional performance after supervised physical therapy program versus home-based program after arthroscopic anterior shoulder stabilization: a randomized clinical trial.

    PubMed

    Ismail, M M; El Shorbagy, K M

    2014-01-01

    To compare the effects of a standardized supervised physical therapy versus a controlled home-based programs on the rate of shoulder motion and functional recovery after arthroscopic anterior shoulder stabilization. Twenty-seven patients (18-35years) underwent arthroscopic anterior shoulder stabilization. Patients were randomized into two groups. A supervised group (n=14) received a rehabilitation program, 3 sessions/week for 24 weeks and a controlled home treated group (n=13) who followed a home-based program for same period. Range of motion (ROM) of the shoulder was assessed 4 times after each phase of rehabilitation and function was assessed after the 3rd and 4th phase of rehabilitation. Both groups achieved a significant progressive increase in all shoulder motions throughout the study period. Patients in the supervised group achieved 92.6% and 94.2% of the contralateral side in abduction and forward elevation respectively. The controlled home-based group achieved 87.1% and 94.7% of abduction and forward elevation respectively. For external rotation, the percentage ROM achieved was 81.1% for the supervised group and 76.4% for the controlled home-based group. For function assessment, the two groups showed a significant improvement. However, the two groups were not significantly different from each other in all measured variables. A controlled home-based physical therapy program is as effective as a supervised program in increasing shoulder range of motion and function after arthroscopic anterior shoulder stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. The limits of earthquake early warning: Timeliness of ground motion estimates

    USGS Publications Warehouse

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.

  17. The limits of earthquake early warning: Timeliness of ground motion estimates

    PubMed Central

    Hanks, Thomas C.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information. PMID:29750190

  18. Sensitivity of complex cells in cat striate cortex to relative motion.

    PubMed

    Hammond, P; Smith, A T

    1984-06-03

    Sensitivity of 95 complex cells to relative motion between oriented bars and textured backgrounds was investigated monocularly in the striate cortex of lightly anesthetized, paralyzed cats. Cells were classified conventionally. Those in deep layers were either direction-selective, or strongly preferred one direction of motion, and responded well to background texture motion alone: backgrounds potentiated the response to the bar in the cell's preferred direction when moved in phase, or in the opposite direction when moved in antiphase; other combinations depressed the level of response compared with that for the bar alone. The majority of direction-selective or strongly direction-biased cells in superficial layers behaved similarly. The most interesting superficial-layer cells were bidirectional or weakly direction-biased, and recorded closer to the cortical surface than the direction-selective neurons. A majority showed preference for relative motion, some for antiphase, others for in-phase motion, regardless of the absolute direction of motion across the receptive field, which could not be accounted for on the basis of separate responses to bars and backgrounds alone. Three of the superficial-layer direction-selective cells also showed preference for antiphase relative motion. In a few complex cells from superficial laminae, backgrounds were either without influence on responses to oriented stimuli, or purely suppressive. Visual backgrounds against which objects are perceived are usually neither featureless nor motionless: the results suggest that most complex cells in striate cortex are sensitive to the context in which objects are seen and susceptible to relationships between objects and their backgrounds in relative motion.

  19. Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification

    NASA Astrophysics Data System (ADS)

    Yamanaka, Hiroaki; Özmen, Ögur Tuna; Chimoto, Kosuke; Alkan, Mehmet Akif; Tün, Muammer; Pekkan, Emrah; Özel, Oguz; Polat, Derya; Nurlu, Murat

    2018-05-01

    We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.

  20. Slow motion in films and video clips: Music influences perceived duration and emotion, autonomic physiological activation and pupillary responses.

    PubMed

    Wöllner, Clemens; Hammerschmidt, David; Albrecht, Henning

    2018-01-01

    Slow motion scenes are ubiquitous in screen-based audiovisual media and are typically accompanied by emotional music. The strong effects of slow motion on observers are hypothetically related to heightened emotional states in which time seems to pass more slowly. These states are simulated in films and video clips, and seem to resemble such experiences in daily life. The current study investigated time perception and emotional response to media clips containing decelerated human motion, with or without music using psychometric and psychophysiological testing methods. Participants were presented with slow-motion scenes taken from commercial films, ballet and sports footage, as well as the same scenes converted to real-time. Results reveal that slow-motion scenes, compared to adapted real-time scenes, led to systematic underestimations of duration, lower perceived arousal but higher valence, lower respiration rates and smaller pupillary diameters. The presence of music compared to visual-only presentations strongly affected results in terms of higher accuracy in duration estimates, higher perceived arousal and valence, higher physiological activation and larger pupillary diameters, indicating higher arousal. Video genre affected responses in addition. These findings suggest that perceiving slow motion is not related to states of high arousal, but rather affects cognitive dimensions of perceived time and valence. Music influences these experiences profoundly, thus strengthening the impact of stretched time in audiovisual media.

  1. Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Fan, Rukun; Geng, Weidong

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with amore » piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.« less

  2. Suggested Courseware for the Non-Calculus Physics Student: Measurement, Vectors, and One-Dimensional Motion.

    ERIC Educational Resources Information Center

    Mahoney, Joyce; And Others

    1988-01-01

    Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)

  3. Computer-Guided Deep Brain Stimulation Programming for Parkinson's Disease.

    PubMed

    Heldman, Dustin A; Pulliam, Christopher L; Urrea Mendoza, Enrique; Gartner, Maureen; Giuffrida, Joseph P; Montgomery, Erwin B; Espay, Alberto J; Revilla, Fredy J

    2016-02-01

    Pilot study to evaluate computer-guided deep brain stimulation (DBS) programming designed to optimize stimulation settings using objective motion sensor-based motor assessments. Seven subjects (five males; 54-71 years) with Parkinson's disease (PD) and recently implanted DBS systems participated in this pilot study. Within two months of lead implantation, the subject returned to the clinic to undergo computer-guided programming and parameter selection. A motion sensor was placed on the index finger of the more affected hand. Software guided a monopolar survey during which monopolar stimulation on each contact was iteratively increased followed by an automated assessment of tremor and bradykinesia. After completing assessments at each setting, a software algorithm determined stimulation settings designed to minimize symptom severities, side effects, and battery usage. Optimal DBS settings were chosen based on average severity of motor symptoms measured by the motion sensor. Settings chosen by the software algorithm identified a therapeutic window and improved tremor and bradykinesia by an average of 35.7% compared with baseline in the "off" state (p < 0.01). Motion sensor-based computer-guided DBS programming identified stimulation parameters that significantly improved tremor and bradykinesia with minimal clinician involvement. Automated motion sensor-based mapping is worthy of further investigation and may one day serve to extend programming to populations without access to specialized DBS centers. © 2015 International Neuromodulation Society.

  4. Sideband cooling of micromechanical motion to the quantum ground state.

    PubMed

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.

  5. Suggested Courseware for the Non-Calculus Physics Student: Simple Harmonic Motion, Wave Motion, and Sound.

    ERIC Educational Resources Information Center

    Grable-Wallace, Lisa; And Others

    1989-01-01

    Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)

  6. A study of possible ground-motion amplification at the Coyote Lake Dam, California

    USGS Publications Warehouse

    Boore, D.M.; Graizer, V.M.; Tinsley, J.C.; Shakal, A.F.

    2004-01-01

    The abutment site at the Coyote Lake Dam recorded an unusually large peak acceleration of 1.29g during the 1984 Morgan Hill earthquake. Following this earthquake another strong-motion station was installed about 700 m downstream from the abutment station. We study all events (seven) recorded on these stations, using ratios of peak accelerations, spectral ratios, and particle motion polarization (using holograms) to investigate the relative ground motion at the two sites. We find that in all but one case the motion at the abutment site is larger than the downstream site over a broad frequency band. The polarizations are similar for the two sites for a given event, but can vary from one event to another. This suggests that the dam itself is not strongly influencing the records. Although we can be sure that the relative motion is usually larger at the abutment site, we cannot conclude that there is anomalous site amplification at the abutment site. The downstream site could have lower-than-usual near-surface amplifications. On the other hand, the geology near the abutment site is extremely complex and includes fault slivers, with rapid lateral changes in materials and presumably seismic velocities. For this reason alone, the abutment site should not be considered a normal free-field site.

  7. Flocking and Turning: a New Model for Self-organized Collective Motion

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2015-02-01

    Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

  8. Dominant-limb range-of-motion and humeral-retrotorsion adaptation in collegiate baseball and softball position players.

    PubMed

    Hibberd, Elizabeth E; Oyama, Sakiko; Tatman, Justin; Myers, Joseph B

    2014-01-01

    Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Cross-sectional study. Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Baseball players had greater glenohumeral internal-rotation deficit, total-range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total-range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the athletes adapt to the demands of the sport differently; thus, stretching/strengthening programs designed for baseball may not be the most effective programs for softball athletes.

  9. Dominant-Limb Range-of-Motion and Humeral-Retrotorsion Adaptation in Collegiate Baseball and Softball Position Players

    PubMed Central

    Hibberd, Elizabeth E.; Oyama, Sakiko; Tatman, Justin; Myers, Joseph B.

    2014-01-01

    Context: Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. Objective: To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Design: Cross-sectional study. Setting: Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Patients or Other Participants: Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Intervention(s): Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Main Outcome Measure(s): Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Results: Baseball players had greater glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Conclusions: Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the athletes adapt to the demands of the sport differently; thus, stretching/strengthening programs designed for baseball may not be the most effective programs for softball athletes. PMID:25098655

  10. Correlation of Experimental and Theoretical Steady-State Spinning Motion for a Current Fighter Airplane Using Rotation-Balance Aerodynamic Data

    DTIC Science & Technology

    1978-07-01

    were input into the computer program. The program was numerically intergrated with time by using a fourth-order Runge-Kutta integration algorithm with...equations of motion are numerically intergrated to provide time histories of the aircraft spinning motion. A.2 EQUATIONS DEFINING THE FORCE AND MOMENT...by Cy or Cn. 50 AE DC-TR-77-126 A . 4 where EQUATIONS FOR TRANSFERRING AERODYNAMIC DATA INPUTS TO THE PROPER HORIZONTAL CENTER OF GRAVITY

  11. Source process of the 2016 Kumamoto earthquake (Mj7.3) inferred from kinematic inversion of strong-motion records

    NASA Astrophysics Data System (ADS)

    Yoshida, Kunikazu; Miyakoshi, Ken; Somei, Kazuhiro; Irikura, Kojiro

    2017-05-01

    In this study, we estimated source process of the 2016 Kumamoto earthquake from strong-motion data by using the multiple-time window linear kinematic waveform inversion method to discuss generation of strong motions and to explain crustal deformation pattern with a seismic source inversion model. A four-segment fault model was assumed based on the aftershock distribution, active fault traces, and interferometric synthetic aperture radar data. Three western segments were set to be northwest-dipping planes, and the most eastern segment under the Aso caldera was examined to be a southeast-dipping plane. The velocity structure models used in this study were estimated by using waveform modeling of moderate earthquakes that occurred in the source region. We applied a two-step approach of the inversions of 20 strong-motion datasets observed by K-NET and KiK-net by using band-pass-filtered strong-motion data at 0.05-0.5 Hz and then at 0.05-1.0 Hz. The rupture area of the fault plane was determined by applying the criterion of Somerville et al. (Seismol Res Lett 70:59-80, 1999) to the inverted slip distribution. From the first-step inversion, the fault length was trimmed from 52 to 44 km, whereas the fault width was kept at 18 km. The trimmed rupture area was not changed in the second-step inversion. The source model obtained from the two-step approach indicated 4.7 × 1019 Nm of the total moment release and 1.8 m average slip of the entire fault with a rupture area of 792 km2. Large slip areas were estimated in the seismogenic zone and in the shallow part corresponding to the surface rupture that occurred during the Mj7.3 mainshock. The areas of the high peak moment rate correlated roughly with those of large slip; however, the moment rate functions near the Earth surface have low peak, bell shape, and long duration. These subfaults with long-duration moment release are expected to cause weak short-period ground motions. We confirmed that the southeast dipping of the most eastern segment is more plausible rather than northwest-dipping from the observed subsidence around the central cones of the Aso volcano.[Figure not available: see fulltext.

  12. Effect of vertical ground motions on shear demand and capacity in bridge columns.

    DOT National Transportation Integrated Search

    2012-03-01

    The objective of this project was to examine the effects of axial force variation in bridge columns due to strong vertical : ground motions and the influence of these axial force fluctuations on shear strength degradation. : Two quarter scale specime...

  13. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  14. MO-B-201-00: Motion Management in Current Stereotactic Body Radiation Therapy (SBRT) Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and limitations of each discussed radiation beam control methodology and tumor tacking method; understand the key points in motion management for a high quality SBRT program.« less

  15. MO-B-201-01: Overcoming the Challenges of Motion Management in Current Lung SBRT Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C.

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and limitations of each discussed radiation beam control methodology and tumor tacking method; understand the key points in motion management for a high quality SBRT program.« less

  16. MO-B-201-02: Motion Management for Proton Lung SBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flampouri, S.

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and limitations of each discussed radiation beam control methodology and tumor tacking method; understand the key points in motion management for a high quality SBRT program.« less

  17. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Perrin, R. L.; Zakova, M.; Peroni, M.; Bernatowicz, K.; Bikis, C.; Knopf, A. K.; Safai, S.; Fernandez-Carmona, P.; Tscharner, N.; Weber, D. C.; Parkel, T. C.; Lomax, A. J.

    2017-03-01

    Motion-induced range changes and incorrectly placed dose spots strongly affect the quality of pencil-beam-scanned (PBS) proton therapy, especially in thoracic tumour sites, where density changes are large. Thus motion-mitigation techniques are necessary, which must be validated in a realistic patient-like geometry. We report on the development and characterisation of a dynamic, anthropomorphic, thorax phantom that can realistically mimic thoracic motions and anatomical features for verifications of proton and photon 4D treatments. The presented phantom is of an average thorax size, and consists of inflatable, deformable lungs surrounded by a skeleton and skin. A mobile ‘tumour’ is embedded in the lungs in which dosimetry devices (such as radiochromic films) can be inserted. Motion of the tumour and deformation of the thorax is controlled via a custom made pump system driving air into and out of the lungs. Comprehensive commissioning tests have been performed to evaluate the mechanical performance of the phantom, its visibility on CT and MR imaging and its feasibility for dosimetric validation of 4D proton treatments. The phantom performed well on both regular and irregular pre-programmed breathing curves, reaching peak-to-peak amplitudes in the tumour of  <20 mm. Some hysteresis in the inflation versus deflation phases was seen. All materials were clearly visualised in CT scans, and all, except the bone and lung components, were MRI visible. Radiochromic film measurements in the phantom showed that imaging for repositioning was required (as for a patient treatment). Dosimetry was feasible with Gamma Index agreements (4%/4 mm) between film dose and planned dose  >90% in the central planes of the target. The results of this study demonstrate that this anthropomorphic thorax phantom is suitable for imaging and dosimetric studies in a thoracic geometry closely-matched to lung cancer patients under realistic motion conditions.

  18. Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex

    PubMed Central

    Stemmann, Heiko

    2016-01-01

    Attentional selection requires the interplay of multiple brain areas. Theoretical accounts of selective attention predict different areas with different functional properties to support endogenous covert attention. To test these predictions, we devised a demanding attention task requiring motion discrimination and spatial selection and performed whole-brain imaging in macaque monkeys. Attention modulated the early visual cortex, motion-selective dorsal stream areas, the lateral intraparietal area, and the frontal eye fields. This pattern of activation supports early selection, feature-based, and biased-competition attention accounts, as well as the frontoparietal theory of attentional control. While high-level motion-selective dorsal stream areas did not exhibit strong attentional modulation, ventral stream areas V4d and the dorsal posterior inferotemporal cortex (PITd) did. The PITd in fact was, consistently across task variations, the most significantly and most strongly attention-modulated area, even though it did not exhibit signs of motion selectivity. Thus the recruitment of the PITd in attention tasks involving different kinds of motion analysis is not predicted by any theoretical account of attention. These functional data, together with known anatomical connections, suggest a general and possibly critical role of the PITd in attentional selection. SIGNIFICANCE STATEMENT Attention is the key cognitive function that selects sensory information relevant to the current goals, relegating other information to the shadows of consciousness. To better understand the neural mechanisms of this interplay between sensory processing and internal cognitive state, we must learn more about the brain areas supporting attentional selection. Here, to test theoretical accounts of attentional selection, we used a novel task requiring sustained attention to motion. We found that, surprisingly, among the most strongly attention-modulated areas is one that is neither selective for the sensory feature relevant for current goals nor one hitherto thought to be involved in attentional control. This discovery suggests a need for an extension of current theoretical accounts of the brain circuits for attentional selection. PMID:27881778

  19. U.S. Geological Survey National Strong-Motion Project strategic plan, 2017–22

    USGS Publications Warehouse

    Aagaard, Brad T.; Celebi, Mehmet; Gee, Lind; Graves, Robert; Jaiswal, Kishor; Kalkan, Erol; Knudsen, Keith L.; Luco, Nicolas; Smith, James; Steidl, Jamison; Stephens, Christopher D.

    2017-12-11

    The mission of the National Strong-Motion Project is to provide measurements of how the ground and built environment behave during earthquake shaking to the earthquake engineering community, the scientific community, emergency managers, public agencies, industry, media, and other users for the following purposes: Improving engineering evaluations and design methods for facilities and systems;Providing timely information for earthquake early warning, damage assessment, and emergency response action; andContributing to a greater understanding of the mechanics of earthquake rupture, groundmotion characteristics, and earthquake effects.

  20. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  1. NGA-West2 Research Project

    USGS Publications Warehouse

    Bozorgnia, Yousef; Abrahamson, Norman A.; Al Atik, Linda; Ancheta, Timothy D.; Atkinson, Gail M.; Baker, Jack W.; Baltay, Annemarie S.; Boore, David M.; Campbell, Kenneth W.; Chiou, Brian S.J.; Darragh, Robert B.; Day, Steve; Donahue, Jennifer; Graves, Robert W.; Gregor, Nick; Hanks, Thomas C.; Idriss, I. M.; Kamai, Ronnie; Kishida, Tadahiro; Kottke, Albert; Mahin, Stephen A.; Rezaeian, Sanaz; Rowshandel, Badie; Seyhan, Emel; Shahi, Shrey; Shantz, Tom; Silva, Walter; Spudich, Paul A.; Stewart, Jonathan P.; Watson-Lamprey, Jennie; Wooddell, Kathryn; Youngs, Robert

    2014-01-01

    The NGA-West2 project is a large multidisciplinary, multi-year research program on the Next Generation Attenuation (NGA) models for shallow crustal earthquakes in active tectonic regions. The research project has been coordinated by the Pacific Earthquake Engineering Research Center (PEER), with extensive technical interactions among many individuals and organizations. NGA-West2 addresses several key issues in ground-motion seismic hazard, including updating the NGA database for a magnitude range of 3.0–7.9; updating NGA ground-motion prediction equations (GMPEs) for the “average” horizontal component; scaling response spectra for damping values other than 5%; quantifying the effects of directivity and directionality for horizontal ground motion; resolving discrepancies between the NGA and the National Earthquake Hazards Reduction Program (NEHRP) site amplification factors; analysis of epistemic uncertainty for NGA GMPEs; and developing GMPEs for vertical ground motion. This paper presents an overview of the NGA-West2 research program and its subprojects.

  2. Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Backer, D. C.; Sramek, R. A.

    1999-10-01

    Proper motions and radial velocities of luminous infrared stars in the Galactic center have provided strong evidence for a dark mass of 2.5×106 Msolar in the central 0.05 pc of the Galaxy. The leading hypothesis for this mass is a black hole. High angular resolution measurements at radio wavelengths find a compact radio source, Sagittarius (Sgr) A*, that is either the faint glow from a small amount of material accreting onto the hole with low radiative efficiency or a miniature active galactic nucleus (AGN) core-jet system. This paper provides a full report on the first program that has measured the apparent proper motion of Sgr A* with respect to background extragalactic reference frame. Our current result isμl,*=[-6.18+/-0.19] mas yr-1 μb,*=[-0.65+/-0.17] mas yr-1 . The observations were obtained with the NRAO Very Large Array at 4.9 GHz over 16 yr. The proper motion of Sgr A* provides an estimate of its mass based on equipartition of kinetic energy between the hole and the surrounding stars. The measured motion is largest in galactic longitude. This component of the motion is consistent with the secular parallax that results from the rotation of the solar system about the center, which is a global measure of the difference between Oort's constants (A-B), with no additional peculiar motion of Sgr A*. The current uncertainty in Oort's galactic rotation constants limits the use of this component of the proper motion for a mass inference. In latitude, we find a small, and weakly significant, peculiar motion of Sgr A*, -19+/-7 km s-1 after correction for the motion of the solar system with respect to the local standard of rest. We consider sources of peculiar motion of Sgr A* ranging from unstable radio wave propagation through intervening turbulent plasma to the effects of asymmetric masses in the center. These fail to account for a significant peculiar motion. One can appeal to an m=1 dynamical instability that numerical simulations have revealed. However, the measurement of a latitude peculiar proper motion of comparable magnitude and error but with opposite sign in the companion paper by Reid leads us to conclude at the present time that our errors may be underestimated and that the actual peculiar motion might therefore be closer to zero. Improvement of these measurements with further observations and resolving the differences between independent experiments will provide the accuracies of a few km s-1 in both coordinates that will provide both a black hole mass estimate and a definitive determination of Oort's galactic rotation constants on a global Galactic scale.

  3. Some Key Features of the Strong-Motion Data from the M 6.0 Parkfield, California, Earthquake of 28 September 2004

    USGS Publications Warehouse

    Shakal, A.; Haddadi, H.; Graizer, V.; Lin, K.; Huang, M.

    2006-01-01

    The 2004 Parkfield, California, earthquake was recorded by an extensive set of strong-motion instruments well positioned to record details of the motion in the near-fault region, where there has previously been very little recorded data. The strong-motion measurements obtained are highly varied, with significant variations occurring over only a few kilometers. The peak accelerations in the near fault region range from 0.13g to over 1.8g (one of the highest acceleration recorded to date, exceeding the capacity of the recording instrument The largest accelerations occurred near the northwest end of the inferred rupture zone. These motions are consistent with directivity for a fault rupturing from the hypocenter near Gold Hill toward the northwest. However, accelerations up to 0.8g were also observed in the opposite direction, at the south end of the Cholame Valley near Highway 41, consistent with bilateral rupture, with rupture southeast of the hypocenter. Several stations near and over the rupturing fault recorded relatively weak motions, consistent with seemingly paradoxical observations of low shaking damage near strike-slip faults. This event had more ground-motion observations within 10 km of the fault than many other earthquakes combined. At moderate distances peak horizontal ground acceleration (PGA) values dropped off more rapidly with distance than standard relationships. At close-in distance the wide variation of PGA suggests a distance-dependent sigma may be important to consider. The near-fault ground-motion variation is greater than that assumed in ShakeMap interpolations, based on the existing set of observed data. Higher density of stations near faults may be the only means in the near future to reduce uncertainty in the interpolations. Outside of the near-fault zone the variance is closer to that assumed. This set of data provides the first case where near-fault radiation has been observed at an adequate number of stations around the fault to allow detailed study of the fault-normal and fault-parallel motion and the near-field S-wave radiation. The fault-normal motions are significant, but they are not large at the central part of the fault, away from the ends. The fault-normal and fault-parallel motions drop off quite rapidly with distance from the fault. Analysis of directivity indicates increased values of peak velocity in the rupture direction. No such dependence is observed in the peak acceleration, except for stations close to the strike of the fault near and beyond the ends of the faulting.

