Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes
NASA Astrophysics Data System (ADS)
Scoccimarro, Román; Frieman, Joshua A.
1999-07-01
We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.
Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal
NASA Astrophysics Data System (ADS)
Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hoja, Johannes; Tkatchenko, Alexandre
2017-09-01
The nonlinear response of soft-mode excitations in polycrystalline acetylsalicylic acid (aspirin) is studied with two-dimensional terahertz spectroscopy. We demonstrate that the correlation of CH3 rotational modes with collective oscillations of π electrons drives the system into the nonperturbative regime of light-matter interaction, even for a moderate strength of the THz driving field on the order of 50 kV /cm . Nonlinear absorption around 1.1 THz leads to a blueshifted coherent emission at 1.7 THz, revealing the dynamic breakup of the strong electron-phonon correlations. The observed behavior is reproduced by theoretical calculations including dynamic local-field correlations.
Joint statistics of strongly correlated neurons via dimensionality reduction
NASA Astrophysics Data System (ADS)
Deniz, Taşkın; Rotter, Stefan
2017-06-01
The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.
NASA Astrophysics Data System (ADS)
Ren, Yefei; Wen, Ruizhi; Yao, Xinxin; Ji, Kun
2017-08-01
The consideration of soil nonlinearity is important for the accurate estimation of the site response. To evaluate the soil nonlinearity during the 2008 Ms8.0 Wenchuan Earthquake, 33 strong-motion records obtained from the main shock and 890 records from 157 aftershocks were collected for this study. The horizontal-to-vertical spectral ratio (HVSR) method was used to calculate five parameters: the ratio of predominant frequency (RFp), degree of nonlinearity (DNL), absolute degree of nonlinearity (ADNL), frequency of nonlinearity (fNL), and percentage of nonlinearity (PNL). The purpose of this study was to evaluate the soil nonlinearity level of 33 strong-motion stations and to investigate the characteristics, performance, and effective usage of these five parameters. Their correlations with the peak ground acceleration (PGA), peak ground velocity (PGV), average uppermost 30-m shear-wave velocity ( V S30), and maximum amplitude of HVSR ( A max) were investigated. The results showed that all five parameters correlate well with PGA and PGV. The DNL, ADNL, and PNL also show a good correlation with A max, which means that the degree of soil nonlinearity not only depends on the ground-motion amplitude (e.g., PGA and PGV) but also on the site condition. The fNL correlates with PGA and PGV but shows no correlation with either A max or V S30, implying that the frequency width affected by the soil nonlinearity predominantly depends on the ground-motion amplitude rather than the site condition. At 16 of the 33 stations analyzed in this study, the site response showed evident (i.e., strong and medium) nonlinearity during the main shock of the Wenchuan Earthquake, where the ground-motion level was almost beyond the threshold of PGA > 200 cm/s2 or PGV > 15 cm/s. The site response showed weak and no nonlinearity at the other 14 and 3 stations. These results also confirm that RFp, DNL, ADNL, and PNL are effective in identifying the soil nonlinearity behavior. The identification results vary for different parameters because each parameter has individual features. The performance of the PNL was better than that of DNL and ADNL in this case study. The thresholds of ADNL and PNL are proposed to be 2.0 and 7%, respectively.[Figure not available: see fulltext.
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Nonlinearities in reservoir engineering: Enhancing quantum correlations
NASA Astrophysics Data System (ADS)
Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi
2017-12-01
There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka A.; Ogunjo, Samuel T.; Dada, Joseph B.; Ashidi, Gabriel A.; Emmanuel, Israel
2016-11-01
This study investigated linear and nonlinear relationship between the amount of rainfall and radio refractivity in a tropical country, Nigeria using forty seven locations scattered across the country. Correlation and Phase synchronization measures were used for the linear and nonlinear relationship respectively. Weak correlation and phase synchronization was observed between seasonal mean rainfall amount and radio refractivity while strong phase synchronization was found for the detrended data suggesting similar underlying dynamics between rainfall amount and radio refractivity. Causation between rainfall and radio refractivity in a tropical location was studied using Granger causality test. In most of the Southern locations, rainfall was found to Granger cause radio refractivity. Furthermore, it was observed that there is strong correlation between mean rainfall amount and the phase synchronization index over Nigeria. Coupling between rainfall and radio refractivity has been found to be due to water vapour in the atmosphere. Frequency planning and budgeting for microwave propagation during periods of high rainfall should take into consideration this nonlinear relationship.
THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail
2015-05-10
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less
Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions
NASA Astrophysics Data System (ADS)
Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.
2017-04-01
Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.
Solving the two-dimensional Fokker-Planck equation for strongly correlated neurons
NASA Astrophysics Data System (ADS)
Deniz, Taşkın; Rotter, Stefan
2017-01-01
Pairs of neurons in brain networks often share much of the input they receive from other neurons. Due to essential nonlinearities of the neuronal dynamics, the consequences for the correlation of the output spike trains are generally not well understood. Here we analyze the case of two leaky integrate-and-fire neurons using an approach which is nonperturbative with respect to the degree of input correlation. Our treatment covers both weakly and strongly correlated dynamics, generalizing previous results based on linear response theory.
Nonlinear Electromagnetic Stabilization of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Whelan, G. G.; Pueschel, M. J.; Terry, P. W.
2018-04-01
The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.
NASA Astrophysics Data System (ADS)
Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei
2018-03-01
Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.
Rogue wave modes for a derivative nonlinear Schrödinger model.
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-03-01
Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, J., E-mail: elfjw@chalmers.se
2016-05-15
Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular the fluid closure has strong effects on zonal flows which are needed to create an absorbing boundary for long wave lengths and also to obtain the Dimits nonlinear upshift. The fluid resonance in the energy equation is found to be instrumental for generating the L–H transition, the spin-up of poloidal rotation in internal transport barriers, as well as the nonlinear Dimits upshift. The difference between the linearly fastest growing mode number and the corresponding longer nonlinear correlation length is also addressed. It is found that the Kadomtsevmore » mixing length result is consistent with the non-Markovian diagonal limit of the transport at the nonlinearly obtained correlation length.« less
Nonlinearity of the forward-backward correlation function in the model with string fusion
NASA Astrophysics Data System (ADS)
Vechernin, Vladimir
2017-12-01
The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.
Superdiffusive transport and energy localization in disordered granular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.
We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less
Superdiffusive transport and energy localization in disordered granular crystals
Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.
2016-02-12
We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2018-04-01
Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
Observation of three-photon bound states in a quantum nonlinear medium
NASA Astrophysics Data System (ADS)
Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan
2018-02-01
Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.
Two-photon Anderson localization in a disordered quadratic waveguide array
NASA Astrophysics Data System (ADS)
Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.
2016-05-01
We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.
NASA Astrophysics Data System (ADS)
Xiong, Daxing
2017-06-01
We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.
Diffuse-charge dynamics of ionic liquids in electrochemical systems.
Zhao, Hui
2011-11-01
We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.
NASA Astrophysics Data System (ADS)
Yip, K.-P.; Marsh, D. J.; Holstein-Rathlou, N.-H.
1995-01-01
We applied a surrogate data technique to test for nonlinear structure in spontaneous fluctuations of hydrostatic pressure in renal tubules of hypertensive rats. Tubular pressure oscillates at 0.03-0.05 Hz in animals with normal blood pressure, but the fluctuations become irregular with chronic hypertension. Using time series from rats with hypertension we produced surrogate data sets to test whether they represent linearly correlated noise or ‘static’ nonlinear transforms of a linear stochastic process. The correlation dimension and the forecasting error were used as discriminating statistics to compare surrogate with experimental data. The results show that the original experimental time series can be distinguished from both linearly and static nonlinearly correlated noise, indicating that the nonlinear behavior is due to the intrinsic dynamics of the system. Together with other evidence this strongly suggests that a low dimensional chaotic attractor governs renal hemodynamics in hypertension. This appears to be the first demonstration of a transition to chaotic dynamics in an integrated physiological control system occurring in association with a pathological condition.
Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons
NASA Astrophysics Data System (ADS)
Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka
2018-06-01
A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.
Quantum correlations in microwave frequency combs
NASA Astrophysics Data System (ADS)
Weissl, Thomas; Jolin, Shan W.; Haviland, David B.; Department of Applied Physics Team
Non-linear superconducting resonators are used as parametric amplifiers in circuit quantum electrodynamics experiments. When a strong pump is applied to a non-linear microwave oscillator, it correlates vacuum fluctuations at signal and idler frequencies symmetrically located around the pump, resulting in two-mode squeezed vacuum. When the non-linear oscillator is pumped with a frequency comb, complex multipartite entangled states can be created as demonstrated with experiments in the optical domain. Such cluster states are considered to be a universal resource for one-way quantum computing. With our microwave measurement setup it is possible to pump and measure response at as many as 42 frequencies in parallel, with independent control over all pump amplitudes and phases. We show results of two-mode squeezing for of pairs of tones in a microwave frequency comb. The squeezing is created by four-wave mixing of a pump tone applied to a non-linear coplanar-waveguide resonator. We acknowledge financial support from the Knut and Alice Wallenberg foundation.
Nonlinear electric field structures in the inner magnetosphere
Malaspina, D. M.; Andersson, L.; Ergun, R. E.; ...
2014-08-28
Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less
Haluszczynski, Alexander; Laut, Ingo; Modest, Heike; Räth, Christoph
2017-12-01
Pearson correlation and mutual information-based complex networks of the day-to-day returns of U.S. S&P500 stocks between 1985 and 2015 have been constructed to investigate the mutual dependencies of the stocks and their nature. We show that both networks detect qualitative differences especially during (recent) turbulent market periods, thus indicating strongly fluctuating interconnections between the stocks of different companies in changing economic environments. A measure for the strength of nonlinear dependencies is derived using surrogate data and leads to interesting observations during periods of financial market crises. In contrast to the expectation that dependencies reduce mainly to linear correlations during crises, we show that (at least in the 2008 crisis) nonlinear effects are significantly increasing. It turns out that the concept of centrality within a network could potentially be used as some kind of an early warning indicator for abnormal market behavior as we demonstrate with the example of the 2008 subprime mortgage crisis. Finally, we apply a Markowitz mean variance portfolio optimization and integrate the measure of nonlinear dependencies to scale the investment exposure. This leads to significant outperformance as compared to a fully invested portfolio.
Linear and nonlinear market correlations: Characterizing financial crises and portfolio optimization
NASA Astrophysics Data System (ADS)
Haluszczynski, Alexander; Laut, Ingo; Modest, Heike; Räth, Christoph
2017-12-01
Pearson correlation and mutual information-based complex networks of the day-to-day returns of U.S. S&P500 stocks between 1985 and 2015 have been constructed to investigate the mutual dependencies of the stocks and their nature. We show that both networks detect qualitative differences especially during (recent) turbulent market periods, thus indicating strongly fluctuating interconnections between the stocks of different companies in changing economic environments. A measure for the strength of nonlinear dependencies is derived using surrogate data and leads to interesting observations during periods of financial market crises. In contrast to the expectation that dependencies reduce mainly to linear correlations during crises, we show that (at least in the 2008 crisis) nonlinear effects are significantly increasing. It turns out that the concept of centrality within a network could potentially be used as some kind of an early warning indicator for abnormal market behavior as we demonstrate with the example of the 2008 subprime mortgage crisis. Finally, we apply a Markowitz mean variance portfolio optimization and integrate the measure of nonlinear dependencies to scale the investment exposure. This leads to significant outperformance as compared to a fully invested portfolio.
Nonlinear dynamics of trions under strong optical excitation in monolayer MoSe2.
Ye, Jialiang; Yan, Tengfei; Niu, Binghui; Li, Ying; Zhang, Xinhui
2018-02-05
By employing ultrafast transient reflection measurements based on two-color pump-probe spectroscopy, the population and valley polarization dynamics of trions in monolayer MoSe 2 were investigated at relatively high excitation densities under near-resonant excitation. Both the nonlinear dynamic photobleaching of the trion resonance and the redshift of the exciton resonance were found to be responsible for the excitation-energy- and density-dependent transient reflection change as a result of many-body interactions. Furthermore, from the polarization-resolved measurements, it was revealed that the initial fast population and polarization decay process upon strong photoexcitation observed for trions was determined by trion formation, transient phase-space filling and the short valley lifetime of excitons. The results provide a basic understanding of the nonlinear dynamics of population and valley depolarization of trions, as well as exciton-trion correlation in atomically thin MoSe 2 and other transition metal dichalcogenide materials.
Self-consistent expansion for the molecular beam epitaxy equation
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-->-r',t-t')=2D0\\|r-->- r'\\|2ρ-dδ(t-t'). I find a lower critical dimension dc(ρ)=4+2ρ, above which the linear MBE solution appears. Below the lower critical dimension a ρ-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Self-consistent expansion for the molecular beam epitaxy equation.
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
NASA Astrophysics Data System (ADS)
Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-10-01
Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.
Single-photon non-linear optics with a quantum dot in a waveguide
NASA Astrophysics Data System (ADS)
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-10-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
Further studies using matched filter theory and stochastic simulation for gust loads prediction
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii
1993-01-01
This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.
Third order nonlinear phenomena in silica solid and hollow whispering gallery mode resonators
NASA Astrophysics Data System (ADS)
Farnesi, D.; Barucci, A.; Berneschi, S.; Cosi, F.; Righini, G. C.; Nunzi Conti, G.; Soria, Silvia
2016-03-01
We report efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility χ(3) interactions in resonant silica microspheres and microbubbles in the regime of normal dispersion. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS) and comb generation. Unusually strong anti-Stokes components and extraordinarily symmetric spectra have been observed. Resonant SARS and SRS corresponding to different Raman bands were also observed. The lack of correlation between stimulated anti-stokes and stokes scattering spectra indicates that the signal has to be resonant with the cavity.
Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Sun, L.; Yu, X. Q.
2010-01-15
Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.
NASA Astrophysics Data System (ADS)
Su, Zikang; Wang, Honglun; Li, Na; Yu, Yue; Wu, Jianfa
2018-02-01
Autonomous aerial refueling (AAR) exact docking control has always been an intractable problem due to the strong nonlinearity, the tight coupling of the 6 DOF aircraft model and the complex disturbances of the multiple environment flows. In this paper, the strongly coupled nonlinear 6 DOF model of the receiver aircraft which considers the multiple flow disturbances is established in the affine nonlinear form to facilitate the nonlinear controller design. The items reflecting the influence of the unknown flow disturbances in the receiver dynamics are taken as the components of the "lumped disturbances" together with the items which have no linear correlation with the virtual control variables. These unmeasurable lumped disturbances are estimated and compensated by a specially designed high order sliding mode observer (HOSMO) with excellent estimation property. With the compensation of the estimated lumped disturbances, a back-stepping high order sliding mode based exact docking flight controller is proposed for AAR in the presence of multiple flow disturbances. Extensive simulation results demonstrate the feasibility and superiority of the proposed docking controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear couplingmore » between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.« less
Correlation potential of a test ion near a strongly charged plate.
Lu, Bing-Sui; Xing, Xiangjun
2014-03-01
We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.
NASA Astrophysics Data System (ADS)
Texier, Christophe; Mitscherling, Johannes
2018-02-01
We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and
Nonlinear response of GaAs gratings in the extraordinary transmission regime.
Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael
2011-12-01
We theoretically describe a way to enhance harmonic generation from subwavelength slits milled on semiconductor substrates in strongly absorptive regimes. The metal-like response typical of semiconductors, like GaAs and GaP, triggers enhanced transmission and nonlinear optical phenomena in the deep UV range. We numerically study correlations between linear and nonlinear responses and their intricacies in infinite arrays, and highlight differences between nonlinear surface and magnetic sources, and intrinsic χ((2)) and χ((3)) contributions to harmonic generation. The results show promising efficiencies at wavelengths below 120 nm, and reveal coupling of TE and TM polarizations for pump and harmonic signals. A downconversion process that can regenerate pump photons with polarization orthogonal to the incident pump is also discussed. © 2011 Optical Society of America
High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.
Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J
2010-10-22
We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.
Nakano, Masayoshi
2017-01-01
Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designing Hybrids of Graphene Oxide and Gold Nanoparticles for Nonlinear Optical Response
NASA Astrophysics Data System (ADS)
Yadav, Rajesh Kumar; Aneesh, J.; Sharma, Rituraj; Abhiramnath, P.; Maji, Tuhin Kumar; Omar, Ganesh Ji; Mishra, A. K.; Karmakar, Debjani; Adarsh, K. V.
2018-04-01
Nonlinear optical absorption of light by materials is weak due to its perturbative nature, although a strong nonlinear response is of crucial importance to applications in optical limiting and switching. Here we demonstrate experimentally and theoretically an extremely efficient scheme of excited-state absorption by charge transfer between donor and acceptor materials as a method to enhance the nonlinear absorption by orders of magnitude. With this idea, we demonstrate a strong excited-state absorption (ESA) in reduced graphene oxide that otherwise shows an increased transparency at high fluence and enhancement of ESA by one order of magnitude in graphene oxide by attaching gold nanoparticles (Au NP) in the tandem configuration that acts as an efficient charge-transfer pair when excited at the plasmonic wavelength. To explain the unprecedented enhancement, we develop a five-level rate-equation model based on the charge transfer between the two materials and numerically simulate the results. To understand the correlation of interfacial charge transfer with the concentration and type of the functional ligands attached to the graphene oxide sheet, we investigate the Au-NP—graphene oxide interface with various possible ligand configurations from first-principles calculations. By using the strong ESA of our hybrid materials, we fabricate liquid cell-based high-performance optical limiters with important device parameters better than that of the benchmark optical limiters.
High serum creatinine nonlinearity: a renal vital sign?
Palant, Carlos E; Chawla, Lakhmir S; Faselis, Charles; Li, Ping; Pallone, Thomas L; Kimmel, Paul L; Amdur, Richard L
2016-08-01
Patients with chronic kidney disease (CKD) may have nonlinear serum creatinine concentration (SC) trajectories, especially as CKD progresses. Variability in SC is associated with renal failure and death. However, present methods for measuring SC variability are unsatisfactory because they blend information about SC slope and variance. We propose an improved method for defining and calculating a patient's SC slope and variance so that they are mathematically distinct, and we test these methods in a large sample of US veterans, examining the correlation of SC slope and SC nonlinearity (SCNL) and the association of SCNL with time to stage 4 CKD (CKD4) and death. We found a strong correlation between SCNL and rate of CKD progression, time to CKD4, and time to death, even in patients with normal renal function. We therefore argue that SCNL may be a measure of renal autoregulatory dysfunction that provides an early warning sign for CKD progression. Copyright © 2016 the American Physiological Society.
Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma; ...
2017-01-01
We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma
We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
NASA Astrophysics Data System (ADS)
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
A generalized conditional heteroscedastic model for temperature downscaling
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2014-11-01
This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Perdikaris, P; Raissi, M; Damianou, A; Lawrence, N D; Karniadakis, G E
2017-02-01
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
High-precision Predictions for the Acoustic Scale in the Nonlinear Regime
NASA Astrophysics Data System (ADS)
Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying
2010-09-01
We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5σ for shift values from different simulations and derive shift α(z) - 1 = (0.300 ± 0.015) %[D(z)/D(0)]2 using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations. After reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the initial and the low redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compare with the Zel'dovich approximation and the shifts measured from the χ2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations, but we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 h -3 Gpc3 of cosmological Particle-Mesh simulations from Takahashi et al. At an expected sample variance level of 1%, the agreement between the Fisher matrix estimates based on Seo and Eisenstein and the N-body results is better than 10%.
Molecular nonlinear dynamics and protein thermal uncertainty quantification
Xia, Kelin; Wei, Guo-Wei
2014-01-01
This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction. PMID:24697365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.
2015-09-14
Correlations between the elliptic or triangular flow coefficients v m (m=2 or 3) and other flow harmonics v n (n=2 to 5) are measured using √s NN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb -1. The v m-v n correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v 3 is found to be anticorrelatedmore » with v 2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε 2 and ε 3. However, it is observed that v 4 increases strongly with v 2, and v 5 increases strongly with both v 2 and v 3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ε m-ε n correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v 2 2 or of v 2v 3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v 4 and v 5 are found to be consistent with previously measured event-plane correlations.« less
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Fatigue crack detection by nonlinear spectral correlation with a wideband input
NASA Astrophysics Data System (ADS)
Liu, Peipei; Sohn, Hoon
2017-04-01
Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.
Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.
Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke
2009-12-21
Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.
Experimental demonstration of an efficient hybrid equalizer for short-reach optical SSB systems
NASA Astrophysics Data System (ADS)
Zhu, Mingyue; Ying, Hao; Zhang, Jing; Yi, Xingwen; Qiu, Kun
2018-02-01
We propose an efficient enhanced hybrid equalizer combining the feed forward equalization (FFE) with a modified Volterra filter to mitigate the linear and nonlinear interference for the short-reach optical single side-band (SSB) system. The optical SSB signal is generated by a relatively low-cost dual-drive Mach-Zehnder modulator (DDMZM). The two driving signals are a pair of Hilbert signals with Nyquist pulse-shaped four-level pulse amplitude modulation (NPAM-4). After the fiber transmission, the neighboring received symbols are strongly correlated due to the pulse spreading in time domain caused by the chromatic dispersion (CD). At the receiver equalization stage, the FFE followed by higher order terms of modified Volterra filter, which utilizes the forward and backward neighboring symbols to construct the kernels with strong correlation, are used as an enhanced hybrid equalizer to mitigate the inter symbol interference (ISI) and nonlinear distortion due to the interaction of the CD and the square-law detection. We experimentally demonstrate that the optical SSB NPAM-4 signal of 40 Gb/s transmitting over 80 km standard single mode fiber (SSMF) with a bit-error-rate (BER) of 7 . 59 × 10-4.
Single-photon nonlinearities in the propagation of focused beams through dense atomic clouds
NASA Astrophysics Data System (ADS)
Wang, Yidan; Gorshkov, Alexey; Gullans, Michael
2017-04-01
We theoretically study single-photon nonlinearities realized when a highly focused Gaussian beam passes through a dense atomic cloud. In this system, strong dipole-dipole interactions arise between closely spaced atoms and significantly affect light propagation. We find that the highly focused Gaussian beam can be treated as an effective one-dimensional waveguide, which simplifies the calculation of photon transmission and correlation functions. The formalism we develop is also applicable to the case where additional atom-atom interactions, such as interactions between Rydberg atoms, are involved. This work was supported by the ARL, NSF PFC at the JQI, AFOSR, NSF PIF, ARO, and AFOSR MURI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Vramori; Sarma, Bornali; Sarma, Arun
Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less
Antibunching and unconventional photon blockade with Gaussian squeezed states
NASA Astrophysics Data System (ADS)
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2014-12-01
Photon antibunching is a quantum phenomenon typically observed in strongly nonlinear systems where photon blockade suppresses the probability of detecting two photons at the same time. Antibunching has also been reported with Gaussian states, where optimized amplitude squeezing yields classically forbidden values of the intensity correlation, g(2 )(0 ) <1 . As a consequence, observation of antibunching is not necessarily a signature of photon-photon interactions. To clarify the significance of the intensity correlations, we derive a sufficient condition for deducing whether a field is non-Gaussian based on a g(2 )(0 ) measurement. We then show that the Gaussian antibunching obtained with a degenerate parametric amplifier is close to the ideal case reached using dissipative squeezing protocols. We finally shed light on the so-called unconventional photon blockade effect predicted in a driven two-cavity setup with surprisingly weak Kerr nonlinearities, stressing that it is a particular realization of optimized Gaussian amplitude squeezing.
Stability of strongly nonlinear normal modes
NASA Astrophysics Data System (ADS)
Recktenwald, Geoffrey; Rand, Richard
2007-10-01
It is shown that a transformation of time can allow the periodic solution of a strongly nonlinear oscillator to be written as a simple cosine function. This enables the stability of strongly nonlinear normal modes in multidegree of freedom systems to be investigated by standard procedures such as harmonic balance.
NASA Astrophysics Data System (ADS)
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-11-01
Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.
Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations
NASA Astrophysics Data System (ADS)
Atalaya, Juan
Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.
Some theoretical aspects of boundary layer stability theory
NASA Technical Reports Server (NTRS)
Hall, Philip
1990-01-01
Increased understanding in recent years of boundary layer transition has been made possible by the development of strongly nonlinear stability theories. After some twenty or so years when nonlinear stability theory was restricted to the application of the Stuart-Watson method (or less formal amplitude expansion procedures), there now exist strongly nonlinear theories which can describe processes which have an 0(1) effect on the basic state. These strongly nonlinear theories and their possible role in pushing theoretical understanding of transition ever further into the nonlinear regime are discussed.
Optimal antibunching in passive photonic devices based on coupled nonlinear resonators
NASA Astrophysics Data System (ADS)
Ferretti, S.; Savona, V.; Gerace, D.
2013-02-01
We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.
Appraisal of jump distributions in ensemble-based sampling algorithms
NASA Astrophysics Data System (ADS)
Dejanic, Sanda; Scheidegger, Andreas; Rieckermann, Jörg; Albert, Carlo
2017-04-01
Sampling Bayesian posteriors of model parameters is often required for making model-based probabilistic predictions. For complex environmental models, standard Monte Carlo Markov Chain (MCMC) methods are often infeasible because they require too many sequential model runs. Therefore, we focused on ensemble methods that use many Markov chains in parallel, since they can be run on modern cluster architectures. Little is known about how to choose the best performing sampler, for a given application. A poor choice can lead to an inappropriate representation of posterior knowledge. We assessed two different jump moves, the stretch and the differential evolution move, underlying, respectively, the software packages EMCEE and DREAM, which are popular in different scientific communities. For the assessment, we used analytical posteriors with features as they often occur in real posteriors, namely high dimensionality, strong non-linear correlations or multimodality. For posteriors with non-linear features, standard convergence diagnostics based on sample means can be insufficient. Therefore, we resorted to an entropy-based convergence measure. We assessed the samplers by means of their convergence speed, robustness and effective sample sizes. For posteriors with strongly non-linear features, we found that the stretch move outperforms the differential evolution move, w.r.t. all three aspects.
State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.
Dimitriev, Dimitriy A; Saperova, Elena V; Dimitriev, Aleksey D
2016-01-01
Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA. Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.
Nonlinear Site Response Validation Studies Using KIK-net Strong Motion Data
NASA Astrophysics Data System (ADS)
Asimaki, D.; Shi, J.
2014-12-01
Earthquake simulations are nowadays producing realistic ground motion time-series in the range of engineering design applications. Of particular significance to engineers are simulations of near-field motions and large magnitude events, for which observations are scarce. With the engineering community slowly adopting the use of simulated ground motions, site response models need to be re-evaluated in terms of their capabilities and limitations to 'translate' the simulated time-series from rock surface output to structural analyses input. In this talk, we evaluate three one-dimensional site response models: linear viscoelastic, equivalent linear and nonlinear. We evaluate the performance of the models by comparing predictions to observations at 30 downhole stations of the Japanese network KIK-Net that have recorded several strong events, including the 2011 Tohoku earthquake. Velocity profiles are used as the only input to all models, while additional parameters such as quality factor, density and nonlinear dynamic soil properties are estimated from empirical correlations. We quantify the differences of ground surface predictions and observations in terms of both seismological and engineering intensity measures, including bias ratios of peak ground response and visual comparisons of elastic spectra, and inelastic to elastic deformation ratio for multiple ductility ratios. We observe that PGV/Vs,30 — as measure of strain— is a better predictor of site nonlinearity than PGA, and that incremental nonlinear analyses are necessary to produce reliable estimates of high-frequency ground motion components at soft sites. We finally discuss the implications of our findings on the parameterization of nonlinear amplification factors in GMPEs, and on the extensive use of equivalent linear analyses in probabilistic seismic hazard procedures.
Halo correlations in nonlinear cosmic density fields
NASA Astrophysics Data System (ADS)
Bernardeau, F.; Schaeffer, R.
1999-09-01
The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.
Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry
NASA Technical Reports Server (NTRS)
Macon, David J.
2006-01-01
An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.
Photon transport in a dissipative chain of nonlinear cavities
NASA Astrophysics Data System (ADS)
Biella, Alberto; Mazza, Leonardo; Carusotto, Iacopo; Rossini, Davide; Fazio, Rosario
2015-05-01
By means of numerical simulations and the input-output formalism, we study photon transport through a chain of coupled nonlinear optical cavities subject to uniform dissipation. Photons are injected from one end of the chain by means of a coherent source. The propagation through the array of cavities is sensitive to the interplay between the photon hopping strength and the local nonlinearity in each cavity. We characterize photon transport by studying the populations and the photon correlations as a function of the cavity position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single-photon and multiphoton resonances directly reflects the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. The numerical algorithm we use, based on the time-evolving block decimation scheme adapted to mixed states, allows us to simulate large arrays (up to 60 cavities). The scaling of photon transmission with the number of cavities does depend on the structure of the many-body photon states inside the array.
NASA Astrophysics Data System (ADS)
Porras, Miguel A.
2018-06-01
We investigate the properties of the recently introduced time-diffracting (TD) beams in free space. They are shown to be paraxial and quasimonochromatic realizations of spatiotemporal localized waves traveling undistorted at arbitrary speeds. The paraxial and quasimonochromatic regime is shown to be necessary to observe what can properly be named diffraction in time. In this regime, the spatiotemporal frequency correlations for diffraction-free propagation are approximated by parabolic correlations. Time-diffracting beams of finite energy traveling at quasiluminal velocities are seen to form substantially longer foci or needles of light than the so-called abruptly focusing and defocusing needle of light or limiting TD beam of infinite speed. Exploring the properties of TD beams under Lorentz transformations and their transformation by paraxial optical systems, we realize that the nonlinear polarization of material media induced by a strongly localized fundamental pump wave generates a TD beam at its second harmonic, whose diffraction-free behavior as a needle of light in free space can be optimized with a standard 4 f -imager system.
Probing strong correlations with light scattering: Example of the quantum Ising model
Babujian, H. M.; Karowski, M.; Tsvelik, A. M.
2016-10-01
In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.
Probing strong correlations with light scattering: Example of the quantum Ising model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babujian, H. M.; Karowski, M.; Tsvelik, A. M.
In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.
Temporal processing and adaptation in the songbird auditory forebrain.
Nagel, Katherine I; Doupe, Allison J
2006-09-21
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
Nonlinear site response in medium magnitude earthquakes near Parkfield, California
Rubinstein, Justin L.
2011-01-01
Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).
Seasonal forecasting of fire over Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.
2015-03-01
Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.
Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin
2015-04-13
We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less
Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry
NASA Astrophysics Data System (ADS)
Zhang, S. J.; Wang, Z. X.; Dong, T.; Wang, N. L.
2017-10-01
Strong-field mid-infrared pump-terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump-THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μm to 15 μm and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μm pump-THz probe measurements of a bulk EuSbTe3 single crystal. A 0:5% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.
Repeated-cascade theory of strong turbulence in a magnetized plasma
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1976-01-01
A two-dimensional Navier-Stokes equation of vorticity in fluid turbulence is used to model drift turbulence in a plasma with a strong constant magnetic field and a constant mean density gradient. The nonlinear eddy diffusivity is described by a time-integrated Lagrangian correlation of velocities, and the repeated-cascade method is employed to choose the rank accounting for nearest-neighbor interactions, to calculate the Lagrangian correlation, and to close the correlation hierarchy. As a result, the diffusivity becomes dependent on the plasma's induced diffusion and is represented by a memory chain that is cut off by similarity and inertial randomization. Spectral laws relating the kinetic-energy spectrum to the -5, -5/2, -3, and -11 powers of wavenumber are derived for the velocity subranges of production, approach to inertia, inertia, and dissipation, respectively. It is found that the diffusivity is proportional to some inverse power of the magnetic field, that power being 1, 2/3, 5/6, and 2, respectively, for the four velocity subranges.
Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing
2018-04-01
The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.
NASA Astrophysics Data System (ADS)
Elsaesser, Thomas
Terahertz (THz) spectroscopy gives insight into low-frequency excitations and charge dynamics in condensed matter. So far, most experiments in a frequency range from 0.5 to 30 THz have focused on the linear THz response to determine linear absorption and disperion spectra, and/or electric conductivities. The generation of ultrashort THz transients with peak electric fields up to megavolts/cm has allowed for addressing nonlinear light-matter interactions and inducing excitations far from equilibrium. The novel method of two-dimensional THz (2D-THz) spectroscopy allows for mapping ultrafast dynamics and couplings of elementary excitations up to arbitrary nonlinear order in the electric field, both under resonant and nonresonant excitation conditions. In particular, different contributions to the overall nonlinear response are separated by dissecting it as a function of excitation and detection frequencies and for different waiting times after excitation. This talk gives an introduction in 2D-THz spectroscopy, including its recent extension to 3-pulse sequences and interaction schemes. To illustrate the potential of the method, recent results on two-phonon coherences and high-order interband excitations in the semiconductor InSb will be presented. Nonlinear THz excitation of two-phonon coherences exploits a resonance enhancement by the large electronic interband dipole of InSb and is, thus, far more efficient than linear excitation via resonant two-phonon absorption. As a second application, the nonlinear softmode response in a crystal consisting of aspirin molecules will be discussed. At moderate THz driving fields, the pronounced correlation of rotational modes of CH3 groups with collective oscillations of π-electrons drives the system into the regime of nonperturbative light-matter interaction. Nonlinear absorption around 1.1 THz leads to a blue-shifted coherent emission at 1.5 THz, revealing a dynamic breakup of the strong electron-phonon correlations.
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
NASA Astrophysics Data System (ADS)
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes
NASA Astrophysics Data System (ADS)
Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing
2018-04-01
Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbekov, V.
Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role ofmore » the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.« less
NASA Astrophysics Data System (ADS)
Hales, Joel Mccajah
This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are promising candidates for 2PA applications because their material properties can be tailored through molecular engineering thereby facilitating optimization of their nonlinear optical properties. Fluorene derivatives are particularly interesting since they possess high photochemical stability for organic molecules and are generally strongly fluorescent. By systematically altering the structural properties in a series of fluorenyl molecules, we have determined how these changes affect their two-photon absorbing capabilities. This was accomplished through characterization of both the strength and location of their 2PA spectra. In order to ensure the validity of these results, three separate nonlinear characterization techniques were employed: two-photon fluorescence spectroscopy, white-light continuum pump-probe spectroscopy, and the Z-scan technique. In addition, full linear spectroscopic characterization was performed on these molecules along with supplementary quantum chemical calculations to obtain certain molecular properties that might impact the nonlinearity. Different designs in chemical architecture allowed investigation of the effects of symmetry, solvism, donor-acceptor strengths, conjugation length, and multi-branched geometries on the two-photon absorbing properties of these molecules. In addition, the means to enhance 2PA via intermediate state resonances was investigated. To provide plausible explanations for the experimentally observed trends, a conceptually simple three level model was employed. The subsequent correlations found between chemical structure and the linear and nonlinear optical properties of these molecules provided definitive conclusions on how to properly optimize their two-photon absorbing capabilities. The resulting large nonlinearities found in these molecules have already shown promise in a variety of the aforementioned applications.
Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J
2009-12-01
Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.
Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting
NASA Astrophysics Data System (ADS)
Cannon, A. J.; Hsieh, W. W.
2008-02-01
Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.
Yu, Hai; Yang, Xiao-Yun; Zhu, Da; Du, Run-Zi; Yin, Yan; Zhou, Rong-Hua; Liu, Bin
2010-01-01
To compare the efficiency and accuracy of electroencephalographic nonlinear index (ENI) and bispectral index (BIS) in monitoring depth of anesthesia during general anesthesia. Thirty patients undergoing elective abdominal surgery were recruited. The ability of ENI and BIS to distinguish between the anesthetic states (awake, loss of eyelash reflex, loss of response, steady anesthesia, first reaction and extubation) was analyzed with prediction probability (Pk). Correlation between ENI and BIS was tested by nonparametric Spearman rank correlation analysis, with data paired from awake through to extubation. The clinical performances of ENI and BIS were evaluated with success rate, responsiveness, and recovery time. ENI and BIS were better than mean arterial pressure (MAP) and heart rate (HR) for distinguishing between the states of anesthesia. ENI correlated strongly with BIS from the stage of awake through to extubation (r = 0.93). No differences were found between ENI and BIS in success rate and responsiveness; but the recovery time was shorter with ENI than with BIS. ENI and BIS provide similar information reflecting the states of anesthesia, which allows accurate distinguishment between different states of anesthesia. The clinical performance of ENI is better than that of BIS.
NASA Astrophysics Data System (ADS)
Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.
2018-01-01
In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.
NASA Astrophysics Data System (ADS)
Griffin, Patrick; Rochman, Dimitri; Koning, Arjan
2017-09-01
A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.
Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Pike, G. F.; Krolik, J. H.
1990-01-01
A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.
NASA Astrophysics Data System (ADS)
Wang, Liyun; Yuan, Jinhui; Wang, Kuiru; Kang, Zhe; Sang, Xinzhu; Yu, Chongxiu; Yan, Binbin
2016-11-01
In this paper, the supercontinuum (SC) generation in a carbon disulfide (CS2)-filled photonic crystal fiber (PCF) with strong slow nonlinearity is investigated. When the PCF is pumped at 1.55 μm in the anomalous dispersion region, we obtain highly coherent SC spanning from 0.99 to 2.32 μm, at -40 dB level. Moreover, the influences of the slow nonlinearity, the input pulse width, the pulse peak power, the fiber length, and the temperature on the supercontinuum generation (SCG) are studied. The role of the slow nonlinearity in enhancing the coherence of SC is proved. To our best knowledge, this is the first demonstration on generating the octave-spanning SC with high coherence using the slow nonlinearity of CS2. CS2 is a material that has high nonlinearity coefficient and well transparency in infrared. What's more, the slow nonlinearity is very strong in this material.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-08-11
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less
NASA Astrophysics Data System (ADS)
Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.
2013-09-01
Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.
Lenz, Gerhard P; Stasiak, Andrzej; Deszczyński, Jarosław; Karpiński, Janusz; Stolarczyk, Artur; Ziółkowski, Marcin; Szczesny, Grzegorz
2003-10-30
Background. This work focuses on problems of heuristic techniques based on artificial intelligence. Mainly about artificial non-linear and multilayer neurons, which were used to estimate the bone union fractures treatment process using orthopaedic stabilizers Dynastab DK. Material and methods. The author utilizes computer software based on multilayer neuronal network systems, which allows to predict the curve of the bone union at early stages of therapy. The training of the neural net has been made on fifty six cases of bone fracture which has been cured by the Dynastab stabilizers DK. Using such trained net, seventeen fractures of long bones shafts were being examined on strength and prediction of the bone union as well. Results. Analyzing results, it should be underlined that mechanical properties of the bone union in the slot of fracture are changing in nonlinear way in function of time. Especially, major changes were observed during the forth month of the fracture treatment. There is strong correlation between measure number two and measure number six. Measure number two is more strict and in the matter of fact it refers to flexion, as well as the measure number six, to compression of the bone in the fracture slot. Conclusions. Consequently, deflection loads are especially hazardous for healing bone. The very strong correlation between real curves and predicted curves shows the correctness of the neuronal model.
State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students
Dimitriev, Aleksey D.
2016-01-01
Objectives Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. Methods A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger’s State-Trait Anxiety Inventory was used to assess the level of SA. Results Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. Conclusions The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation. PMID:26807793
Optical nonlinearities in plasmonic metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zayats, Anatoly V.
2016-04-01
Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.
Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee
2017-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426
Phase walk analysis of leptokurtic time series.
Schreiber, Korbinian; Modest, Heike I; Räth, Christoph
2018-06-01
The Fourier phase information play a key role for the quantified description of nonlinear data. We present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting correlations among the Fourier phases. The method, being called phase walk analysis, is based on well established measures from random walk analysis, which are now applied to the unwrapped Fourier phases of time series. We provide an analytical description of its functionality and demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate the properties of leptokurtic time series and their influence on the Fourier phases of time series. The phase walk analysis is applied to measured and simulated intermittent time series, whose probability density distribution is approximated by power laws. We use the day-to-day returns of the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site. Testing for nonlinearities by means of surrogates shows that the new method yields strong significances for nonlinear behavior. Due to the drastically decreased computing time as compared to embedding space methods, the number of surrogate realizations can be increased by orders of magnitude. Thereby, the probability distribution of the test statistics can very accurately be derived and parameterized, which allows for much more precise tests on nonlinearities.
Nguyen, Jennifer L.; Schwartz, Joel; Dockery, Douglas W.
2013-01-01
Introduction Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. Methods and Results The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 - April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is non-linear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). AH exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Conclusions Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round. PMID:23710826
Helicon mode formation and radio frequency power deposition in a helicon-produced plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, K.; Kraemer, M.
2008-07-15
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated bymore » showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.« less
Development of novel two-photon absorbing chromophores
NASA Astrophysics Data System (ADS)
Rogers, Joy E.; Slagle, Jonathan E.; McLean, Daniel G.; Sutherland, Richard L.; Krein, Douglas M.; Cooper, Thomas M.; Brant, Mark; Heinrichs, James; Kannan, Ramamurthi; Tan, Loon-Seng; Urbas, Augustine M.; Fleitz, Paul A.
2006-08-01
There has been much interest in the development of two-photon absorbing materials and many efforts to understand the nonlinear absorption properties of these dyes but this area is still not well understood. A computational model has been developed in our lab to understand the nanosecond nonlinear absorption properties that incorporate all of the measured one-photon photophysical parameters of a class of materials called AFX. We have investigated the nonlinear and photophysical properties of the AFX chromophores including the two-photon absorption cross-section, the excited state cross-section, the intersystem crossing quantum yield, and the singlet and triplet excited state lifetimes using a variety of experimental techniques that include UV-visible, fluorescence and phosphorescence spectroscopy, time correlated single photon counting, ultrafast transient absorption, and nanosecond laser flash photolysis. The model accurately predicts the nanosecond nonlinear transmittance data using experimentally measured parameters. Much of the strong nonlinear absorption has been shown to be due to excited state absorption from both the singlet and triplet excited states. Based on this understanding of the nonlinear absorption and the importance of singlet and triplet excited states we have begun to develop new two-photon absorbing molecules within the AFX class as well as linked to other classes of nonlinear absorbing molecules. This opens up the possibilities of new materials with unique and interesting properties. Specifically we have been working on a new class of two-photon absorbing molecules linked to platinum poly-ynes. In the platinum poly-yne chromophores the photophysics are more complicated and we have just started to understand what drives both the linear and non-linear photophysical properties.
Breakdown of Hooke's law of elasticity at the Mott critical endpoint in an organic conductor.
Gati, Elena; Garst, Markus; Manna, Rudra S; Tutsch, Ulrich; Wolf, Bernd; Bartosch, Lorenz; Schubert, Harald; Sasaki, Takahiko; Schlueter, John A; Lang, Michael
2016-12-01
The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes Δ L / L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of Δ L / L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.
Breakdown of Hooke’s law of elasticity at the Mott critical endpoint in an organic conductor
Gati, Elena; Garst, Markus; Manna, Rudra S.; Tutsch, Ulrich; Wolf, Bernd; Bartosch, Lorenz; Schubert, Harald; Sasaki, Takahiko; Schlueter, John A.; Lang, Michael
2016-01-01
The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes ΔL/L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of ΔL/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke’s law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition. PMID:27957540
Nonlinear dielectric spectroscopy in a fragile plastic crystal
NASA Astrophysics Data System (ADS)
Michl, M.; Bauer, Th.; Lunkenheimer, P.; Loidl, A.