  4. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  5. Can mobile phones used in strong motion seismology?

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.

  6. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    NASA Astrophysics Data System (ADS)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  7. VS30 – A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2012-01-01

    VS30, defined as the average seismic shear-wave velocity from the surface to a depth of 30 meters, has found wide-spread use as a parameter to characterize site response for simplified earthquake resistant design as implemented in building codes worldwide. VS30 , as initially introduced by the author for the US 1994 NEHRP Building Code, provides unambiguous definitions of site classes and site coefficients for site-dependent response spectra based on correlations derived from extensive borehole logging and comparative ground-motion measurement programs in California. Subsequent use of VS30 for development of strong ground motion prediction equations (GMPEs) and measurement of extensive sets of VS borehole data have confirmed the previous empirical correlations and established correlations of SVS30 with VSZ at other depths. These correlations provide closed form expressions to predict S30 V at a large number of additional sites and further justify S30 V as a parameter to characterize site response for simplified building codes, GMPEs, ShakeMap, and seismic hazard mapping.

  8. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 1. Strong motions

    USGS Publications Warehouse

    Graves, R.W.; Wald, D.J.

    2001-01-01

    We develop a methodology to perform finite fault source inversions from strong motion data using Green's functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The 3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites and then recording the resulting strains along the target fault surface. Using reciprocity, these GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip distribution on the fault. The reciprocal formulation significantly reduces the required number of 3-D finite difference computations to at most 3NS, where NS is the number of strong motion sites used in the inversion. Using controlled numerical resolution tests, we have examined the relative importance of accurate GFs for finite fault source inversions which rely on near-source ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of the 1-D GF method when propagation effects are known to be three-dimensional. We find that given "data" from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the inversion provides very good resolution of the assumed slip distribution, thus adequately separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for increased resolution of the rupture process relative to 1-D GFs. However, realizing this full potential requires that the 3-D velocity model and associated GFs should be carefully validated against the true 3-D Earth structure before performing the inverse problem with actual data. Copyright 2001 by the American Geophysical Union.

  9. On the relative motions of long-lived Pacific mantle plumes.

    PubMed

    Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G

    2018-02-27

    Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.

  10. Stochastic strong motion generation using slip model of 21 and 22 May 1960 mega-thrust earthquakes in the main cities of Central-South Chile

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Ojeda, J.; DelCampo, F., Sr.; Pasten, C., Sr.; Otarola, C., Sr.; Silva, R., Sr.

    2017-12-01

    In May 1960 took place the most unusual seismic sequence registered instrumentally. The Mw 8.1, Concepción earthquake occurred May, 21, 1960. The aftershocks of this event apparently migrated to the south-east, and the Mw 9.5, Valdivia mega-earthquake occurred after 33 hours. The structural damage produced by both events is not larger than other earthquakes in Chile and lower than crustal earthquakes of smaller magnitude. The damage was located in the sites with shallow soil layers of low shear wave velocity (Vs). However, no seismological station recorded this sequence. For that reason, we generate synthetic acceleration times histories for strong motion in the main cities affected by these events. We use 155 points of vertical surface displacements recopiled by Plafker and Savage in 1968, and considering the observations of this authors and local residents we separated the uplift and subsidence information associated to the first earthquake Mw 8.1 and the second mega-earthquake Mw 9.5. We consider the elastic deformation propagation, assume realist lithosphere geometry, and compute a Bayesian method that maximizes the probability density a posteriori to obtain the slip distribution. Subsequently, we use a stochastic method of generation of strong motion considering the finite fault model obtained for both earthquakes. We considered the incidence angle of ray to the surface, free surface effect and energy partition for P, SV and SH waves, dynamic corner frequency and the influence of site effect. The results show that the earthquake Mw 8.1 occurred down-dip the slab, the strong motion records are similar to other Chilean earthquake like Tocopilla Mw 7.7 (2007). For the Mw 9.5 earthquake we obtain synthetic acceleration time histories with PGA values around 0.8 g in cities near to the maximum asperity or that have low velocity soil layers. This allows us to conclude that strong motion records have important influence of the shallow soil deposits. These records correlate well with our structural damage observations.

  11. Design and Outcomes of a "Mothers In Motion" Behavioral Intervention Pilot Study

    ERIC Educational Resources Information Center

    Chang, Mei-Wei; Nitzke, Susan; Brown, Roger

    2010-01-01

    Objective: This paper describes the design and findings of a pilot "Mothers In Motion" (P-"MIM") program. Design: A randomized controlled trial that collected data via telephone interviews and finger stick at 3 time points: baseline and 2 and 8 months post-intervention. Setting: Three Special Supplemental Nutrition Program for…

  12. Knowledge Structures: Where Can We Find Them?

    ERIC Educational Resources Information Center

    Law, Nancy

    Knowledge elicitation through programming was studied to determine students' intuitive ideas about motion. The subjects, 17-year-old sixth-form science students and 14-year-old third-form students, were asked to write expert systems programs about motion; and their interactions with their own knowledge were observed. The 17-year-old students had…

  13. Earthquake Rupture Process Inferred from Joint Inversion of 1-Hz GPS and Strong Motion Data: The 2008 Iwate-Miyagi Nairiku, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Yokota, Y.; Koketsu, K.; Hikima, K.; Miyazaki, S.

    2009-12-01

    1-Hz GPS data can be used as a ground displacement seismogram. The capability of high-rate GPS to record seismic wave fields for large magnitude (M8 class) earthquakes has been demonstrated [Larson et al., 2003]. Rupture models were inferred solely and supplementarily from 1-Hz GPS data [Miyazaki et al., 2004; Ji et al., 2004; Kobayashi et al., 2006]. However, none of the previous studies have succeeded in inferring the source process of the medium-sized (M6 class) earthquake solely from 1-Hz GPS data. We first compared 1-Hz GPS data with integrated strong motion waveforms for the 2008 Iwate-Miyagi Nairiku, Japan, earthquake. We performed a waveform inversion for the rupture process using 1-Hz GPS data only [Yokota et al., 2009]. We here discuss the rupture processes inferred from the inversion of 1-Hz GPS data of GEONET only, the inversion of strong motion data of K-NET and KiK-net only, and the joint inversion of 1-Hz GPS and strong motion data. The data were inverted to infer the rupture process of the earthquake using the inversion codes by Yoshida et al. [1996] with the revisions by Hikima and Koketsu [2005]. In the 1-Hz GPS inversion result, the total seismic moment is 2.7×1019 Nm (Mw: 6.9) and the maximum slip is 5.1 m. These results are approximately equal to 2.4×1019 Nm and 4.5 m from the inversion of strong motion data. The difference in the slip distribution on the northern fault segment may come from long-period motions possibly recorded only in 1-Hz GPS data. In the joint inversion result, the total seismic moment is 2.5×1019 Nm and the maximum slip is 5.4 m. These values also agree well with the result of 1-Hz GPS inversion. In all the series of snapshots that show the dynamic features of the rupture process, the rupture propagated bilaterally from the hypocenter to the south and north. The northern rupture speed is faster than the northern one. These agreements demonstrate the ability of 1-Hz GPS data to infer not only static, but also dynamic features of a medium-sized (M6 class) earthquake, although some details, such as the shallow extension of the southern asperity, are missing, due possibly to their limitations such as the sampling interval of 1 s and the sparse GPS stations distiribution in the near field of the earthquake. The result of the joint inversion indiates that these minor discrepancies can be reduced by the introduction of strong motion data. Continuous GPS monitoring at a much higher rate (e.g., 10 Hz) will also be helpful for reducing the minor discrepancies.

  14. Vulnerability assessment of RC frames considering the characteristic of pulse-like ground motions

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Wen, Zengping

    2017-04-01

    Pulse-like ground motions are a special class of ground motions that are particularly challenging to characterize for earthquake hazard assessment. These motions are characterized by a "pulse" in the velocity time history of the motion, and they are typically very intense and have been observed to cause severe damage to structures in past earthquakes. So it is particularly important to characterize these ground motions. Previous studies show that the severe response of structure is not entirely accounted for by measuring the intensity of the ground motion using spectral acceleration of the elastic first-mode period of a structure (Sa(T1)). This paper will use several alternative intensity measures to characterize the effect of pulse-like ground motions in vulnerability assessment. The ability of these intensity measures to characterize pulse-like ground motions will be evaluated. Pulse-like ground motions and ordinary ground motions are selected as input to carry out incremental dynamic analysis. Structural response and vulnerability are estimated by using Sa(T1) as the intensity measure. The impact of pulse period on structural response is studied through residual analysis. By comparing the difference between the structural response and vulnerability curves using pulse-like ground motions and ordinary ground motions as the input, the impact of velocity pulse on vulnerability is investigated and the shortcoming of using Sa(T1) to characterize pulse-like ground motion is analyzed. Then, vector-valued ground motion intensity measures(Sa(T1)&RT1,T2, Sa(T1)&RPGV,Sa) and inelastic displacement spectra(Sdi(T1)) are used to characterize the damage potential of pulse-like ground motions, the efficiency and sufficiency of these intensity measures are evaluated. The study shows that: have strong the damage potential of near fault ground motions with velocity pulse is closely related to the pulse period of strong motion as well as first mode period of vibration and nonlinear features of the structure. The above factors should be taken into account when choosing a reasonable ground motion parameter to characterize the damage potential of pulse-like ground motions. Vulnerability curves based on Sa(T1) show obvious differences between using near fault ground motions and ordinary ground motions, as well as pulse-like ground motions with different pulse periods as the input. When using vector-valued intensity measures such as Sa(T1)&RT1,T2, Sa(T1)&RPGV,Sa and inelastic displacement spectra, the results of vulnerability analysis are roughly the same. These ground motion intensity measures are more efficient and sufficient to characterize the damage potential of near fault ground motions with velocity pulse.

  15. Partners in motion and traffic congestion in the Washington, D.C. metropolitan area

    DOT National Transportation Integrated Search

    2001-01-01

    Partners in Motion is a program aimed at improving the quality, quantity, and availability of travel information to transportation agencies, the media, and the public in the Washington, D.C. metropolitan area. This report evaluates Partners in Motion...

  16. Residual Circulation and Temperature Changes during the Evolution of Stratospheric Sudden Warmings Revealed in MERRA

    NASA Astrophysics Data System (ADS)

    Song, Byeong-Gwon; Chun, Hye-Yeong; Kim, Young-Ha

    2015-04-01

    A composite analysis for 21 stratospheric sudden warming (SSW) cases in 1979-2012 northern winter is performed using the MERRA reanalysis in order to investigate the changes in residual circulation and temperature during the SSW evolution. The SSW cases are classified as Type-1 and Type-2, based on the relative amplitude of planetary waves with zonal wavenumbers 1 and 2. The residual circulation induced by each forcing term in the transformed Eulerian mean (TEM) equation and the temperature advection associated with the circulation are calculated for both types of SSW. It is found that strong poleward and downward motion exists in the polar stratosphere just before the central date of SSW, which is induced primarily by the Eliassen-Palm flux divergence forcing (EPD). Gravity-wave drag (GWD) induces strong poleward and downward motion in the lower mesosphere. The temperature advection is significantly increased in the stratosphere before the central date of the SSW, as a result of the strong downward motion due to the EPD. However, the temperature change in the lower mesosphere is small despite the strong downward motion, because the vertical gradient of the potential temperature is relatively small at these altitudes. The temperature change in the stratosphere before the SSW is more rapid for Type-2 than Type-1. After the central date of SSW, the polar stratospheric temperature is recovered primarily by diabatic heating rather than by the residual circulation associated with wave forcing. Difference in the speed of temperature recovery between the two types of SSW is not significant.

  17. Dynamics of the Pin Pallet Runaway Escapement

    DTIC Science & Technology

    1978-06-01

    for Continued Work 29 References 32 I Appendixes A Kinematics of Coupled Motion 34 B Differential Equation of Coupled Motion 38 f C Moment Arms 42 D...Expressions for these quantities are derived in appendix D. The differential equations for the free motion of the pallet and the escape-wheel are...Coupled Motion (location 100) To solve the differential equation of coupled motion (see equation .B (-10) of appendix B)- the main program calls on

  18. Equations of motion for coupled n-body systems

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1980-01-01

    Computer program, developed to analyze spacecraft attitude dynamics, can be applied to large class of problems involving objects that can be simplified into component parts. Systems of coupled rigid bodies, point masses, symmetric wheels, and elastically flexible bodies can be analyzed. Program derives complete set of non-linear equations of motion in vectordyadic format. Numerical solutions may be printed out. Program is in FORTRAN IV for batch execution and has been implemented on IBM 360.

  19. Antigravity: Spin-gravity coupling in action

    NASA Astrophysics Data System (ADS)

    Plyatsko, Roman; Fenyk, Mykola

    2016-08-01

    The typical motions of a spinning test particle in Schwarzschild's background which show the strong repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-Papapetrou equations. An approximated approach to choice solutions of these equations which describe motions of the particle's proper center of mass is developed.

  20. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    PubMed

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  1. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine

    PubMed Central

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-01-01

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human–machine–environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines. PMID:28178184

  2. A vector-dyadic development of the equations of motion for N-coupled rigid bodies and point masses

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1974-01-01

    The equations of motion are derived, in vector-dyadic format, for a topological tree of coupled rigid bodies, point masses, and symmetrical momentum wheels. These equations were programmed, and form the basis for the general-purpose digital computer program N-BOD. A complete derivation of the equations of motion is included along with a description of the methods used for kinematics, constraint elimination, and for the inclusion of nongyroscope forces and torques acting external or internal to the system.

  3. Characteristics of strong ground motion generation areas by fully dynamic earthquake cycles

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Somerville, P.; Ampuero, J. P.; Petukhin, A.; Yindi, L.

    2016-12-01

    During recent subduction zone earthquakes (2010 Mw 8.8 Maule and 2011 Mw 9.0 Tohoku), high frequency ground motion radiation has been detected in deep regions of seismogenic zones. By semblance analysis of wave packets, Kurahashi & Irikura (2013) found strong ground motion generation areas (SMGAs) located in the down dip region of the 2011 Tohoku rupture. To reproduce the rupture sequence of SMGA's and replicate their rupture time and ground motions, we extended previous work on dynamic rupture simulations with slip reactivation (Galvez et al, 2016). We adjusted stresses on the most southern SMGAs of Kurahashi & Irikura (2013) model to reproduce the observed peak ground velocity recorded at seismic stations along Japan for periods up to 5 seconds. To generate higher frequency ground motions we input the rupture time, final slip and slip velocity of the dynamic model into the stochastic ground motion generator of Graves & Pitarka (2010). Our results are in agreement with the ground motions recorded at the KiK-net and K-NET stations.While we reproduced the recorded ground motions of the 2011 Tohoku event, it is unknown whether the characteristics and location of SMGA's will persist in future large earthquakes in this region. Although the SMGA's have large peak slip velocities, the areas of largest final slip are located elsewhere. To elucidate whether this anti-correlation persists in time, we conducted earthquake cycle simulations and analysed the spatial correlation of peak slip velocities, stress drops and final slip of main events. We also investigated whether or not the SMGA's migrate to other regions of the seismic zone.To perform this study, we coupled the quasi-dynamic boundary element solver QDYN (Luo & Ampuero, 2015) and the dynamic spectral element solver SPECFEM3D (Galvez et al., 2014; 2016). The workflow alternates between inter-seismic periods solved with QDYN and coseismic periods solved with SPECFEM3D, with automated switch based on slip rate thersholds (Kaneko et al., 2011). We parallelized QDYN with MPI to enable the simulation of fully dynamic earthquake cycles of Mw 8-9 earthquakes in faults that also produce Mw 7 earthquakes.This study was based on the 2015 research project `Improvement for uncertainty of strong ground motion prediction' by the Nuclear Regulation Authority (NRA), Japan.

  4. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic ground motions obtained using the EGF method agree well with the observed motions in terms of acceleration, velocity, and displacement within the frequency range of 0.3-10 Hz. These findings indicate that the 2016 Kumamoto earthquake is a standard event that follows the scaling relationship of crustal earthquakes in Japan.

  5. Strong motion recordings of the 2008/12/23 earthquake in Northern Italy: another case of very weak motion?

    NASA Astrophysics Data System (ADS)

    Sabetta, F.; Zambonelli, E.

    2009-04-01

    On December 23 2008 an earthquake of magnitude ML=5.1 (INGV) Mw=5.4 (INGV-Harvard Global CMT) occurred in northern Italy close to the cities of Parma and Reggio Emilia. The earthquake, with a macroseismic intensity of VI MCS, caused a very slight damage (some tens of unusable buildings and some hundreds of damaged buildings), substantially lower than the damage estimated by the loss simulation scenario currently used by the Italian Civil Protection. Due to the recent upgrading of the Italian strong motion network (RAN), the event has been recorded by a great number of accelerometers (the largest ever obtained in Italy for a single shock): 21 digital and 8 analog instruments with epicentral distances ranging from 16 to 140 km. The comparison of recorded PGA, PGV, Arias intensity, and spectral values with several widely used Ground Motion Prediction Equations (GMPEs) showed much lower ground motion values respect to the empirical predictions (a factor ranging from 4 to 2). A first explanation of the strong differences, in damage and ground motion, between actual data and predictions could be, at a first sight, attributed to the rather high focal depth of 27 km. However, even the adoption of GMPEs accounting for depth of the source and using hypocentral distance (Berge et al 2003, Pousse et al 2005), does not predict large differences in motions, especially at distances larger than 30 km where most of the data are concentrated and where the effect of depth on source-to-site distance is small. At the same time the adoption of the most recent GMPEs (Ambraseys et al 2005, Akkar & bommer 2007) taking into account the different magnitude scaling and the faster attenuation of small magnitudes through magnitude-dependent attenuation, does not show a better agreement with the recorded data. The real reasons of the above mentioned discrepancies need to be further investigated, however a possible explanation could be a low source rupture velocity, likewise the 2002 Molise earthquake that also generated very weak motions. Another explanation comes from the fact that the moment magnitude estimated by the INGV network on the basis of body-waves instead of surface-waves used by Harvard CMT, is 4.9 and not 5.4, providing a much better fit of recorded ground motions with GMPEs.

  6. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recordedmore » at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV that have no historical record of explosions. The method is also used to scale nuclear explosion ground motions to different yields. They also present a range of studies to understand basin structure and response performed on data from the temporary deployment.« less

  7. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrockmore » at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).« less

  8. Converting Advances in Seismology into Earthquake Science

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Shearer, Peter; Vidale, John

    2004-01-01

    Federal and state agencies and university groups all operate seismic networks in California. The U.S. Geological Survey (USGS) operates seismic networks in California in cooperation with the California Institute of Technology (Caltech) in southern California, and the University of California (UC) at Berkeley in northern California. The California Geological Survey (CGS) and the USGS National Strong Motion Program (NSMP) operate dial-out strong motion instruments in the state, primarily to capture data from large earthquakes for earthquake engineering and, more recently, emergency response. The California Governor's Office of Emergency Services (OES) provides leadership for the most recent project, the California Integrated Seismic Network (CISN), to integrate all of the California efforts, and to take advantage of the emergency response capabilities of the seismic networks. The core members of the CISN are Caltech, UC Berkeley, CGS, USGS Menlo Park, and USGS Pasadena (http://www.cisn.org). New seismic instrumentation is in place across southern California, and significant progress has been made in improving instrumentation in northern California. Since 2001, these new field instrumentation efforts, data sharing, and software development for real-time reporting and archiving have been coordinated through the California Integrated Seismic Network (CISN). The CISN is also the California region of the Advanced National Seismic Network (ANSS). In addition, EarthScope deployments of USArray that will begin in early 2004 in California are coordinated with the CISN. The southern and northern California earthquake data centers (SCEDC and NCEDC) have new capabilities that enable seismologists to obtain large volumes of data with only modest effort.

  9. SU-F-J-77: Variations in the Displacement Vector Fields Calculated by Different Deformable Image Registration Algorithms Used in Helical, Axial and Cone-Beam CT Images of a Mobile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Jaskowiak, J; Ahmad, S

    Purpose: To investigate quantitatively the displacement-vector-fields (DVF) obtained from different deformable image registration algorithms (DIR) in helical (HCT), axial (ACT) and cone-beam CT (CBCT) to register CT images of a mobile phantom and its correlation with motion amplitudes and frequencies. Methods: HCT, ACT and CBCT are used to image a mobile phantom which includes three targets with different sizes that are manufactured from water-equivalent material and embedded in low density foam. The phantom is moved with controlled motion patterns where a range of motion amplitudes (0–40mm) and frequencies (0.125–0.5Hz) are used. The CT images obtained from scanning of the mobilemore » phantom are registered with the stationary CT-images using four deformable image registration algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from DIRART software. Results: The DVF calculated by the different algorithms correlate well with the motion amplitudes that are applied on the mobile phantom where maximal DVF increase linearly with the motion amplitudes of the mobile phantom in CBCT. Similarly in HCT, DVF increase linearly with motion amplitude, however, its correlation is weaker than CBCT. In ACT, the DVF’s do not correlate well with the motion amplitudes where motion induces strong image artifacts and DIR algorithms are not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR-algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from fast-demons deviated strongly from other algorithms at large motion amplitudes. Conclusion: In CBCT and HCT, the DVF correlate well with the motion amplitude of the mobile phantom. However, in ACT, DVF do not correlate with motion amplitudes. Correlations of DVF with motion amplitude as in CBCT and HCT imaging techniques can provide information about unknown motion parameters of the mobile organs in real patients as demonstrated in this phantom visibility study.« less

  10. Rupture processes of the 2010 Canterbury earthquake and the 2011 Christchurch earthquake inferred from InSAR, strong motion and teleseismic datasets

    NASA Astrophysics Data System (ADS)

    Yun, S.; Koketsu, K.; Aoki, Y.

    2014-12-01

    The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity structure of this region into account.

  11. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    PubMed

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  12. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  13. XTRAN2L - A PROGRAM FOR SOLVING THE GENERAL-FREQUENCY UNSTEADY TWO-DIMENSIONAL TRANSONIC SMALL-DISTURBANCE EQUATIONS

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.

    1994-01-01

    The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.

  14. Multibody dynamics model building using graphical interfaces

    NASA Technical Reports Server (NTRS)

    Macala, Glenn A.

    1989-01-01

    In recent years, the extremely laborious task of manually deriving equations of motion for the simulation of multibody spacecraft dynamics has largely been eliminated. Instead, the dynamicist now works with commonly available general purpose dynamics simulation programs which generate the equations of motion either explicitly or implicitly via computer codes. The user interface to these programs has predominantly been via input data files, each with its own required format and peculiarities, causing errors and frustrations during program setup. Recent progress in a more natural method of data input for dynamics programs: the graphical interface, is described.

  15. PRISM Software: Processing and Review Interface for Strong‐Motion Data

    USGS Publications Warehouse

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-01-01

    A continually increasing number of high‐quality digital strong‐motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey, as well as data from regional seismic networks within the United States, calls for automated processing of strong‐motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong‐motion records. When used without AQMS, PRISM provides batch‐processing capabilities. The PRISM software is platform independent (coded in Java), open source, and does not depend on any closed‐source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a review tool, which is a graphical user interface for manual review, edit, and processing. To facilitate use by non‐NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand‐alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible to accommodate implementation of new processing techniques. All the computing features have been thoroughly tested.

  16. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  17. Rotation of vertically oriented objects during earthquakes

    NASA Astrophysics Data System (ADS)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  18. Recent updates in developing a statistical pseudo-dynamic source-modeling framework to capture the variability of earthquake rupture scenarios

    NASA Astrophysics Data System (ADS)

    Song, Seok Goo; Kwak, Sangmin; Lee, Kyungbook; Park, Donghee

    2017-04-01

    It is a critical element to predict the intensity and variability of strong ground motions in seismic hazard assessment. The characteristics and variability of earthquake rupture process may be a dominant factor in determining the intensity and variability of near-source strong ground motions. Song et al. (2014) demonstrated that the variability of earthquake rupture scenarios could be effectively quantified in the framework of 1-point and 2-point statistics of earthquake source parameters, constrained by rupture dynamics and past events. The developed pseudo-dynamic source modeling schemes were also validated against the recorded ground motion data of past events and empirical ground motion prediction equations (GMPEs) at the broadband platform (BBP) developed by the Southern California Earthquake Center (SCEC). Recently we improved the computational efficiency of the developed pseudo-dynamic source-modeling scheme by adopting the nonparametric co-regionalization algorithm, introduced and applied in geostatistics initially. We also investigated the effect of earthquake rupture process on near-source ground motion characteristics in the framework of 1-point and 2-point statistics, particularly focusing on the forward directivity region. Finally we will discuss whether the pseudo-dynamic source modeling can reproduce the variability (standard deviation) of empirical GMPEs and the efficiency of 1-point and 2-point statistics to address the variability of ground motions.

  19. Blind retrospective motion correction of MR images.

    PubMed

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  20. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  1. Effect of tilt on strong motion data processing

    USGS Publications Warehouse

    Graizer, V.M.

    2005-01-01

    In the near-field of an earthquake the effects of the rotational components of ground motion may not be negligible compared to the effects of translational motions. Analyses of the equations of motion of horizontal and vertical pendulums show that horizontal sensors are sensitive not only to translational motion but also to tilts. Ignoring this tilt sensitivity may produce unreliable results, especially in calculations of permanent displacements and long-period calculations. In contrast to horizontal sensors, vertical sensors do not have these limitations, since they are less sensitive to tilts. In general, only six-component systems measuring rotations and accelerations, or three-component systems similar to systems used in inertial navigation assuring purely translational motion of accelerometers can be used to calculate residual displacements. ?? 2004 Elsevier Ltd. All rights reserved.

  2. Physics Learning Achievement Study: Projectile, Using Mathematica Program of Faculty of Science and Technology Phetchabun Rajabhat University Students

    ERIC Educational Resources Information Center

    Hutem, Artit; Kerdmee, Supoj

    2013-01-01

    The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…

  3. Strong motion simulation by the composite source modeling: A case study of 1679 M8.0 Sanhe-Pinggu earthquake

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Yan; Shi, Bao-Ping; Zhang, Jian

    2007-05-01

    In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 M S8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41.1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.

  4. Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    1991-01-01

    An iterative least-squares technique is used to simultaneously invert the strong-motion records and teleseismic P waveforms for the 1978 Tabas, Iran, earthquake to deduce the rupture history. The effects of using different data sets and different parametrizations of the problem (linear versus nonlinear) are considered. A consensus of all the inversion runs indicates a complex, multiple source for the Tabas earthquake, with four main source regions over a fault length of 90 km and an average rupture velocity of 2.5 km/sec. -from Authors

  5. A Huygens principle for diffusion and anomalous diffusion in spatially extended systems

    PubMed Central

    Gottwald, Georg A.; Melbourne, Ian

    2013-01-01

    We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481

  6. Establishment of Antakya Basin Strong Ground Motion Monitoring System

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Özel, O.; Bikce, M.; Geneş, M. C.; Kacın, S.; Erdik, M.; Safak, E.; Över, S.

    2009-04-01

    Turkey is located in one of the most active earthquake zones of the world. The cities located along the North Anatolian Fault (NAF) and the East Anatolian Fault (EAF) are exposed to significant earthquake hazard. The Hatay province near the southern terminus of the EAF has always experienced a significant seismic activity, since it is on the intersection of the northernmost segment of Dead Sea Fault Zone coming from the south, with the Cyprean Arc approaching from south-west. Historical records extending over the last 2000 years indicate that Antakya, founded in the 3rd century B.C., is effected by intensity IX-X earthquakes every 150 years. In the region, the last destructive earthquake occurred in 1872. Destructive earthquakes should be expected in the region in the near future similar to the ones that occurred in the past. The strong response of sedimentary basins to seismic waves was largely responsible for the damage produced by the devastating earthquakes of 1985 Michoacan Earthquake which severely damaged parts of Mexico City, and the 1988 Spitak Earthquake which destroyed most of Leninakan, Armenia. Much of this devastating response was explained by the conversion of seismic body waves to surface waves at the sediment/rock contacts of sedimentary basins. "Antakya Basin Strong Ground Motion Monitoring System" is set up with the aim of monitoring the earthquake response of the Antakya Basin, contributing to our understanding of basin response, contributing to earthquake risk assessment of Antakya, monitoring of regional earthquakes and determining the effects of local and regional earthquakes on the urban environment of Antakya. The soil properties beneath the strong motion stations (S-Wave velocity structure and dominant soil frequency) are determined by array measurements that involve broad-band seismometers. The strong motion monitoring system consists of six instruments installed in small buildings. The stations form a straight line along the short axis of Antakya basin passing through the city center. They are equipped with acceleration sensors, GPS and communication units and operate in continuous recording mode. For on-line data transmission the EDGE mode of available GSM systems are employed. In the array measurements for the determination of soil properties beneath the stations two 4-seismometer sets have been utilized. The system is the first monitoring installment in Turkey dedicated to understanding basin effects. The records obtained will allow for the visualization of the propagation of long-period ground motion in the basin and show the refraction of surface waves at the basin edge. The records will also serve to enhance our capacity to realistically synthesize the strong ground motion in basin-type environments.

  7. Comparison of manual therapy and exercise therapy in osteoarthritis of the hip: a randomized clinical trial.

    PubMed

    Hoeksma, Hugo L; Dekker, Joost; Ronday, H Karel; Heering, Annet; van der Lubbe, Nico; Vel, Cees; Breedveld, Ferdinand C; van den Ende, Cornelia H M

    2004-10-15

    To determine the effectiveness of a manual therapy program compared with an exercise therapy program in patients with osteoarthritis (OA) of the hip. A single-blind, randomized clinical trial of 109 hip OA patients was carried out in the outpatient clinic for physical therapy of a large hospital. The manual therapy program focused on specific manipulations and mobilization of the hip joint. The exercise therapy program focused on active exercises to improve muscle function and joint motion. The treatment period was 5 weeks (9 sessions). The primary outcome was general perceived improvement after treatment. Secondary outcomes included pain, hip function, walking speed, range of motion, and quality of life. Of 109 patients included in the study, 56 were allocated to manual therapy and 53 to exercise therapy. No major differences were found on baseline characteristics between groups. Success rates (primary outcome) after 5 weeks were 81% in the manual therapy group and 50% in the exercise group (odds ratio 1.92, 95% confidence interval 1.30, 2.60). Furthermore, patients in the manual therapy group had significantly better outcomes on pain, stiffness, hip function, and range of motion. Effects of manual therapy on the improvement of pain, hip function, and range of motion endured after 29 weeks. The effect of the manual therapy program on hip function is superior to the exercise therapy program in patients with OA of the hip.

  8. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  9. Adaptive identification of vessel's added moments of inertia with program motion

    NASA Astrophysics Data System (ADS)

    Alyshev, A. S.; Melnikov, V. G.

    2018-05-01

    In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.

  10. Chemistry in motion: tiny synthetic motors.

    PubMed

    Colberg, Peter H; Reigh, Shang Yik; Robertson, Bryan; Kapral, Raymond

    2014-12-16

    CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.

  11. Kinesio arm taping as prophylaxis against the development of Erb's Engram.

    PubMed

    ElKhatib, Radwa S; ElNegmy, Emam H; Salem, Amina H; Sherief, AbdelAziz A

    2013-11-01

    An Erb's Engram is a common debility that develops in recovering children with Erb's palsy. The purpose of this study was to investigate the effect of kinesiotaping over the deltoid and the forearm on the development of proper upper extremity function in children recovering from Erb's palsy. Thirty patients with Erb's palsy participated for 3 months in this study and were equally divided into two groups; control group A and study group B. The two groups received the same designed physical therapy program, while group B along the program, received kinesiotaping over the deltoid and the forearm. The subjects were evaluated, pre and post-treatment, and scored functionally, using the Toronto Active Motion Scale, and objectively, using an EMG device utilized to obtain the percentages of degeneration of the deltoid and the biceps muscles. Post-treatment values of six out of nine measured variables, between the two groups, revealed significant difference in favor of group B. The obtained results strongly support the introduction of kinesiotaping of the deltoid and the forearm as an adjunct to the treatment program of Erb's palsied children.

  12. The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 parsec White Dwarf Sample

    NASA Astrophysics Data System (ADS)

    Subasavage, John P.; Jao, Wei-Chun; Henry, Todd J.; Harris, Hugh C.; Dahn, Conard C.; Bergeron, P.; Dufour, P.; Dunlap, Bart H.; Barlow, Brad N.; Ianna, Philip A.; Lépine, Sébastien; Margheim, Steven J.

    2017-07-01

    We present 114 trigonometric parallaxes for 107 nearby white dwarf (WD) systems from both the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) and the U. S. Naval Observatory Flagstaff Station (NOFS) parallax programs. Of these, 76 parallaxes for 69 systems were measured by the CTIOPI program and 38 parallaxes for as many systems were measured by the NOFS program. A total of 50 systems are confirmed to be within the 25-pc horizon of interest. Coupled with a spectroscopic confirmation of a common proper-motion companion to a Hipparcos star within 25 pc as well as confirmation parallax determinations for two WD systems included in the recently released Tycho Gaia Astrometric Solution catalog, we add 53 new systems to the 25-pc WD sample—a 42% increase. Our sample presented here includes four strong candidate halo systems, a new metal-rich DAZ WD, a confirmation of a recently discovered nearby short-period (P = 2.85 hr) double degenerate, a WD with a new astrometric perturbation (long period, unconstrained with our data), and a new triple system where the WD companion main-sequence star has an astrometric perturbation (P ˜ 1.6 year).

  13. Application and evaluation of a rapid response earthquake-triggered landslide model to the 25 April 2015 Mw 7.8 Gorkha earthquake, Nepal

    USGS Publications Warehouse

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.; Roback, Kevin; Niemi, Nathan A

    2017-01-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake produced strong ground motions across an approximately 250 km by 100 km swath in central Nepal. To assist disaster response activities, we modified an existing earthquake-triggered landslide model based on a Newmark sliding block analysis to estimate the extent and intensity of landsliding and landslide dam hazard. Landslide hazard maps were produced using Shuttle Radar Topography Mission (SRTM) digital topography, peak ground acceleration (PGA) information from the U.S. Geological Survey (USGS) ShakeMap program, and assumptions about the regional rock strength based on end-member values from previous studies. The instrumental record of seismicity in Nepal is poor, so PGA estimates were based on empirical Ground Motion Prediction Equations (GMPEs) constrained by teleseismic data and felt reports. We demonstrate a non-linear dependence of modeled landsliding on aggregate rock strength, where the number of landslides decreases exponentially with increasing rock strength. Model estimates are less sensitive to PGA at steep slopes (> 60°) compared to moderate slopes (30–60°). We compare forward model results to an inventory of landslides triggered by the Gorkha earthquake. We show that moderate rock strength inputs over estimate landsliding in regions beyond the main slip patch, which may in part be related to poorly constrained PGA estimates for this event at far distances from the source area. Directly above the main slip patch, however, the moderate strength model accurately estimates the total number of landslides within the resolution of the model (landslides ≥ 0.0162 km2; observed n = 2214, modeled n = 2987), but the pattern of landsliding differs from observations. This discrepancy is likely due to the unaccounted for effects of variable material strength and local topographic amplification of strong ground motion, as well as other simplifying assumptions about source characteristics and their relationship to landsliding.

  14. Emergence of macroscopic directed motion in populations of motile colloids

    NASA Astrophysics Data System (ADS)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.

  15. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.

    PubMed

    Zhang, Man; Wang, Guanyong; Zhang, Lei

    2017-10-26

    Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

  16. The GPU implementation of micro - Doppler period estimation

    NASA Astrophysics Data System (ADS)

    Yang, Liyuan; Wang, Junling; Bi, Ran

    2018-03-01

    Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.

  17. Representational Momentum in Older Adults

    ERIC Educational Resources Information Center

    Piotrowski, Andrea S.; Jakobson, Lorna S.

    2011-01-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…

  18. 16 CFR 1207.5 - Design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...±340 newtons/sq. meter) and the pallet does not tip over when in motion. Attach a felt pen or other... following methods or their equivalent: 1 See reference (f) of § 1207.11 for full discussion. (A) Motion..., feet and/or legs. The slider's starting reactions with the slide shall be only as strong as necessary...

  19. 16 CFR 1207.5 - Design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...±340 newtons/sq. meter) and the pallet does not tip over when in motion. Attach a felt pen or other... following methods or their equivalent: 1 See reference (f) of § 1207.11 for full discussion. (A) Motion..., feet and/or legs. The slider's starting reactions with the slide shall be only as strong as necessary...

  20. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be inferred. Our modeling suggests that the acquisition of new age and paleomagnetic data from hotspot trails where data are lacking would add valuable constraints on both plume and plate motions. At present, the limiting factor is inconsistencies between paleomagnetic, geometric, and chronologic data, leading to large uncertainties in the results.

  1. Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp; Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012

    2016-07-14

    The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novelmore » mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.« less

  2. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  3. 42 CFR 3.528 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Motions. 3.528 Section 3.528 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Enforcement Program § 3.528 Motions. (a) An application to the ALJ for...

  4. The pEst version 2.1 user's manual

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Maine, Richard E.

    1987-01-01

    This report is a user's manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete generality in definig the nonlinear equations of motion used in the analysis. The equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is supplied with the program and is described in the report. The report also briefly discusses the scope of the parameter estimation problem the program addresses. The report gives detailed explanations of the purpose and usage of all available program commands and a description of the computational algorithms used in the program.

  5. Untypical Undergraduate Research: Player Motion Analysis in Sports

    NASA Astrophysics Data System (ADS)

    Loerke, Dinah

    There is significant concern about the degree of attrition in STEM disciplines from the start of K-12 through to the end of higher education, and the analysis of the `leaky pipeline' from the various institutions has identified a critical decline - which may be as high as 60 percent - between the fraction of students who identify as having an interest in a science or engineering major at the start of college/university, and the fraction of students who ultimately graduate with a STEM degree. It has been shown that this decline is even more dramatic for women and underrepresented minorities (Blickenstaff 2005, Metcalf 2010). One intervention which has been proven to be effective for retention of potential STEM students is early research experience, particularly if it facilitates the students' integration into a STEM learning community (Graham et al. 2013, Toven-Lindsey et al. 2015). In other words, to retain students in STEM majors, we would like to encourage them to `think of themselves as scientists', and simultaneously promote supportive peer networks. The University of Denver (DU) already has a strong undergraduate research program. However, while the current program provides valuable training for many students, it likely comes too late to be effective for student retention in STEM, because it primarily serves older students who have already finished the basic coursework in their discipline; within physics, we know that the introductory physics courses already serve as gatekeeper courses that cause many gifted but `non-typical' students to lose interest in pursuing a STEM major (Tobias 1990). To address this issue, my lab is developing a small research spinoff program in which we apply spatiotemporal motion analysis to the motion trajectories of players in sports, using video recordings of DU Pioneer hockey games. This project aims to fulfill a dual purpose: The research is framed in a way that we think is attractive and accessible for beginning students who have not yet finished the basic physics course sequence, and we hope to use it to attract untypical and retain undecided students in physics. Secondly, since mathematical techniques for trajectory analysis are independent of scale, we hope to harness the creativity and analytical intuition of undergraduates to simultaneously benefit our core biophysical research program.

  6. Dynamic fault rupture model of the 2008 Iwate-Miyagi Nairiku earthquake, Japan; Role of rupture velocity changes on extreme ground motions

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Dalguer Gudiel, L. A.; Aoi, S.

    2009-12-01

    The Iwate-Miyagi Nairiku earthquake, a reverse earthquake occurred in the southern Iwate prefecture Japan (2008/6/14), produced the largest peak ground acceleration recorded to date (4g) (Aoi et al. 2008), at the West Ichinoseki (IWTH25), KiK-net strong motion station of NIED. This station which is equipped with surface and borehole accelerometers (GL-260), also recorded very high peak accelerations up to 1g at the borehole level, despite being located in a rock site. From comparison of spectrograms of the observed surface and borehole records at IWTH25, Pulido et. al (2008) identified two high frequency (HF) ground motion events located at 4.5s and 6.3s originating at the source, which likely derived in the extreme observed accelerations of 3.9g and 3.5g at IWTH25. In order to understand the generation mechanism of these HF events we performed a dynamic fault rupture model of the Iwate-Miyagi Nairiku earthquake by using the Support Operator Rupture Dynamics (SORD) code, (Ely et al., 2009). SORD solves the elastodynamic equation using a generalized finite difference method that can utilize meshes of arbitrary structure and is capable of handling geometries appropriate to thrust earthquakes. Our spontaneous dynamic rupture model of the Iwate-Miyagi Nairiku earthquake is governed by the simple slip weakening friction law. The dynamic parameters, stress drop, strength excess and critical slip weakening distance are estimated following the procedure described in Pulido and Dalguer (2009) [PD09]. These parameters develop earthquake rupture consistent with the final slip obtained by kinematic source inversion of near source strong ground motion recordings. The dislocation model of this earthquake is characterized by a patch of large slip located ~7 km south of the hypocenter (Suzuki et al. 2009). Our results for the calculation of stress drop follow a similar pattern. Using the rupture times obtained from the dynamic model of the Iwate-Miyagi Nairiku earthquake we estimated the rupture velocity as well as rupture velocity changes distribution across the fault plane based on the procedure proposed by PD09. Our results show that rupture velocity has strong variations concentrated in small patches within large slip areas (asperities). Using this dynamic model we performed the strong motion simulation at the IWTH25 borehole. We obtained that this model is able to reproduce the two HF events observed in the strong motion data. Our preliminary results suggest that the extreme acceleration pulses were induced by two strong rupture velocity acceleration events at the rupture front. References Aoi, S., T. Kunugi, and H. Fujiwara, 2008, Science, 322, 727-730. Ely, G. P., S. M. Day, and J.-B. Minster (2009), Geophys. J. Int., 177(3), 1140-1150. Pulido, N., S. Aoi, and W. Suzuki (2008), AGU Fall meeting, S33C-02. Pulido, N., and L.A. Dalguer, (2009). Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on a dynamic model of fault rupture: Application to the strong ground motion simulation, Bull. Seism. Soc. Am. 99(4), 2305-2322. Suzuki, W., S. Aoi, and H. Sekiguchi, (2009), Bull. Seism. Soc. Am. (Accepted).

  7. An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Alcik, H. A.; Tanircan, G.; Kaya, Y.

    2015-12-01

    Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to the moderate size earthquake activities in the Marmara Sea, Turkey.

  8. New Intensity Attenuation in Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.; Tibaldi, A.; Bonali, F.; Gogoladze, Z.; Kvavadze, N.; Kvedelidze, I.

    2016-12-01

    In seismic-prone zones, increase of urbanization and infrastructures in turn produces increase of seismic risk that is mainly related to: the level of seismic hazard itself, the seismic resistance of dwelling houses, and many other factors. The relevant objectives of the present work is to improve the regional seismic hazard maps of Georgia, by implementing state-of-the art probabilistic seismic hazard assessment techniques and outputs from recent national and international collaborations. Seismic zoning is the identification of zones of similar levels of earthquake hazard. With reference to seismic zoning by ground motion assessment, the shaking intensity essentially depends on i) regional seismicity, ii) attenuation of ground motion with distance, iii) local site effects on ground motion. In the last decade, seismic hazard assessment is presented in terms of Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), or other recorded parameters. But there are very limited strong motion dataset in Georgia. Furthermore, vulnerability of buildings still is estimated for intensity, and there are no information about correlation between the distribution of ground motion recorded parameters and damage. So, macroseimic Intensity is still a very important parameter for strong ground motion evaluation. In the present work, we calibrated intensity prediction equations (IPE) for the Georgian dataset based on about 78 reviewed earthquakes. Metadata for Intensity (MSK 64 scale) were constrained and predictionequations for various types of distance (epicentral and hypocentral distance, Joyner-Boore distance, closest distance to the fault rupture plane) were calibrated. Relations between intensity and PGA values were derived. For this we used hybrid-empirical ground motion equation derived for Georgia and run scenario earthquakes for events with macroseismic data.

  9. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.

    1999-01-01

    This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).

  10. On the Analysis of Wind-Induced Noise in Seismological Recordings

    NASA Astrophysics Data System (ADS)

    Lott, Friederike F.; Ritter, Joachim R. R.; Al-Qaryouti, Mahmoud; Corsmeier, Ulrich

    2017-03-01

    Atmospheric processes, ranging from microscale turbulence to severe storms on the synoptic scale, impact the continuous ground motion of the earth and have the potential to induce strong broad-band noise in seismological recordings. We designed a target-oriented experiment to quantify the influence of wind on ground motion velocity in the Dead Sea valley. For the period from March 2014 to February 2015, a seismological array, consisting of 15 three-component short-period and broad-band stations, was operated near Madaba, Jordan, complemented by one meteorological tower providing synchronized, continuous three-component measurements of wind speed. Results reveal a pronounced, predominantly linear increase of the logarithmic power of ground motion velocity with rising mean horizontal wind speed at all recording stations. Measurements in rough, mountainous terrain further identify a strong dependency of wind-induced noise on surface characteristics, such as topography and, therefore, demonstrate the necessity to consider wind direction as well. To assess the noise level of seismological recordings with respect to a dynamically changing wind field, we develop a methodology to account for the dependency of power spectral density of ground motion velocity on wind speed and wind direction for long, statistically significant periods. We further introduce the quantitative measure of the ground motion susceptibility to estimate the vulnerability of seismological recordings to the presence of wind.