2016-03-01
In this work we provide a thorough examination of the nonlinear dielectric properties of a succinonitrile-glutaronitrile mixture, representing one of the rare examples of a plastic crystal with fragile glassy dynamics. The detected alteration of the complex dielectric permittivity under high fields can be explained considering the heterogeneous nature of glassy dynamics and a field-induced variation of entropy. While the first mechanism was also found in structural glass formers, the latter effect seems to be more pronounced in plastic crystals. Moreover, the third harmonic component of the dielectric susceptibility is reported, revealing a hump-like spectral shape as predicted, e.g., within a model considering cooperative molecular dynamics. If assuming the validity of this model, one can deduce the temperature dependence of the number of correlated molecules Ncorr from these data. In accord with the fragile nature of the glass transition in this plastic crystal, we obtain a relatively strong temperature dependence of Ncorr, in contrast to the much weaker temperature dependence in plastic-crystalline cyclo-octanol, whose glass transition is of strong nature.
NASA Astrophysics Data System (ADS)
Gangani, B. J.; Patel, J. P.; Parsania, P. H.
2015-12-01
The density, viscosity and ultrasonic speed (2 MHz) of chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane were investigated at 308.15 K. Various acoustical parameters such as specific acoustical impedance ( Z), adiabatic compressibility ( Ka), Rao's molar sound function ( R m), van der Waals constant ( b), internal pressure (π), free volume ( V f), intermolecular free path length ( L f), classical absorption coefficient (α/ f 2)Cl) and viscous relaxation time (τ) were determine using ultrasonic speed ( U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Linear increase of Z, b, R, τ, and (α/ f 2)Cl except π (nonlinear) and linear decrease of Ka and L f except V f (nonlinear) with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions. The positive values of solvation number further supported strong molecular interactions in the solutions. The nature and position of halogen substituent also affected the strength of molecular interactions.
Time-resolved nonlinear optics in strongly correlated insulators
NASA Astrophysics Data System (ADS)
Dodge, J. Steven
2000-03-01
Transition metal oxides form the basis for much of our understanding of Mott insulators, and have enjoyed a renaissance of interest since the discovery of high temperature superconductivity in the cuprates. They are characterized by complex interactions among spin, lattice, orbital and charge degrees of freedom, which lead to dynamical behavior on time scales ranging from femtoseconds to microseconds. We have applied time resolved nonlinear optical spectroscopy to probe these dynamics. In one well-studied antiferromagnetic insulator, Cr_2O_3, we observed spin-wave dynamics on a picosecond time scale by performing pump-probe spectroscopy of the exciton-magnon transition(J. S. Dodge, et al.), Phys. Rev. Lett. 83, 4650 (1999).. At excitation densities ~ 10-3/Cr, a lineshape associated with the exciton-magnon absorption appears in the pump-probe spectrum. We assign this nonlinearity to a time-dependent renormalization of the magnon band structure, which in turn modifies the lineshape of the exciton-magnon transition. At long time delays, this assignment agrees semiquantitatively with calculations based on spin-wave theory. However, the initial population at the zone-boundary induces surprisingly little renormalization effect, indicating that spin-wave theory is insufficient to describe our observations in this regime. The renormalization lineshape grows on a time scale of ~ 50 ps, which we associate with the decay of the photoexcited, nonequilibrium population of zone-boundary spin-waves into a thermalized population of zone-center spin-waves. We have also performed a study of the linear and nonlinear optical properties of Sr_2CuO_2Cl_2, an insulating, two-dimensional cuprate. In the nonlinear optical experiments, we have performed pump-probe spectroscopy over a 1 eV spectral range, varying both the pump and the probe energy. We observe a pump-probe lineshape which varies considerably as a function of pump energy and temperature, and which differs sharply from those typically observed in band insulators. At low-temperatures, in particular, we observe an overall increase of spectral weight in our probe range, indicating that states are shifting over an energy scale larger than 1 eV. We attribute this behavior to the strongly correlated nature of the electronic structure in this material. Studies of the elementary excitations in other magnetic oxides, currently in progress, will be discussed.
NASA Astrophysics Data System (ADS)
Umucalılar, R. O.; Carusotto, I.
2017-11-01
We investigate theoretically a driven dissipative model of strongly interacting photons in a nonlinear optical cavity in the presence of a synthetic magnetic field. We show the possibility of using a frequency-dependent incoherent pump to create a strongly correlated ν =1 /2 bosonic Laughlin state of light: Due to the incompressibility of the Laughlin state, fluctuations in the total particle number and excitation of edge modes can be tamed by imposing a suitable external potential profile for photons. We further propose angular-momentum-selective spectroscopy of the emitted light as a tool to obtain unambiguous signatures of the microscopic physics of the quantum Hall liquid of light.
Volatility of linear and nonlinear time series
NASA Astrophysics Data System (ADS)
Kalisky, Tomer; Ashkenazy, Yosef; Havlin, Shlomo
2005-07-01
Previous studies indicated that nonlinear properties of Gaussian distributed time series with long-range correlations, ui , can be detected and quantified by studying the correlations in the magnitude series ∣ui∣ , the “volatility.” However, the origin for this empirical observation still remains unclear and the exact relation between the correlations in ui and the correlations in ∣ui∣ is still unknown. Here we develop analytical relations between the scaling exponent of linear series ui and its magnitude series ∣ui∣ . Moreover, we find that nonlinear time series exhibit stronger (or the same) correlations in the magnitude time series compared with linear time series with the same two-point correlations. Based on these results we propose a simple model that generates multifractal time series by explicitly inserting long range correlations in the magnitude series; the nonlinear multifractal time series is generated by multiplying a long-range correlated time series (that represents the magnitude series) with uncorrelated time series [that represents the sign series sgn(ui) ]. We apply our techniques on daily deep ocean temperature records from the equatorial Pacific, the region of the El-Ninõ phenomenon, and find: (i) long-range correlations from several days to several years with 1/f power spectrum, (ii) significant nonlinear behavior as expressed by long-range correlations of the volatility series, and (iii) broad multifractal spectrum.
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
NASA Astrophysics Data System (ADS)
Dahmen, David; Bos, Hannah; Helias, Moritz
2016-07-01
Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
Quantum statistics of four-wave mixing by a nonlinear resonant microcavity
NASA Astrophysics Data System (ADS)
Sherkunov, Y.; Whittaker, David M.; Schomerus, Henning; Fal'ko, Vladimir
2014-09-01
We analyze the correlation and spectral properties of two-photon states resonantly transmitted by a nonlinear optical microcavity. We trace the correlation properties of transmitted two-photon states to the decay spectrum of multiphoton resonances in the nonlinear microcavity.
Cross-correlations between crude oil and agricultural commodity markets
NASA Astrophysics Data System (ADS)
Liu, Li
2014-02-01
In this paper, we investigate cross-correlations between crude oil and agricultural commodity markets. Based on a popular statistical test proposed by Podobnik et al. (2009), we find that the linear return cross-correlations are significant at larger lag lengths and the volatility cross-correlations are highly significant at all of the lag lengths under consideration. Using a detrended cross-correlation analysis (DCCA), we find that the return cross-correlations are persistent for corn and soybean and anti-persistent for oat and soybean. The volatility cross-correlations are strongly persistent. Using a nonlinear cross-correlation measure, our results show that cross-correlations are relatively weak but they are significant for smaller time scales. For larger time scales, the cross-correlations are not significant. The reason may be that information transmission from crude oil market to agriculture markets can complete within a certain period of time. Finally, based on multifractal extension of DCCA, we find that the cross-correlations are multifractal and high oil prices partly contribute to food crisis during the period of 2006-mid-2008.
Vascular mechanics of the coronary artery
NASA Technical Reports Server (NTRS)
Veress, A. I.; Vince, D. G.; Anderson, P. M.; Cornhill, J. F.; Herderick, E. E.; Klingensmith, J. D.; Kuban, B. D.; Greenberg, N. L.; Thomas, J. D.
2000-01-01
This paper describes our research into the vascular mechanics of the coronary artery and plaque. The three sections describe the determination of arterial mechanical properties using intravascular ultrasound (IVUS), a constitutive relation for the arterial wall, and finite element method (FEM) models of the arterial wall and atheroma. METHODS: Inflation testing of porcine left anterior descending coronary arteries was conducted. The changes in the vessel geometry were monitored using IVUS, and intracoronary pressure was recorded using a pressure transducer. The creep and quasistatic stress/strain responses were determined. A Standard Linear Solid (SLS) was modified to reproduce the non-linear elastic behavior of the arterial wall. This Standard Non-linear Solid (SNS) was implemented into an axisymetric thick-walled cylinder numerical model. Finite element analysis models were created for five age groups and four levels of stenosis using the Pathobiological Determinants of Atherosclerosis Youth (PDAY) database. RESULTS: The arteries exhibited non-linear elastic behavior. The total tissue creep strain was epsilon creep = 0.082 +/- 0.018 mm/mm. The numerical model could reproduce both the non-linearity of the porcine data and time dependent behavior of the arterial wall found in the literature with a correlation coefficient of 0.985. Increasing age had a strong positive correlation with the shoulder stress level, (r = 0.95). The 30% stenosis had the highest shoulder stress due to the combination of a fully formed lipid pool and a thin cap. CONCLUSIONS: Studying the solid mechanics of the arterial wall and the atheroma provide important insights into the mechanisms involved in plaque rupture.
Nonlinear Terahertz Absorption of Graphene Plasmons.
Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin
2016-04-13
Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.
NASA Astrophysics Data System (ADS)
Florin Balan, Stefan; Apostol, Bogdan Felix; Ionescu, Constantin
2017-12-01
The purpose of the paper is to show the great influence of nonlinear seismology in the analysis of the soil deposit response. Some elements about nonlinear seismology, the complexity of the seismic phenomenon are presented, and how we perceive seismic input for constructions at the surface of the earth. Further is presented the nonlinear behaviour of soil deposits during strong earthquakes as it results from resonant column tests (in laboratory) and from the spectral amplification factors (in situ records). The resonance phenomenon between natural period of a structure and soil deposit during strong earthquakes is analysed. All these studies have in common nonlinear behaviour of the soil deposit during strong earthquakes, in fact, the site where a new construction is built or an old one is rehabilitated and needs an optional assessment for mitigation seismic risk. All these studies stand up in supporting nonlinear seismology, the seismology of the XXI-st century.
How long time will we go with linear seismology?
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Cioflan, Carmen; Marmureanu, Alexandru; Apostol, Bogdan
2013-04-01
Motto: The nonlinear seismology is the rule, The linear seismology is the exception. Paraphrasing Tullio Levi-Civita The leading question is: how many cities, villages, metropolitan areas etc. in seismic regions are constructed on rock sites? Most of them are located on alluvial deposits/ sediments, on Quaternary layers or in river valleys. In last book written by Peter M. Shearer, Professor of Geophysics at University of California, we can find, in total, only 12 rows about non-linear seismology(page 176).Among others are the following conclusions:(i)-Strong ground accelerations from large earthquakes can produce a non-linear response in shallow soils; (ii)-When a non-linear site response is present, then the shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes; (iii)-This is an active area of research in strong motion and engineering seismology. On the other hand, Aki wrote: Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification(Aki, A., Local Site Effects on Weak and Strong Ground Motion, Tectonophysics,218,93-111,1993). The difficulty to seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding and separating of the effects of earthquake source, propagation path and local geological site conditions. To see the actual influence of nonlinearity of the whole system (seismic source-path propagation-local geological structure) the authors used to study the response spectra because they are the last in this chain and, of course, that they are the ones who are taken into account in seismic design of all structures Stress-strain relationships for soils are usually nonlinear, soil stiffness decreases and internal damping increases with increasing shear strain during of strong earthquakes. There is a strong nonlinear dependence of the spectral amplification factors(SAF) on earthquake magnitude for all seismic stations on Romanian territory on extra-Carpathian area (Iasi, Bacau, Focsani, Bucharest etc.). Median values of SAF for last strong Vrancea earthquakes are decreasing from 4.16(May 31,1990;Mw=6.4),to 3.63 (May 30,1990;Mw=6.9) and to 3.26 (August 30, 1986; Mw=7.1) .The novelty and the complexity degree comes from the fact that for first time, the final decision for NPP Cernavoda site was also based on local strong nonlinear spectral amplifications for strong earthquakes and used in last "STRESS TEST" asked by IAEA Vienna in 2011. The present analysis indicates that the effect of nonlinearity could be very important and if the analysis is made for peak accelerations, it is 48.87% and for stronger earthquakes it will be bigger. The authors are coming with new recorded data which will open up a new challenge for seismologists studying nonlinear site effects in 2-D and 3-D irregular geological structures, leading them to a fascinating research subject in earth physics(Aki,1993, p.108,idem),in nonlinear seismology and,finally, in a real evaluation of earthquake risk and loss estimates.
Quasiparticle Representation of Coherent Nonlinear Optical Signals of Multiexcitons
NASA Astrophysics Data System (ADS)
Fingerhut, Benjamin; Bennet, Kochise; Roslyak, Oleksiy; Mukamel, Shaul
2013-03-01
Elementary excitations of many-Fermion systems can be described within the quasiparticle approach which is widely used in the calculation of transport and optical properties of metals, semiconductors, molecular aggregates and strongly correlated quantum materials. The excitations are then viewed as independent harmonic oscillators where the many-body interactions between the oscillators are mapped into anharmonicities. We present a Green's function approach based on coboson algebra for calculating nonlinear optical signals and apply it onwards the study of two and three exciton states. The method only requires the diagonalization of the single exciton manifold and avoids equations of motion of multi-exciton manifolds. Using coboson algebra many body effects are recast in terms of tetradic exciton-exciton interactions: Coulomb scattering and Pauli exchange. The physical space of Fermions is recovered by singular-value decomposition of the over-complete coboson basis set. The approach is used to calculate third and fifth order quantum coherence optical signals that directly probe correlations in two- and three exciton states and their projections on the two and single exciton manifold.
All-optical regenerator of multi-channel signals.
Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael
2017-10-12
One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.
[The nonlinear parameters of interference EMG of two day old human newborns].
Voroshilov, A S; Meĭgal, A Iu
2011-01-01
Temporal structure of interference electromyogram (iEMG) was studied in healthy two days old human newborns (n = 76) using the non-linear parameters (correlation dimension, fractal dimension, correlation entropy). It has been found that the non-linear parameters of iEMG were time-dependent because they were decreasing within the first two days of life. Also, these parameters were sensitive to muscle function, because correlation dimension, fractal dimension, and correlation entropy of iEMG in gastrocnemius muscle differed from the other muscles. The non-linear parameters were proven to be independent of the iEMG amplitude. That model of early ontogenesis may be of potential use for investigation of anti-gravitation activity.
Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047
Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering
NASA Astrophysics Data System (ADS)
Karimi, F.; Davoody, A. H.; Knezevic, I.
2018-06-01
Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.
Tuning the photon statistics of a strongly coupled nanophotonic system
NASA Astrophysics Data System (ADS)
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Sapra, Neil V.; Vučković, Jelena
2017-02-01
We investigate the dynamics of single- and multiphoton emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of nonclassical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Despite the strongly dissipative nature of these systems, we find that by utilizing a self-homodyne interference technique combined with frequency filtering we are able to find a strong two-photon component of the emission in the multiphoton regime. In order to explain our correlation measurements, we propose rate equation models that capture the dominant processes of emission in both the single- and multiphoton regimes. These models are then supported by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system.
Quantum correlated pulse-pair generation during pulse-trapping propagation in optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirosawa, Kenichi; Kannari, Fumihiko; Takeoka, Masahiro
2007-10-15
We study a different scheme for generating photon number correlation and squeezing for two copropagating pulses, a soliton and a trapped pulse, in an optical fiber. When the center wavelength of a trapped pulse is close to that of a soliton pulse, the two pulses interact with each other through the third-order optical nonlinear process and exchange photons between the two pulses. The soliton pulse exhibits photon number squeezing. When the center wavelengths of the two pulses are sufficiently separated and no photon-number exchange takes place, the strong negative correlation in the photon number between the parts of the trappedmore » pulse and the soliton pulse is formed via cross-phase modulation. By measuring the photon number of the negatively correlated part of the trapped pulse, we can obtain the photon number of the soliton pulse with a variance less than the shot-noise limit.« less
Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field
NASA Astrophysics Data System (ADS)
Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.
2018-02-01
The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.
Low-noise phase of a two-dimensional active nematic system
NASA Astrophysics Data System (ADS)
Shankar, Suraj; Ramaswamy, Sriram; Marchetti, M. Cristina
2018-01-01
We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically study the two-dimensional fluctuating ordered phase in a coarse-grained hydrodynamic description involving both the nematic director and the conserved density field. In the presence of noise, we show that the system always displays only quasi-long-ranged orientational order beyond a crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to persist although now with strong finite-size effects and a nonuniversal scaling exponent. Nonlinear effects from the active currents lead to power-law correlations in the density field, thereby preventing macroscopic phase separation in the thermodynamic limit.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa
2015-01-01
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.
Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks
Lyamzin, Dmitry R.; Barnes, Samuel J.; Donato, Roberta; Garcia-Lazaro, Jose A.; Keck, Tara
2015-01-01
Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks. PMID:26019325
COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, L. H.; Xiang, Y. Y.; Dun, G. T.
The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaoticmore » attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.« less
Single nano-hole as a new effective nonlinear element for third-harmonic generation
NASA Astrophysics Data System (ADS)
Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.
2013-07-01
In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.
Correlation Scales of the Turbulent Cascade at 1 au
NASA Astrophysics Data System (ADS)
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
NASA Astrophysics Data System (ADS)
He, Ling-Yun; Chen, Shu-Peng
2011-01-01
Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.
A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at nanoscale
Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong; ...
2016-04-27
Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less
Hu, Yanzhu; Ai, Xinbo
2016-01-01
Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring association network from multivariate time series. The method synthesizes surrogate data, partial symbolic transfer entropy (PSTE) and Granger causality. A proper threshold selection is crucial for common correlation identification methods and it is not easy for users. The proposed method can not only identify the strong correlation without selecting a threshold but also has the ability of correlation quantification, direction identification and temporal relation identification. The method can be divided into three layers, i.e. data layer, model layer and network layer. In the model layer, the method identifies all the possible pair-wise correlation. In the network layer, we introduce a filter algorithm to remove the indirect weak correlation and retain strong correlation. Finally, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pair-wise variables, and then get the weighted directed association network. Two numerical simulated data from linear system and nonlinear system are illustrated to show the steps and performance of the proposed approach. The ability of the proposed method is approved by an application finally. PMID:27832153
Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region
NASA Astrophysics Data System (ADS)
Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib
2018-03-01
This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Christopher A.
In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Transient response of an active nonlinear sandwich piezolaminated plate
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2017-04-01
In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.
Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.
2014-12-01
Thin aluminum film homogeneously heated by intense IR femtosecond laser pulses exhibits on the excitation timescale consequent fluence-dependent rise and drop of the IR-pump self-reflectivity, followed by its final saturation at higher fluences F > 0.3 J/cm2. This prompt optical dynamics correlates with the initial monotonic increase in the accompanying laser-induced electron emission, which is succeeded by its non-linear (three-photon) increase for F > 0.3 J/cm2. The underlying electronic dynamics is related to the initial saturation of IR resonant interband transitions in this material, followed by its strong instantaneous electronic heating via intraband transitions during the pump pulse resulting in thermionic emission. Above the threshold fluence of 0.3 J/cm2, the surface electronic heating is balanced during the pump pulse by simultaneous cooling via intense plasma removal (prompt ablation). The relationship between the deposited volume energy density in the film and its prompt electronic temperature derived from the self-reflection measurements using a Drude model, demonstrates a kind of electron "liquid-vapor" phase transition, driven by strong cubic optical non-linearity of the photo-excited aluminum.
Large-scale structure from cosmic-string loops in a baryon-dominated universe
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1988-01-01
The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.
Noise switching at a dynamical critical point in a cavity-conductor hybrid
NASA Astrophysics Data System (ADS)
Armour, Andrew D.; Kubala, Björn; Ankerhold, Joachim
2017-12-01
Coupling a mesoscopic conductor to a microwave cavity can lead to fascinating feedback effects which generate strong correlations between the dynamics of photons and charges. We explore the connection between cavity dynamics and charge transport in a model system consisting of a voltage-biased Josephson junction embedded in a high-Q cavity, focusing on the behavior as the system is tuned through a dynamical critical point. On one side of the critical point the noise is strongly suppressed, signaling the existence of a regime of highly coherent transport, but on the other side it switches abruptly to a much larger value. Using a semiclassical approach we show that this behavior arises because of the strongly nonlinear cavity drive generated by the Cooper pairs. We also uncover an equivalence between charge and photonic current noise in the system which opens up a route to detecting the critical behavior through straightforward microwave measurements.
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
1993-11-01
This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.
Ultra-low-power hybrid light–matter solitons
Walker, P. M.; Tinkler, L.; Skryabin, D. V.; Yulin, A.; Royall, B.; Farrer, I.; Ritchie, D. A.; Skolnick, M. S.; Krizhanovskii, D. N.
2015-01-01
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light–matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark–bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons. PMID:26400748
Ultra-low-power hybrid light-matter solitons.
Walker, P M; Tinkler, L; Skryabin, D V; Yulin, A; Royall, B; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N
2015-09-24
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light-matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark-bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons.
Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai
2018-01-01
Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.
NASA Astrophysics Data System (ADS)
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
Data analytics using canonical correlation analysis and Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles
2017-07-01
A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
NASA Astrophysics Data System (ADS)
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
NASA Astrophysics Data System (ADS)
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.
Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George
2017-03-01
Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).
Dynamical evolution of topology of large-scale structure. [in distribution of galaxies
NASA Technical Reports Server (NTRS)
Park, Changbom; Gott, J. R., III
1991-01-01
The nonlinear effects of statistical biasing and gravitational evolution on the genus are studied. The biased galaxy subset is picked for the first time by actually identifying galaxy-sized peaks above a fixed threshold in the initial conditions, and their subsequent evolution is followed. It is found that in the standard cold dark matter (CDM) model the statistical biasing in the locations of galaxies produces asymmetry in the genus curve and coupling with gravitational evolution gives rise to a shift in the genus curve to the left in moderately nonlinear regimes. Gravitational evolution alone reduces the amplitude of the genus curve due to strong phase correlations in the density field and also produces asymmetry in the curve. Results on the genus of the mass density field for both CDM and hot dark matter models are consistent with previous work by Melott, Weinberg, and Gott (1987).
A spatiotemporal analysis of U.S. station temperature trends over the last century
NASA Astrophysics Data System (ADS)
Capparelli, V.; Franzke, C.; Vecchio, A.; Freeman, M. P.; Watkins, N. W.; Carbone, V.
2013-07-01
This study presents a nonlinear spatiotemporal analysis of 1167 station temperature records from the United States Historical Climatology Network covering the period from 1898 through 2008. We use the empirical mode decomposition method to extract the generally nonlinear trends of each station. The statistical significance of each trend is assessed against three null models of the background climate variability, represented by stochastic processes of increasing temporal correlation length. We find strong evidence that more than 50% of all stations experienced a significant trend over the last century with respect to all three null models. A spatiotemporal analysis reveals a significant cooling trend in the South-East and significant warming trends in the rest of the contiguous U.S. It also shows that the warming trend appears to have migrated equatorward. This shows the complex spatiotemporal evolution of climate change at local scales.
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Ortanza Cioflan, Carmen; Marmureanu, Alexandru
2010-05-01
Nonlinear effects in ground motion during large earthquakes have long been a controversial issue between seismologists and geotechnical engineers. Aki wrote in 1993:"Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification( Local site effects on weak and strong ground motion, Tectonophysics,218,93-111). In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding of the effects of earthquake source, propagation path and local geological site conditions. The difficulty for seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and path propagation. The researchers from National Institute for Earth Physics ,in order to make quantitative evidence of large nonlinear effects, introduced the spectral amplification factor (SAF) as ratio between maximum spectral absolute acceleration (Sa), relative velocity (Sv) , relative displacement (Sd) from response spectra for a fraction of critical damping at fundamental period and peak values of acceleration(a-max),velocity (v-max) and displacement (d-max),respectively, from processed strong motion record and pointed out that there is a strong nonlinear dependence on earthquake magnitude and site conditions.The spectral amplification factors(SAF) are finally computed for absolute accelerations at 5% fraction of critical damping (β=5%) in five seismic stations: Bucharest-INCERC(soft soils, quaternary layers with a total thickness of 800 m);Bucharest-Magurele (dense sand and loess on 350m); Cernavoda Nuclear Power Plant site (marl, loess, limestone on 270 m) Bacau(gravel and loess on 20m) and Iassy (loess, sand, clay, gravel on 60 m) for last strong and deep Vrancea earthquakes: March 4,1977 (MGR =7.2 and h=95 km);August 30,1986(MGR =7.0 and h=130 km);May 30,1990 (MGR =6.7 and h=90 km) and May 31,1990 (MGR =6.1 and h=87 km). With a view to understand the characteristics of nonlinear soil behavior and the nonlinearity in the seismology and the influence to hazard and risk assessment ,this study examined the ways that nonlinearity would expected to appear on strong motion records made on Romania territory during to last Vrancea earthquake. The effect on nonlinearity is very large. For example, if we maintain the same amplification factor (SAF=5.8942) as for relatively strong earthquake on May 31,1990 with magnitude Ms =6,1 then at Bacau seismic station for earthquake on May 30,1990 (MGR =6.7) the peak acceleration has to be a*max =0.154g( +14.16%) and the actual recorded was only, a max =0.135g. Also, for Vrancea earthquake on August 30,1986, the peak acceleration has to be a*max=0.107g (+45,57%), instead of real value of 0.0736 g recorded at Bacau seismic station. More, the spectral amplification factors(SAF) are function of earthquake magnitude and there is a strong nonlinear dependence of the SAF of earthquake magnitude. The median values of SAF of the last strong Vrancea earthquakes for damping 5% are: 4.16; 3.63 and 3.26 corresponding to May 31,1990 Vrancea earthquake (Ms=6.1),May 30,1990 Vrancea earthquake(Ms=6.7),respectively, August 30,1986 Vrancea one(Ms=7.0). At the same seismic station, for example at Bacau, for 5% damping, SAF for accelerations is 5.22 for May 31,1990 earthquake (Ms =6.1);4.32 for May 30,1990 earthquake (Ms =6.7) and 3,94 for August 30,1986 one (Ms=7.0) etc. Finally, it will be made a comment in connection to U.S. Atomic Energy Commission-Regulatory Guide 1.60 on "Design Response Spectra for seismic design of nuclear power plants " to see spectral amplification factors for deep Vrancea earthquakes are larger and different.
Two-Photon Raman Gain in a Laser Driven Potassium Vapor
1996-02-01
between light and matter becomes highly nonlinear and the light and matter strongly couple, the systems become much more difficult to understand both...theoretically and experimentally. One example of a strongly coupled, highly nonlinear system is the two-photon laser that is based on the two-photon
NASA Astrophysics Data System (ADS)
Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.
2016-12-01
Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction
Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen
2018-05-04
In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.
2018-02-01
In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.
Nonlinear parallel momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu, E-mail: luwang@hust.edu.cn; Wen, Tiliang; Diamond, P. H.
2015-05-15
Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller thanmore » the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.« less
Locally optimum nonlinearities for DCT watermark detection.
Briassouli, Alexia; Strintzis, Michael G
2004-12-01
The issue of copyright protection of digital multimedia data has attracted a lot of attention during the last decade. An efficient copyright protection method that has been gaining popularity is watermarking, i.e., the embedding of a signature in a digital document that can be detected only by its rightful owner. Watermarks are usually blindly detected using correlating structures, which would be optimal in the case of Gaussian data. However, in the case of DCT-domain image watermarking, the data is more heavy-tailed and the correlator is clearly suboptimal. Nonlinear receivers have been shown to be particularly well suited for the detection of weak signals in heavy-tailed noise, as they are locally optimal. This motivates the use of the Gaussian-tailed zero-memory nonlinearity, as well as the locally optimal Cauchy nonlinearity for the detection of watermarks in DCT transformed images. We analyze the performance of these schemes theoretically and compare it to that of the traditionally used Gaussian correlator, but also to the recently proposed generalized Gaussian detector, which outperforms the correlator. The theoretical analysis and the actual performance of these systems is assessed through experiments, which verify the theoretical analysis and also justify the use of nonlinear structures for watermark detection. The performance of the correlator and the nonlinear detectors in the presence of quantization is also analyzed, using results from dither theory, and also verified experimentally.
The influences of delay time on the stability of a market model with stochastic volatility
NASA Astrophysics Data System (ADS)
Li, Jiang-Cheng; Mei, Dong-Cheng
2013-02-01
The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo and the same role for the case of the delay time >τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.
Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing
NASA Astrophysics Data System (ADS)
Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.
2017-12-01
Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.
Moderately nonlinear ultrasound propagation in blood-mimicking fluid.
Kharin, Nikolay A; Vince, D Geoffrey
2004-04-01
In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
NASA Astrophysics Data System (ADS)
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized by the cantilever-surface mechanism. The optimization results show that the 2DOF nonlinear system presents the best average performance when the excitation signals have three possible forms. Moreover, we observe that while for the linear systems the optimal performance is obtained for small values of the electromagnetic damping, for the 2DOF nonlinear system optimal performance is achieved for large values of damping. This feature is of particular importance for the system's robustness to parasitic damping.
NASA Astrophysics Data System (ADS)
Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.
2013-02-01
The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter Δ.
Strongly interacting photons in asymmetric quantum well via resonant tunneling.
Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H
2012-04-09
We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.
Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Nandkishore, Rahul M.
2017-09-01
In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2018-02-01
Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.
Chaos in plasma simulation and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, C.; Newman, D.E.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Nonlinear dielectric spectroscopy of propylene carbonate derivatives
NASA Astrophysics Data System (ADS)
Casalini, R.; Roland, C. M.
2018-04-01
Nonlinear dielectric measurements were carried out on two strongly polar liquids, 4-vinyl-1,3-dioxolan-2-one (VPC) and 4-ethyl-1,3-dioxolan-2-one (EPC), having chemical structures differing from propylene carbonate (PC) only by the presence of a pendant group. Despite their polarity, the compounds are all non-associated, "simple" liquids. From the linear component of the dielectric response, the α relaxation peak breadth was found to be invariant at a fixed value of the relaxation time, τα. From spectra from the nonlinear component, the number of dynamically correlated molecules was determined; it was also constant at fixed τα. Thus, two manifestations of dynamic heterogeneity depend only on the time constant for structural reorientation. More broadly, the cooperativity of molecular motions for non-associated glass-forming materials is connected to (i.e., reciprocally governs) the time scale. The equation of state for the two liquids was also obtained from density measurements made over a broad range of pressures and temperatures. Using these data, it was determined that the relaxation times of both liquids conform to density scaling. The effect of density, relative to thermal effects, on the α relaxation increases going from PC < VPC < EPC.
Assessment of Galileo modal test results for mathematical model verification
NASA Technical Reports Server (NTRS)
Trubert, M.
1984-01-01
The modal test program for the Galileo Spacecraft was completed at the Jet Propulsion Laboratory in the summer of 1983. The multiple sine dwell method was used for the baseline test. The Galileo Spacecraft is a rather complex 2433 kg structure made of a central core on which seven major appendages representing 30 percent of the total mass are attached, resulting in a high modal density structure. The test revealed a strong nonlinearity in several major modes. This nonlinearity discovered in the course of the test necessitated running additional tests at the unusually high response levels of up to about 21 g. The high levels of response were required to obtain a model verification valid at the level of loads for which the spacecraft was designed. Because of the high modal density and the nonlinearity, correlation between the dynamic mathematical model and the test results becomes a difficult task. Significant changes in the pre-test analytical model are necessary to establish confidence in the upgraded analytical model used for the final load verification. This verification, using a test verified model, is required by NASA to fly the Galileo Spacecraft on the Shuttle/Centaur launch vehicle in 1986.
Nardelli, Mimma; Valenza, Gaetano; Cristea, Ioana A.; Gentili, Claudio; Cotet, Carmen; David, Daniel; Lanata, Antonio; Scilingo, Enzo P.
2015-01-01
The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS) dynamics and specific dimensions such as anxiety, social phobia, stress, and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and non-linear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and non-linear analysis was performed on Heart Rate Variability, InterBreath Interval series, and InterBeat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, non-linear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions. PMID:25859212
Wavelet-based associative memory
NASA Astrophysics Data System (ADS)
Jones, Katharine J.
2004-04-01
Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.
Nonlinear wavenumber shift of large amplitude Langmuir waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dehui, E-mail: dhli@ipp.ac.cn; Wang, Shaojie
2016-07-15
Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.
Nonlinear processes generated by supercritical tidal flow in shallow straits
NASA Astrophysics Data System (ADS)
Bordois, Lucie; Auclair, Francis; Paci, Alexandre; Dossmann, Yvan; Nguyen, Cyril
2017-06-01
Numerical experiments have been carried out using a nonhydrostatic and non-Boussinesq regional oceanic circulation model to investigate the nonlinear processes generated by supercritical tidal flow in shallow straits. Our approach relies on idealized direct numerical simulations inspired by oceanic observations. By analyzing a large set of simulations, a regime diagram is proposed for the nonlinear processes generated in the lee of these straits. The results show that the topography shape of the strait plays a crucial role in the formation of internal solitary waves (ISWs) and in the occurrence of local breaking events. Both of these nonlinear processes are important turbulence producing phenomena. The topographic control, observed in mode 1 ISW formation in previous studies [Y. Dossmann, F. Auclair, and A. Paci, "Topographically induced internal solitary waves in a pycnocline: Primary generation and topographic control," Phys. Fluids 25, 066601 (2013) and Y. Dossmann et al., "Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements," Phys. Fluids 26, 056601 (2014)], is clearly reproducible for mode-2 ISW above shallow straits. Strong plunging breaking events are observed above "narrow" straits (straits with a width less than mode 1 wavelength) when the fluid velocity exceeds the local mode 1 wave speed. These results are a step towards future works on vertical mixing quantification and localization around complex strait areas.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-03-15
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-01-01
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285
The impact of manufacturing complexity drivers on performance-a preliminary study
NASA Astrophysics Data System (ADS)
Huah Leang, Suh; Mahmood, Wan Hasrulnizzam Wan; Rahman, Muhamad Arfauz A.
2018-03-01
Manufacturing systems, in pursuit of cost, time and flexibility optimisation are becoming more and more complex, exhibiting a dynamic and nonlinear behaviour. Unpredictability is a distinct characteristic of such behaviour and effects production planning significantly. Therefore, this study was undertaken to investigate the priority level and current achievement of manufacturing performance in Malaysia’s manufacturing industry and the complexity drivers on manufacturing productivity performance. The results showed that Malaysia’s manufacturing industry prioritised product quality and they managed to achieve a good on time delivery performance. However, for other manufacturing performance, there was a difference where the current achievement of manufacturing performances in Malaysia’s manufacturing industry is slightly lower than the priority given to them. The strong correlation of significant value for priority status was observed between efficient production levelling (finished goods) and finish product management while the strong correlation of significant value for current achievement was minimised the number of workstation and factory transportation system. This indicates that complexity drivers have an impact towards manufacturing performance. Consequently, it is necessary to identify complexity drivers to achieve well manufacturing performance.
Impact of nonlinear effective interactions on group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar
2016-09-01
We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Nonlinear Entanglement and its Application to Generating Cat States
NASA Astrophysics Data System (ADS)
Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.
2015-03-01
The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.
Nonlinear entanglement and its application to generating cat States.
Shen, Y; Assad, S M; Grosse, N B; Li, X Y; Reid, M D; Lam, P K
2015-03-13
The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.
Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting
2018-04-01
The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.
Third-order nonlinear optical properties of methylammonium lead halide perovskite films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Justin C.; Li, Zhen; Ndione, Paul F.
2016-01-01
We report third-order nonlinear coefficient values and decay time kinetics vs. halide composition (CH3NH3PbBr3 and CH3NH3PbBr2I), temperature, and excitation wavelength. The maximum values of the third-order nonlinear susceptibility X(3) (-1.6 x 10-6 esu) are similar to or larger than many common third-order materials. The source of the nonlinearity is shown to be primarily excitonic in the tribromide film by virtue of its strong enhancement near the exciton resonance. Nonresonant excitation reduces the nonlinearity significantly, as does increasing the temperature. Substitution of one I for one Br also reduces the nonlinearity by at least one order of magnitude, presumably due tomore » the lack of strong exciton resonance in the substituted form. The thin films are stable, highly homogenous (lacking significant light scattering), and simple and inexpensive to fabricate, making them potentially useful in a variety of optoelectronic applications in which wavelength selectivity is important.« less
Nonlinear dynamics and quantum entanglement in optomechanical systems.
Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2014-03-21
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
Coenzyme Q as an antiadipogenic factor.
Bour, Sandy; Carmona, Maria-Carmen; Galinier, Anne; Caspar-Bauguil, Sylvie; Van Gaal, Luc; Staels, Bart; Pénicaud, Luc; Casteilla, Louis
2011-02-01
Coenzyme Q (CoQ) is not only the single antioxidant synthesized in humans but also an obligatory element of mitochondrial functions. We have previously reported CoQ deficiency in white adipose tissue of ob/ob mice. We sought to determine (i) whether this deficit exists in all species and its relevance in human obesity and (ii) to what extent CoQ could be involved in adipocyte differentiation. Here we identified in rodents as well as in humans a specific very strong nonlinear negative correlation between CoQ content in subcutaneous adipose tissue and obesity indexes. This striking correlation reveals a threshold value similar in both species. This relative deficit in CoQ content in adipose tissue rapidly took place during the time course of high-fat-diet-induced obesity in mice. Adipocyte differentiation was assessed in vitro using the preadipocyte 3T3-F442A cell line. When CoQ synthesis was inhibited by a pharmacological approach using chlorobenzoic acid, this strongly triggered adipose differentiation. In contrast, adipogenesis was strongly inhibited when a long-term increase in CoQ content was obtained by overexpressing human 4-hydroxy benzoate acid polyprenyltransferase gene. Altogether, these data suggest that a strict level of CoQ remains essential for adipocyte differentiation, and its impairment is associated with obesity.
CDGPS-Based Relative Navigation for Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Mitchell, Megan Leigh
2004-01-01
This thesis investigates the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters for formation flying spacecraft. This work analyzes the relationship between the Extended Kalman Filter (EKF) design parameters and the resulting estimation accuracies, and in particular, the effect of the process and measurement noises on the semimajor axis error. This analysis clearly demonstrates that CDGPS-based relative navigation Kalman filters yield good estimation performance without satisfying the strong correlation property that previous work had associated with "good" navigation filters. Several examples are presented to show that the Kalman filter can be forced to create solutions with stronger correlations, but these always result in larger semimajor axis errors. These linear and nonlinear simulations also demonstrated the crucial role of the process noise in determining the semimajor axis knowledge. More sophisticated nonlinear models were included to reduce the propagation error in the estimator, but for long time steps and large separations, the EKF, which only uses a linearized covariance propagation, yielded very poor performance. In contrast, the CDGPS-based Unscented Kalman relative navigation Filter (UKF) handled the dynamic and measurement nonlinearities much better and yielded far superior performance than the EKF. The UKF produced good estimates for scenarios with long baselines and time steps for which the EKF would diverge rapidly. A hardware-in-the-loop testbed that is compatible with the Spirent Simulator at NASA GSFC was developed to provide a very flexible and robust capability for demonstrating CDGPS technologies in closed-loop. This extended previous work to implement the decentralized relative navigation algorithms in real time.
Nonlinear plasmonic imaging techniques and their biological applications
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations
NASA Astrophysics Data System (ADS)
Benhaiem, David; Joyce, Michael; Sicard, François
2013-03-01
One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F
2016-10-21
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
NASA Astrophysics Data System (ADS)
Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.
2017-12-01
The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.
Caviton dynamics in strong Langmuir turbulence
NASA Astrophysics Data System (ADS)
Dubois, Don; Rose, Harvey A.; Russell, David
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear caviton excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation collapse burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.
Caviton dynamics in strong Langmuir turbulence
NASA Astrophysics Data System (ADS)
DuBois, Don; Rose, Harvey A.; Russell, David
1990-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.
1992-01-01
VM and the correlation entropy K,(M) versus the embedding dimension M for both the linear and non-linear signals. Crosses refer to the linear signal...mensions, leading to a correlation dimension v=2.7. A similar structure was observed bv Voges et al. [461 in the analysis of the X-ray variability of...0 + 7 1j, and its recurrence plots often indicates whether a where A 0 = 10 and 71, is uniformly random dis- meaningful correlation integral analysis
Non-linear isotope and fast ions effects: routes for low turbulence in DT plasmas
NASA Astrophysics Data System (ADS)
Garcia, Jeronimo
2017-10-01
The isotope effect, i.e. the fact that heat and particle fluxes do not follow the expected Gyro-Bohm estimate for turbulent transport when the plasma mass is changed, is one of the main challenges in plasma theory. Of particular interest is the isotope exchange between the fusion of deuterium (DD) and deuterium-tritium (DT) nuclei as there are no clear indications of what kind of transport difference can be expected in burning plasmas. The GENE code is therefore used for computing DD vs DT linear and nonlinear microturbulence characteristics in the core plasma region of a previously ITER hybrid scenario at high beta obtained in the framework of simplified integrated modelling. Scans on common turbulence related quantitates as external ExB flow shear, Parallel Velocity Gradient (PVG), plasma beta, colisionality or the number of ion species have been performed. Additionally, the role of energetic particles, known to reduce Ion Temperature Gradient (ITG) turbulence has been also addressed. It is obtained that the ITER operational point will be close to threshold and in these conditions turbulence is dominated by ITG modes. A purely weak non-linear isotope effect, absent in linear scans, can be found when separately adding moderate ExB flow shear or electromagnetic effects, whereas collisionality just modulates the intensity. The isotope effect, on the other hand, becomes very strong in conditions with simultaneously moderate ExB flow shear, beta and low q profile with significant reductions of ion heat transport from DD to DT. By analyzing the radial structure of the two point electrostatic potential correlation function it has been found that the inherent Gyro-Bohm scaling for plasma microturbulence, which increases the radial correlation length at short scales form DD to DT, is counteracted by the concomitant appearance of a complex nonlinear multiscale space interaction involving external ExB flow shear, zonal flow activity, magnetic geometry and electromagnetic effects. The number of ion species and the fast ion population is also found to play a role in this non-linear process whereas a symmetry breaking between D and T, with systematic reduced heat and particle transport for T, is always obtained.
An empirical method for estimating travel times for wet volcanic mass flows
Pierson, Thomas C.
1998-01-01
Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.
Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun
2014-01-01
This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation. PMID:24757433
Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun
2014-01-01
This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.; Klein, K. G.
2018-02-01
In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.
NASA Astrophysics Data System (ADS)
Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.
2017-12-01
During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.
Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
Yagasaki, Takuma; Saito, Shinji
2009-09-15
Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the "translation-free" molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics.
Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities
Wang, Feng; Martinson, Alex B. F.; Harutyunyan, Hayk
2017-04-03
Since their discovery in the 1960s, nonlinear optical effects have revolutionized optical technologies and laser industry. Development of efficient nanoscale nonlinear sources will pave the way for new applications in photonic circuitry, quantum optics and biosensing. However, nonlinear signal generation at dimensions smaller than the wavelength of light brings new challenges. The fundamental difficulty of designing an efficient nonlinear source is that some of the contributing factors involved in nonlinear wave-mixing at the nanoscale are often hard to satisfy simultaneously. Here, we overcome these limitations by developing a new type of nonplanar plasmonic metasurfaces, which can greatly enhance the secondmore » harmonic generation (SHG) at visible frequencies and achieve conversion efficiency of ~6 × 10 -5 at a peak pump intensity of ~0.5 GW/cm 2. This is 4-5 orders of magnitude larger than the efficiencies observed for nonlinear thin films and doubly resonant plasmonic antennas. The proposed metasurface consists of an array of metal-dielectric-metal (MDM) nanocavities formed by conformally cross-linked nanowires separated by an ultrathin nonlinear material layer. The nonplanar MDM geometry minimizes the destructive interference of nonlinear emission into the far-field, provides strongly enhanced independently tunable resonances both for fundamental and harmonic frequencies, a good mutual overlap of the modes and a strong interaction with the nonlinear spacer. Lastly, our findings enable the development of efficient nanoscale single photon sources, integrated frequency converters, and other nonlinear devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn
The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu
Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO 3/SrTiO 3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-bandmore » model. In particular, the large nonlinear dielectric response of SrTiO 3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO 3/SrTiO 3 interface.« less
Investigating nonlinear distortion in the photopolymer materials
NASA Astrophysics Data System (ADS)
Malallah, Ra'ed; Cassidy, Derek; Muniraj, Inbarasan; Zhao, Liang; Ryle, James P.; Sheridan, John T.