  11. Motion coherence and direction discrimination in healthy aging.

    PubMed

    Pilz, Karin S; Miller, Louisa; Agnew, Hannah C

    2017-01-01

    Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.

  12. A Digital Program for Calculating the Interaction Between Flexible Structures, Unsteady Aerodynamics and Active Controls

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Adams, W. M., Jr.

    1979-01-01

    A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results.

  13. Application of dynamic milling in stainless steel processing

    NASA Astrophysics Data System (ADS)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  14. The Universe in Motion, Book 2. Guidebook. The University of Illinois Astronomy Program.

    ERIC Educational Resources Information Center

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book two in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. This guidebook is concerned with how celestial bodies move in space and how these motions are observed by astronomers. Topics discussed include: a study of the daily motion…

  15. Drug Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NBOD2, a program developed at Goddard Space Flight Center to solve equations of motion coupled N-body systems is used by E.I. DuPont de Nemours & Co. to model potential drugs as a series of elements. The program analyses the vibrational and static motions of independent components in drugs. Information generated from this process is used to design specific drugs to interact with enzymes in designated ways.

  16. HP-9810A calculator programs for plotting the 2-dimensional motion of cyclindrical payloads relative to the shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1976-01-01

    The HP-9810A calculator programs described provide the capability to generate HP-9862A plotter displays which depict the apparent motion of a free-flying cyclindrical payload relative to the shuttle orbiter body axes by projecting the payload geometry into the orbiter plane of symmetry at regular time intervals.

  17. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    USGS Publications Warehouse

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  18. Nanoscopic dynamics of bicontinous microemulsions: effect of membrane associated protein

    DOE PAGES

    Sharma, V. K.; Hayes, Douglas G.; Urban, Volker S.; ...

    2017-06-12

    Bicontinous microemulsions (BμE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. In this paper, we present the first time report of nanoscopic dynamics of surfactant monolayers within BμEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BμEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates thatmore » surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants’ hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BμEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BμE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. Finally, this study demonstrates the utility of QENS for evaluating dynamics of BμEs in nanoscopic region, and that proteins directly affect the microscopic dynamics, which is of relevance for evaluating release kinetics of encapsulated drugs from BμE delivery systems and the use of BμEs as biomembrane mimetic systems for investigating membrane protein–biomembrane interactions.« less

  19. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment

    PubMed Central

    Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke

    2014-01-01

    We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716

  20. Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors

    NASA Astrophysics Data System (ADS)

    Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan

    The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.

  1. Recovery of Near-Fault Ground Motion by Introducing Rotational Motions

    NASA Astrophysics Data System (ADS)

    Chiu, H. C.

    2014-12-01

    Near-fault ground motion is the key data to seismologists for revealing the seismic faulting and earthquake physics and strong-motion data is the only near-fault seismogram that can keep on-scale recording in a major earthquake. Unfortunately, this type of data might be contaminated by the rotation induced effects such as the centrifugal acceleration and the gravity effects. We analyze these effects based on a set of collocated rotation-translation data of small to moderate earthquakes. Results show these rotation effects could be negligible in small ground motion, but they might have a radical growing in the near-fault/extremely large ground motions. In order to extract more information from near-fault seismogram for improving our understating of seismic faulting and earthquake physics, it requires six-component collocated rotation-translation records to reduce or remove these effects.

  2. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis

    PubMed Central

    Ozasa, Kazunari; Won, June; Song, Simon; Tamaki, Shun; Ishikawa, Takahiro; Maeda, Mizuo

    2017-01-01

    The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light. PMID:28234984

  3. Investigation of Liquid Sloshing in Spin-Stabilized Satellites.

    DTIC Science & Technology

    1993-01-31

    deformation of the spinning structure in addition to the rigid body motion . A Lagrangian approach was used to develop the equations of motion which include...nonlinear relationships for the unknown rigid body motions and linear terms for the relatively small elastic deformations of the members. Appendix F...the rigid body motion of the test assembly. A pendulum analogy was used to model the sloshing liquid in that early program. Several numerical

  4. Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan

    NASA Astrophysics Data System (ADS)

    Yamada, N.

    2013-12-01

    After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with the program of the earthquake disaster prevention childcare for young children (e.g. from 0 to 5 years old children in kindergarten and nursery school) for the above problems by the cooperation and the collaborative investigation with the schools. This study was supported by Grant-in-Aid for Young Scientists (B), No. 23700957 of the Japan Ministry of Education, Culture, Sport, Science, and Technology (MEXT). We special thank the all person concerned with kindergartens and nurseries in this study.

  5. Rapid Earthquake Magnitude Estimation for Early Warning Applications

    NASA Astrophysics Data System (ADS)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego

    2017-04-01

    Earthquake magnitude is a concise metric that provides invaluable information about the destructive potential of a seismic event. Rapid estimation of magnitude for earthquake and tsunami early warning purposes requires reliance on near-field instrumentation. For large magnitude events, ground motions can exceed the dynamic range of near-field broadband seismic instrumentation (clipping). Strong motion accelerometers are designed with low gains to better capture strong shaking. Estimating earthquake magnitude rapidly from near-source strong-motion data requires integration of acceleration waveforms to displacement. However, integration amplifies small errors, creating unphysical drift that must be eliminated with a high pass filter. The loss of the long period information due to filtering is an impediment to magnitude estimation in real-time; the relation between ground motion measured with strong-motion instrumentation and magnitude saturates, leading to underestimation of earthquake magnitude. Using station displacements from Global Navigation Satellite System (GNSS) observations, we can supplement the high frequency information recorded by traditional seismic systems with long-period observations to better inform rapid response. Unlike seismic-only instrumentation, ground motions measured with GNSS scale with magnitude without saturation [Crowell et al., 2013; Melgar et al., 2015]. We refine the current magnitude scaling relations using peak ground displacement (PGD) by adding a large GNSS dataset of earthquakes in Japan. Because it does not suffer from saturation, GNSS alone has significant advantages over seismic-only instrumentation for rapid magnitude estimation of large events. The earthquake's magnitude can be estimated within 2-3 minutes of earthquake onset time [Melgar et al., 2013]. We demonstrate that seismogeodesy, the optimal combination of GNSS and seismic data at collocated stations, provides the added benefit of improving the sensitivity of displacement time series compared to GNSS alone. This not only means that ground motion can be detected at farther stations, but also that smaller seismic arrivals (i.e. P-waves) become visible in the displacement time series. P-wave amplitude (Pd) has been examined as an early indicator of earthquake magnitude. Relations between Pd and magnitude using seismic-only instrumentation appear to suffer from saturation, while the combination of GNSS and seismic data has been demonstrated to eliminate saturation [Meier et al., 2016, Crowell et al., 2013]. We create seismogeodetic displacements by combining the GNSS dataset with Japanese KiK-net and K-net accelerometer data to explore the potential of seismogeodesy for magnitude scaling with several seconds of data using P-wave amplitude.

  6. Site correction of a high-frequency strong-ground-motion simulation based on an empirical transfer function

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Yan; Wen, Kuo-Liang; Lin, Che-Min; Kuo, Chun-Hsiang; Chen, Chun-Te; Chang, Shuen-Chiang

    2017-05-01

    In this study, an empirical transfer function (ETF), which is the spectrum difference in Fourier amplitude spectra between observed strong ground motion and synthetic motion obtained by a stochastic point-source simulation technique, is constructed for the Taipei Basin, Taiwan. The basis stochastic point-source simulations can be treated as reference rock site conditions in order to consider site effects. The parameters of the stochastic point-source approach related to source and path effects are collected from previous well-verified studies. A database of shallow, small-magnitude earthquakes is selected to construct the ETFs so that the point-source approach for synthetic motions might be more widely applicable. The high-frequency synthetic motion obtained from the ETF procedure is site-corrected in the strong site-response area of the Taipei Basin. The site-response characteristics of the ETF show similar responses as in previous studies, which indicates that the base synthetic model is suitable for the reference rock conditions in the Taipei Basin. The dominant frequency contour corresponds to the shape of the bottom of the geological basement (the top of the Tertiary period), which is the Sungshan formation. Two clear high-amplification areas are identified in the deepest region of the Sungshan formation, as shown by an amplification contour of 0.5 Hz. Meanwhile, a high-amplification area was shifted to the basin's edge, as shown by an amplification contour of 2.0 Hz. Three target earthquakes with different kinds of source conditions, including shallow small-magnitude events, shallow and relatively large-magnitude events, and deep small-magnitude events relative to the ETF database, are tested to verify site correction. The results indicate that ETF-based site correction is effective for shallow earthquakes, even those with higher magnitudes, but is not suitable for deep earthquakes. Finally, one of the most significant shallow large-magnitude earthquakes (the 1999 Chi-Chi earthquake in Taiwan) is verified in this study. A finite fault stochastic simulation technique is applied, owing to the complexity of the fault rupture process for the Chi-Chi earthquake, and the ETF-based site-correction function is multiplied to obtain a precise simulation of high-frequency (up to 10 Hz) strong motions. The high-frequency prediction has good agreement in both time and frequency domain in this study, and the prediction level is the same as that predicted by the site-corrected ground motion prediction equation.

  7. Ratchet effect for nanoparticle transport in hair follicles.

    PubMed

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.

    PubMed

    Lai, Wei; Ren, Lei; Tang, Qian; Qu, Xiangmeng; Li, Jiang; Wang, Lihua; Li, Li; Fan, Chunhai; Pei, Hao

    2018-06-22

    The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.

  9. Fault rupture process and strong ground motion simulation of the 2014/04/01 Northern Chile (Pisagua) earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Suzuki, W.; Aoi, S.

    2014-12-01

    A megathrust earthquake occurred in Northern Chile in April 1, 2014, 23:46 (UTC) (Mw 8.2), in a region that had not experienced a major earthquake since the great 1877 (~M8.6) event. This area had been already identified as a mature seismic gap with a strong interseismic coupling inferred from geodetic measurements (Chlieh et al., JGR, 2011 and Metois et al., GJI, 2013). We used 48 components of strong motion records belonging to the IPOC network in Northern Chile to investigate the source process of the M8.2 Pisagua earthquake. Acceleration waveforms were integrated to get velocities and filtered between 0.02 and 0.125 Hz. We assumed a single fault plane segment with an area of 180 km by 135 km, a strike of 357, and a dip of 18 degrees (GCMT). We set the starting point of rupture at the USGS hypocenter (19.610S, 70.769W, depth 25km), and employed a multi-time-window linear waveform inversion method (Hartzell and Heaton, BSSA, 1983), to derive the rupture process of the Pisagua earthquake. Our results show a slip model characterized by one large slip area (asperity) localized 50 km south of the epicenter, a peak slip of 10 m and a total seismic moment of 2.36 x 1021Nm (Mw 8.2). Fault rupture slowly propagated to the south in front of the main asperity for the initial 25 seconds, and broke it by producing a strong acceleration stage. The fault plane rupture velocity was in average 2.9 km/s. Our calculations show an average stress drop of 4.5MPa for the entire fault rupture area and 12MPa for the asperity area. We simulated the near-source strong ground motion records in a broad frequency band (0.1 ~ 20 Hz), to investigate a possible multi-frequency fault rupture process as the one observed in recent mega-thrust earthquakes such as the 2011 Tohoku-oki (M9.0). Acknowledgments Strong motion data was kindly provided by Chile University as well as the IPOC (Integrated Plate boundary Observatory Chile).

  10. Seismic Strong Motion Array Project (SSMAP) to Record Future Large Earthquakes in the Nicoya Peninsula area, Costa Rica

    NASA Astrophysics Data System (ADS)

    Simila, G.; McNally, K.; Quintero, R.; Segura, J.

    2006-12-01

    The seismic strong motion array project (SSMAP) for the Nicoya Peninsula in northwestern Costa Rica is composed of 10 13 sites including Geotech A900/A800 accelerographs (three-component), Ref-Teks (three- component velocity), and Kinemetric Episensors. The main objectives of the array are to: 1) record and locate strong subduction zone mainshocks [and foreshocks, "early aftershocks", and preshocks] in Nicoya Peninsula, at the entrance of the Nicoya Gulf, and in the Papagayo Gulf regions of Costa Rica, and 2) record and locate any moderate to strong upper plate earthquakes triggered by a large subduction zone earthquake in the above regions. Our digital accelerograph array has been deployed as part of our ongoing research on large earthquakes in conjunction with the Earthquake and Volcano Observatory (OVSICORI) at the Universidad Nacional in Costa Rica. The country wide seismographic network has been operating continuously since the 1980's, with the first earthquake bulletin published more than 20 years ago, in 1984. The recording of seismicity and strong motion data for large earthquakes along the Middle America Trench (MAT) has been a major research project priority over these years, and this network spans nearly half the time of a "repeat cycle" (50 years) for large (Ms 7.5- 7.7) earthquakes beneath the Nicoya Peninsula, with the last event in 1950. Our long time co-collaborators include the seismology group OVSICORI, with coordination for this project by Dr. Ronnie Quintero and Mr. Juan Segura. Numerous international investigators are also studying this region with GPS and seismic stations (US, Japan, Germany, Switzerland, etc.). Also, there are various strong motion instruments operated by local engineers, for building purposes and mainly concentrated in the population centers of the Central Valley. The major goal of our project is to contribute unique scientific information pertaining to a large subduction zone earthquake and its related seismic activity when the next large earthquake occurs in Nicoya. A centralized data base will be created within the main seismic network files at OVSICORI, with various local personnel working in teams that will be responsible to collect data within 3 days following a large mainshock.

  11. Seismic Strong Motion Array Project (SSMAP) to Record Future Large Earthquakes in the Nicoya Peninsula area, Costa Rica

    NASA Astrophysics Data System (ADS)

    Simila, G.; Lafromboise, E.; McNally, K.; Quintereo, R.; Segura, J.

    2007-12-01

    The seismic strong motion array project (SSMAP) for the Nicoya Peninsula in northwestern Costa Rica is composed of 10 - 13 sites including Geotech A900/A800 accelerographs (three-component), Ref-Teks (three- component velocity), and Kinemetric Episensors. The main objectives of the array are to: 1) record and locate strong subduction zone mainshocks [and foreshocks, "early aftershocks", and preshocks] in Nicoya Peninsula, at the entrance of the Nicoya Gulf, and in the Papagayo Gulf regions of Costa Rica, and 2) record and locate any moderate to strong upper plate earthquakes triggered by a large subduction zone earthquake in the above regions. Our digital accelerograph array has been deployed as part of our ongoing research on large earthquakes in conjunction with the Earthquake and Volcano Observatory (OVSICORI) at the Universidad Nacional in Costa Rica. The country wide seismographic network has been operating continuously since the 1980's, with the first earthquake bulletin published more than 20 years ago, in 1984. The recording of seismicity and strong motion data for large earthquakes along the Middle America Trench (MAT) has been a major research project priority over these years, and this network spans nearly half the time of a "repeat cycle" (~ 50 years) for large (Ms ~ 7.5- 7.7) earthquakes beneath the Nicoya Peninsula, with the last event in 1950. Our long time co- collaborators include the seismology group OVSICORI, with coordination for this project by Dr. Ronnie Quintero and Mr. Juan Segura. The major goal of our project is to contribute unique scientific information pertaining to a large subduction zone earthquake and its related seismic activity when the next large earthquake occurs in Nicoya. We are now collecting a database of strong motion records for moderate sized events to document this last stage prior to the next large earthquake. A recent event (08/18/06; M=4.3) located 20 km northwest of Samara was recorded by two stations (Playa Carrillo and Nicoya) at distances of 25-30 km with maximum acceleration of 0.2g.

  12. Validation of the Passenger Ride Quality Apparatus (PRQA) for simulation of aircraft motions for ride-quality research

    NASA Technical Reports Server (NTRS)

    Bigler, W. B., II

    1977-01-01

    The NASA passenger ride quality apparatus (PRQA), a ground based motion simulator, was compared to the total in flight simulator (TIFS). Tests were made on PRQA with varying stimuli: motions only; motions and noise; motions, noise, and visual; and motions and visual. Regression equations for the tests were obtained and subsequent t-testing of the slopes indicated that ground based simulator tests produced comfort change rates similar to actual flight data. It was recommended that PRQA be used in the ride quality program for aircraft and that it be validated for other transportation modes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogg, P; Aland, T; West, M

    Purpose: To investigate the effects of external surrogate and tumour motion by observing the reconstructed phases and AveCT in an Amplitude and Time based 4DCT. Methods: Based on patient motion studies, Cos6 and sinusoidal motions were simulated as external surrogate and tumour motions in a motion phantom. The diaphragm and tumour motions may or may not display the same waveform therefore the same and different waveforms were programmed into the phantom, scanned and reconstructed based on Amplitude and Time. The AveCT and phases were investigated with these different scenarios. The AveCT phantom images were also compared with CBCT phantom imagesmore » programmed with the same motions. Results: For the same surrogate and tumour sin motions, the phases (Amplitude and Time) and AveCT indicated similar motions based on the position of the BB at the slice and displayed contrast values respectively. For cos6 motions, due to the varied time the tumour spends at each position, the Amplitude and Time based phases differed. The AveCT images represented the actual tumour motions and the Time and Amplitude based phases were represented by the surrogate with varied times. Conclusion: Different external surrogate and tumour motions may result in different displayed image motions when observing the AveCT and reconstructed phases. During the 4DCT, the surrogate motion is readily available for observation of the amplitude and time of the diaphragm position. Following image reconstruction, the user may need to observe the AveCT in addition to the reconstructed phases to comprehend the time weightings of the tumour motion during the scan. This may also apply to 3D CBCT images where the displayed tumour position in the images is influenced by the long duration of the CBCT. Knowledge of the tumour motion represented by the greyscale of the AveCT may also assist in CBCT treatment beam verification matching.« less

  14. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    USGS Publications Warehouse

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph were amplified by a factor of about 2 or less compared with sites at the base of the hill. Probable variations in surficial shear-wave velocity do not account for the observed differences among mainshock acceleration observed at Tarzana and at two different sites within 2 km of Tarzana.

  15. Characterizing directional variations in long-period ground motion amplifications in the Kanto Basin, Japan

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Furumura, T.; Maeda, T.

    2017-12-01

    In the Kanto Basin (including Tokyo in Japan), the long-period (T=3-10 s) ground motions are strongly developed when large earthquakes occur nearby. The amplitude of the long-period ground motion in the basin varies strongly among earthquakes; it is tremendous from the earthquakes in Niigata (northwest of Kanto), but is several times weaker from the earthquakes in Tohoku (north of Kanto). In this study, we examined the cause of such azimuthal-dependent amplitude variation for the 2004 Niigata Chuetsu (M6.8) and the 2011 Fukushima Hamadori (M7.0) earthquake based on numerical simulations of seismic wave propagation by the finite-difference method. We first examined the non-isotropic source-radiation effect of these events. By performing numerical simulations for different strike angles of these source faults, significant variation in amplitude of the long-period ground motions were observed in Tokyo for both the events. Among tested strike angles, the source of the 2004 event (strike = 212 deg.) produced the largest long-period ground motion due to strong radiation of surface wave towards the Kanto Basin, while the 2011 event (strike = 132 deg.) produced the least. The minimum-to-maximum ratio of their amplitudes with respect to strike angle is about 2 and 1.3, respectively. These investigations suggest the source radiation effect considerably contributes to the variations of the long-period ground motions. We then examined the effect of the 3D structure of the Kanto Basin on the generation of the long-period ground motion. For the 2004 event, we found that the long-period signal first arrives at the central Tokyo from the western edge of the Kanto Basin. Then, later signals containing both the Rayleigh and Love waves were amplified dramatically due to the localized low-velocity structure to the northwestern part of the basin. On the other hand, in the case of the 2011 event, the seismic waves propagating towards the basin were dissipated significantly as it travels over the ridge structure of the basement in the northern part of the basin, where the seismic wave speed is faster than the surroundings. Therefore, the large variation of the long-period ground motion among earthquakes occurs due to the combined effects of source radiation and propagation properties in the 3D heterogeneous structure of the Kanto Basin.

  16. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, A; Chang, S; Matney, J

    2016-06-15

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate).more » The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.« less

  17. Improvement of cardiac CT reconstruction using local motion vector fields.

    PubMed

    Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael

    2009-03-01

    The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.

  18. Global Rating Scales and Motion Analysis Are Valid Proficiency Metrics in Virtual and Benchtop Knee Arthroscopy Simulators.

    PubMed

    Chang, Justues; Banaszek, Daniel C; Gambrel, Jason; Bardana, Davide

    2016-04-01

    Work-hour restrictions and fatigue management strategies in surgical training programs continue to evolve in an effort to improve the learning environment and promote safer patient care. In response, training programs must reevaluate how various teaching modalities such as simulation can augment the development of surgical competence in trainees. For surgical simulators to be most useful, it is important to determine whether surgical proficiency can be reliably differentiated using them. To our knowledge, performance on both virtual and benchtop arthroscopy simulators has not been concurrently assessed in the same subjects. (1) Do global rating scales and procedure time differentiate arthroscopic expertise in virtual and benchtop knee models? (2) Can commercially available built-in motion analysis metrics differentiate arthroscopic expertise? (3) How well are performance measures on virtual and benchtop simulators correlated? (4) Are these metrics sensitive enough to differentiate by year of training? A cross-sectional study of 19 subjects (four medical students, 12 residents, and three staff) were recruited and divided into 11 novice arthroscopists (student to Postgraduate Year [PGY] 3) and eight proficient arthroscopists (PGY 4 to staff) who completed a diagnostic arthroscopy and loose-body retrieval in both virtual and benchtop knee models. Global rating scales (GRS), procedure times, and motion analysis metrics were used to evaluate performance. The proficient group scored higher on virtual (14 ± 6 [95% confidence interval {CI}, 10-18] versus 36 ± 5 [95% CI, 32-40], p < 0.001) and benchtop (16 ± 8 [95% CI, 11-21] versus 36 ± 5 [95% CI, 31-40], p < 0.001) GRS scales. The proficient subjects completed nearly all tasks faster than novice subjects, including the virtual scope (579 ±169 [95% CI, 466-692] versus 358 ± 178 [95% CI, 210-507] seconds, p = 0.02) and benchtop knee scope + probe (480 ± 160 [95% CI, 373-588] versus 277 ± 64 [95% CI, 224-330] seconds, p = 0.002). The built-in motion analysis metrics also distinguished novices from proficient arthroscopists using the self-generated virtual loose body retrieval task scores (4 ± 1 [95% CI, 3-5] versus 6 ± 1 [95% CI, 5-7], p = 0.001). GRS scores between virtual and benchtop models were very strongly correlated (ρ = 0.93, p < 0.001). There was strong correlation between year of training and virtual GRS (ρ = 0.8, p < 0.001) and benchtop GRS (ρ = 0.87, p < 0.001) scores. To our knowledge, this is the first study to evaluate performance on both virtual and benchtop knee simulators. We have shown that subjective GRS scores and objective motion analysis metrics and procedure time are valid measures to distinguish arthroscopic skill on both virtual and benchtop modalities. Performance on both modalities is well correlated. We believe that training on artificial models allows acquisition of skills in a safe environment. Future work should compare different modalities in the efficiency of skill acquisition, retention, and transferability to the operating room.