2017-05-01
Propagation and diffraction of a light beam through nonlinear materials are effectively compensated by the effect of selftrapping. The laser beam propagating through photo-sensitive polymer PVA/AA can generate a waveguide of higher refractive index in direction of the light propagation. In order to investigate this phenomenon occurring in light-sensitive photopolymer media, the behaviour of a single light beam focused on the front surface of photopolymer bulk is investigated. As part of this work the self-bending of parallel beams separated in spaces during self-writing waveguides are studied. It is shown that there is strong correlation between the intensity of the input beams and their separation distance and the resulting deformation of waveguide trajectory during channels formation. This self-channeling can be modelled numerically using a three-dimension model to describe what takes place inside the volume of a photopolymer media. Corresponding numerical simulations show good agreement with experimental observations, which confirm the validity of the numerical model that was used to simulate these experiments.
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Goldstein, Melvyn L.
2011-01-01
Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.
NASA Astrophysics Data System (ADS)
Chen, Shu-Peng; He, Ling-Yun
2010-04-01
Based on Partition Function and Multifractal Spectrum Analysis, we investigated the nonlinear dynamical mechanisms in China’s agricultural futures markets, namely, Dalian Commodity Exchange (DCE for short) and Zhengzhou Commodity Exchange (ZCE for short), where nearly all agricultural futures contracts are traded in the two markets. Firstly, we found nontrivial multifractal spectra, which are the empirical evidence of the existence of multifractal features, in 4 representative futures markets in China, that is, Hard Winter wheat (HW for short) and Strong Gluten wheat (SG for short) futures markets from ZCE and Soy Meal (SM for short) futures and Soy Bean No.1 (SB for short) futures markets from DCE. Secondly, by shuffling the original time series, we destroyed the underlying nonlinear temporal correlation; thus, we identified that long-range correlation mechanism constitutes major contributions in the formation in the multifractals of the markets. Thirdly, by tracking the evolution of left- and right-half spectra, we found that there exist critical points, between which there are different behaviors, in the left-half spectra for large price fluctuations; but for the right-hand spectra for small price fluctuations, the width of those increases slowly as the delay t increases in the long run. Finally, the dynamics of large fluctuations is significantly different from that of the small ones, which implies that there exist different underlying mechanisms in the formation of multifractality in the markets. Our main contributions focus on that we not only provided empirical evidence of the existence of multifractal features in China agricultural commodity futures markets; but also we pioneered in investigating the sources of the multifractality in China’s agricultural futures markets in current literature; furthermore, we investigated the nonlinear dynamical mechanisms based on spectrum analysis, which offers us insights into the underlying dynamical mechanisms in China’s agricultural futures markets.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman Operator Theory
2017-03-01
calculus, applied mathematics, Director’s Research Initiative 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18... research of Svenkeson et al.4 Section 2 is Accomplishments and Section 3 is the Conclusion. 2. Accomplishments 2.1 Prescribed External Forcing To study ...ARL-TR-7959 MAR 2017 US Army Research Laboratory Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman
Spatiotemporal Airy Ince-Gaussian wave packets in strongly nonlocal nonlinear media.
Peng, Xi; Zhuang, Jingli; Peng, Yulian; Li, DongDong; Zhang, Liping; Chen, Xingyu; Zhao, Fang; Deng, Dongmei
2018-03-08
The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahmansouri, M.; Alinejad, H.
2015-04-15
We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.
The lead-lag relationships between spot and futures prices of natural gas
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Liu, Li
2018-01-01
The lead-lag relationships between spot and futures markets are of great interest for academics. Previous studies neglect the possibility of nonlinear behaviors which may be caused by asymmetry or persistence. To fill this gap, this paper uses the MF-DCCA method and the linear and nonlinear causality tests to explore the causal relationships between natural gas spot and futures prices in the New York Mercantile Exchange. We find that spot and futures prices are positive cross-correlated, the natural gas futures can linearly Granger cause spot price, and there are bidirectional nonlinear causality relationships between natural gas spot and futures prices. Further, we explore the sources of nonlinear causality relationships, and find that the volatility spillover can partly explain the nonlinear causality and affect their cross-correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyi, V.V.; Kukharenko, Y.A.; Wallenborn, J.
Taking into account the first non-Markovian correction to the Balescu-Lenard equation, we have derived an expression for the pair correlation function and a nonlinear kinetic equation valid for a nonideal polarized classical plasma. This last equation allows for the description of the correlational energy evolution and shows the global conservation of energy with dynamical polarization. {copyright} {ital 1996 The American Physical Society.}
Tripartite correlations over two octaves from cascaded harmonic generation
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2018-03-01
We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we investigate two parameter regimes and show that the system produces tripartite inseparability, entanglement and EPR steering, with the detection of these depending on the correlations being considered.
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
Computation of nonlinear ultrasound fields using a linearized contrast source method.
Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A
2013-08-01
Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.
Strong quantum squeezing near the pull-in instability of a nonlinear beam
Passian, Ali; Siopsis, George
2016-08-04
Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less
NASA Astrophysics Data System (ADS)
Shvets, Gennady; Kalmykov, Serguei; Dreher, Matthias; Meyer-Ter-Vehn, Juergen
2003-10-01
The strongly non-linear regime of Raman backscattering [1,2] holds the promise of compressing long low-intensity laser beams into ultra-short high intensity pulses. As the short pulse is amplified by the long counter-propagating pump via backscattering the pump off the nonlinear plasma wave, its duration shrinks and intensity grows. The increase of the bandwidth of the amplified pulse only occurs in the nonlinear amplification regime, and is its most telling signature. Recent experiments at MPQ carried out in the strongly nonlinear regime reveal two previously unobserved features: (i) bandwidth expansion, and (ii) breakdown of the initially smooth amplified pulse into several spikes. Using semi-analytic model and particle-in-cell simulations, we explain the multiple pulse formation by the synchrotron motion of plasma electrons in the ponderomotive potential. Self-similar solutions consisting of multiple spikes are derived, and their nonlinear frequency shifts evaluated. The nonlinear focusing of the pulse by the pump is predicted and compared with experimental observations. [1] G. Shvets et. al., Phys. Rev. Lett. 81, 4879 (1998). [2] A. Pukhov, Rep. Progr. Phys. 66, 47 (1998).
NASA Astrophysics Data System (ADS)
Neill, A. J.; Tetzlaff, D.; Strachan, N.; Soulsby, C.
2016-12-01
The non-linearities of runoff generation processes are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Despite major advances in understanding hydrological connectivity and runoff generation, the role of connectivity in the contamination of potable water supplies by faecal pathogens from grazing animals remains unclear. This is a water quality issue with serious implications for public health. Here, we sought to understand the dynamics of hydrological connectivity, flow paths and linked faecal pathogen transport in a montane catchment in Scotland with high deer populations. We firstly calibrated, within an uncertainty framework, a parsimonious tracer-aided hydrological model to daily discharge and stream isotope data. The model, developed on the basis of past empirical and tracer studies, conceptualises the catchment as three interacting hydrological source areas (dynamic saturation zone, dynamic hillslope, and groundwater) for which water fluxes, water ages and storage-based connectivity can be simulated. We next coupled several faecal indicator organism (FIO; a common indicator of faecal pathogen contamination) behaviour and transport schemes to the robust hydrological models. A further calibration was then undertaken based on the ability of each coupled model to simulate daily FIO concentrations. This gave us a final set of coupled behavioural models from which we explored how in-stream FIO dynamics could be related to the changing connectivity between the three hydrological source areas, flow paths, water ages and consequent dominant runoff generation processes. We found that high levels of FIOs were transient and episodic, and strongly correlated with periods of high connectivity through overland flow. This non-linearity in connectivity and FIO flux was successfully captured within our dynamic, tracer-aided hydrological model.
φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations
NASA Astrophysics Data System (ADS)
Sornette, D.; Simonetti, P.; Andersen, J. V.
2000-08-01
Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive empirical tests are presented on the foreign exchange market that validate satisfactorily the theory. For “fat tail” distributions, we show that an adequate prediction of the risks of a portfolio relies much more on the correct description of the tail structure rather than on their correlations. For the case of asymmetric return distributions, our theory allows us to generalize the return-risk efficient frontier concept to incorporate the dimensions of large risks embedded in the tail of the asset distributions. We demonstrate that it is often possible to increase the portfolio return while decreasing the large risks as quantified by the fourth and higher-order cumulants. Exact theoretical formulas are validated by empirical tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong
Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward
1991-01-01
It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.
NASA Astrophysics Data System (ADS)
Wierschem, Nicholas E.; Quinn, D. Dane; Hubbard, Sean A.; Al-Shudeifat, Mohammad A.; McFarland, D. Michael; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; Vakakis, Alexander F.; Bergman, Lawrence A.
2012-12-01
This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.
NASA Astrophysics Data System (ADS)
Cai, Wenshan
2016-09-01
Metamaterials can be designed to exhibit extraordinarily strong chiral responses. Here we present a chiral metamaterial that produces both distinguishable linear and nonlinear features in the visible to near-infrared range. In additional to the gigantic chiral effects in the linear regime, the metamaterial demonstrates a pronounced contrast between second harmonic responses from the two circular polarizations. Linear and nonlinear images probed with circularly polarized lights show strongly defined contrast. Moreover, the chiral centers of the nanometallic structures with enhanced hotspots can be purposely opened for direct access, where emitters occupying the light-confining regions produce chiral-selective enhancement of two-photon luminescence.
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
Greed, fear and stock market dynamics
NASA Astrophysics Data System (ADS)
Westerhoff, Frank H.
2004-11-01
We present a behavioral stock market model in which traders are driven by greed and fear. In general, the agents optimistically believe in rising markets and thus buy stocks. But if stock prices change too abruptly, they panic and sell stocks. Our model mimics some stylized facts of stock market dynamics: (1) stock prices increase over time, (2) stock markets sometimes crash, (3) stock prices show little pair correlation between successive daily changes, and (4) periods of low volatility alternate with periods of high volatility. A strong feature of the model is that stock prices completely evolve according to a deterministic low-dimensional nonlinear law of motion.
Tools for Detecting Causality in Space Systems
NASA Astrophysics Data System (ADS)
Johnson, J.; Wing, S.
2017-12-01
Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.
Noise of a Chargeless Fermi Liquid
NASA Astrophysics Data System (ADS)
Moca, Cǎtǎlin Paşcu; Mora, Christophe; Weymann, Ireneusz; Zaránd, Gergely
2018-01-01
We construct a Fermi liquid theory to describe transport in a superconductor-quantum dot-normal metal junction close to the singlet-doublet (parity changing) transition of the dot. Though quasiparticles do not have a definite charge in this chargeless Fermi liquid, in the case of particle-hole symmetry, a mapping to the Anderson model unveils a hidden U(1) symmetry and a corresponding pseudocharge. In contrast to other correlated Fermi liquids, the back scattering noise reveals an effective charge equal to the charge of Cooper pairs, e*=2 e . In addition, we find a strong suppression of noise when the linear conductance is unitary, even for its nonlinear part.
Bourne, Paul Andrew
2009-08-01
An extensive review of the literature revealed that no study exists that has examined poverty, not seeking medical care, inflation, self-reported illness, and mortality in Jamaica. The current study will bridge the gap by providing an investigation of poverty; not seeking medical care; illness; health insurance coverage; inflation and mortality in Jamaica. Using two decades (1988-2007), the current study used three sets of secondary data published by the (1) Planning Institute of Jamaica and the Statistical Institute of Jamaica (Jamaica Survey of Living Conditions) (2) the Statistical Institute of Jamaica (Demographic Statistics) and (3) the Bank of Jamaica (Economic Report). Scatter diagrams were used to examine correlations between the particular dependent and independent variables. For the current study, a number of hypotheses were tested to provide explanation morality in Jamaica. The average percent of Jamaicans not seeking medical care over the last 2 decades was 41.9%; and the figure has been steadily declining over the last 5 years. In 1990, the most Jamaicans who did not seek medical care were 61.4% and this fell to 52.3% in 1991; 49.1% in 1992 and 48.2% the proceeding year. Based on the percentages, in the early 1990s (1990-1994), the percent of Jamaicans not seeking medical care was close to 50% and in the latter part of the decade, the figure was in the region of 30% and the low as 31.6% in 1999. In 2006, the percent of Jamaicans not seeking medical care despite being ill was 30% and this increased by 4% the following year. Concomitantly, poverty fell by 3.1 times over the 2 decades to 9.9% in 2007, while inflation increased by 1.9 times, self-reported illness was 15.5% in 2007 with mortality averaging 15,776 year of the 2 decades. There is a significant statistical correlation between not seeking medical-care and prevalence of poverty (r = 0.759, p< 0.05). There is a statistical correlation between not seeking medical care and unemployment; but the association is a non-linear one. The relationship between mortality and unemployment was an unsure one, with there being no clear linear or non-linear correlation. The findings revealed that there is a strong direct association between not seeking medical care and inflation rate (r = 0.752). A strong negative statistical correlation was found between mortality and prevalence of poverty (r=0.717). There is a non-linear statistical association between not seeking medical care and illness/injury. Not seeking medical care is not a good indicator of premature mortality; but that this percentage must be excess of 55%. While this study cannot confirm a clear rate of premature mortality, there are some indications that this occurs beyond a certain level of not seeking care for illness.
Bourne, Paul Andrew
2009-01-01
Background: An extensive review of the literature revealed that no study exists that has examined poverty, not seeking medical care, inflation, self-reported illness, and mortality in Jamaica. The current study will bridge the gap by providing an investigation of poverty; not seeking medical care; illness; health insurance coverage; inflation and mortality in Jamaica. Materials and Method: Using two decades (1988-2007), the current study used three sets of secondary data published by the (1) Planning Institute of Jamaica and the Statistical Institute of Jamaica (Jamaica Survey of Living Conditions) (2) the Statistical Institute of Jamaica (Demographic Statistics) and (3) the Bank of Jamaica (Economic Report). Scatter diagrams were used to examine correlations between the particular dependent and independent variables. For the current study, a number of hypotheses were tested to provide explanation morality in Jamaica. Results: The average percent of Jamaicans not seeking medical care over the last 2 decades was 41.9%; and the figure has been steadily declining over the last 5 years. In 1990, the most Jamaicans who did not seek medical care were 61.4% and this fell to 52.3% in 1991; 49.1% in 1992 and 48.2% the proceeding year. Based on the percentages, in the early 1990s (1990-1994), the percent of Jamaicans not seeking medical care was close to 50% and in the latter part of the decade, the figure was in the region of 30% and the low as 31.6% in 1999. In 2006, the percent of Jamaicans not seeking medical care despite being ill was 30% and this increased by 4% the following year. Concomitantly, poverty fell by 3.1 times over the 2 decades to 9.9% in 2007, while inflation increased by 1.9 times, self-reported illness was 15.5% in 2007 with mortality averaging 15,776 year of the 2 decades. There is a significant statistical correlation between not seeking medical-care and prevalence of poverty (r = 0.759, p< 0.05). There is a statistical correlation between not seeking medical care and unemployment; but the association is a non-linear one. The relationship between mortality and unemployment was an unsure one, with there being no clear linear or non-linear correlation. The findings revealed that there is a strong direct association between not seeking medical care and inflation rate (r = 0.752). A strong negative statistical correlation was found between mortality and prevalence of poverty (r=0.717). There is a non-linear statistical association between not seeking medical care and illness/injury. Conclusions: Not seeking medical care is not a good indicator of premature mortality; but that this percentage must be excess of 55%. While this study cannot confirm a clear rate of premature mortality, there are some indications that this occurs beyond a certain level of not seeking care for illness. PMID:22666679
Multiple scaling behaviour and nonlinear traits in music scores
Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus
2017-01-01
We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece. PMID:29308256
Multiple scaling behaviour and nonlinear traits in music scores
NASA Astrophysics Data System (ADS)
González-Espinoza, Alfredo; Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus
2017-12-01
We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece.
Hybrid associative memory using an incoherent correlation system
NASA Astrophysics Data System (ADS)
Taniguchi, Masaki; Ichioka, Yoshiki; Matsuoka, Katsunori
1990-10-01
A hybrid heteroassociative memory is presented that uses an incoherent system in which two correlators and a nonlinear element form a nonlinear feedback system. This system can recall any pattern from an input pattern without cross-talk or ghosts by properly designing a pair of filters installed in the correlators. Experiments on a simple hybrid system were performed to ensure the operation of the system and to demonstrate the usefulness of this proposed system.
2017-10-01
AWARD NUMBER: W81XWH-16-1-0524 TITLE: Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast Cancer and Nonlinear Reconstruction...author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...COVERED 30 Sep 2016 - 29 Sep 2017 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast
Nonlinear Fano-Resonant Dielectric Metasurfaces
Yang, Yuanmu; Wang, Wenyi; Boulesbaa, Abdelaziz; ...
2015-10-26
Strong nonlinear light matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. We present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. Here, we measure a third harmonic generation enhancement factormore » of 1.5 105 with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 10 6 with a peak pump intensity of 3.2 GW cm 2. The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. Finally, the modulation mechanism is studied by pump probe experiments« less
NASA Astrophysics Data System (ADS)
Smith, F. T.; Bowles, R. I.
1992-10-01
The two stages I, II are studied by using recent nonlinear theory and then compared with the experiments of Nishioka et al. (1979) on the transition of plane Poiseuille flow. The first stage I starts at low amplitude from warped input, which is deformed through weakly nonlinear interaction into a blow-up in amplitude and phase accompanied by spanwise focusing into streets. This leads into the strongly nonlinear stage II. It holds for a broad range of interactive boundary layers and related flows, to all of which the nonlinear break-up criterion applies. The experimental comparisons on I, II for channel flow overall show encouraging quantitative agreement, supporting recent comparisons (in the boundary-layer setting) of the description of stage I in Stewart & Smith (1992) with the experiments of Klebanoff & Tidstrom (1959) and of the break-up criterion of Smith (1988a) with the computations of Peridier et al. (1991 a, b).
Period of vibration of axially vibrating truly nonlinear rod
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2016-07-01
In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.
Nonlinear optical interactions in silicon waveguides
NASA Astrophysics Data System (ADS)
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Self-modulational formation of pulsar microstructures
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Chian, A. C.-L.
1987-01-01
A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.
Berns, G S; Song, A W; Mao, H
1999-07-15
Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.
Analyzing systemic risk using non-linear marginal expected shortfall and its minimum spanning tree
NASA Astrophysics Data System (ADS)
Song, Jae Wook; Ko, Bonggyun; Chang, Woojin
2018-02-01
The aim of this paper is to propose a new theoretical framework for analyzing the systemic risk using the marginal expected shortfall (MES) and its correlation-based minimum spanning tree (MST). At first, we develop two parametric models of MES with their closed-form solutions based on the Capital Asset Pricing Model. Our models are derived from the non-symmetric quadratic form, which allows them to consolidate the non-linear relationship between the stock and market returns. Secondly, we discover the evidences related to the utility of our models and the possible association in between the non-linear relationship and the emergence of severe systemic risk by considering the US financial system as a benchmark. In this context, the evolution of MES also can be regarded as a reasonable proxy of systemic risk. Lastly, we analyze the structural properties of the systemic risk using the MST based on the computed series of MES. The topology of MST conveys the presence of sectoral clustering and strong co-movements of systemic risk leaded by few hubs during the crisis. Specifically, we discover that the Depositories are the majority sector leading the connections during the Non-Crisis period, whereas the Broker-Dealers are majority during the Crisis period.
Linear approximations of global behaviors in nonlinear systems with moderate or strong noise
NASA Astrophysics Data System (ADS)
Liang, Junhao; Din, Anwarud; Zhou, Tianshou
2018-03-01
While many physical or chemical systems can be modeled by nonlinear Langevin equations (LEs), dynamical analysis of these systems is challenging in the cases of moderate and strong noise. Here we develop a linear approximation scheme, which can transform an often intractable LE into a linear set of binomial moment equations (BMEs). This scheme provides a feasible way to capture nonlinear behaviors in the sense of probability distribution and is effective even when the noise is moderate or big. Based on BMEs, we further develop a noise reduction technique, which can effectively handle tough cases where traditional small-noise theories are inapplicable. The overall method not only provides an approximation-based paradigm to analysis of the local and global behaviors of nonlinear noisy systems but also has a wide range of applications.
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael
We study theoretically the second-order nonlinear optical conductivity σ (2) of graphene as a function of frequency and momentum. We distinguish two regimes. At frequencies ω higher than the temperature-dependent electron-electron collision rate γee- 1 , the conductivity σ (2) can be derived from the semiclassical kinetic equation. The calculation requires taking into account the photon drag (Lorentz force) due to the ac magnetic field. In the low-frequency hydrodynamic regime ω <<γee- 1 , the nonlinear conductivity has a different form and the photon drag effect is suppressed. As a consequence of the nonlinearity, a strong enough photoexcitation can cause spontaneous generation of collective modes in a graphene strip: plasmons in the high-frequency regime and energy waves (demons) in the hydrodynamic one. The dominant instability occurs at frequency ω / 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com; El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg
The nonplanar amplitude modulation of dust acoustic (DA) envelope solitary waves in a strongly coupled dusty plasma (SCDP) has been investigated. By using a reductive perturbation technique, a modified nonlinear Schrödinger equation (NLSE) including the effects of geometry, polarization, and ion superthermality is derived. The modulational instability (MI) of the nonlinear DA wave envelopes is investigated in both planar and nonplanar geometries. There are two stable regions for the DA wave propagation strongly affected by polarization and ion superthermality. Moreover, it is found that the nonlinear DA waves in spherical geometry are the more structurally stable. The larger growth ratemore » of the nonlinear DA MI is observed in the cylindrical geometry. The salient characteristics of the MI in the nonplanar geometries cannot be found in the planar one. The DA wave propagation and the NLSE solutions are investigated both analytically and numerically.« less
Broadband nonlinear optical response of monolayer MoSe2 under ultrafast excitation
NASA Astrophysics Data System (ADS)
Nie, Zhonghui; Trovatello, Chiara; Pogna, Eva A. A.; Dal Conte, Stefano; Miranda, Paulo B.; Kelleher, Edmund; Zhu, Chunhui; Turcu, Ion Crisitan Edmond; Xu, Yongbing; Liu, Kaihui; Cerullo, Giulio; Wang, Fengqiu
2018-01-01
Due to their strong light-matter interaction, monolayer transition metal dichalcogenides (TMDs) have proven to be promising candidates for nonlinear optics and optoelectronics. Here, we characterize the nonlinear absorption of chemical vapour deposition (CVD)-grown monolayer MoSe2 in the 720-810 nm wavelength range. Surprisingly, despite the presence of strong exciton resonances, monolayer MoSe2 exhibits a uniform modulation depth of ˜80 ± 3% and a saturation intensity of ˜2.5 ± 0.4 MW/cm2. In addition, pump-probe spectroscopy is performed to confirm the saturable absorption and reveal the photocarrier relaxation dynamics over hundreds of picoseconds. Our results unravel the unique broadband nonlinear absorptive behavior of monolayer MoSe2 under ultrafast excitation and highlight the potential of using monolayer TMDs as broadband ultrafast optical switches with customizable saturable absorption characteristics.
Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots.
Nagamine, Gabriel; Rocha, Jaqueline O; Bonato, Luiz G; Nogueira, Ana F; Zaharieva, Zhanet; Watt, Andrew A R; de Brito Cruz, Carlos H; Padilha, Lazaro A
2018-06-21
Perovskite quantum dots (PQDs) emerged as a promising class of material for applications in lighting devices, including light emitting diodes and lasers. In this work, we explore nonlinear absorption properties of PQDs showing the spectral signatures and the size dependence of their two-photon absorption (2PA) cross-section, which can reach values higher than 10 6 GM. The large 2PA cross section allows for low threshold two-photon induced amplified spontaneous emission (ASE), which can be as low as 1.6 mJ/cm 2 . We also show that the ASE properties are strongly dependent on the nanomaterial size, and that the ASE threshold, in terms of the average number of excitons, decreases for smaller PQDs. Investigating the PQDs biexciton binding energy, we observe strong correlation between the increasing on the biexciton binding energy and the decreasing on the ASE threshold, suggesting that ASE in PQDs is a biexciton-assisted process.
Nonequilibrium dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Freericks, James
2007-03-01
Dynamical mean-field theory (DMFT) is establishing itself as one of the most powerful approaches to the quantum many-body problem in strongly correlated electron materials. Recently, the formalism has been generalized to study nonequilibrium problems [1,2], such as the evolution of Bloch oscillations in a material that changes from a diffusive metal to a Mott insulator [2,3]. Using a real-time formalism on the Kadanoff-Baym-Keldysh contour, the DMFT algorithm can be generalized to the case of systems that are not time-translation invariant. The computational algorithm has a parallel implementation with essentially a linear scale up when running on thousands of processors. Results on the decay of Bloch oscillations, their change of character within the Mott insulator, and movies on how electrons redistribute themselves due to their response to an external electrical field will be presented. In addition to solid-state applications, this work also applies to the behavior of mixtures of light and heavy cold atoms in optical lattices. [1] V. M. Turkowski and J. K. Freericks, Spectral moment sum rules for strongly correlated electrons in time-dependent electric fields, Phys. Rev. B 075108 (2006); Erratum, Phys. Rev. B 73, 209902(E) (2006). [2] J. K. Freericks, V. M. Turkowski , and V. Zlati'c, Nonlinear response of strongly correlated materials to large electric fields, in Proceedings of the HPCMP Users Group Conference 2006, Denver, CO, June 26--29, 2006 edited by D. E. Post (IEEE Computer Society, Los Alamitos, CA, 2006), to appear. [3] J. K. Freericks, V. M. Turkowski, and V. Zlati'c, Nonequilibrium dynamical mean-field theory, submitted to Phys. Rev. Lett. cond-mat//0607053.
NASA Astrophysics Data System (ADS)
Maute, A.; Hagan, M. E.; Richmond, A. D.; Roble, R. G.
2014-02-01
This modeling study quantifies the daytime low-latitude vertical E×B drift changes in the longitudinal wave number 1 (wn1) to wn4 during the major extended January 2006 stratospheric sudden warming (SSW) period as simulated by the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM), and attributes the drift changes to specific tides and planetary waves (PWs). The largest drift amplitude change (approximately 5 m/s) is seen in wn1 with a strong temporal correlation to the SSW. The wn1 drift is primarily caused by the semidiurnal westward propagating tide with zonal wave number 1 (SW1), and secondarily by a stationary planetary wave with zonal wave number 1 (PW1). SW1 is generated by the nonlinear interaction of PW1 and the migrating semidiurnal tide (SW2) at high latitude around 90-100 km. The simulations suggest that the E region PW1 around 100-130 km at the different latitudes has different origins: at high latitudes, the PW1 is related to the original stratospheric PW1; at midlatitudes, the model indicates PW1 is due to the nonlinear interaction of SW1 and SW2 around 95-105 km; and at low latitudes, the PW1 might be caused by the nonlinear interaction between DE2 and DE3. The time evolution of the simulated wn4 in the vertical E×B drift amplitude shows no temporal correlation with the SSW. The wn4 in the low-latitude vertical drift is attributed to the diurnal eastward propagating tide with zonal wave number 3 (DE3), and the contributions from SE2, TE1, and PW4 are negligible.
NASA Astrophysics Data System (ADS)
Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise
2017-12-01
Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.
Robust iterative method for nonlinear Helmholtz equation
NASA Astrophysics Data System (ADS)
Yuan, Lijun; Lu, Ya Yan
2017-08-01
A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.
Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels
Nikitin, M. P.; Orlov, A. V.; Sokolov, I. L.; ...
2018-01-01
The magnetically soft, disk-shaped particles reveal a strong nonlinearity of the magnetization process due to irreversible transitions from the spin vortex to single-domain configuration, enabling their ultrasensitive detection in high-background environments.
Iterative nonlinear joint transform correlation for the detection of objects in cluttered scenes
NASA Astrophysics Data System (ADS)
Haist, Tobias; Tiziani, Hans J.
1999-03-01
An iterative correlation technique with digital image processing in the feedback loop for the detection of small objects in cluttered scenes is proposed. A scanning aperture is combined with the method in order to improve the immunity against noise and clutter. Multiple reference objects or different views of one object are processed in parallel. We demonstrate the method by detecting a noisy and distorted face in a crowd with a nonlinear joint transform correlator.
A solar cycle dependence of nonlinearity in magnetospheric activity
NASA Astrophysics Data System (ADS)
Johnson, Jay R.; Wing, Simon
2005-04-01
The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.
Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi
2018-03-01
Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.
We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood
Young, Hayley; Benton, David
2015-01-01
Both heart rate (HR) and brain functioning involve the integrated output of a multitude of regulatory mechanisms, that are not quantified adequately by linear approximations such as means and standard deviations. It was therefore considered whether non-linear measures of HR complexity are more strongly associated with cognition and mood. Whilst resting, the inter-beat (R-R) time series of twenty-one males and twenty-four females were measured for five minutes. The data were summarised using time, frequency and nonlinear complexity measures. Attention, memory, reaction times, mood and cortisol levels were assessed. Nonlinear HR indices captured additional information, enabling a greater percentage of the variance in behaviour to be explained. On occasions non-linear indices were related to aspects for behaviour, for example focused attention and cortisol production, when time or frequency indices were not. These effects were sexually dimorphic with HR complexity being more strongly associated with the behaviour of females. It was concluded that nonlinear rather than linear methods of summarizing the HR times series offers a novel way of relating brain functioning and behaviour. It should be considered whether non-linear measures of HR complexity can be used as a biomarker of the integrated functioning of the brain. PMID:26565560
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Third order nonlinear optical response exhibited by mono- and few-layers of WS 2
Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...
2016-04-13
In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.
Engineering high-order nonlinear dissipation for quantum superconducting circuits
NASA Astrophysics Data System (ADS)
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
A new nonlinear conjugate gradient coefficient under strong Wolfe-Powell line search
NASA Astrophysics Data System (ADS)
Mohamed, Nur Syarafina; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
A nonlinear conjugate gradient method (CG) plays an important role in solving a large-scale unconstrained optimization problem. This method is widely used due to its simplicity. The method is known to possess sufficient descend condition and global convergence properties. In this paper, a new nonlinear of CG coefficient βk is presented by employing the Strong Wolfe-Powell inexact line search. The new βk performance is tested based on number of iterations and central processing unit (CPU) time by using MATLAB software with Intel Core i7-3470 CPU processor. Numerical experimental results show that the new βk converge rapidly compared to other classical CG method.
From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang
NASA Astrophysics Data System (ADS)
Lou, Sen-Yue
2017-06-01
Chinese ancient sage Laozi said everything comes from \\emph{\\bf \\em "nothing"}. \\rm In the first letter (Chin. Phys. Lett. 30 (2013) 080202), infinitely many discrete integrable systems have been obtained from "nothing" via simple principles (Dao). In this second letter, a new idea, the consistent correlated bang, is introduced to obtain nonlinear dynamic systems including some integrable ones such as the continuous nonlinear Schr\\"odinger equation (NLS), the (potential) Korteweg de Vries (KdV) equation, the (potential) Kadomtsev-Petviashvili (KP) equation and the sine-Gordon (sG) equation. These nonlinear systems are derived from nothing via suitable "Dao", the shifted parity, the charge conjugate, the delayed time reversal, the shifted exchange, the shifted-parity-rotation and so on.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1994-01-01
NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.
Bianca, C; Lemarchand, A
2014-06-14
This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.
NASA Astrophysics Data System (ADS)
Cao, Wenhua
2016-05-01
Predispersion for reduction of intrachannel nonlinear impairments in quasi-linear strongly dispersion-managed transmission system is analyzed in detail by numerical simulations. We show that for moderate amount of predispersion there is an optimal value at which reduction of the nonlinear impairments can be obtained, which is consistent with previous well-known predictions. However, we found that much better transmission performance than that of the previous predictions can be obtained if predispersion is increased to some extent. For large predispersion, the nonlinear impairments reduce monotonically with increasing predispersion and then they tend to be stabilized when predispersion is further increased. Thus, transmission performance can be efficiently improved by inserting a high-dispersive element, such as a chirped fiber bragg grating (CFBG), at the input end of the transmission link to broaden the signal pulses while, at the output end, using another CFBG with the opposite dispersion to recompress the signal.
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
NASA Astrophysics Data System (ADS)
Jiménez, N.; Romero-García, V.; Picó, R.; Garcia-Raffi, L. M.; Staliunas, K.
2015-11-01
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10-4). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
Testing the consistency of three-point halo clustering in Fourier and configuration space
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Gaztañaga, E.; Scoccimarro, R.; Crocce, M.
2018-05-01
We compare reduced three-point correlations Q of matter, haloes (as proxies for galaxies) and their cross-correlations, measured in a total simulated volume of ˜100 (h-1 Gpc)3, to predictions from leading order perturbation theory on a large range of scales in configuration space. Predictions for haloes are based on the non-local bias model, employing linear (b1) and non-linear (c2, g2) bias parameters, which have been constrained previously from the bispectrum in Fourier space. We also study predictions from two other bias models, one local (g2 = 0) and one in which c2 and g2 are determined by b1 via approximately universal relations. Overall, measurements and predictions agree when Q is derived for triangles with (r1r2r3)1/3 ≳60 h-1 Mpc, where r1 - 3 are the sizes of the triangle legs. Predictions for Qmatter, based on the linear power spectrum, show significant deviations from the measurements at the BAO scale (given our small measurement errors), which strongly decrease when adding a damping term or using the non-linear power spectrum, as expected. Predictions for Qhalo agree best with measurements at large scales when considering non-local contributions. The universal bias model works well for haloes and might therefore be also useful for tightening constraints on b1 from Q in galaxy surveys. Such constraints are independent of the amplitude of matter density fluctuation (σ8) and hence break the degeneracy between b1 and σ8, present in galaxy two-point correlations.
Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids
NASA Technical Reports Server (NTRS)
Patashinski, Alexander Z.; Ratner, Mark A.; Pines, Vladimir
1996-01-01
The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.
NASA Astrophysics Data System (ADS)
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Interactions of large amplitude solitary waves in viscous fluid conduits
NASA Astrophysics Data System (ADS)
Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.
2014-07-01
The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.
Frequency chirpings in Alfven continuum
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
Nonlinear regional warming with increasing CO2 concentrations
NASA Astrophysics Data System (ADS)
Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo
2015-02-01
When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.
The real evidence of effects from source to freefield as base for nonlinear seismology
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Marmureanu, Alexandru; Ortanza Cioflan, Carmen-; -Florinela Manea, Elena
2014-05-01
Authors developed in last time the concept of "Nonlinear Seismology-The Seismology of the XXI Century". Prof. P. M. Shearer, California Univ. in last book:(i) Strong ground accelerations from large earthquakes can produce a non-linear response in shallow soils; (ii) The shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes; (iii) This is an active area of research in strong motion and engineering seismology. Aki: Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think. Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification (Tectonophysics, 218, 93-111, 1993). The difficulty to seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding and splitting up (if it is possible…and if it is necessary!) the effects of earthquake source, propagation path and local geological site conditions. To see the actual influence of nonlinearity of the whole system (seismic source-path propagation-local geological structure) the authors used to study the free field response spectra which are the last in this chain and they are the ones who are taken into account in seismic design of all structures. Soils from last part of this system(source-freefield) exhibit a strong nonlinear behaviour under cyclic loading conditions and although have many common mechanical properties require the use of different models to describe behavior differences. Sands typically have low rheological properties and can be modeled with an acceptable linear elastic model and clays which frequently presents significant changes over time can be modeled by a nonlinear viscoelastic model The real evidence of site effects from source to freefield analysis was conducted by using spectral amplification factors for last strong and deep Vrancea earthquakes (March 04,1977;MW =7.5;h=94.5 km; August 30,1986;MW=7.1;h=134.5 km; May 30 1009;MW=6.0;h=90.9 km; May 31, 1990; MW=6.4 ;h=86.9 km).The amplification factors decrease with increasing the magnitudes of strong Vrancea earthquakes and these values are far of that given by Regulatory Guide 1.60 of the U. S. Atomic Energy Commission and IAEA Vienna. The concept was used for last Stress Test asked by IAEA Vienna for Romanian Cernavoda Nuclear Power Plant.. The spectral amplification factors were: SAF= 4.07 (MW =7.1); 4.74(MW=6.9) and 5.78 (MW=6.4), unction of earthquake magnitude. The analysis indicates that the effect of nonlinearity could be very important and if the analysis is made for peak accelerations, it is 48.87% smaller assuming that response of soil to earthquake with MW=6.4, it is still in elastic domain. In other 25 seismic stations here are values between 14.2% and 55.4%. The authors are coming with new quantitative real and recorded data in extra-Carpathian area with large alluvial deposits / sediments, thick Quaternary layers etc.
NASA Astrophysics Data System (ADS)
Kamagara, Abel; Wang, Xiangzhao; Li, Sikun
2018-03-01
We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.
Jeong, Hyunjo; Nahm, Seung-Hoon; Jhang, Kyung-Young; Nam, Young-Hyun
2003-09-01
The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
The relation between anxiety and BMI - is it all in our curves?
Haghighi, Mohammad; Jahangard, Leila; Ahmadpanah, Mohammad; Bajoghli, Hafez; Holsboer-Trachsler, Edith; Brand, Serge
2016-01-30
The relation between anxiety and excessive weight is unclear. The aims of the present study were three-fold: First, we examined the association between anxiety and Body Mass Index (BMI). Second, we examined this association separately for female and male participants. Next, we examined both linear and non-linear associations between anxiety and BMI. The BMI was assessed of 92 patients (mean age: M=27.52; 57% females) suffering from anxiety disorders. Patients completed the Beck Anxiety Inventory. Both linear and non-linear correlations were computed for the sample as a whole and separately by gender. No gender differences were observed in anxiety scores or BMI. No linear correlation between anxiety scores and BMI was observed. In contrast, a non-linear correlation showed an inverted U-shaped association, with lower anxiety scores both for lower and very high BMI indices, and higher anxiety scores for medium to high BMI indices. Separate computations revealed no differences between males and females. The pattern of results suggests that the association between BMI and anxiety is complex and more accurately captured with non-linear correlations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Grosse Frie, Kirstin; Janssen, Christian
2009-01-01
Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.
Dark energy simulacrum in nonlinear electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labun, Lance; Rafelski, Johann
2010-03-15
Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
NASA Astrophysics Data System (ADS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip
NASA Astrophysics Data System (ADS)
Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-07-01
We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.
Time series with tailored nonlinearities
NASA Astrophysics Data System (ADS)
Räth, C.; Laut, I.
2015-10-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.
Particle model for optical noisy image recovery via stochastic resonance
NASA Astrophysics Data System (ADS)
Zhang, Yongbin; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing
2017-10-01
We propose a particle model for investigating the optical noisy image recovery via stochastic resonance. The light propagating in nonlinear media is regarded as moving particles, which are used for analyzing the nonlinear coupling of signal and noise. Owing to nonlinearity, a signal seeds a potential to reinforce itself at the expense of noise. The applied electric field, noise intensity, and correlation length are important parameters that influence the recovery effects. The noise-hidden image with the signal-to-noise intensity ratio of 1:30 is successfully restored and an optimal cross-correlation gain of 6.1 is theoretically obtained.
NASA Astrophysics Data System (ADS)
Saha, Amrita; Shukla, Vijay; Choudhury, Sudip; Jayabalan, J.
2016-06-01
A new series of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds have been synthesized by Claisen-Schmidt condensation reaction. Nonlinear optical characterization were carried out using z-scan technique with nanosecond pulses. These samples are found to exhibit strong nonlinear absorption at 532 nm and the nonlinear absorption coefficient of these samples exponentially increases with the increase of phonon characteristic energy. This relation speaks the role of phonon in the origin of nonlinear absorption in these compounds. The reported dependence of optical nonlinearity of the chalcone derivatives on the phonon characteristic energy will help in designing similar class of new molecules with high nonlinear coefficients.
Hyper-resistive forced magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vekstein, G., E-mail: g.vekstein@manchester.ac.uk
We study Taylor's model of forced magnetic reconnection mediated by plasma hyper-resistivity. This includes both linear and nonlinear regimes of the process. It is shown how the onset of plasmoid instability occurs in the strongly nonlinear regime of forced reconnection.
Exact Open Quantum System Dynamics Using the Hierarchy of Pure States (HOPS).
Hartmann, Richard; Strunz, Walter T
2017-12-12
We show that the general and numerically exact Hierarchy of Pure States method (HOPS) is very well applicable to calculate the reduced dynamics of an open quantum system. In particular, we focus on environments with a sub-Ohmic spectral density (SD) resulting in an algebraic decay of the bath correlation function (BCF). The universal applicability of HOPS, reaching from weak to strong coupling for zero and nonzero temperature, is demonstrated by solving the spin-boson model for which we find perfect agreement with other methods, each one suitable for a special regime of parameters. The challenges arising in the strong coupling regime are not only reflected in the computational effort needed for the HOPS method to converge but also in the necessity for an importance sampling mechanism, accounted for by the nonlinear variant of HOPS. In order to include nonzero-temperature effects in the strong coupling regime we found that it is highly favorable for the HOPS method to use the zero-temperature BCF and include temperature via a stochastic Hermitian contribution to the system Hamiltonian.
Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S
2016-01-01
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.
Nonlinear instability and convection in a vertically vibrated granular bed
NASA Astrophysics Data System (ADS)
Shukla, Priyanka; Ansari, I. H.; van der Meer, D.; Lohse, Detlef; Alam, Meheboob
2015-11-01
The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis. Under a quasi-steady ansatz, the base state temperature decreases with increasing height away from from the vibrating plate, but the density profile consists of three distinct regions: (i) a collisional dilute layer at the bottom, (ii) a levitated dense layer at some intermediate height and (iii) a ballistic dilute layer at the top of the granular bed. For the nonlinear stability analysis, the nonlinearities up-to cubic order in perturbation amplitude are retained, leading to the Landau equation. The genesis of granular convection is shown to be tied to a supercritical pitchfork bifurcation from the Leidenfrost state. Near the bifurcation point the equilibrium amplitude is found to follow a square-root scaling law, Ae √{ ▵} , with the distance ▵ from bifurcation point. The strength of convection is maximal at some intermediate value of the shaking strength, with weaker convection both at weaker and stronger shaking. Our theory predicts a novel floating-convection state at very strong shaking.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1981-01-01
Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.
Observations of non-linear plasmon damping in dense plasmas
NASA Astrophysics Data System (ADS)
Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.
2018-05-01
We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.
Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor
NASA Astrophysics Data System (ADS)
Nosarzewski, B.; Moritz, B.; Freericks, J. K.; Kemper, A. F.; Devereaux, T. P.
2017-11-01
Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d -wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d -wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions for detecting the amplitude mode in trARPES experiments.
Nonlinear quantum Rabi model in trapped ions
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique
2018-02-01
We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.
2011-01-01
Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661
Nonlinear acoustics in biomedical ultrasound
NASA Astrophysics Data System (ADS)
Cleveland, Robin O.
2015-10-01
Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.