  19. Lick Northern Proper Motion Program: NPM2

    NASA Astrophysics Data System (ADS)

    Jones, B. F.; Hanson, R. B.; Klemola, A. R.

    2000-05-01

    The Lick Northern Proper Motion (NPM) program is nearing completion after a half-century of work. Two-epoch photography began in 1947 and was completed in 1988. Measurements and reductions for proper motions, positions, and two-color photometry in the sky outside the Milky Way (``NPM1'') began in 1975 and were completed in 1992. The Lick NPM1 Catalog, containing 149,000 stars, was distributed in 1993. Work on the Milky Way sky (``NPM2'') comprising some 300,000 stars, began in 1996, and plate measurements were finished in 1999. The NPM program will be completed with the publication of the Lick NPM2 Catalog in 2003. The NPM program will provide absolute proper motions, measured on an inertial system defined by some 50,000 faint galaxies, for over 400,000 stars from 9 < B < 18, covering the northern two-thirds of the sky. Included in the NPM catalogs are many stars of astrophysical interest, anonymous stars for galactic studies, and stars from positional catalogues and proper motion surveys. Current work at Lick encompasses data reductions and star identifications for NPM2. Procedures are based on NPM1, with appropriate modifications. Reference galaxies are not available in the Milky Way sky, so the Hipparcos Catalogue is used to link the NPM2 proper motions to the inertial system defined by NPM1. The large number of stars in NPM2 reflects the higher density of stars near the Galactic plane and toward the Galactic center. The NPM catalogs will have lasting value as a unique database for future studies in galactic structure, stellar kinematics, and astrometry. As we produce NPM2, we are also applying the NPM data to several outstanding problems in these research fields. We would like to thank Dave Monet and the USNO for measuring the NPM2 plates. We thank the National Science Foundation for its continued support of the NPM program. The work reported here was supported by NSF grant AST 9530632.

  20. PTSD in Limb Trauma and Recovery

    DTIC Science & Technology

    2011-10-01

    Virtual reality and Motion Analysis to Characterize Disabilities in Lower...Program 4: “ Virtual reality and Motion Analysis to Characterize Disabilities in Lower Limb Injury” (Christopher Rhea, Ph.D., lead investigator). This...ANSI Std. Z39.18 ANNUAL REPORT 10/16/2011 VIRTUAL REALITY AND MOTION ANALYSIS TO CHARACTERIZE DISABILITIES IN LOWER LIMB INJURY PI: SUSAN

  1. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Kent, Dennis V.

    2018-05-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30° rotation during Late Jurassic time (160-145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth's surface area and may not reflect motion of the entire mantle-crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth's surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167-133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49°-0.74° My-1 except for an interval between Kimmeridgian and Tithonian time (157-147 Ma), during which it underwent northward motion at 1.45° ± 0.76° My-1 (1σ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30°) rotation as continental lithosphere in the 160-145 Ma interval. Such coherent motion of a large majority of the Earth's surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth's inertia tensor in the Late Jurassic.

  2. Strong ground motion from the November 12, 2017, M 7.3 Kermanshah earthquake in western Iran

    NASA Astrophysics Data System (ADS)

    Babaie Mahani, Alireza; Kazemian, Javad

    2018-05-01

    In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (D b) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, D b reached 30 s at the maximum PGA while it was 50 s at the maximum peak ground velocity above the threshold of MMI = 5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.

  3. Explaining Newton's Laws of Motion: Using Student Reasoning through Representations to Develop Conceptual Understanding

    ERIC Educational Resources Information Center

    Waldrip, Bruce; Prain, Vaughan; Sellings, Peter

    2013-01-01

    The development of students' reasoning and argumentation skills in school science is currently attracting strong research interest. In this paper we report on a study where we aimed to investigate student learning on the topic of motion when students, guided by their teacher, responded to a sequence of representational challenges in which their…

  4. Rapid encoding of relationships between spatially remote motion signals.

    PubMed

    Maruya, Kazushi; Holcombe, Alex O; Nishida, Shin'ya

    2013-02-06

    For visual processing, the temporal correlation of remote local motion signals is a strong cue to detect meaningful large-scale structures in the retinal image, because related points are likely to move together regardless of their spatial separation. While the processing of multi-element motion patterns involved in biological motion and optic flow has been studied intensively, the encoding of simpler pairwise relationships between remote motion signals remains poorly understood. We investigated this process by measuring the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared to luminance or orientation, motion comparison was more rapid. Performance remained very high even when interstimulus separation was increased up to 100°. Motion comparison also remained rapid regardless of whether the two motion directions were similar to or different from each other. The exception was a dramatic slowing when the elements formed an orthogonal "T," in which two motions do not perceptually group together. Motion presented at task-irrelevant positions did not reduce performance, suggesting that the rapid motion comparison could not be ascribed to global optic flow processing. Our findings reveal the existence and unique nature of specialized processing that encodes long-range relationships between motion signals for quick appreciation of global dynamic scene structure.

  5. Seismic damage to structures in the M s6.5 Ludian earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu

    2016-03-01

    On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.

  6. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  7. The September 19, 1985 Michoacan Earthquake: Aftershock acceleration data recorded by a temporary installation of strong motion instruments

    NASA Astrophysics Data System (ADS)

    Munguía, Luis; Simila, Gerry W.; McNally, Karen C.; Thompson, Howard

    1986-06-01

    We describe acceleration signals recorded for nine aftershocks of the September 19, 1985 Michoacan earthquake. To obtain this data set, three A-700 Teledyne-Geotech digital strong-motion instruments were operated temporarily at two sites on the José María Morelos (La Villita) Dam, and at a site located at about 12 km to the west of the town of Zihuatanejo. Peak horizontal accelerations of 0.005 g to 0.031 g were recorded at epicentral distances between 10 and 75 km, for earthquakes with magnitude (mb) between 4.5 and 5.3. It was observed that the peak accelerations recorded at a site on the embankment of the dam (near the crest ) are approximately three times those recorded on the abutment bedrock portion of the dam. Although these sites were spatially separated by no more than 300 m, differences among their records are also significant. Waveforms recorded at the embankment site look more complex than those from the abutment site. This fact, as well as the higher peak accelerations on the embankment, provides evidence of a strong influence of the structure of the dam on the ground motion at the embankment site.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, John

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of thismore » vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.« less

  9. Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.

    DTIC Science & Technology

    1980-12-01

    equations for two particle motions are developed . A computer program NGCEFF is constructed., the Navier-Stokes equation is solved by the finite difference...dynamic equations for two particle motions are developed . A computer program NGCEFF I is constructed, the Navier-Stokes equation is solved by the...spatial inhomogeneities for the aerosol. Thus, following an HCDA, an aerosol mixture of sodium compounds, fuel and core structural materials will

  10. Preliminary map of peak horizontal ground acceleration for the Hanshin-Awaji earthquake of January 17, 1995, Japan - Description of Mapped Data Sets

    USGS Publications Warehouse

    Borcherdt, R.D.; Mark, R.K.

    1995-01-01

    The Hanshin-Awaji earthquake (also known as the Hyogo-ken Nanbu and the Great Hanshin earthquake) provided an unprecedented set of measurements of strong ground shaking. The measurements constitute the most comprehensive set of strong- motion recordings yet obtained for sites underlain by soft soil deposits of Holocene age within a few kilometers of the crustal rupture zone. The recordings, obtained on or near many important structures, provide an important new empirical data set for evaluating input ground motion levels and site amplification factors for codes and site-specific design procedures world wide. This report describes the data used to prepare a preliminary map summarizing the strong motion data in relation to seismicity and underlying geology (Wentworth, Borcherdt, and Mark., 1995; Figure 1, hereafter referred to as Figure 1/I). The map shows station locations, peak acceleration values, and generalized acceleration contours superimposed on pertinent seismicity and the geologic map of Japan. The map (Figure 1/I) indicates a zone of high acceleration with ground motions throughout the zone greater than 400 gal and locally greater than 800 gal. This zone encompasses the area of most intense damage mapped as JMA intensity level 7, which extends through Kobe City. The zone of most intense damage is parallel, but displaced slightly from the surface projection of the crustal rupture zone implied by aftershock locations. The zone is underlain by soft-soil deposits of Holocene age.

  11. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  12. The health benefits of a physical activity program for older adults living in congregate housing.

    PubMed

    Temple, Brenda; Janzen, Bonnie L; Chad, Karen; Bell, Georgia; Reeder, Bruce; Martin, Linda

    2008-01-01

    In Saskatoon in 2002, as one of the key strategies for the in motion health promotion strategy, the Forever...in motion program was developed with the general goal of increasing opportunities for physical activity among older adults living in congregate housing. The three components of the program were a low-intensity exercise program, informal socialization and educational sessions. The objective of the present study was to examine whether participation in this program positively influenced participants' physical, emotional, psychological and social well-being. A quasi-experimental, pretest/post-test design was employed to examine the impact of the program on various aspects of participant well-being. Thirty-six program participants and a comparison group of 22 non-participants from two congregate housing facilities took part in the study. The pretest was administered to the study and comparison groups before or shortly after the 12-week session commenced, and the post-test was administered after the 12-week session had concluded. Pretest and post-test assessment consisted of self-report measures of (1) vitality, (2) self-rated health, 3) mental health, (4) social functioning, (5) role limitations due to emotional problems, 6) physical activity-related knowledge, and (7) self-efficacy for exercise. A multivariate analysis of covariance (MANCOVA) was conducted using the seven post-test scores as dependent variables and the pretest scores as covariates. After adjusting for differences in baseline characteristics, the findings revealed statistically significant improvements in self-reported health and self-efficacy for exercise in the program participant group as compared with non-participants. The results of this study suggest that a relatively low-cost, low-intensity exercise program such as the Forever...in motion program may positively influence the well-being of older adults living in congregate housing. However, additional research with a larger number of participants and a more rigorous study design is needed to further elucidate the health benefits of the Forever...in motion program.

  13. Technique to eliminate computational instability in multibody simulations employing the Lagrange multiplier

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1992-01-01

    A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

  14. Partially ionized hydrogen plasma in strong magnetic fields.

    PubMed

    Potekhin, A Y; Chabrier, G; Shibanov, Y A

    1999-08-01

    We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.

  15. Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi

    2017-05-01

    The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.

  16. FORTRAN programs for calculating nonlinear seismic ground response in two dimensions

    USGS Publications Warehouse

    Joyner, W.B.

    1978-01-01

    The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.

  17. Students' Development of Astronomy Concepts across Time

    NASA Astrophysics Data System (ADS)

    Plummer, Julia

    Students in Grades 1, 3, and 8 (N = 60) were interviewed while using a planetarium-like setting that allowed the students to demonstrate their ideas about apparent celestial motion both verbally and with their own motions. Though the older students were generally more accurate in many conceptual areas compared with the younger students, in several areas, the eighth-grade students showed no improvement over the third-grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and postinterviews were conducted with participants from seven classes of first- and second-grade students (N = 63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. Based on the results of these studies, a learning progression was developed describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.

  18. Asynchrony between position and motion signals in the saccadic system.

    PubMed

    Schreiber, Céline; Missal, Marcus; Lefèvre, Philippe

    2006-02-01

    The influence of position and motion signals on saccades was studied in two dimensions (2D) using a double step-ramp paradigm. We showed the presence of a predictive component in 2D catch-up saccade programming that is based on motion signals and influences both saccade amplitude and orientation. Interestingly, a significant proportion of catch-up saccades was characterized by a large curvature or a sudden change of direction in midflight for large values of retinal slip. For these saccades, a quantitative analysis showed that their trajectory could be explained by an asynchrony between position and motion signals in saccade programming. When the saccade trajectory was not straight, position error was always available first and influenced the initial orientation of the saccade, whereas retinal slip determined the final orientation. This new paradigm could be used in electrophysiological experiments, where it should prove to be very useful to study position and motion pathways separately in catch-up saccades.

  19. Non-translational Molecular Diffusive Motion on Two Different Time Scales in Alkane Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.-K.; Bai, M.; Taub, H.; Mamontov, E.; Herwig, K. W.; Hansen, F. Y.; Copley, J. R. D.; Jenkins, T.; Tyagi, M.; Volkmann, U. G.

    2009-03-01

    Using quasielastic neutron scattering, we have investigated molecular diffusive motion in n-C32H66 nanoparticles whose structure and phase transitions have been studied previously.^2 The spectra reveal non-translational (dispersionless) diffusive motion occurring simultaneously on time scales of ˜1 ns and ˜40 ps. The onset of the faster motion occurs in the crystalline phase at least 15 K below the melting point and is tentatively identified with rotation about the long molecular axis. Similarly, we suggest that the slower motion involves molecular conformational changes whose onset appears to coincide with the abrupt transition to the bulk rotator phase about 3 K below melting. These two types of diffusive motion bear a strong resemblance to those observed previously in C24 monolayers adsorbed on a graphite surface.^3 ^2M. Bai et al., Europhys. Lett. 79, 26003 (2007). ^3F. Y. Hansen et al., Phys. Rev. Lett. 92, 046103 (2004)].

  20. Computer code for gas-liquid two-phase vortex motions: GLVM

    NASA Technical Reports Server (NTRS)

    Yeh, T. T.

    1986-01-01

    A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.

  1. Earthquake Early Warning in Japan - Result of recent two years -

    NASA Astrophysics Data System (ADS)

    Shimoyama, T.; Doi, K.; Kiyomoto, M.; Hoshiba, M.

    2009-12-01

    Japan Meteorological Agency(JMA) started to provide Earthquake Early Warning(EEW) to the general public in October 2007. It was followed by provision of EEW to a limited number of users who understand the technical limit of EEW and can utilize it for automatic control from August 2006. Earthquake Early Warning in Japan definitely means information of estimated amplitude and arrival time of a strong ground motion after fault rupture occurred. In other words, the EEW provided by JMA is defined as a forecast of a strong ground motion before the strong motion arrival. EEW of JMA is to enable advance countermeasures to disasters caused by strong ground motions with providing a warning message of anticipating strong ground motion before the S wave arrival. However, due to its very short available time period, there should need some measures and ideas to provide rapidly EEW and utilize it properly. - EEW is issued to general public when the maximum seismic intensity 5 lower (JMA scale) or greater is expected. - EEW message contains origin time, epicentral region name, and names of areas (unit is about 1/3 to 1/4 of one prefecture) where seismic intensity 4 or greater is expected. Expected arrival time is not included because it differs substantially even in one unit area. - EEW is to be broadcast through the broadcasting media(TV, radio and City Administrative Disaster Management Radio), and is delivered to cellular phones through cell broadcast system. For those who would like to know the more precise estimation and smaller earthquake information at their point of their properties, JMA allows designated private companies to provide forecast of strong ground motion, in which the estimation of a seismic intensity as well as arrival time of S-wave are contained, at arbitrary places under the JMA’s technical assurance. From October, 2007 to August, 2009, JMA issued 11 warnings to general public expecting seismic intensity “5 lower” or greater, including M=7.2 inland earthquake at Tohoku district (Iwate-Miyagi-nairiku-earthquakes; June 14, 2008) and M=6.5 earthquake at Suruga bay (August, 11, 2009). For 7 cases out of 11 cases seismic intensity “5 lower” or greater were actually observed; for 3 cases, observed maximum seismic intensity was 4; for 1 case it was false alarm. During this period, 10 earthquakes occurred for which observed maximum seismic intensity was “5 lower” or greater. For 7 cases out of 10, JMA issued the warnings to general public; for 3 cases the warnings were not issued because expected seismic intensity was 4. The false alarm, which occurred on 25, August, 2009 by software bag, raised discussion how the false warning should be canceled. In this study, we will summarize the performance of the system ,and introduce some examples of the actual issuance .

  2. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  3. Differential responses in dorsal visual cortex to motion and disparity depth cues

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.

    2013-01-01

    We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808

  4. All about Motion & Balance. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Walking on a balance beam or riding a bike both require motion and balance. This program will reveal how unbalanced forces create motion, while balanced forces keep things still. Students also learn how concepts like velocity, acceleration, and momentum fit into this puzzle. A unique hands-on activity combined with vivid imagery and graphics…

  5. Beam motions near separatrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ball et al.

    1999-05-04

    Experimental data on particle motion near the separatrix of the one dimensional (1-D) fourth-integer islands are an-alyzed. When the beam bunch is initially kicked to the separatrix orbit, we observed a strong decoherence in the coherent betatron motion. We find that, through intensive particle tracking simulation analysis, the decoherence has resulted from the beam being split into beamlets in the beta-tron phase space. However, we also observe an unexpected recoherence of coherence signal, which may result form a modulated closed orbit or the homoclinic structure near the separatrix.

  6. Proteins as micro viscosimeters: Brownian motion revisited.

    PubMed

    Lavalette, Daniel; Hink, Mark A; Tourbez, Martine; Tétreau, Catherine; Visser, Antonie J

    2006-08-01

    Translational and rotational diffusion coefficients of proteins in solution strongly deviate from the Stokes-Einstein laws when the ambient viscosity is induced by macromolecular co-solutes rather than by a solvent of negligible size as was assumed by A. Einstein one century ago for deriving the laws of Brownian motion and diffusion. Rotational and translational motions experience different micro viscosities and both become a function of the size ratio of protein and macromolecular co-solute. Possible consequences upon fluorescence spectroscopy observations of diffusing proteins within living cells are discussed.

  7. A procedure to select ground-motion time histories for deterministic seismic hazard analysis from the Next Generation Attenuation (NGA) database

    NASA Astrophysics Data System (ADS)

    Huang, Duruo; Du, Wenqi; Zhu, Hong

    2017-10-01

    In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of ground-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground-motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are unavailable. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.

  8. Alert Response to Motion Onset in the Retina

    PubMed Central

    Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo

    2013-01-01

    Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327

  9. Peak ground motion predictions with empirical site factors using Taiwan Strong Motion Network recordings

    NASA Astrophysics Data System (ADS)

    Chung, Jen-Kuang

    2013-09-01

    A stochastic method called the random vibration theory (Boore, 1983) has been used to estimate the peak ground motions caused by shallow moderate-to-large earthquakes in the Taiwan area. Adopting Brune's ω-square source spectrum, attenuation models for PGA and PGV were derived from path-dependent parameters which were empirically modeled from about one thousand accelerograms recorded at reference sites mostly located in a mountain area and which have been recognized as rock sites without soil amplification. Consequently, the predicted horizontal peak ground motions at the reference sites, are generally comparable to these observed. A total number of 11,915 accelerograms recorded from 735 free-field stations of the Taiwan Strong Motion Network (TSMN) were used to estimate the site factors by taking the motions from the predictive models as references. Results from soil sites reveal site amplification factors of approximately 2.0 ~ 3.5 for PGA and about 1.3 ~ 2.6 for PGV. Finally, as a result of amplitude corrections with those empirical site factors, about 75% of analyzed earthquakes are well constrained in ground motion predictions, having average misfits ranging from 0.30 to 0.50. In addition, two simple indices, R 0.57 and R 0.38, are proposed in this study to evaluate the validity of intensity map prediction for public information reports. The average percentages of qualified stations for peak acceleration residuals less than R 0.57 and R 0.38 can reach 75% and 54%, respectively, for most earthquakes. Such a performance would be good enough to produce a faithful intensity map for a moderate scenario event in the Taiwan region.

  10. String-like cooperative motion in homogeneous melting

    PubMed Central

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.

    2013-01-01

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of “superheated” Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of “homogeneous” melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional “static” defect melting models. PMID:23556789

  11. String-like cooperative motion in homogeneous melting.

    PubMed

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static" defect melting models.

  12. Design principles of a cooperative robot controller

    NASA Technical Reports Server (NTRS)

    Hayward, Vincent; Hayati, Samad

    1987-01-01

    The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.

  13. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM

    USGS Publications Warehouse

    Boore, D.M.

    2009-01-01

    Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.

  14. Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, Geoffrey P.

    2013-10-31

    This project uses dynamic rupture simulations to investigate high-frequency seismic energy generation. The relevant phenomena (frictional breakdown, shear heating, effective normal-stress fluctuations, material damage, etc.) controlling rupture are strongly interacting and span many orders of magnitude in spatial scale, requiring highresolution simulations that couple disparate physical processes (e.g., elastodynamics, thermal weakening, pore-fluid transport, and heat conduction). Compounding the computational challenge, we know that natural faults are not planar, but instead have roughness that can be approximated by power laws potentially leading to large, multiscale fluctuations in normal stress. The capacity to perform 3D rupture simulations that couple these processes willmore » provide guidance for constructing appropriate source models for high-frequency ground motion simulations. The improved rupture models from our multi-scale dynamic rupture simulations will be used to conduct physicsbased (3D waveform modeling-based) probabilistic seismic hazard analysis (PSHA) for California. These calculation will provide numerous important seismic hazard results, including a state-wide extended earthquake rupture forecast with rupture variations for all significant events, a synthetic seismogram catalog for thousands of scenario events and more than 5000 physics-based seismic hazard curves for California.« less

  15. Rupture Directivity Effect on Seismic Vulnerability of Reinforced Concrete Bridge

    NASA Astrophysics Data System (ADS)

    Shirazian, Shadi; Nouri, Gholamreza; Ghayamghamian, Mohamadreza

    2017-04-01

    Earthquake catastrophes menace humans` lives and assets. Although earthquakes are inevitable, damage is not. To remedy this situation, significant amount of research is conducted in order to assess the performance of existent man-made structures, particularly infrastructures such as bridges which play a vital role in post earthquake services. The results can be used for assessing retrofit prioritization for structures and as a basis for economic loss estimations. The research presented here determines the vulnerability of a common typical two-span reinforced concrete bridge by generating fragility curves. Near-fault ground motions are different from ordinary ground motions, often containing strong coherent dynamic long-period pulses and permanent ground displacements. Here special attention is given to this type of ground motions, and their effects on the seismic behavior of structure are compared with ordinary motions. The results show near-fault ground motions exacerbate the seismic vulnerability of a bridge by about 68% in comparison with near-field ground motions. In other words, near-source ground motions with forward directivity effect are more dangerous.

  16. Bifilar analysis users manual, volume 2

    NASA Technical Reports Server (NTRS)

    Cassarino, S. J.

    1980-01-01

    The digital computer program developed to study the vibration response of a coupled rotor/bifilar/airframe coupled system is described. The theoretical development of the rotor/airframe system equations of motion is provided. The fuselage and bifilar absorber equations of motion are discussed. The modular block approach used in the make-up of this computer program is described. The input data needed to run the rotor and bifilar absorber analyses is described. Sample output formats are presented and discussed. The results for four test cases, which use the major logic paths of the computer program, are presented. The overall program structure is discussed in detail. The FORTRAN subroutines are described in detail.

  17. Computer program documentation for the dynamic analysis of a noncontacting mechanical face seal

    NASA Technical Reports Server (NTRS)

    Auer, B. M.; Etsion, I.