A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay R; Wing, Simon
2005-03-08
The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Dispersion-engineered and highly nonlinear microstructured polymer optical fibres
NASA Astrophysics Data System (ADS)
Frosz, Michael H.; Nielsen, Kristian; Hlubina, Petr; Stefani, Alessio; Bang, Ole
2009-05-01
We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferometry. The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that the strong loss peaks of PMMA above 1100 nm can significantly modify the dispersion, while the losses below 1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a PMMA mPOF was performed.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Theory of parametrically amplified electron-phonon superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babadi, Mehrtash; Knap, Michael; Martin, Ivar
2017-07-01
Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less
Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System
Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu; ...
2016-09-08
Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO 3/SrTiO 3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-bandmore » model. In particular, the large nonlinear dielectric response of SrTiO 3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO 3/SrTiO 3 interface.« less
Machado, Daniel Francisco Scalabrini; Lopes, Thiago O; Lima, Igo Torres; da Silva Filho, Demetrio Antonio; de Oliveira, Heibbe Cristhian Benedito
2016-07-01
We calculated the nonlinear optical properties of 24 azo-enaminone derivatives, incorporating solvent effects on their geometric and elec-tronic structure, to assess the impact of the environment on these properties. Namely, we incorporated chloroform, tetrahydrofuran, acetone, ethanol, methanol, dimethyl sulfoxide on our calculations and compared our results incorporating solvent effects with our gas phase calculations. To account for the electron correlation effects on NLO properties, the calculations were performed at MP2/6-31G(p)//MP2/6-31G(d) level set. The Polarizable Continuum Model (PCM) was used to simulate the presence of the solvent. The exponents of p extra functions added to heavy atoms were obtained, imposing the maximization of the first hyperpolarizability. Two structural configurations (Z and E) of azo-enaminones were investigated to assess the isomeric effects of the electric properties. Our results show that both solvent polarity and relative strength of the donor groups have significant impact on the electric properties, but more strikingly on the first hyperpolarizability β.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory
NASA Astrophysics Data System (ADS)
Gazuz, I.; Fuchs, M.
2013-03-01
A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation for N bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external force Fex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.248302 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.
Stable clustering and the resolution of dissipationless cosmological N-body simulations
NASA Astrophysics Data System (ADS)
Benhaiem, David; Joyce, Michael; Sylos Labini, Francesco
2017-10-01
The determination of the resolution of cosmological N-body simulations, I.e. the range of scales in which quantities measured in them represent accurately the continuum limit, is an important open question. We address it here using scale-free models, for which self-similarity provides a powerful tool to control resolution. Such models also provide a robust testing ground for the so-called stable clustering approximation, which gives simple predictions for them. Studying large N-body simulations of such models with different force smoothing, we find that these two issues are in fact very closely related: our conclusion is that the accuracy of two-point statistics in the non-linear regime starts to degrade strongly around the scale at which their behaviour deviates from that predicted by the stable clustering hypothesis. Physically the association of the two scales is in fact simple to understand: stable clustering fails to be a good approximation when there are strong interactions of structures (in particular merging) and it is precisely such non-linear processes which are sensitive to fluctuations at the smaller scales affected by discretization. Resolution may be further degraded if the short distance gravitational smoothing scale is larger than the scale to which stable clustering can propagate. We examine in detail the very different conclusions of studies by Smith et al. and Widrow et al. and find that the strong deviations from stable clustering reported by these works are the results of over-optimistic assumptions about scales resolved accurately by the measured power spectra, and the reliance on Fourier space analysis. We emphasize the much poorer resolution obtained with the power spectrum compared to the two-point correlation function.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Heeg, Jennifer; Perry, Boyd, III
1990-01-01
Time-correlated gust loads are time histories of two or more load quantities due to the same disturbance time history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is maximum. At least two analysis methods have been identified that are capable of computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and computing multiple simultaneous load responses. Such time histories are physically realizable and may be applied to aircraft structures. Within the past several years there has been much interest in obtaining a practical analysis method which is capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus of an international committee of gust loads specialists formed by the U.S. Federal Aviation Administration and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in Mobile, Alabama. The kinds of nonlinearities common on modern transport aircraft are indicated. The Statical Discrete Gust method is capable of being, but so far has not been, applied to nonlinear aircraft. To make the method practical for nonlinear applications, a search procedure is essential. Another method is based on Matched Filter Theory and, in its current form, is applicable to linear systems only. The purpose here is to present the status of an attempt to extend the matched filter approach to nonlinear systems. The extension uses Matched Filter Theory as a starting point and then employs a constrained optimization algorithm to attack the nonlinear problem.
Multi-frequency Defect Selective Imaging via Nonlinear Ultrasound
NASA Astrophysics Data System (ADS)
Solodov, Igor; Busse, Gerd
The concept of defect-selective ultrasonic nonlinear imaging is based on visualization of strongly nonlinear inclusions in the form of localized cracked defects. For intense excitation, the ultrasonic response of defects is affected by mechanical constraint between their fragments that makes their vibrations extremely nonlinear. The cracked flaws, therefore, efficiently generate multiple new frequencies, which can be used as a nonlinear "tag" to detect and image them. In this paper, the methodologies of nonlinear scanning laser vibrometry (NSLV) and nonlinear air-coupled emission (NACE) are applied for nonlinear imaging of various defects in hi-tech and constructional materials. A broad database obtained demonstrates evident advantages of the nonlinear approach over its linear counterpart. The higher-order nonlinear frequencies provide increase in signal-to-noise ratio and enhance the contrast of imaging. Unlike conventional ultrasonic instruments, the nonlinear approach yields abundant multi-frequency information on defect location. The application of image recognition and processing algorithms is described and shown to improve reliability and quality of ultrasonic imaging.
Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Spatschek, K. H.
Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less
Strong climate and tectonic control on plagioclase weathering in granitic terrain
Rasmussen, C.; Brantley, S.; Richter, D.D.B.; Blum, A.; Dixon, J.; White, A.F.
2011-01-01
Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature <5??C that exhibited little Na depletion, and locations with physical erosion rates <20gm-2yr-1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69kJmol-1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136kJmol-1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss. ?? 2010 Elsevier B.V.
Zhang, Wei; Chen, Yuanyuan; Hou, Peng; Shi, Jielong; Wang, Qi
2010-12-01
Nonlinear propagation characteristics are investigated theoretically in a one-dimensional photonic band-gap structure doped with a nonlinear indefinite metamaterial defect for five distinct frequency intervals. It is found from the electric field distribution that there exists the bright gap solitonlike when the nonlinear indefinite metamaterial defect is a cut-off medium, while the dark gap solitonlike can appear in the nonlinear never cut-off defect layer. It is also found that there exists corresponding bistable lateral shift the properties of which are strongly dependent on the permittivity and permeability of nonlinear indefinite metamaterials. Moreover, in contrast to the switch-down threshold value, the switch-up threshold value is more sensitive to the incident frequency.
Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk
Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.
2016-01-01
The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117
Nonlinear Curve-Fitting Program
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Badavi, Forooz F.
1989-01-01
Nonlinear optimization algorithm helps in finding best-fit curve. Nonlinear Curve Fitting Program, NLINEAR, interactive curve-fitting routine based on description of quadratic expansion of X(sup 2) statistic. Utilizes nonlinear optimization algorithm calculating best statistically weighted values of parameters of fitting function and X(sup 2) minimized. Provides user with such statistical information as goodness of fit and estimated values of parameters producing highest degree of correlation between experimental data and mathematical model. Written in FORTRAN 77.
Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)
NASA Astrophysics Data System (ADS)
Pavlenko, Olga V.
2016-07-01
To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.
Bound-Electron Nonlinearity Beyond the Ionization Threshold.
Wahlstrand, J K; Zahedpour, S; Bahl, A; Kolesik, M; Milchberg, H M
2018-05-04
We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.
QCL-based nonlinear sensing of independent targets dynamics.
Mezzapesa, F P; Columbo, L L; Dabbicco, M; Brambilla, M; Scamarcio, G
2014-03-10
We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations.
Bound-Electron Nonlinearity Beyond the Ionization Threshold
NASA Astrophysics Data System (ADS)
Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.
2018-05-01
We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.
Nonlinear Scattering of VLF Waves in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish
2014-10-01
Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.
Spatiotemporal light-beam compression from nonlinear mode coupling
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan
2018-04-01
We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.
NASA Astrophysics Data System (ADS)
Fang, Yao-Lung L.; Baranger, Harold U.
2017-07-01
We investigate interference and correlation effects when several detuned emitters are placed along a one-dimensional photonic waveguide. Such a setup allows multiple interactions between the photons and the strongly coupled emitters, and underlies proposed devices for quantum information processing. We show, first, that a pair of detuned two-level systems (2LS) separated by a half wavelength mimic a driven Λ -type three-level system (3LS) in both the single- and two-photon sectors. There is an interference-induced transparency peak at which the fluorescence is quenched, leaving the transmitted photons completely uncorrelated. Slightly away from this separation, we find that the inelastic scattering (fluorescence) is large, leading to nonlinear effects such as nonreciprocity (rectification). We connect this nonreciprocity to inelastic scattering caused by driving a dark pole and so derive a condition for maximum rectification. Finally, by placing a true 3LS midway between the two 2LS, we show that elastic scattering produces only transmission, but inelastic scattering nevertheless occurs (the fluorescence is not quenched) causing substantial photon correlations.
Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan
2008-01-01
Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.
Yang, Kaida; Kryutyanskiy, Victor; Kolmychek, Irina; ...
2016-01-01
Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. As a result, it has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport propertiesmore » in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.« less
Using field-particle correlations to study auroral electron acceleration in the LAPD
NASA Astrophysics Data System (ADS)
Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.
2017-10-01
Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.
A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers: a case study.
Xu, Changhai; Tang, Wenjuan; Du, Jinmei
2014-02-15
The sorption data of an anionic dye on cellulose fiber are often correlated with a log-linear model to determine the internal accessible volume of the fiber to the anionic dye (V, L/kg) and as such the standard affinity of the anionic dye to the fiber (-Δμ°, J/mol), but without taking into account the influence of ionized carboxyl groups due to cellulose oxidation ([COO(-)]f, mol/kg). In this study, a nonlinear isotherm model was derived by incorporating [COO(-)]f, V and -Δμ° as three model parameters. A set of classical sorption data of C. I. Direct Blue 1 on bleached cotton was correlated with the nonlinear isotherm model. The nonlinear curve fitting analysis showed that the nonlinear isotherm model was in excellent agreement with the sorption data and robust to determine the values of [COO(-)]f, V and -Δμ° for describing the sorption behaviors of anionic dyes on cellulose fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation
NASA Technical Reports Server (NTRS)
Rakoczy, John M.; Herren, Kenneth A.
2008-01-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation
NASA Technical Reports Server (NTRS)
Rakoczy, John; Herren, Kenneth
2007-01-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.
Forecasting currency circulation data of Bank Indonesia by using hybrid ARIMAX-ANN model
NASA Astrophysics Data System (ADS)
Prayoga, I. Gede Surya Adi; Suhartono, Rahayu, Santi Puteri
2017-05-01
The purpose of this study is to forecast currency inflow and outflow data of Bank Indonesia. Currency circulation in Indonesia is highly influenced by the presence of Eid al-Fitr. One way to forecast the data with Eid al-Fitr effect is using autoregressive integrated moving average with exogenous input (ARIMAX) model. However, ARIMAX is a linear model, which cannot handle nonlinear correlation structures of the data. In the field of forecasting, inaccurate predictions can be considered caused by the existence of nonlinear components that are uncaptured by the model. In this paper, we propose a hybrid model of ARIMAX and artificial neural networks (ANN) that can handle both linear and nonlinear correlation. This method was applied for 46 series of currency inflow and 46 series of currency outflow. The results showed that based on out-of-sample root mean squared error (RMSE), the hybrid models are up to10.26 and 10.65 percent better than ARIMAX for inflow and outflow series, respectively. It means that ANN performs well in modeling nonlinear correlation of the data and can increase the accuracy of linear model.
Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.
Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng
2017-09-15
Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.
Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Casdagli, M. C.; Iasemidis, L. D.; Sackellares, J. C.; Roper, S. N.; Gilmore, R. L.; Savit, R. S.
Invasive electroencephalographic (EEG) recordings from depth and subdural electrodes, performed in eight patients with temporal lobe epilepsy, are analyzed using a variety of nonlinear techniques. A surrogate data technique is used to find strong evidence for nonlinearities in epileptogenic regions of the brain. Most of these nonlinearities are characterized as “spiking” by a wavelet analysis. A small fraction of the nonlinearities are characterized as “recurrent” by a nonlinear prediction algorithm. Recurrent activity is found to occur in spatio-temporal patterns related to the location of the epileptogenic focus. Residual delay maps, used to characterize “lag-one nonlinearity”, are remarkably stationary for a given electrode, and exhibit striking variations among electrodes. The clinical and theoretical implications of these results are discussed.
Bolea, Juan; Pueyo, Esther; Orini, Michele; Bailón, Raquel
2016-01-01
The purpose of this study is to characterize and attenuate the influence of mean heart rate (HR) on nonlinear heart rate variability (HRV) indices (correlation dimension, sample, and approximate entropy) as a consequence of being the HR the intrinsic sampling rate of HRV signal. This influence can notably alter nonlinear HRV indices and lead to biased information regarding autonomic nervous system (ANS) modulation. First, a simulation study was carried out to characterize the dependence of nonlinear HRV indices on HR assuming similar ANS modulation. Second, two HR-correction approaches were proposed: one based on regression formulas and another one based on interpolating RR time series. Finally, standard and HR-corrected HRV indices were studied in a body position change database. The simulation study showed the HR-dependence of non-linear indices as a sampling rate effect, as well as the ability of the proposed HR-corrections to attenuate mean HR influence. Analysis in a body position changes database shows that correlation dimension was reduced around 21% in median values in standing with respect to supine position ( p < 0.05), concomitant with a 28% increase in mean HR ( p < 0.05). After HR-correction, correlation dimension decreased around 18% in standing with respect to supine position, being the decrease still significant. Sample and approximate entropy showed similar trends. HR-corrected nonlinear HRV indices could represent an improvement in their applicability as markers of ANS modulation when mean HR changes.
Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1990-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1991-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Four wave mixing as a probe of the vacuum
NASA Astrophysics Data System (ADS)
Tennant, Daniel M.
2016-06-01
Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.
NASA Astrophysics Data System (ADS)
Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.
2006-05-01
On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2017-11-01
Molecules containing methoxy supported triphenylamine as strong electron-donor and dicyanovinyl as electron-acceptor groups interacting via isophorone as a configurationally locked polyene π-conjugated bridge are studied for their nonlinear optical properties. The photophysical study of examined chromophores in non-polar and polar solvents suggest that they exhibit strong emission solvatochromism and significant charge transfer characteristics supported by Lippert-Mataga plots and Generalised Mulliken Hush analysis. Linear and nonlinear optical properties as well as electronic properties measured by spectroscopic methods and cyclic voltametry and supported by DFT calculation were used to elucidate the structure property relationships. All three chromophores exhibit very high thermal stabilities with the decomposition temperatures higher than 340°C. The vibrational motions play very important role in determining the overall NLO response styryl chromophores which was established by DFT study. Dye 3 with maximum nonlinear optical susceptibility among three D-π-A systems proves that the multibranched push-pull chromophores exhibit a higher third order nonlinear susceptibility and justifies the design strategy.
A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2017-04-01
Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.
Stability of matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Ali, Sk. Golam; Roy, S. K.; Talukdar, B.
2010-08-01
We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1995-08-01
The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
Nonlinear analysis of a rotor-bearing system using describing functions
NASA Astrophysics Data System (ADS)
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
On the estimation and detection of the Rees-Sciama effect
NASA Astrophysics Data System (ADS)
Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Sáez, D.
2017-02-01
Maps of the Rees-Sciama (RS) effect are simulated using the parallel N-body code, HYDRA, and a run-time ray-tracing procedure. A method designed for the analysis of small, square cosmic microwave background (CMB) maps is applied to our RS maps. Each of these techniques has been tested and successfully applied in previous papers. Within a range of angular scales, our estimate of the RS angular power spectrum due to variations in the peculiar gravitational potential on scales smaller than 42/h megaparsecs is shown to be robust. An exhaustive study of the redshifts and spatial scales relevant for the production of RS anisotropy is developed for the first time. Results from this study demonstrate that (I) to estimate the full integrated RS effect, the initial redshift for the calculations (integration) must be greater than 25, (II) the effect produced by strongly non-linear structures is very small and peaks at angular scales close to 4.3 arcmin, and (III) the RS anisotropy cannot be detected either directly-in temperature CMB maps-or by looking for cross-correlations between these maps and tracers of the dark matter distribution. To estimate the RS effect produced by scales larger than 42/h megaparsecs, where the density contrast is not strongly non-linear, high accuracy N-body simulations appear unnecessary. Simulations based on approximations such as the Zel'dovich approximation and adhesion prescriptions, for example, may be adequate. These results can be used to guide the design of future RS simulations.
Transverse effects in nonlinear optics: Toward the photon superfluid
NASA Astrophysics Data System (ADS)
McCormick, Colin Fraser
Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hsu, Jui-Ting; Fuh, Lih-Jyh; Tu, Ming-Gene; Li, Yu-Fen; Chen, Kuan-Ting; Huang, Heng-Li
2013-04-01
This study investigated how the primary stability of a dental implant as measured by the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) is affected by varying thicknesses of cortical bone and strengths of trabecular bone using synthetic bone models. Four synthetic cortical shells (with thicknesses of 0, 1, 2, and 3 mm) were attached to four cellular rigid polyurethane foams (with elastic moduli of 137, 47.5, 23, and 12.4 MPa) and one open-cell rigid polyurethane foam which mimic the osteoporotic bone (with an elastic modulus 6.5 MPa), to represent the jawbones with various cortical bone thicknesses and strengths of trabecular bone. A total of 60 bone specimens accompanied with implants was examined by a torque meter, Osstell resonance frequency analyzer, and Periotest electronic device. All data were statistically analyzed by two-way analysis of variance. In addition, second-order nonlinear regression was utilized to assess the correlations of the primary implant stability with the four cortex thicknesses and five strengths of trabecular bone. ITV, ISQ, and PTV differed significantly (p < .05) and were strongly correlated with the thickness of cortical bone (R(2) > 0.9) and the elastic modulus of trabecular bone (R(2) = 0.74-0.99). The initial stability at the time of implant placement is influenced by both the cortical bone thickness and the strength of trabecular bone; however, these factors are mostly nonlinearly correlated with ITV, PTV, and ISQ. Using ITV and PTV seems more suitable for identifying the primary implant stability in osteoporotic bone with a thin cortex. © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Casado-Pascual, Jesús; Denk, Claus; Gómez-Ordóñez, José; Morillo, Manuel; Hänggi, Peter
2003-03-01
In the context of the phenomenon of stochastic resonance (SR), we study the correlation function, the signal-to-noise ratio (SNR), and the ratio of output over input SNR, i.e., the gain, which is associated to the nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These quantifiers for SR are evaluated using the techniques of linear response theory (LRT) beyond the usually employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT description that the gain can indeed not exceed unity. We implement an efficient algorithm, based on work by Greenside and Helfand (detailed in the Appendix), to integrate the driven Langevin equation over a wide range of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear regime which is characterized by weak noise and very slow multifrequency subthreshold input signals with a small duty cycle. This latter result is in agreement with recent analog simulation results by Gingl et al. [ICNF 2001, edited by G. Bosman (World Scientific, Singapore, 2002), pp. 545 548; Fluct. Noise Lett. 1, L181 (2001)].
First results from the IllustrisTNG simulations: matter and galaxy clustering
NASA Astrophysics Data System (ADS)
Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill
2018-03-01
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.
A hybrid correlation analysis with application to imaging genetics
NASA Astrophysics Data System (ADS)
Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping
2018-03-01
Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
2015-09-30
We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves
Optical wave turbulence and the condensation of light
NASA Astrophysics Data System (ADS)
Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania
2009-11-01
In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
Development and Breakdown of Goertler Vortices in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; Wu, Minwei; Greene, Ptrick T.
2010-01-01
The nonlinear development of G rtler instability over a concave surface gives rise to a highly distorted stationary flow in the boundary layer that has strong velocity gradients in both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high frequency secondary instability that leads to the onset of transition. For high Mach number flows, the boundary layer is also subject to the second mode instability. The nonlinear development of G rtler vortices and the ensuing growth and breakdown of secondary instability, the G rtler vortex interactions with second mode instabilities as well as oblique second mode interactions are examined in the context of both internal and external hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue analysis and direct numerical simulation. For G rtler vortex development inside the Purdue Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are identified and their linear and nonlinear evolution is examined. The computation of secondary instability is continued past the onset of transition to elucidate the physical mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios associated with transition over a Mach 6 compression cone configuration are also explored.
NASA Astrophysics Data System (ADS)
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Falling films on flexible inclines
NASA Astrophysics Data System (ADS)
Matar, O. K.; Craster, R. V.; Kumar, S.
2007-11-01
The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.
NASA Astrophysics Data System (ADS)
Sarvghad-Moghaddam, H.; Rezaei, A.; Ziejewski, M.; Karami, G.
2017-11-01
Upon impingement of blast waves on the head, stress waves generated at the interface of the skull are transferred into the cranium and the brain tissue and may cause mild to severe blast traumatic brain injury. The intensity of the shock front, defined by the blast overpressure (BoP), that is, the blast-induced peak static overpressure, significantly affects head kinematics as well as the tissue responses of the brain. While evaluation of global linear and rotational accelerations may be feasible, an experimental determination of dynamic responses of the brain in terms of intracranial pressure (ICP), maximum shear stress (MSS), and maximum principal strain (MPS) is almost impossible. The main objective of this study is to investigate possible correlations between head accelerations and the brain's ICP, MSS, and MPS. To this end, three different blasts were simulated by modeling the detonation of 70, 200, and 500 g of TNT at a fixed distance from the head, corresponding to peak BoPs of 0.52, 1.2, and 2 MPa, respectively. A nonlinear multi-material finite element algorithm was implemented in the LS-DYNA explicit solver. Fluid-solid interaction between the blast waves and head was modeled using a penalty-based method. Strong correlations were found between the brain's dynamic responses and both global linear and rotational accelerations at different blast intensities (R^{2 }≥98%), implying that global kinematic parameters of the head might be strong predictors of brain tissue biomechanical parameters.