    1980-01-01

    A computer program is presented which achieves a numerical solution for the equations of motion of a noncontacting mechanical face seal. The flexibly-mounted primary seal ring motion is expressed by a set of second order differential equations for three degrees of freedom. These equations are reduced to a set of first order equations and the GEAR software package is used to solve the set of first order equations. Program input includes seal design parameters and seal operating conditions. Output from the program includes velocities and displacements of the seal ring about the axis of an inertial reference system. One example problem is described.

  18. Progress report on the Worldwide Earthquake Risk Management (WWERM) Program

    USGS Publications Warehouse

    Algermissen, S.T.; Hays, Walter W.; Krumpe, Paul R.

    1992-01-01

    Considerable progress has been made in the Worldwide Earthquake Risk Management (WWERM) Program since its initiation in late 1989 as a cooperative program of the Agency for International Development (AID), Office of U.S. Foreign Disaster Assistance (OFDA), and the U.S. Geological Survey. Probabilistic peak acceleration and peak Modified Mercalli intensity (MMI) maps have been prepared for Chile and for Sulawesi province in Indonesia. Earthquake risk (loss) studies for dwellings in Gorontalo, North Sulawesi, have been completed and risk studies for dwellings in selected areas of central Chile are underway. A special study of the effect of site response on earthquake ground motion estimation in central Chile has also been completed and indicates that site response may modify the ground shaking by as much as plus or minus two units of MMI. A program for the development of national probabilistic ground motion maps for the Philippines is now underway and pilot studies of earthquake ground motion and risk are being planned for Morocco.

  19. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  20. Attitude dynamic of spin-stabilized satellites with flexible appendages

    NASA Technical Reports Server (NTRS)

    Renard, M. L.

    1973-01-01

    Equations of motion and computer programs have been developed for analyzing the motion of a spin-stabilized spacecraft having long, flexible appendages. Stability charts were derived, or can be redrawn with the desired accuracy for any particular set of design parameters. Simulation graphs of variables of interest are readily obtainable on line using program FLEXAT. Finally, applications to actual satellites, such as UK-4 and IMP-1 have been considered.

  1. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  2. Motional Mechanisms of Homopolar Motors & Rollers

    NASA Astrophysics Data System (ADS)

    Wong, H. K.

    2009-10-01

    The strong Nd2Fe14B permanent magnet has facilitated development of various fascinating yet simple homopolar motors However, the physics of these devices is often not explained, or is explained incorrectly. A major concern is that Newton's third law was overlooked in some of the earlier articles. In this paper, I will employ this law in explaining the motional mechanisms of these devices.

  3. Aging scaled Brownian motion

    NASA Astrophysics Data System (ADS)

    Safdari, Hadiseh; Chechkin, Aleksei V.; Jafari, Gholamreza R.; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

  4. Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.

    2004-01-01

    Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.

  5. Aging scaled Brownian motion.

    PubMed

    Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

  6. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.

    PubMed

    Thygesen, Uffe Høgsbro

    2016-03-01

    We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.

  7. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  8. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    PubMed

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  9. NBOD2- PROGRAM TO DERIVE AND SOLVE EQUATIONS OF MOTION FOR COUPLED N-BODY SYSTEMS

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The analysis of the dynamic characteristics of a complex system, such as a spacecraft or a robot, is usually best accomplished through the study of a simulation model. The simulation model must have the same dynamic characteristics as the complex system, while lending itself to mathematical quantification. The NBOD2 computer program was developed to aid in the analysis of spacecraft attitude dynamics. NBOD2 is a very general program that may be applied to a large class of problems involving coupled N-body systems. NBOD2 provides the dynamics analyst with the capability to automatically derive and numerically solve the equations of motion for any system that can be modeled as a topological tree of coupled rigid bodies, flexible bodies, point masses, and symmetrical momentum wheels. NBOD2 uses a topological tree model of the dynamic system to derive the vector-dyadic equations of motion for the system. The user builds this topological tree model by using rigid and flexible bodies, point masses, and symmetrical momentum wheels with appropriate connections. To insure that the relative motion between contiguous bodies is kinematically constrained, NBOD2 assumes that contiguous rigid and flexible bodies are connected by physically reliable 0, 1, 2, and 3-degrees-of-freedom gimbals. These gimbals prohibit relative translational motion, while permitting up to 3 degrees of relative rotational freedom at hinge points. Point masses may have 0, 1, 2, or 3-degrees of relative translational freedom, and symmetric momentum wheels may have a single degree of rotational freedom relative to the body in which they are imbedded. Flexible bodies may possess several degrees of vibrational freedom in addition to the degrees of freedom associated with the connection gimbals. Data concerning the natural modes and vibrations of the flexible bodies must be supplied by the user. NBOD2 combines the best features of the discrete-body approach and the nested body approach to reduce the topological tree to a complete set of nonlinear equations of motion in vector-dyadic form for the system being analyzed. NBOD2 can then numerically solve the equations of motion. Input to NBOD2 consists of a user-supplied description of the system to be modeled. The NBOD2 system includes an interactive, tutorial, input support program to aid the NBOD2 user in preparing input data. Output from NBOD2 consists of a listing of the complete set of nonlinear equations of motion in vector-dyadic form and any userspecified set of system state variables. The NBOD2 program is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX-11/780 computer. The NBOD2 program was developed in 1978 and last updated in 1982.

  10. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang

    2017-01-01

    We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.

  11. Research opportunities in space motion sickness, phase 2

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.

    1983-01-01

    Space and motion sickness, the current and projected NASA research program, and the conclusions and suggestions of the ad hoc Working Group are summarized. The frame of reference for the report is ground-based research.

  12. Anticipatory Smooth Eye Movements in Autism Spectrum Disorder

    PubMed Central

    Aitkin, Cordelia D.; Santos, Elio M.; Kowler, Eileen

    2013-01-01

    Smooth pursuit eye movements are important for vision because they maintain the line of sight on targets that move smoothly within the visual field. Smooth pursuit is driven by neural representations of motion, including a surprisingly strong influence of high-level signals representing expected motion. We studied anticipatory smooth eye movements (defined as smooth eye movements in the direction of expected future motion) produced by salient visual cues in a group of high-functioning observers with Autism Spectrum Disorder (ASD), a condition that has been associated with difficulties in either generating predictions, or translating predictions into effective motor commands. Eye movements were recorded while participants pursued the motion of a disc that moved within an outline drawing of an inverted Y-shaped tube. The cue to the motion path was a visual barrier that blocked the untraveled branch (right or left) of the tube. ASD participants showed strong anticipatory smooth eye movements whose velocity was the same as that of a group of neurotypical participants. Anticipatory smooth eye movements appeared on the very first cued trial, indicating that trial-by-trial learning was not responsible for the responses. These results are significant because they show that anticipatory capacities are intact in high-functioning ASD in cases where the cue to the motion path is highly salient and unambiguous. Once the ability to generate anticipatory pursuit is demonstrated, the study of the anticipatory responses with a variety of types of cues provides a window into the perceptual or cognitive processes that underlie the interpretation of events in natural environments or social situations. PMID:24376667

  13. Anticipatory smooth eye movements in autism spectrum disorder.

    PubMed

    Aitkin, Cordelia D; Santos, Elio M; Kowler, Eileen

    2013-01-01

    Smooth pursuit eye movements are important for vision because they maintain the line of sight on targets that move smoothly within the visual field. Smooth pursuit is driven by neural representations of motion, including a surprisingly strong influence of high-level signals representing expected motion. We studied anticipatory smooth eye movements (defined as smooth eye movements in the direction of expected future motion) produced by salient visual cues in a group of high-functioning observers with Autism Spectrum Disorder (ASD), a condition that has been associated with difficulties in either generating predictions, or translating predictions into effective motor commands. Eye movements were recorded while participants pursued the motion of a disc that moved within an outline drawing of an inverted Y-shaped tube. The cue to the motion path was a visual barrier that blocked the untraveled branch (right or left) of the tube. ASD participants showed strong anticipatory smooth eye movements whose velocity was the same as that of a group of neurotypical participants. Anticipatory smooth eye movements appeared on the very first cued trial, indicating that trial-by-trial learning was not responsible for the responses. These results are significant because they show that anticipatory capacities are intact in high-functioning ASD in cases where the cue to the motion path is highly salient and unambiguous. Once the ability to generate anticipatory pursuit is demonstrated, the study of the anticipatory responses with a variety of types of cues provides a window into the perceptual or cognitive processes that underlie the interpretation of events in natural environments or social situations.

  14. Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Lu, Wenbin

    2017-09-01

    Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.

  15. Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak

    NASA Technical Reports Server (NTRS)

    Keyser, D. A.; Johnson, D. R.

    1982-01-01

    Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.

  16. The nonlinear breakup of the sun's toroidal field

    NASA Technical Reports Server (NTRS)

    Hughes, D. W.; Cattaneo, F.

    1989-01-01

    There are good reasons for believing that the sun has a strong toroidal magnetic field in the stably stratified region of convective overshoot sandwiched between the radiative zone and convective zone proper. The magnetic field in this region is modeled by studying the behavior of a layer of uniform field embedded in a subadiabatic atmosphere. Since the field can support extra mass, such a configuration is top-heavy, and instabilities of the Rayleigh-Taylor type can occur. Numerical integration of the two-dimensional compressible MHD equations makes it possible to follow the evolution of this instability into the nonlinear regime. The initial buoyancy-driven instability of the magnetic field gives rise to strong shearing motions, thereby exciting secondary Kelvin-Helmholtz instabilities which wrap the gas into regions of intense vorticity. The somewhat surprising subsequent motions are determined primarily by the strong interactions between vortices.

  17. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene.

    PubMed

    Cannuccia, Elena; Marini, Andrea

    2011-12-16

    The quantum zero-point motion of the carbon atoms is shown to induce strong effects on the optical and electronic properties of diamond and trans-polyacetylene, a conjugated polymer. By using an ab initio approach, we interpret the subgap states experimentally observed in diamond in terms of entangled electron-phonon states. These states also appear in trans-polyacetylene causing the formation of strong structures in the band structure that even call into question the accuracy of the band theory. This imposes a critical revision of the results obtained for carbon-based nanostructures by assuming the atoms frozen in their equilibrium positions. © 2011 American Physical Society

  18. On pads and filters: Processing strong-motion data

    USGS Publications Warehouse

    Boore, D.M.

    2005-01-01

    Processing of strong-motion data in many cases can be as straightforward as filtering the acceleration time series and integrating to obtain velocity and displacement. To avoid the introduction of spurious low-frequency noise in quantities derived from the filtered accelerations, however, care must be taken to append zero pads of adequate length to the beginning and end of the segment of recorded data. These padded sections of the filtered acceleration need to be retained when deriving velocities, displacements, Fourier spectra, and response spectra. In addition, these padded and filtered sections should also be included in the time series used in the dynamic analysis of structures and soils to ensure compatibility with the filtered accelerations.

  19. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    USGS Publications Warehouse

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  20. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.

    PubMed

    Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio

    2005-01-01

    Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.

  1. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Parker, Donald E.

    1987-01-01

    Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.

  2. Motion of Discrete Interfaces Through Mushy Layers

    NASA Astrophysics Data System (ADS)

    Braides, Andrea; Solci, Margherita

    2016-08-01

    We study the geometric motion of sets in the plane derived from the homogenization of discrete ferromagnetic energies with weak inclusions. We show that the discrete sets are composed by a `bulky' part and an external `mushy region' composed only of weak inclusions. The relevant motion is that of the bulky part, which asymptotically obeys to a motion by crystalline mean curvature with a forcing term, due to the energetic contribution of the mushy layers, and pinning effects, due to discreteness. From an analytical standpoint, it is interesting to note that the presence of the mushy layers implies only a weak and not strong convergence of the discrete motions, so that the convergence of the energies does not commute with the evolution. From a mechanical standpoint it is interesting to note the geometrical similarity of some phenomena in the cooling of binary melts.

  3. Energization and transport of ions of ionospheric origin in the terrestrial magnetosphere

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.

    1995-01-01

    This serves as a final report entitled Energization and Transport of Ions of Ionospheric Origin in the Terrestrial Magnetosphere. The work has been predominantly focused on ion outflows identified in two data sets: (1) Prognoz 7; and (2) Dynamics Explorer. The study analyzed ion densities, temperatures, and flow velocities in the magnetotail. The work performed under this contract consisted of developing a program to load the raw data, compute the background subtraction of a strong sun pulse, and use the net counts to calculate the low order moments of the distribution function. The study confirms the results of ISEE that the the cusp is a major source of plasmasheet plasma and goes beyond this to discuss the use of ion velocities as a way to examine the motions of the magnetotail.

  4. Seismic response analysis of an instrumented building structure

    USGS Publications Warehouse

    Li, H.-J.; Zhu, S.-Y.; Celebi, M.

    2003-01-01

    The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.

  5. The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 parsec White Dwarf Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subasavage, John P.; Harris, Hugh C.; Dahn, Conard C.

    We present 114 trigonometric parallaxes for 107 nearby white dwarf (WD) systems from both the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) and the U. S. Naval Observatory Flagstaff Station (NOFS) parallax programs. Of these, 76 parallaxes for 69 systems were measured by the CTIOPI program and 38 parallaxes for as many systems were measured by the NOFS program. A total of 50 systems are confirmed to be within the 25-pc horizon of interest. Coupled with a spectroscopic confirmation of a common proper-motion companion to a Hipparcos star within 25 pc as well as confirmation parallax determinations for two WD systems included inmore » the recently released Tycho Gaia Astrometric Solution catalog, we add 53 new systems to the 25-pc WD sample—a 42% increase. Our sample presented here includes four strong candidate halo systems, a new metal-rich DAZ WD, a confirmation of a recently discovered nearby short-period ( P  = 2.85 hr) double degenerate, a WD with a new astrometric perturbation (long period, unconstrained with our data), and a new triple system where the WD companion main-sequence star has an astrometric perturbation ( P  ∼ 1.6 year).« less

  6. Potential and Pitfalls of High-Rate GPS

    NASA Astrophysics Data System (ADS)

    Smalley, R.

    2008-12-01

    With completion of the Plate Boundary Observatory (PBO), we are poised to capture a dense sampling of strong motion displacement time series from significant earthquakes in western North America with High-Rate GPS (HRGPS) data collected at 1 and 5 Hz. These data will provide displacement time series at potentially zero epicentral distance that, if valid, have great potential to contribute to understanding earthquake rupture processes. The caveat relates to whether or not the data are aliased: is the sampling rate fast enough to accurately capture the displacement's temporal history? Using strong motion recordings in the immediate epicentral area of several 6.77.5 events, which can be reasonably expected in the PBO footprint, even the 5 Hz data may be aliased. Some sort of anti-alias processing, currently not applied, will therefore necessary at the closest stations to guarantee the veracity of the displacement time series. We discuss several solutions based on a-priori knowledge of the expected ground motion and practicality of implementation.

  7. Amplification of earthquake ground motions in Washington, DC, and implications for hazard assessments in central and eastern North America

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Munoz, Jessica; Hough, Susan E.; Chapman, Martin C.; Olgun, C. Guney

    2017-01-01

    The extent of damage in Washington, DC, from the 2011 Mw 5.8 Mineral, VA, earthquake was surprising for an epicenter 130 km away; U.S. Geological Survey “Did-You-Feel-It” reports suggest that Atlantic Coastal Plain and other unconsolidated sediments amplified ground motions in the city. We measure this amplification relative to bedrock sites using earthquake signals recorded on a temporary seismometer array. The spectral ratios show strong amplification in the 0.7 to 4 Hz frequency range for sites on sediments. This range overlaps with resonant frequencies of buildings in the city as inferred from their heights, suggesting amplification at frequencies to which many buildings are vulnerable to damage. Our results emphasize that local amplification can raise moderate ground motions to damaging levels in stable continental regions, where low attenuation extends shaking levels over wide areas and unconsolidated deposits on crystalline metamorphic or igneous bedrock can result in strong contrasts in near-surface material properties.

  8. Adaptive independent joint control of manipulators - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1988-01-01

    The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.

  9. FMA Live! at Hardy Middle School

    NASA Image and Video Library

    2013-09-16

    With the help of a student participant, "FMA Live!" crew members explain Newton's second law of motion during a performance of "FMA Live!" at Hardy Middle School in Washington on Monday, Sept. 16th, 2013. "FMA Live!" is a program sponsored by NASA and Honeywell that teaches Newton's three laws of motion mixed with dance and music. The program travels across the country and has reached nearly 300,000 students.Photo Credit: (NASA/Jay Westcott)

  10. FMA Live! at Hardy Middle School

    NASA Image and Video Library

    2013-09-16

    With the help of a student participant, "FMA Live!" crew members explain Newton's first law of motion during a performance of "FMA Live!" at Hardy Middle School in Washington on Monday, Sept. 16th, 2013. "FMA Live!" is a program sponsored by NASA and Honeywell that teaches Newton's three laws of motion mixed with dance and music. The program travels across the country and has reached nearly 300,000 students.Photo Credit: (NASA/Jay Westcott)

  11. Intensity attenuation in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Szanyi, Gyöngyvér

    2015-04-01

    Ground motion prediction equations play a key role in seismic hazard assessment. Earthquake hazard has to be expressed in macroseismic intensities in case of seismic risk estimations where a direct relation to the damage associated with ground shaking is needed. It can be also necessary for shake map generation where the map is used for prompt notification to the public, disaster management officers and insurance companies. Although only few instrumental strong motion data are recorded in the Pannonian Basin, there are numerous historical reports of past earthquakes since the 1763 Komárom earthquake. Knowing the intensity attenuation and comparing them with relations of other areas - where instrumental strong motion data also exist - can help us to choose from the existing instrumental ground motion prediction equations. The aim of this work is to determine an intensity attenuation formula for the inner part of the Pannonian Basin, which can be further used to find an adaptable ground motion prediction equation for the area. The crust below the Pannonian Basin is thin and warm and it is overlain by thick sediments. Thus the attenuation of seismic waves here is different from the attenuation in the Alp-Carpathian mountain belt. Therefore we have collected intensity data only from the inner part of the Pannonian Basin and defined the boundaries of the studied area by the crust thickness of 30 km (Windhoffer et al., 2005). 90 earthquakes from 1763 until 2014 have sufficient number of macroseismic data. Magnitude of the events varies from 3.0 to 6.6. We have used individual intensity points to eliminate the subjectivity of drawing isoseismals, the number of available intensity data is more than 3000. Careful quality control has been made on the dataset. The different types of magnitudes of the used earthquake catalogue have been converted to local and momentum magnitudes using relations determined for the Pannonian Basin. We applied the attenuation formula by Sorensen et al. (2009) using a least-squares regression method. This expression is comparable with the common type of strong-motion attenuation equations (e.g., Joyner and Boore, 1993). Joyner, W. B. and Boore, D. M. (1993). Methods for regression analysis of strong-motion data. BSSA, 83(2), 469-487. Sørensen, M. B., Stromeyer, D., Grünthal, G. (2009). Attenuation of macroseismic intensity: a new relation for the Marmara Sea region, northwest Turkey. BSSA, 99(2A), 538-553. Windhoffer, G., Dombrádi, E., Horváth, F., Székely, B., Bada, G., Szafián, P., Dövényi, P., Tóth, L., Grenerczy, Gy. and G. Timár (2005) Geodynamic Atlas of the Pannonian Basin and the Surrounding Orogens. 7th Workshop on Alpine Geological Studies, Abstract Book, p. 109.

  12. Using Phun to Study ``Perpetual Motion'' Machines

    NASA Astrophysics Data System (ADS)

    Koreš, Jaroslav

    2012-05-01

    The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th- century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over the centuries numerous proposals for PM have been made, involving ever more elements of modern science in their construction. It is possible to test a variety of PM machines in the classroom using a program called Phun2 or its commercial version Algodoo.3 The programs are designed to simulate physical processes and we can easily simulate mechanical machines using them. They provide an intuitive graphical environment controlled with a mouse; a programming language is not needed. This paper describes simulations of four different (supposed) PM machines.4

  13. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  14. Motion sickness elicited by passive rotation in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Current theory and recent evidence suggest that motion sickness occurs under conditions of sensory input in which the normal motor programs for producing eye, head, and body movements are not functionally effective, i.e. under conditions in which there are difficulties in maintaining posture and controlling eye movements. Conditions involving conflicting or inconsistent visual-vestibular (VV) stimulation should thus result in greater sickness rates since the existing motor programs do not produce effective control of eye-head-body movements under such conditions. It is felt that the relationship of postural control to motion sickness is an important one and one often overlooked. The results are reported which showed that when postural requirements were minimized by fully restraining squirrel monkeys during hypogravity parabolic flight, no animals became motion sick, but over 80 percent of the same 11 animals became sick if they were unrestrained and maintained control of their posture.

  15. The N-BOD2 user's and programmer's manual

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1978-01-01

    A general purpose digital computer program was developed and designed to aid in the analysis of spacecraft attitude dynamics. The program provides the analyst with the capability of automatically deriving and numerically solving the equations of motion of any system that can be modeled as a topological tree of coupled rigid bodies, flexible bodies, point masses, and symmetrical momentum wheels. Two modes of output are available. The composite system equations of motion may be outputted on a line printer in a symbolic form that may be easily translated into common vector-dyadic notation, or the composite system equations of motion may be solved numerically and any desirable set of system state variables outputted as a function of time.

  16. Are recent empirical directivity models sufficient in capturing near-fault directivity effect?

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Shin; Cotton, Fabrice; Pagani, Marco; Weatherill, Graeme; Reshi, Owais; Mai, Martin

    2017-04-01

    It has been widely observed that the ground motion variability in the near field can be significantly higher than that commonly reported in published GMPEs, and this has been suggested to be a consequence of directivity. To capture the spatial variation in ground motion amplitude and frequency caused by the near-fault directivity effect, several models for engineering applications have been developed using empirical or, more recently, the combination of empirical and simulation data. Many research works have indicated that the large velocity pulses mainly observed in the near-field are primarily related to slip heterogeneity (i.e., asperities), suggesting that the slip heterogeneity is a more dominant controlling factor than the rupture velocity or source rise time function. The first generation of broadband directivity models for application in ground motion prediction do not account for heterogeneity of slip and rupture speed. With the increased availability of strong motion recordings (e.g., NGA-West 2 database) in the near-fault region, the directivity models moved from broadband to narrowband models to include the magnitude dependence of the period of the rupture directivity pulses, wherein the pulses are believed to be closely related to the heterogeneity of slip distribution. After decades of directivity models development, does the latest generation of models - i.e. the one including narrowband directivity models - better capture the near-fault directivity effects, particularly in presence of strong slip heterogeneity? To address this question, a set of simulated motions for an earthquake rupture scenario, with various kinematic slip models and hypocenter locations, are used as a basis for a comparison with the directivity models proposed by the NGA-West 2 project for application with ground motion prediction equations incorporating a narrowband directivity model. The aim of this research is to gain better insights on the accuracy of narrowband directivity models under conditions commonly encountered in the real world. Our preliminary result shows that empirical models including directivity factors better predict physics based ground-motion and their spatial variability than classical empirical models. However, the results clearly indicate that it is still a challenge for the directivity models to capture the strong directivity effect if a high level of slip heterogeneity is involved during the source rupture process.

  17. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.

  18. Source effects on the simulation of the strong groud motion of the 2011 Lorca earthquake

    NASA Astrophysics Data System (ADS)

    Saraò, Angela; Moratto, Luca; Vuan, Alessandro; Mucciarelli, Marco; Jimenez, Maria Jose; Garcia Fernandez, Mariano

    2016-04-01

    On May 11, 2011 a moderate seismic event (Mw=5.2) struck the city of Lorca (South-East Spain) causing nine casualties, a large number of injured people and damages at the civil buildings. The largest PGA value (360 cm/s2) ever recorded so far in Spain, was observed at the accelerometric station located in Lorca (LOR), and it was explained as due to the source directivity, rather than to local site effects. During the last years different source models, retrieved from the inversions of geodetic or seismological data, or a combination of the two, have been published. To investigate the variability that equivalent source models of an average earthquake can introduce in the computation of strong motion, we calculated seismograms (up to 1 Hz), using an approach based on the wavenumber integration and, as input, four different source models taken from the literature. The source models differ mainly for the slip distribution on the fault. Our results show that, as effect of the different sources, the ground motion variability, in terms of pseudo-spectral velocity (1s), can reach one order of magnitude for near source receivers or for sites influenced by the forward-directivity effect. Finally, we compute the strong motion at frequencies higher than 1 Hz using the Empirical Green Functions and the source model parameters that better reproduce the recorded shaking up to 1 Hz: the computed seismograms fit satisfactorily the signals recorded at LOR station as well as at the other stations close to the source.

  19. Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake

    USGS Publications Warehouse

    Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.

    2005-01-01

    The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.

  20. Kinesio arm taping as prophylaxis against the development of Erb’s Engram

    PubMed Central

    ElKhatib, Radwa S.; ElNegmy, Emam H.; Salem, Amina H.; Sherief, AbdelAziz A.

    2012-01-01

    An Erb’s Engram is a common debility that develops in recovering children with Erb’s palsy. The purpose of this study was to investigate the effect of kinesiotaping over the deltoid and the forearm on the development of proper upper extremity function in children recovering from Erb’s palsy. Thirty patients with Erb’s palsy participated for 3 months in this study and were equally divided into two groups; control group A and study group B. The two groups received the same designed physical therapy program, while group B along the program, received kinesiotaping over the deltoid and the forearm. The subjects were evaluated, pre and post-treatment, and scored functionally, using the Toronto Active Motion Scale, and objectively, using an EMG device utilized to obtain the percentages of degeneration of the deltoid and the biceps muscles. Post-treatment values of six out of nine measured variables, between the two groups, revealed significant difference in favor of group B. The obtained results strongly support the introduction of kinesiotaping of the deltoid and the forearm as an adjunct to the treatment program of Erb’s palsied children. PMID:25685456

  1. Correcting Duporcq's theorem☆

    PubMed Central

    Nawratil, Georg

    2014-01-01

    In 1898, Ernest Duporcq stated a famous theorem about rigid-body motions with spherical trajectories, without giving a rigorous proof. Today, this theorem is again of interest, as it is strongly connected with the topic of self-motions of planar Stewart–Gough platforms. We discuss Duporcq's theorem from this point of view and demonstrate that it is not correct. Moreover, we also present a revised version of this theorem. PMID:25540467

  2. Calculation of Ground Shock Motion Produced by Airburst Explosions Using Cagniard Elastic Propagation Theory.

    DTIC Science & Technology

    1980-09-01

    de.tona1Uted1 over a mass;ive Kayenta sandstone formation. Thes- e.ventsl- provi ic data for checking, the calculations for motion in :1 s;trong1...53 ~ l Z Kayenta ;andst-ne depOsit similar to thit, of CUNSf 1. The thickness of the soil was v,ried from 0 to 6 ft. Measurements of vertical and

  3. Strong ground motion simulation of the 2016 Kumamoto earthquake of April 16 using multiple point sources

    NASA Astrophysics Data System (ADS)

    Nagasaka, Yosuke; Nozu, Atsushi

    2017-02-01

    The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This result indicates the necessity for improving the pseudo point-source model, by introducing azimuth-dependent corner frequency for example, so that it can incorporate the effect of rupture directivity.[Figure not available: see fulltext.

  4. Finite-fault inversion of the Mw 5.9 2012 Emilia-Romagna earthquake (Northern Italy) using aftershocks as near-field Green's function approximations

    NASA Astrophysics Data System (ADS)

    Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic

    2017-04-01

    On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.

  5. A computer program for the determination of the acoustic pressure signature of helicopter rotors due to blade thickness

    NASA Technical Reports Server (NTRS)

    Mall, G. H.; Farassat, F.

    1976-01-01

    A computer program is presented for the determination of the thickness noise of helicopter rotors. The results were obtained in the form of an acoutic pressure time history. The parameters of the program are the rotor geometry and the helicopter motion descriptors, and the formulation employed is valid in the near and far fields. The blade planform must be rectangular, but the helicopter motion is arbitrary; the observer position is fixed with respect to the ground with a maximum elevation of 45 deg above or below the rotor plane. With these restrictions, the program can also be used for the calculation of thickness noise of propellers.

  6. User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.

    1988-01-01

    An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  7. Towards the application of seismogeodesy in central Italy: a case study for the 2016 August 24 Mw 6.1 Italy earthquake modelling

    NASA Astrophysics Data System (ADS)

    Chen, Kejie; Liu, Zhen; Liang, Cunren; Song, Y. Tony

    2018-06-01

    Dense strong motion and high-rate Global Navigation Satellite Systems (GNSS) networks have been deployed in central Italy for rapid seismic source determination and corresponding hazard mitigation. Different from previous studies for the consistency between two kinds of sensor at collocated stations, here we focus on the combination of high-rate GNSS displacement waveforms with collocated seismic strong motion accelerators, and investigate its application to image rupture history. Taking the 2016 August 24 Mw 6.1 Central Italy earthquake as a case study, we first generate more accurate and longer period seismogeodetic displacement waveforms by a Kalman filter, then model the rupture behaviour through a joint inversion including seismogeodetic waveforms and InSAR observations. Our results reveal that strong motion data alone can overestimate the magnitude and mismatch the GNSS observations, while 1 Hz sampling rate GNSS is insufficient and the displacement is too noisy to depict rupture process. By contrast, seismogeodetic data enhances temporal resolution and maintains the static offsets that provide vital constraint to the reliable estimation of earthquake magnitude. The obtained model is close to the jointly inverted one. Our work demonstrates the unique usefulness of seismogeodesy for fast seismic hazard response.

  8. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, Osaka city waterworks bureau, and Osaka prefecture. GMS provided by NIED is used for the computation.

  9. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  10. Recollection and unitization in associating actors with extrinsic and intrinsic motions.

    PubMed

    Kersten, Alan W; Earles, Julie L; Berger, Johanna D

    2015-04-01

    Four experiments provide evidence for a distinction between 2 different kinds of motion representations. Extrinsic motions involve the path of an object with respect to an external frame of reference. Intrinsic motions involve the relative motions of the parts of an object. This research suggests that intrinsic motions are represented conjointly with information about the identities of the actors who perform them, whereas extrinsic motions are represented separately from identity information. Experiment 1 demonstrated that participants remembered which actor had performed a particular intrinsic motion better than they remembered which actor had performed a particular extrinsic motion. Experiment 2 replicated this effect with incidental encoding of actor information, suggesting that encoding intrinsic motions leads one to automatically encode identity information. The results of Experiments 3 and 4 were fit by Yonelinas's (1999) source-memory model to quantify the contributions of familiarity and recollection to memory for the actors who carried out the intrinsic and extrinsic motions. Successful performance with extrinsic motion items in Experiment 3 required participants to remember in which scene contexts an actor had appeared, whereas successful performance in Experiment 4 required participants to remember the exact path taken by an actor in each scene. In both experiments, discrimination of old and new combinations of actors and extrinsic motions relied strongly on recollection, suggesting independent but associated representations of actors and extrinsic motions. In contrast, participants discriminated old and new combinations of actors and intrinsic motions primarily on the basis of familiarity, suggesting unitized representations of actors and intrinsic motions. (c) 2015 APA, all rights reserved).

  11. LTBP Program's Literature Review on Weigh-in-Motion System

    DOT National Transportation Integrated Search

    2016-06-01

    Truck size and weight are regulated using Federal and State legislation and policies to ensure safety and preserve bridge and high infrastructure. Weigh-in-motion (WIM) systems can capture the weight and other defining characteristics of the vehicles...

  12. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.

    2007-01-01

    The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.

  13. Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point

    NASA Astrophysics Data System (ADS)

    Zabolotnov, Yu. M.; Lobanov, A. A.

    2017-05-01

    A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton-Jacobi-Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).

  14. Airplane stability calculations with a card programmable pocket calculator

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1978-01-01

    Programs are presented for calculating airplane stability characteristics with a card programmable pocket calculator. These calculations include eigenvalues of the characteristic equations of lateral and longitudinal motion as well as stability parameters such as the time to damp to one-half amplitude or the damping ratio. The effects of wind shear are included. Background information and the equations programmed are given. The programs are written for the International System of Units, the dimensional form of the stability derivatives, and stability axes. In addition to programs for stability calculations, an unusual and short program is included for the Euler transformation of coordinates used in airplane motions. The programs have been written for a Hewlett Packard HP-67 calculator. However, the use of this calculator does not constitute an endorsement of the product by the National Aeronautics and Space Administration.

  15. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  16. Prediction of Strong Earthquake Ground Motion for the M=7.4 and M=7.2 1999, Turkey Earthquakes based upon Geological Structure Modeling and Local Earthquake Recordings

    NASA Astrophysics Data System (ADS)

    Gok, R.; Hutchings, L.

    2004-05-01

    We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  17. SU-E-J-164: Estimation of DVH Variation for PTV Due to Interfraction Organ Motion in Prostate VMAT Using Gaussian Error Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C; Jiang, R; Chow, J

    2015-06-15

    Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describingmore » the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system.« less

  18. Detailed source process of the 2007 Tocopilla earthquake.

    NASA Astrophysics Data System (ADS)

    Peyrat, S.; Madariaga, R.; Campos, J.; Asch, G.; Favreau, P.; Bernard, P.; Vilotte, J.

    2008-05-01

    We investigated the detail rupture process of the Tocopilla earthquake (Mw 7.7) of the 14 November 2007 and of the main aftershocks that occurred in the southern part of the North Chile seismic gap using strong motion data. The earthquake happen in the middle of the permanent broad band and strong motion network IPOC newly installed by GFZ and IPGP, and of a digital strong-motion network operated by the University of Chile. The Tocopilla earthquake is the last large thrust subduction earthquake that occurred since the major Iquique 1877 earthquake which produced a destructive tsunami. The Arequipa (2001) and Antofagasta (1995) earthquakes already ruptured the northern and southern parts of the gap, and the intraplate intermediate depth Tarapaca earthquake (2005) may have changed the tectonic loading of this part of the Peru-Chile subduction zone. For large earthquakes, the depth of the seismic rupture is bounded by the depth of the seismogenic zone. What controls the horizontal extent of the rupture for large earthquakes is less clear. Factors that influence the extent of the rupture include fault geometry, variations of material properties and stress heterogeneities inherited from the previous ruptures history. For subduction zones where structures are not well known, what may have stopped the rupture is not obvious. One crucial problem raised by the Tocopilla earthquake is to understand why this earthquake didn't extent further north, and at south, what is the role of the Mejillones peninsula that seems to act as a barrier. The focal mechanism was determined using teleseismic waveforms inversion and with a geodetic analysis (cf. Campos et al.; Bejarpi et al., in the same session). We studied the detailed source process using the strong motion data available. This earthquake ruptured the interplate seismic zone over more than 150 km and generated several large aftershocks, mainly located south of the rupture area. The strong-motion data show clearly two S-waves arrivals, allowing the localization of the 2 sources. The main shock started north of the segment close to Tocopilla. The rupture propagated southward. The second source was identified to start about 20 seconds later and was located 50 km south from the hypocenter. The network configuration provides a good resolution for the inverted slip distribution in the north-south direction, but a lower resolution for the east-west extent of the slip. However, this study of the source process of this earthquake shows a complex source with at least two slip asperities of different dynamical behavior.

  19. A Bayesian model of stereopsis depth and motion direction discrimination.

    PubMed

    Read, J C A

    2002-02-01

    The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345-3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broadband anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system--stereopsis and motion--has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with anti-correlated stimuli, in accordance with human psychophysics. Thus, the key features of the experimental data can be reproduced assuming that the motion system experiences more effective noise than the stereoscopy system and imposes a less stringent preference for small disparities.

  20. Early time excited-state structural evolution of pyranine in methanol revealed by femtosecond stimulated Raman spectroscopy.

    PubMed

    Wang, Yanli; Liu, Weimin; Tang, Longteng; Oscar, Breland; Han, Fangyuan; Fang, Chong

    2013-07-25

    To understand chemical reactivity of molecules in condensed phase in real time, a structural dynamics technique capable of monitoring molecular conformational motions on their intrinsic time scales, typically on femtoseconds to picoseconds, is needed. We have studied a strong photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS, pK(a)* ≈ 0) in pure methanol and observed that excited-state proton transfer (ESPT) is absent, in sharp contrast with our previous work on HPTS in aqueous solutions wherein ESPT prevails following photoexcitation. Two transient vibrational marker bands at ~1477 (1454) and 1532 (1528) cm(-1) appear in CH3OH (CD3OD), respectively, rising within the instrument response time of ~140 fs and decaying with 390-470 (490-1400) fs and ~200 ps time constants in CH3OH (CD3OD). We attribute the mode onset to small-scale coherent proton motion along the pre-existing H-bonding chain between HPTS and methanol, and the two decay stages to the low-frequency skeletal motion-modulated Franck-Condon relaxation within ~1 ps and subsequent rotational diffusion of H-bonding partners in solution before fluorescence. The early time kinetic isotope effect (KIE) of ~3 upon methanol deuteration argues active proton motions particularly within the first few picoseconds when coherent skeletal motions are underdamped. Pronounced quantum beats are observed for high-frequency modes consisting of strong phenolic COH rocking (1532 cm(-1)) or H-out-of-plane wagging motions (952 cm(-1)) due to anharmonic coupling to coherent low-frequency modes impulsively excited at ca. 96, 120, and 168 cm(-1). The vivid illustration of atomic motions of HPTS in varying H-bonding geometry with neighboring methanol molecules unravels the multidimensional energy relaxation pathways immediately following photoexcitation, and provides compelling evidence that, in lieu of ESPT, the photoacidity of HPTS promptly activates characteristic low-frequency skeletal motions to search phase space mainly concerning the phenolic end and to efficiently dissipate vibrational energy via skeletal deformation and proton shuttling motions within the intermediate, relatively confined excited-state HPTS-methanol complex on a solvent-dependent dynamic potential energy surface.

  1. Broadband Ground Motion Simulation Recipe for Scenario Hazard Assessment in Japan

    NASA Astrophysics Data System (ADS)

    Koketsu, K.; Fujiwara, H.; Irikura, K.

    2014-12-01

    The National Seismic Hazard Maps for Japan, which consist of probabilistic seismic hazard maps (PSHMs) and scenario earthquake shaking maps (SESMs), have been published every year since 2005 by the Earthquake Research Committee (ERC) in the Headquarter for Earthquake Research Promotion, which was established in the Japanese government after the 1995 Kobe earthquake. The publication was interrupted due to problems in the PSHMs revealed by the 2011 Tohoku earthquake, and the Subcommittee for Evaluations of Strong Ground Motions ('Subcommittee') has been examining the problems for two and a half years (ERC, 2013; Fujiwara, 2014). However, the SESMs and the broadband ground motion simulation recipe used in them are still valid at least for crustal earthquakes. Here, we outline this recipe and show the results of validation tests for it.Irikura and Miyake (2001) and Irikura (2004) developed a recipe for simulating strong ground motions from future crustal earthquakes based on a characterization of their source models (Irikura recipe). The result of the characterization is called a characterized source model, where a rectangular fault includes a few rectangular asperities. Each asperity and the background area surrounding the asperities have their own uniform stress drops. The Irikura recipe defines the parameters of the fault and asperities, and how to simulate broadband ground motions from the characterized source model. The recipe for the SESMs was constructed following the Irikura recipe (ERC, 2005). The National Research Institute for Earth Science and Disaster Prevention (NIED) then made simulation codes along this recipe to generate SESMs (Fujiwara et al., 2006; Morikawa et al., 2011). The Subcommittee in 2002 validated a preliminary version of the SESM recipe by comparing simulated and observed ground motions for the 2000 Tottori earthquake. In 2007 and 2008, the Subcommittee carried out detailed validations of the current version of the SESM recipe and the NIED codes using ground motions from the 2005 Fukuoka earthquake. Irikura and Miyake (2011) summarized the latter validations, concluding that the ground motions were successfully simulated as shown in the figure. This indicates that the recipe has enough potential to generate broadband ground motions for scenario hazard assessment in Japan.

  2. Orthotic intervention incorporating the dart-thrower's motion as part of conservative management guidelines for treatment of scapholunate injury.

    PubMed

    Anderson, Hamish; Hoy, Greg

    2016-01-01

    Case series. This paper describes conservative guidelines for the management of scapho-lunate interosseous ligament (SLIL) injury including fabrication of an orthosis that restricts active wrist movement to the dart-throwers (DTM) plane. The dart throwers' orthosis (DTO) was designed as a response to biomechanical studies suggesting that restraining motion to the DTM would off-load a deficient SLIL. After six weeks of wearing the DTO, the 5 patients in this case series initiated an exercise program that incorporated wrist proprioceptive training and specific muscle strengthening. The DTO was designed to incorporate controlled movement in order to better integrate the secondary wrist stabilizers in wrists that had a deficient SLIL. The orthosis and the exercise program harnessed proprioceptive influences using active motion within the DTM plane, and stimulated mechanoreceptors so as to enhance stability. All patients demonstrated improvement in subjective and objective outcomes including self-reported pain and function. Orthotic intervention that controls motion within the DTM, combined with an appropriate proprioceptive rehabilitation program, may provide a viable conservative treatment option for patients with a similar clinical presentation. 4. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  3. FMA Live! at Hardy Middle School

    NASA Image and Video Library

    2013-09-16

    Two teachers at Hardy Middle School square off in foam suits as "FMA Live!" crew members explain Newton's third law of motion during a performance of "FMA Live!" at Hardy Middle School in Washington on Monday, Sept. 16th, 2013. "FMA Live!" is a program sponsored by NASA and Honeywell that teaches Newton's three laws of motion mixed with dance and music. The program travels across the country and has reached nearly 300,000 students.Photo Credit: (NASA/Jay Westcott)

  4. Time-evolving of very large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  5. Revised motion estimation algorithm for PROPELLER MRI.

    PubMed

    Pipe, James G; Gibbs, Wende N; Li, Zhiqiang; Karis, John P; Schar, Michael; Zwart, Nicholas R

    2014-08-01

    To introduce a new algorithm for estimating data shifts (used for both rotation and translation estimates) for motion-corrected PROPELLER MRI. The method estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise. The heads of three volunteers were scanned using a PROPELLER acquisition while they exhibited various amounts of motion. All data were reconstructed twice, using motion estimates from the original and new algorithm. Two radiologists independently and blindly compared 216 image pairs from these scans, ranking the left image as substantially better or worse than, slightly better or worse than, or equivalent to the right image. In the aggregate of 432 scores, the new method was judged substantially better than the old method 11 times, and was never judged substantially worse. The new algorithm compared favorably with the old in its ability to estimate bulk motion in a limited study of volunteer motion. A larger study of patients is planned for future work. Copyright © 2013 Wiley Periodicals, Inc.

  6. Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey

    NASA Astrophysics Data System (ADS)

    Athamnia, B.; Ounis, A.; Abdeddaim, M.

    2017-12-01

    This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.

  7. Two Simon tasks with different sources of conflict: an ERP study of motion- and location-based compatibility effects.

    PubMed

    Galashan, Daniela; Wittfoth, Matthias; Fehr, Thorsten; Herrmann, Manfred

    2008-07-01

    Behavioral and electrophysiological correlates of two Simon tasks were examined using comparable stimuli but different task-irrelevant and conflict-inducing stimulus features. Whereas target shape was always the task-relevant stimulus attribute, either target location (location-based task) or motion direction within the target stimuli (motion-based task) was used as a source of conflict. Data from ten healthy participants who performed both tasks are presented. In the motion-based task the incompatible condition showed smaller P300 amplitudes at Pz than the compatible condition and the location-based task yielded a trend towards a reduced P300 amplitude in the incompatible condition. For both tasks, no P300 latency differences between the conditions were found at Pz. The results suggest that the motion-based task elicits behavioral and electrophysiological effects comparable with regular Simon tasks. As all stimuli in the motion-based Simon task were presented centrally the present data strongly argue against the attention-shifting account as an explanatory approach.

  8. How to Measure Physical Motion and the Impact of Individualized Feedback in the Field of Rehabilitation of Geriatric Trauma Patients.

    PubMed

    Altenbuchner, Amelie; Haug, Sonja; Kretschmer, Rainer; Weber, Karsten

    2018-01-01

    This preparatory study accelerates an implementation of individualized monitoring and feedback of physical motion using conventional motion trackers in the rehabilitation process of geriatric trauma patients. Regaining mobility is accompanied with improved quality of life in persons of very advanced age recovering from fragility fractures. Quantitative survey of regaining physical mobility provides recommendations for action on how to use motion trackers effectively in a clinical geriatric setting. Method mix of quantitative and qualitative interdisciplinary and mutual complementary research approaches (sociology, health research, philosophy/ethics, medical informatics, nursing science, gerontology and physical therapy). While validating motion tracker use in geriatric traumatology preliminary data are used to develop a target group oriented motion feedback. In addition measurement accuracy of a questionnaire about quality of life of multimorbid geriatric patients (FLQM) is tested. Implementing a new technology in a complex clinical setting needs to be based on a strong theoretical background but will not succeed without careful field testing.

  9. Relaxation of Fermionic Excitations in a Strongly Attractive Fermi Gas in an Optical Lattice

    DTIC Science & Technology

    2011-09-27

    decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are...the interaction strength to the bandwidth of the system. Thus, at strong coupling, the fermionic quasiparticles and the motion of the bosonic molecules

  10. Basic research and data analysis for the national geodetic satellite program and for the earth and ocean physics applications program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Activities related to the National Geodetic Satellite Program are reported and include a discussion of Ohio State University's OSU275 set of tracking station coordinates and transformation parameters, determination of network distortions, and plans for data acquisition and processing. The problems encountered in the development of the LAGEOS satellite are reported in an account of activities related to the Earth and Ocean Physics Applications Program. The LAGEOS problem involves transmission and reception of the laser pulse designed to make accurate determinations of the earth's crustal and rotational motions. Pulse motion, ephemeris, arc range measurements, and accuracy estimates are discussed in view of the problem. Personnel involved in the two programs are also listed, along with travel activities and reports published to date.

  11. Theory and operation of the Gould 32/27 programs ABLE-2A and EBLE for the tropospheric air motion measurement system

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    Software development for the Trospheric Air Motion Measurement Systems (TAMMS) is documented. In July/August the TAMMS was flown on the NASA/Goddard Flight Center Electra aircraft for 19 mission for the ABLE-2A (Amazon Boundary Layer Experiment) in Brazil. In December 1985, several flights were performed to assess the contamination and boundary layer of the Electra. Position data, flow angles, pressure transducer measurements were recorded. The programs written for the ABLE-2A were modified due to timing considerations for this particular program. The 3-step programs written for EBLE (Electra Boundary Layer Experiment) are described. Power up and log-on procedures are discussed. A few editing techniques are described for modification of the programs.

  12. Individualistic weight perception from motion on a slope

    PubMed Central

    Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Koike, Y.

    2016-01-01

    Perception of an object’s weight is linked to its form and motion. Studies have shown the relationship between weight perception and motion in horizontal and vertical environments to be universally identical across subjects during passive observation. Here we show a contradicting finding in that not all humans share the same motion-weight pairing. A virtual environment where participants control the steepness of a slope was used to investigate the relationship between sliding motion and weight perception. Our findings showed that distinct, albeit subjective, motion-weight relationships in perception could be identified for slope environments. These individualistic perceptions were found when changes in environmental parameters governing motion were introduced, specifically inclination and surface texture. Differences in environmental parameters, combined with individual factors such as experience, affected participants’ weight perception. This phenomenon may offer evidence of the central nervous system’s ability to choose and combine internal models based on information from the sensory system. The results also point toward the possibility of controlling human perception by presenting strong sensory cues to manipulate the mechanisms managing internal models. PMID:27174036

  13. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  14. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    PubMed

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  15. Imprint of Rupture Directivity From Ground Motions of the 24 August 2016 Mw6.2 Central Italy Earthquake

    NASA Astrophysics Data System (ADS)

    Ren, Yefei; Wang, Hongwei; Wen, Ruizhi

    2017-12-01

    An Mw6.2 earthquake occurred in Central Italy on 24 August 2016. The objective of this study was to reveal the imprint of rupture directivity using the strong motion recordings. The strong motion stations were separated into two groups: southeast (SE) and northwest (NW). The effects of rupture directivity on the peak ground acceleration (PGA), peak ground velocity (PGV), and pseudo spectral acceleration (PSA) were investigated. The observed values of these parameters were compared with predicted values derived from ground motion prediction equations. The results showed that the residuals between the observed and predicted PGAs, PGVs, and PSAs at periods of T < 1 s were correlated significantly with azimuth angle and generally larger in the NW sector, reflecting that the observed PGAs, PGVs, and short-period PSAs in the NW sector were generally larger than observed in the SE sector. These phenomena are accordant with the theoretical law that the rupture directivity causes higher amplitudes in the forward direction compared with the backward direction. Finally, selected source rupture parameters were inverted using PGAs and PGVs. This revealed that the rupture was predominantly unilateral rupture, the major rupture was likely at an azimuth of 360°, and the length of the major rupture was proportional to 70%-100% of the total ruptured fault, confirming that rupture directivity caused the differences in the ground motions observed in the SE and NW sectors.

  16. Predicting Strong Ground-Motion Seismograms for Magnitude 9 Cascadia Earthquakes Using 3D Simulations with High Stress Drop Sub-Events

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.

    2015-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.

  17. New Downhole Strong-Motion Data Recorded at Tarzana Array

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Shakal, A.; Haddadi, H.

    2001-12-01

    Significantly amplified ground accelerations at the Tarzana station were recorded during many, but not all, earthquakes (e.g., Shakal et al., 1988). Peak horizontal ground acceleration at the Tarzana station during the M7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. After the Northridge earthquake the California Strong Motion Instrumentation Program (CSMIP) significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. Thirteen events, including the Hector Mine earthquake, were simultaneously recorded by these instruments at Tarzana. The downhole instrument (A) was used as a reference site to compare the amplification effects at the top of Tarzana hill (B) and at the foot of the hill (C). Spectral amplification from the bottom of the hole to the top of the hill (B/A) and to the foot of the hill (C/A) is similar along the component parallel to the strike of Tarzana hill. But B/A is almost double C/A along the component transverse to the strike of the hill in period range from 0.04 to 0.8 sec (1.2 to 25 Hz). Comparison of the response spectra demonstrates clear directional site response resonance (perpendicular to the strike of the hill) at Tarzana. In contrast to accelerations recorded during the Mw 7.1 Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site amplification from the bottom of the hole to the surface (B/A) at periods greater than 1.5 sec, in either direction. Ground displacements at other CSMIP downhole arrays which recorded the Hector Mine earthquake also demonstrate almost no near-surface site amplification at long periods. Comparison of empirical and theoretical site amplification effects at Tarzana was performed using SHAKE91 modeling motion separately in the longitudinal and transverse directions. The source of the site amplification that produces large motions at Tarzana is still under investigation. The topography, shear-wave velocity profile and three-dimensional structure of the site apparently all contribute to the higher amplification of ground motion at the Tarzana site. The studies of Tarzana were co-funded by CSMIP and by the National Science Foundation (NSF) through the Resolution of Site Response Issues from the Northridge Earthquake Project (ROSRINE).

  18. Detecting coupled collective motions in protein by independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Sakuraba, Shun; Joti, Yasumasa; Kitao, Akio

    2010-11-01

    Protein dynamics evolves in a high-dimensional space, comprising aharmonic, strongly correlated motional modes. Such correlation often plays an important role in analyzing protein function. In order to identify significantly correlated collective motions, here we employ independent subspace analysis based on the subspace joint approximate diagonalization of eigenmatrices algorithm for the analysis of molecular dynamics (MD) simulation trajectories. From the 100 ns MD simulation of T4 lysozyme, we extract several independent subspaces in each of which collective modes are significantly correlated, and identify the other modes as independent. This method successfully detects the modes along which long-tailed non-Gaussian probability distributions are obtained. Based on the time cross-correlation analysis, we identified a series of events among domain motions and more localized motions in the protein, indicating the connection between the functionally relevant phenomena which have been independently revealed by experiments.

  19. Rapid ray motions in barium plasma clouds and auroras

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Hallinan, T. J.; Stenbaek-Nielsen, H. C.; Swift, D. W.; Wallis, D. D.

    1993-01-01

    On two evenings in 1968, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly through three different Ba(+) clouds over Andoya, Norway. Similar effects were observed in Ba(+) clouds released from rockets launched from Poker Flat, Alaska, on March 21, 1973 and on March 22, 1980. On these occasions, auroras on or near the Ba(+) L shell also exhibited active rapid ray motions, which prompts the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba(+) clouds would lead to a better understanding of the physics of auroral ray motions and the auroral atmosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. The observations provide strong evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions.

  20. Curvilinear approach to an intersection and visual detection of a collision.

    PubMed

    Berthelon, C; Mestre, D

    1993-09-01

    Visual motion perception plays a fundamental role in vehicle control. Recent studies have shown that the pattern of optical flow resulting from the observer's self-motion through a stable environment is used by the observer to accurately control his or her movements. However, little is known about the perception of another vehicle during self-motion--for instance, when a car driver approaches an intersection with traffic. In a series of experiments using visual simulations of car driving, we show that observers are able to detect the presence of a moving object during self-motion. However, the perception of the other car's trajectory appears to be strongly dependent on environmental factors, such as the presence of a road sign near the intersection or the shape of the road. These results suggest that local and global visual factors determine the perception of a car's trajectory during self-motion.

  1. Orientation selectivity sharpens motion detection in Drosophila

    PubMed Central

    Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.

    2015-01-01

    SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048

  2. Research and implementation of group animation based on normal cloud model

    NASA Astrophysics Data System (ADS)

    Li, Min; Wei, Bin; Peng, Bao

    2011-12-01

    Group Animation is a difficult technology problem which always has not been solved in computer Animation technology, All current methods have their limitations. This paper put forward a method: the Motion Coordinate and Motion Speed of true fish group was collected as sample data, reverse cloud generator was designed and run, expectation, entropy and super entropy are gotten. Which are quantitative value of qualitative concept. These parameters are used as basis, forward cloud generator was designed and run, Motion Coordinate and Motion Speed of two-dimensional fish group animation are produced, And two spirit state variable about fish group : the feeling of hunger, the feeling of fear are designed. Experiment is used to simulated the motion state of fish Group Animation which is affected by internal cause and external cause above, The experiment shows that the Group Animation which is designed by this method has strong Realistic.

  3. Ground-motion prediction from tremor

    USGS Publications Warehouse

    Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    The widespread occurrence of tremor, coupled with its frequency content and location, provides an exceptional opportunity to test and improve strong ground-motion attenuation relations for subduction zones. We characterize the amplitude of thousands of individual 5 min tremor events in Cascadia during three episodic tremor and slip events to constrain the distance decay of peak ground acceleration (PGA) and peak ground velocity (PGV). We determine the anelastic attenuation parameter for ground-motion prediction equations (GMPEs) to a distance of 150 km, which is sufficient to place important constraints on ground-motion decay. Tremor PGA and PGV show a distance decay that is similar to subduction-zone-specific GMPEs developed from both data and simulations; however, the massive amount of data present in the tremor observations should allow us to refine distance-amplitude attenuation relationships for use in hazard maps, and to search for regional variations and intrasubduction zone differences in ground-motion attenuation.

  4. Illusory bending of a rigidly moving line segment: effects of image motion and smooth pursuit eye movements.

    PubMed

    Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R

    2007-04-20

    Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.

  5. Motion patterns in acupuncture needle manipulation.

    PubMed

    Seo, Yoonjeong; Lee, In-Seon; Jung, Won-Mo; Ryu, Ho-Sun; Lim, Jinwoong; Ryu, Yeon-Hee; Kang, Jung-Won; Chae, Younbyoung

    2014-10-01

    In clinical practice, acupuncture manipulation is highly individualised for each practitioner. Before we establish a standard for acupuncture manipulation, it is important to understand completely the manifestations of acupuncture manipulation in the actual clinic. To examine motion patterns during acupuncture manipulation, we generated a fitted model of practitioners' motion patterns and evaluated their consistencies in acupuncture manipulation. Using a motion sensor, we obtained real-time motion data from eight experienced practitioners while they conducted acupuncture manipulation using their own techniques. We calculated the average amplitude and duration of a sampled motion unit for each practitioner and, after normalisation, we generated a true regression curve of motion patterns for each practitioner using a generalised additive mixed modelling (GAMM). We observed significant differences in rotation amplitude and duration in motion samples among practitioners. GAMM showed marked variations in average regression curves of motion patterns among practitioners but there was strong consistency in motion parameters for individual practitioners. The fitted regression model showed that the true regression curve accounted for an average of 50.2% of variance in the motion pattern for each practitioner. Our findings suggest that there is great inter-individual variability between practitioners, but remarkable intra-individual consistency within each practitioner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Object-based attentional modulation of biological motion processing: spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography.

    PubMed

    Safford, Ashley S; Hussey, Elizabeth A; Parasuraman, Raja; Thompson, James C

    2010-07-07

    Although it is well documented that the ability to perceive biological motion is mediated by the lateral temporal cortex, whether and when neural activity in this brain region is modulated by attention is unknown. In particular, it is unclear whether the processing of biological motion requires attention or whether such stimuli are processed preattentively. Here, we used functional magnetic resonance imaging, high-density electroencephalography, and cortically constrained source estimation methods to investigate the spatiotemporal effects of attention on the processing of biological motion. Directing attention to tool motion in overlapping movies of biological motion and tool motion suppressed the blood oxygenation level-dependent (BOLD) response of the right superior temporal sulcus (STS)/middle temporal gyrus (MTG), while directing attention to biological motion suppressed the BOLD response of the left inferior temporal sulcus (ITS)/MTG. Similarly, category-based modulation of the cortical current source density estimates from the right STS/MTG and left ITS was observed beginning at approximately 450 ms following stimulus onset. Our results indicate that the cortical processing of biological motion is strongly modulated by attention. These findings argue against preattentive processing of biological motion in the presence of stimuli that compete for attention. Our findings also suggest that the attention-based segregation of motion category-specific responses only emerges relatively late (several hundred milliseconds) in processing.

  7. Montana Weigh-in-Motion (WIM) and Automatic Traffic Recorder (ATR) Strategy Final Report

    DOT National Transportation Integrated Search

    2017-03-01

    The objective of this project was to review the Montana Department of Transportations (MDTs) permanent Weigh-in-Motion (WIM) and Automated Traffic Recorder (ATR) data collection programs to ensure they are efficiently providing the best possibl...

  8. 'The Monkey and the Hunter' and Other Projectile Motion Experiments with Logo.

    ERIC Educational Resources Information Center

    Kolodiy, George Oleh

    1988-01-01

    Presents the LOGO computer language as a source to experience and investigate scientific laws. Discusses aspects and uses of LOGO. Lists two LOGO programs, one to simulate a gravitational field and the other projectile motion. (MVL)

  9. The effect of simulator motion cues on initial training of airline pilots

    DOT National Transportation Integrated Search

    2005-08-15

    Two earlier studies conducted in the framework of the Federal Aviation Administration/Volpe Flight Simulator Human Factors Program examining the effect of simulator motion on recurrent training and evaluation of airline pilots have found that in the ...

  10. Assessing program efficiency: a time and motion study of the Mental Health Emergency Care - Rural Access Program in NSW Australia.

    PubMed

    Saurman, Emily; Lyle, David; Kirby, Sue; Roberts, Russell

    2014-07-31

    The Mental Health Emergency Care-Rural Access Program (MHEC-RAP) is a telehealth solution providing specialist emergency mental health care to rural and remote communities across western NSW, Australia. This is the first time and motion (T&M) study to examine program efficiency and capacity for a telepsychiatry program. Clinical services are an integral aspect of the program accounting for 6% of all activities and 50% of the time spent conducting program activities, but half of this time is spent completing clinical paperwork. This finding emphasizes the importance of these services to program efficiency and the need to address variability of service provision to impact capacity. Currently, there is no efficiency benchmark for emergency telepsychiatry programs. Findings suggest that MHEC-RAP could increase its activity without affecting program responsiveness. T&M studies not only determine activity and time expenditure, but have a wider application assessing program efficiency by understanding, defining, and calculating capacity. T&M studies can inform future program development of MHEC-RAP and similar telehealth programs, both in Australia and overseas.

  11. Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions

    NASA Astrophysics Data System (ADS)

    Mosleh, Araliya; Razzaghi, Mehran S.; Jara, José; Varum, Humberto

    2016-03-01

    Bridge damages during the past earthquakes caused several physical and economic impacts to transportation systems. Many of the existing bridges in earthquake prone areas are pre-1990 bridges and were designed with out of date regulation codes. The occurrences of strong motions in different parts of the world show every year the vulnerability of these structures. Nonlinear dynamic time history analyses were conducted to assess the seismic vulnerability of typical pre-1990 bridges. A family of existing concrete bridge representative of the most common bridges in the highway system in Iran is studied. The seismic demand consists in a set of far-field and near-field strong motions to evaluate the likelihood of exceeding the seismic capacity of the mentioned bridges. The peak ground accelerations (PGAs) were scaled and applied incrementally to the 3D models to evaluate the seismic performance of the bridges. The superstructure was assumed to remain elastic and the nonlinear behavior in piers was modeled by assigning plastic hinges in columns. In this study the displacement ductility and the PGA are selected as a seismic performance indicator and intensity measure, respectively. The results show that pre-1990 bridges subjected to near-fault ground motions reach minor and moderate damage states.

  12. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    PubMed

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-02-17

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  13. Effects of Implied Motion and Facing Direction on Positional Preferences in Single-Object Pictures.

    PubMed

    Palmer, Stephen E; Langlois, Thomas A

    2017-07-01

    Palmer, Gardner, and Wickens studied aesthetic preferences for pictures of single objects and found a strong inward bias: Right-facing objects were preferred left-of-center and left-facing objects right-of-center. They found no effect of object motion (people and cars showed the same inward bias as chairs and teapots), but the objects were not depicted as moving. Here we measured analogous inward biases with objects depicted as moving with an implied direction and speed by having participants drag-and-drop target objects into the most aesthetically pleasing position. In Experiment 1, human figures were shown diving or falling while moving forward or backward. Aesthetic biases were evident for both inward-facing and inward-moving figures, but the motion-based bias dominated so strongly that backward divers or fallers were preferred moving inward but facing outward. Experiment 2 investigated implied speed effects using images of humans, horses, and cars moving at different speeds (e.g., standing, walking, trotting, and galloping horses). Inward motion or facing biases were again present, and differences in their magnitude due to speed were evident. Unexpectedly, faster moving objects were generally preferred closer to frame center than slower moving objects. These results are discussed in terms of the combined effects of prospective, future-oriented biases, and retrospective, past-oriented biases.

  14. Ground motion observations of the 2014 South Napa earthquake

    USGS Publications Warehouse

    Baltay, Annemarie S.; Boatwright, John

    2015-01-01

    Using the ground‐motion data compiled and reported by ShakeMap (Wald et al., 2000), we examine the peak ground acceleration (PGA) and peak ground velocity (PGV), as well as the pseudospectral acceleration (PSA) at periods of 0.3, 1.0, and 3.0 s. At the higher frequencies, especially PGA, data recorded at close distances (within ∼20  km) are very consistent with the GMPEs, implying a stress drop for this event similar to the median for California, that is, 5 MPa (Baltay and Hanks, 2014). At all frequencies, the attenuation with distance is stronger than the GMPEs would predict, which suggests the attenuation in the Napa and San Francisco Bay delta region is stronger than the average attenuation in California. The spatial plot of the ground‐motion residuals is positive to the north, in both Napa and Sonoma Valleys, consistent with increases in amplitude expected from both the directivity and basin effects. More interestingly, perhaps, there is strong ground motion to the south in the along‐strike direction, particularly for PSA at 1.0 s. These strongly positive residuals align with an older, Quaternary fault structure associated with the Franklin or Southampton fault, potentially indicating a fault‐zone‐guided wave.

  15. Comparing conventional physical therapy rehabilitation with neuromuscular electrical stimulation after TKA.

    PubMed

    Levine, Michael; McElroy, Karen; Stakich, Valerie; Cicco, Jodie

    2013-03-01

    Rehabilitation following total knee arthroplasty (TKA) is a costly, cumbersome, and often painful process. Physical therapy contributes to the successful outcome of TKA but can be expensive. Alternative methods of obtaining good functional results that help minimize costs are desirable. Neuromuscular electrical stimulation (NMES) is a potential option. Neuromuscular electrical stimulation has been shown to increase quadriceps muscle strength and activation following TKA. Functional scores also improve following TKA when NMES is added to conventional therapy protocols vs therapy alone. The authors hypothesized that rehabilitation managed by a physical therapist would not result in a functional advantage for patients undergoing TKA when compared with NMES and an unsupervised at-home range of motion exercise program and that patient satisfaction would not differ between the 2 groups. Seventy patients were randomized into a postoperative protocol of conventional physical therapy with a licensed therapist, including range of motion exercises and strengthening exercises, or into a program of NMES and range of motion exercises performed at home without therapist supervision. Noninferiority of the NMES program was obtained 6 weeks postoperatively (Knee Society pain/function scores, Western Ontario and McMaster Universities Osteoarthritis Index, flexion). Noninferiority was shown 6 months postoperatively for all parameters. The results suggest that rehabilitation managed by a physical therapist results in no functional advantage or difference in patient satisfaction when compared with NMES and an unsupervised at-home range of motion program. Neuromuscular electrical stimulation and unsupervised at-home range of motion exercises may provide an option for reducing the cost of the postoperative TKA recovery process without compromising quadriceps strength or patient satisfaction. Copyright 2013, SLACK Incorporated.

  16. The asteroid motion simulation calculating the perturbations with different planets' ephemeides. (Russian Title: Прогнозирование движения астероидов с использованием при учете возмущений различных планетных эфемерид)

    NASA Astrophysics Data System (ADS)

    Baturin, A. P.; Votchel, I. A.

    2014-12-01

    The influence of major planets and the Moon's ephemerides used on the results of asteroid motion simulation has been considered. The computer program of asteroid motion simulation has been developed. The program allows to calculate perturbations from planets and the Moon using theirs ephemerides DE405, DE408, DE414, DE421, DE422, DE423, DE424, DE425, DE430, DE431, DE432 and EPM2011. The program has convenient windows-interface and is designed for the synchronous simulation of two asteroid orbits using different ephemerides from the list above for each of them. At the end of calculations the graphical comparison of obtained results is automatically produced. The developed program has been applied for the simulation of the motion of the asteroid Apophis using different combinations of these ephemerides. It has been demonstrated that the most differences of the simulated motion are in the cases of replacement of the older ephemerides (DE405, DE408) with the newest ones (DE430, DE431, DE432). So it is preferable to calculate the planet perturbations with the most modern ephemerides of major planets and the Moon.

  17. Image motion environments: background noise for movement-based animal signals.

    PubMed

    Peters, Richard; Hemmi, Jan; Zeil, Jochen

    2008-05-01

    Understanding the evolution of animal signals has to include consideration of the structure of signal and noise, and the sensory mechanisms that detect the signals. Considerable progress has been made in understanding sounds and colour signals, however, the degree to which movement-based signals are constrained by the particular patterns of environmental image motion is poorly understood. Here we have quantified the image motion generated by wind-blown plants at 12 sites in the coastal habitat of the Australian lizard Amphibolurus muricatus. Sampling across different plant communities and meteorological conditions revealed distinct image motion environments. At all locations, image motion became more directional and apparent speed increased as wind speeds increased. The magnitude of these changes and the spatial distribution of image motion, however, varied between locations probably as a function of plant structure and the topographic location. In addition, we show that the background motion noise depends strongly on the particular depth-structure of the environment and argue that such micro-habitat differences suggest specific strategies to preserve signal efficacy. Movement-based signals and motion processing mechanisms, therefore, may reveal the same type of habitat specific structural variation that we see for signals from other modalities.

  18. Motion Artefacts in MRI: a Complex Problem with Many Partial Solutions

    PubMed Central

    Zaitsev, Maxim; Maclaren, Julian.; Herbst, Michael

    2015-01-01

    Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artefacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artefacts, but no single method can be applied in all imaging situations. Instead, a ‘toolbox’ of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artefacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artefacts, with the aim of aiding artefact detection and mitigation in particular clinical situations. PMID:25630632

  19. Motion artifacts in MRI: A complex problem with many partial solutions.

    PubMed

    Zaitsev, Maxim; Maclaren, Julian; Herbst, Michael

    2015-10-01

    Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artifacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artifacts, but no single method can be applied in all imaging situations. Instead, a "toolbox" of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artifacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artifacts, with the aim of aiding artifact detection and mitigation in particular clinical situations. © 2015 Wiley Periodicals, Inc.

  20. A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 ( M w 5.3) in the Himalayan arc and implications for ground motion estimation

    NASA Astrophysics Data System (ADS)

    Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati

    2018-05-01

    The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth ( H = 19 km), the seismic moment ( M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism ( φ = 280°, δ = 14°, λ = 84°), the source radius ( a = 1.3 km), and the static stress drop (Δ σ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q( f) = 500 f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δ σ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.

Top