Liquidity crises on different time scales
NASA Astrophysics Data System (ADS)
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Liquidity crises on different time scales.
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Kepler Observations of Rapid Optical Variability in the BL Lac Object W2r192+42
NASA Technical Reports Server (NTRS)
R.Edelson; Mushotzky, R.; Vaughn, S.; Scargle, J.; Gandhi, P.; Malkan, M.; Baumgartner, W.
2013-01-01
We present the first Kepler monitoring of a strongly variable BL Lac, W2R1926+42. The light curve covers 181 days with approx. 0.2% errors, 30 minute sampling and >90% duty cycle, showing numerous delta-I/I > 25% flares over timescales as short as a day. The flux distribution is highly skewed and non-Gaussian. The variability shows a strong rms-flux correlation with the clearest evidence to date for non-linearity in this relation. We introduce a method to measure periodograms from the discrete autocorrelation function, an approach that may be well-suited to a wide range of Kepler data. The periodogram is not consistent with a simple power-law, but shows a flattening at frequencies below 7x10(exp -5) Hz. Simple models of the power spectrum, such as a broken power law, do not produce acceptable fits, indicating that the Kepler blazar light curve requires more sophisticated mathematical and physical descriptions than currently in use.
Nonlinear elasticity in resonance experiments
NASA Astrophysics Data System (ADS)
Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel
2018-04-01
Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.
Photophysics of single-walled carbon nanotubes: similarity with π-conjugated polymer
NASA Astrophysics Data System (ADS)
Zhao, Hongbo
2006-03-01
Coulomb electron-electron (e-e) interactions among the π-electrons have a strong effect on the energy spectra of semiconducting single-walled carbon nanotubes (S-SWCNTs), because of their quasi-one-dimensionality. The primary photoexcitations in S-SWCNTs as a consequence of e-e interactions are excitons, as opposed to free electrons and holes. There already exists a vast literature on excitons in π-conjugated polymers, the other class of carbon-based quasi-one-dimensional semiconductors. In order to seek guidance from this knowledge base, we have performed theoretical calculations of the excited state electronic structures, linear absorptions and excited state absorptions for ten different S-SWCNTs with a wide range in diameters, within the same correlated π-electron model that has previously been applied to π-conjugated polymers. We found remarkable similarities in the excitonic energy spectra and nonlinear optical properties of S-SWCNTs on the one hand, and π-conjugated polymers on the other. The ``essential states'' model of third-order optical nonlinearity, previously developed for π-conjugated polymers, applies also to S-SWCNTs (with minor modifications for chiral S-SWCNTs which lack center of inversion). Our theory is able to explain semiquantitatively the results of nonlinear spectroscopic measurements on both S-SWCNTs and π-conjugated polymers. For wide S-SWCNTs with diameters ranging from 0.8--1.0 nm, we calculate exciton binding energies of 0.3--0.4 eV, in strong agreement with the values predicted from the experiments. We also remark on the occurrence of dark excitons below the optical excitons in the S-SWCNTs, and the consequence thereof on the photoluminescence of these materials. H. Zhao, et al., cond-mat/0506097; J. W. Kennedy, et al., cond-mat/0505071. S. N. Dixit, D. Guo, and S. Mazumdar, Phys. Rev. B 43, R6781 (1991) H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).
Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps
NASA Astrophysics Data System (ADS)
Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.
2004-05-01
Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.
Oh, Jihoon; Chae, Jeong-Ho
2018-04-01
Although heart rate variability (HRV) may be a crucial marker of mental health, how it is related to positive psychological factors (i.e. attitude to life and positive thinking) is largely unknown. Here we investigated the correlation of HRV linear and nonlinear dynamics with psychological scales that measured degree of optimism and happiness in patients with anxiety disorders. Results showed that low- to high-frequency HRV ratio (LF/HF) was increased and the HRV HF parameter was decreased in subjects who were more optimistic and who felt happier in daily living. Nonlinear analysis also showed that HRV dispersion and regulation were significantly correlated with the subjects' optimism and purpose in life. Our findings showed that HRV properties might be related to degree of optimistic perspectives on life and suggests that HRV markers of autonomic nervous system function could reflect positive human mind states.
Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.
Trninić, Marko; Jeličić, Mario; Papić, Vladan
2015-07-01
In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.
Design of materials configurations for enhanced phononic and electronic properties
NASA Astrophysics Data System (ADS)
Daraio, Chiara
The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.
Head-on collision of the second mode internal solitary waves
NASA Astrophysics Data System (ADS)
Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae
2017-04-01
Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).
Cumulants of heat transfer across nonlinear quantum systems
NASA Astrophysics Data System (ADS)
Li, Huanan; Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng
2013-12-01
We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green's function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.
NASA Astrophysics Data System (ADS)
Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.
2018-04-01
We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
Towards Coupling of Macroseismic Intensity with Structural Damage Indicators
NASA Astrophysics Data System (ADS)
Kouteva, Mihaela; Boshnakov, Krasimir
2016-04-01
Knowledge on basic data of ground motion acceleration time histories during earthquakes is essential to understanding the earthquake resistant behaviour of structures. Peak and integral ground motion parameters such as peak ground motion values (acceleration, velocity and displacement), measures of the frequency content of ground motion, duration of strong shaking and various intensity measures play important roles in seismic evaluation of existing facilities and design of new systems. Macroseismic intensity is an earthquake measure related to seismic hazard and seismic risk description. Having detailed ideas on the correlations between the earthquake damage potential and macroseismic intensity is an important issue in engineering seismology and earthquake engineering. Reliable earthquake hazard estimation is the major prerequisite to successful disaster risk management. The usage of advanced earthquake engineering approaches for structural response modelling is essential for reliable evaluation of the accumulated damages in the existing buildings and structures due to the history of seismic actions, occurred during their lifetime. Full nonlinear analysis taking into account single event or series of earthquakes and the large set of elaborated damage indices are suitable contemporary tools to cope with this responsible task. This paper presents some results on the correlation between observational damage states, ground motion parameters and selected analytical damage indices. Damage indices are computed on the base of nonlinear time history analysis of test reinforced structure, characterising the building stock of the Mediterranean region designed according the earthquake resistant requirements in mid XX-th century.
Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength
NASA Technical Reports Server (NTRS)
Roberts, Mark J. (Compiler)
1999-01-01
Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.
Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-10-18
Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz
2018-04-01
Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.
Nonlinear absorption enhancement of AuNPs based polymer nanocomposites
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.
2018-07-01
Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.
Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.
2016-05-06
This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.
Exploring the nonlinear regime of light-matter interaction using electronic spins in diamond
NASA Astrophysics Data System (ADS)
Alfasi, Nir; Masis, Sergei; Winik, Roni; Farfurnik, Demitry; Shtempluck, Oleg; Bar-Gill, Nir; Buks, Eyal
2018-06-01
The coupling between defects in diamond and a superconducting microwave resonator is studied in the nonlinear regime. Both negatively charged nitrogen-vacancy and P1 defects are explored. The measured cavity mode response exhibits strong nonlinearity near a spin resonance. Data is compared with theoretical predictions and a good agreement is obtained in a wide range of externally controlled parameters. The nonlinear effect under study in the current paper is expected to play a role in any cavity-based magnetic resonance imaging technique and to impose a fundamental limit upon its sensitivity.
Imboden, Matthias; Williams, Oliver A; Mohanty, Pritiraj
2013-09-11
We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant.
NASA Astrophysics Data System (ADS)
Miyake, Susumu; Kasashima, Takashi; Yamazaki, Masato; Okimura, Yasuyuki; Nagata, Hajime; Hosaka, Hiroshi; Morita, Takeshi
2018-07-01
The high power properties of piezoelectric transducers were evaluated considering a complex nonlinear elastic constant. The piezoelectric LCR equivalent circuit with nonlinear circuit parameters was utilized to measure them. The deformed admittance curve of piezoelectric transducers was measured under a high stress and the complex nonlinear elastic constant was calculated by curve fitting. Transducers with various piezoelectric materials, Pb(Zr,Ti)O3, (K,Na)NbO3, and Ba(Zr,Ti)O3–(Ba,Ca)TiO3, were investigated by the proposed method. The measured complex nonlinear elastic constant strongly depends on the linear elastic and piezoelectric constants. This relationship indicates that piezoelectric high power properties can be controlled by modifying the linear elastic and piezoelectric constants.
On the dynamics of Airy beams in nonlinear media with nonlinear losses.
Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A
2015-04-06
We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.
Nonlinear Oscillators in Space Physics
NASA Technical Reports Server (NTRS)
Lester,Daniel; Thronson, Harley
2011-01-01
We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.
Investigation of nonlinear optical properties of various organic materials by the Z-scan method
NASA Astrophysics Data System (ADS)
Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.
2012-06-01
We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.
Models of fold-related hysteresis
NASA Astrophysics Data System (ADS)
Shtern, Vladimir
2018-05-01
Hysteresis is a strongly nonlinear physics phenomenon observed in many fluid mechanics flows. This paper composes evolution equations of the minimal nonlinearity and dimension which describe three hysteresis kinds related to a fold catastrophe formed by (i) two fold bifurcations, (ii) fold and transcritical bifurcations, and (iii) fold and subcritical bifurcations.
FEL system with homogeneous average output
Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph
2018-01-16
A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.
Global patterns of predator diversity in the open oceans.
Worm, Boris; Sandow, Marcel; Oschlies, Andreas; Lotze, Heike K; Myers, Ransom A
2005-08-26
The open oceans comprise most of the biosphere, yet patterns and trends of species diversity there are enigmatic. Here, we derive worldwide patterns of tuna and billfish diversity over the past 50 years, revealing distinct subtropical "hotspots" that appeared to hold generally for other predators and zooplankton. Diversity was positively correlated with thermal fronts and dissolved oxygen and a nonlinear function of temperature (approximately 25 degrees C optimum). Diversity declined between 10 and 50% in all oceans, a trend that coincided with increased fishing pressure, superimposed on strong El Niño-Southern Oscillation-driven variability across the Pacific. We conclude that predator diversity shows a predictable yet eroding pattern signaling ecosystem-wide changes linked to climate and fishing.
Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor
Nosarzewski, B.; Moritz, B.; Freericks, J. K.; ...
2017-11-20
Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less
Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosarzewski, B.; Moritz, B.; Freericks, J. K.
Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less
Controllability in tunable chains of coupled harmonic oscillators
NASA Astrophysics Data System (ADS)
Buchmann, L. F.; Mølmer, K.; Petrosyan, D.
2018-04-01
We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.
A theoretical model of strong and moderate El Niño regimes
NASA Astrophysics Data System (ADS)
Takahashi, Ken; Karamperidou, Christina; Dewitte, Boris
2018-02-01
The existence of two regimes for El Niño (EN) events, moderate and strong, has been previously shown in the GFDL CM2.1 climate model and also suggested in observations. The two regimes have been proposed to originate from the nonlinearity in the Bjerknes feedback, associated with a threshold in sea surface temperature (T_c ) that needs to be exceeded for deep atmospheric convection to occur in the eastern Pacific. However, although the recent 2015-16 EN event provides a new data point consistent with the sparse strong EN regime, it is not enough to statistically reject the null hypothesis of a unimodal distribution based on observations alone. Nevertheless, we consider the possibility suggestive enough to explore it with a simple theoretical model based on the nonlinear Bjerknes feedback. In this study, we implemented this nonlinear mechanism in the recharge-discharge (RD) ENSO model and show that it is sufficient to produce the two EN regimes, i.e. a bimodal distribution in peak surface temperature (T) during EN events. The only modification introduced to the original RD model is that the net damping is suppressed when T exceeds T_c , resulting in a weak nonlinearity in the system. Due to the damping, the model is globally stable and it requires stochastic forcing to maintain the variability. The sustained low-frequency component of the stochastic forcing plays a key role for the onset of strong EN events (i.e. for T>T_c ), at least as important as the precursor positive heat content anomaly (h). High-frequency forcing helps some EN events to exceed T_c , increasing the number of strong events, but the rectification effect is small and the overall number of EN events is little affected by this forcing. Using the Fokker-Planck equation, we show how the bimodal probability distribution of EN events arises from the nonlinear Bjerknes feedback and also propose that the increase in the net feedback with increasing T is a necessary condition for bimodality in the RD model. We also show that the damping strength determines both the adjustment time-scale and equilibrium value of the ensemble spread associated with the stochastic forcing.
Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle
House, Clarissa M.; Sharma, M. D.; Okada, Kensuke; Hosken, David J.
2016-01-01
Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male–male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male–male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. PMID:27371390
Efficient quantum computing using coherent photon conversion.
Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A
2011-10-12
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.
Helbich, Marco; Klein, Nadja; Roberts, Hannah; Hagedoorn, Paulien; Groenewegen, Peter P
2018-06-20
Exposure to green space seems to be beneficial for self-reported mental health. In this study we used an objective health indicator, namely antidepressant prescription rates. Current studies rely exclusively upon mean regression models assuming linear associations. It is, however, plausible that the presence of green space is non-linearly related with different quantiles of the outcome antidepressant prescription rates. These restrictions may contribute to inconsistent findings. Our aim was: a) to assess antidepressant prescription rates in relation to green space, and b) to analyze how the relationship varies non-linearly across different quantiles of antidepressant prescription rates. We used cross-sectional data for the year 2014 at a municipality level in the Netherlands. Ecological Bayesian geoadditive quantile regressions were fitted for the 15%, 50%, and 85% quantiles to estimate green space-prescription rate correlations, controlling for physical activity levels, socio-demographics, urbanicity, etc. RESULTS: The results suggested that green space was overall inversely and non-linearly associated with antidepressant prescription rates. More important, the associations differed across the quantiles, although the variation was modest. Significant non-linearities were apparent: The associations were slightly positive in the lower quantile and strongly negative in the upper one. Our findings imply that an increased availability of green space within a municipality may contribute to a reduction in the number of antidepressant prescriptions dispensed. Green space is thus a central health and community asset, whilst a minimum level of 28% needs to be established for health gains. The highest effectiveness occurred at a municipality surface percentage higher than 79%. This inverse dose-dependent relation has important implications for setting future community-level health and planning policies. Copyright © 2018 Elsevier Inc. All rights reserved.
Louisnard, O
2012-01-01
The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bubbles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a 1D standing wave configuration. The expected strong attenuation is not only observed but furthermore, the examination of the phase between the pressure field and its gradient clearly demonstrates that a traveling wave appears in the medium. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, C., E-mail: csung@physics.ucla.edu; White, A. E.; Greenwald, M.
2016-04-15
Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local,more » electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].« less
NASA Astrophysics Data System (ADS)
Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.
2007-12-01
The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and source parameters for the ensemble of site conditions. Elastic, equivalent linear and nonlinear simulations are implemented for the deterministic description of the base-model velocity and attenuation structures and nonlinear soil properties, to examine the variability in ground motion predictions as a function of ground motion amplitude and frequency content, and nonlinear site response methodology. The modeling site response uncertainty introduced in the broadband ground motion predictions is reported by means of the COV of site amplification, defined as the ratio of the predicted peak ground acceleration (PGA) and spectral acceleration (SA) at short and long periods to the corresponding intensity measure on the ground surface of a typical NEHRP BC boundary profile (Vs30=760m/s), for the ensemble of approximate and incremental nonlinear models implemented. A frequency index is developed to describe the frequency content of incident ground motion. In conjunction with the rock-outcrop acceleration level, this index is used to identify the site and ground motion conditions where incremental nonlinear analyses should be employed in lieu of approximate methodologies. Finally, the effects of modeling uncertainty in ground response analysis is evaluated in the estimation of site amplification factors, which are successively compared to recently published factors of the New Generation Attenuation Relations (NGA) and the currently employed Seismic Code Provisions (NEHRP).
Nonlinear attenuation of S-waves and Love waves within ambient rock
NASA Astrophysics Data System (ADS)
Sleep, Norman H.; Erickson, Brittany A.
2014-04-01
obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.
Non-linear solitary sound waves in lipid membranes and their possible role in biological signaling
NASA Astrophysics Data System (ADS)
Shrivastava, Shamit
Biological macromolecules self-assemble under entropic forces to form a dynamic 2D interfacial medium where the elastic properties arise from the curvature of the entropic potential of the interface. Elastic interfaces should be capable of propagating localized perturbations analogous to sound waves. However, (1) the existence and (2) the possible role of such waves in affecting biological functions remain unexplored. Both these aspects of "sound" as a signaling mechanism in biology are explored experimentally on mixed monolayers of lipids-fluorophores-proteins at the air/water interface as a model biological interface. This study shows - for the first time - that the nonlinear susceptibility near a thermodynamic transition in a lipid monolayer results in nonlinear solitary sound waves that are of 'all or none' nature. The state dependence of the nonlinear propagation is characterized by studying the velocity-amplitude relationship and results on distance dependence, effect of geometry and collision of solitary waves are presented. Given that the lipid bilayers and real biological membranes have such nonlinearities in their susceptibility diagrams, similar solitary phenomenon should be expected in biological membranes. In fact the observed characteristics of solitary sound waves such as, their all or none nature, a biphasic pulse shape with a long tail and optp-mechano-electro-thermal coupling etc. are strikingly similar to the phenomenon of nerve pulse propagation as observed in single nerve fibers. Finally given the strong correlation between the activity of membrane bound enzymes and the susceptibility and the fact that the later varies within a single solitary pulse, a new thermodynamic basis for biological signaling is proposed. The state of the interface controls both the nature of sound propagation and its impact on incorporated enzymes and proteins. The proof of concept is demonstrated for acetylcholine esterase embedded in a lipid monolayer, where the enzyme is spatiotemporally "knocked out" by a propagating sound wave.
Studying User Income through Language, Behaviour and Affect in Social Media.
Preoţiuc-Pietro, Daniel; Volkova, Svitlana; Lampos, Vasileios; Bachrach, Yoram; Aletras, Nikolaos
2015-01-01
Automatically inferring user demographics from social media posts is useful for both social science research and a range of downstream applications in marketing and politics. We present the first extensive study where user behaviour on Twitter is used to build a predictive model of income. We apply non-linear methods for regression, i.e. Gaussian Processes, achieving strong correlation between predicted and actual user income. This allows us to shed light on the factors that characterise income on Twitter and analyse their interplay with user emotions and sentiment, perceived psycho-demographics and language use expressed through the topics of their posts. Our analysis uncovers correlations between different feature categories and income, some of which reflect common belief e.g. higher perceived education and intelligence indicates higher earnings, known differences e.g. gender and age differences, however, others show novel findings e.g. higher income users express more fear and anger, whereas lower income users express more of the time emotion and opinions.
Multipulse interaction quenched ultracold few-bosonic ensembles in finite optical lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Neuhaus-Steinmetz, Jannis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The correlated non-equilibrium dynamics following a multipulse interaction quench protocol in few-bosonic ensembles confined in finite optical lattices is investigated. The multipulse interaction quench gives rise to the cradle and a global breathing mode. These modes are generated during the interaction pulse and persist also after the pulse. The corresponding tunneling dynamics consists of several energy channels accompanying the dynamics. The majority of the tunneling channels persist after the pulse, while only a few occur during the pulse. The induced excitation dynamics is also explored and a strong non-linear dependence on the delayed time of the multipulse protocol is observed. Moreover, the character of the excitation dynamics is also manifested by the periodic population of higher-lying lattice momenta. The above mentioned findings pave the way for future investigations on the direct control of the excitation dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Analysis of Neuronal Spike Trains, Deconstructed
Aljadeff, Johnatan; Lansdell, Benjamin J.; Fairhall, Adrienne L.; Kleinfeld, David
2016-01-01
As information flows through the brain, neuronal firing progresses from encoding the world as sensed by the animal to driving the motor output of subsequent behavior. One of the more tractable goals of quantitative neuroscience is to develop predictive models that relate the sensory or motor streams with neuronal firing. Here we review and contrast analytical tools used to accomplish this task. We focus on classes of models in which the external variable is compared with one or more feature vectors to extract a low-dimensional representation, the history of spiking and other variables are potentially incorporated, and these factors are nonlinearly transformed to predict the occurrences of spikes. We illustrate these techniques in application to datasets of different degrees of complexity. In particular, we address the fitting of models in the presence of strong correlations in the external variable, as occurs in natural sensory stimuli and in movement. Spectral correlation between predicted and measured spike trains is introduced to contrast the relative success of different methods. PMID:27477016
Studying User Income through Language, Behaviour and Affect in Social Media
Preoţiuc-Pietro, Daniel; Volkova, Svitlana; Lampos, Vasileios; Bachrach, Yoram; Aletras, Nikolaos
2015-01-01
Automatically inferring user demographics from social media posts is useful for both social science research and a range of downstream applications in marketing and politics. We present the first extensive study where user behaviour on Twitter is used to build a predictive model of income. We apply non-linear methods for regression, i.e. Gaussian Processes, achieving strong correlation between predicted and actual user income. This allows us to shed light on the factors that characterise income on Twitter and analyse their interplay with user emotions and sentiment, perceived psycho-demographics and language use expressed through the topics of their posts. Our analysis uncovers correlations between different feature categories and income, some of which reflect common belief e.g. higher perceived education and intelligence indicates higher earnings, known differences e.g. gender and age differences, however, others show novel findings e.g. higher income users express more fear and anger, whereas lower income users express more of the time emotion and opinions. PMID:26394145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaldi, O.; Kassmi, M.; El Manar University, LMOP, 2092 Tunis
2014-08-28
Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearitiesmore » are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.« less
NASA Astrophysics Data System (ADS)
Blumenfeld, Raphael; Bergman, David J.
1991-10-01
A class of strongly nonlinear composite dielectrics is studied. We develop a general method to reduce the scalar-potential-field problem to the solution of a set of linear Poisson-type equations in rescaled coordinates. The method is applicable for a large variety of nonlinear materials. For a power-law relation between the displacement and the electric fields, it is used to solve explicitly for the value of the bulk effective dielectric constant ɛe to second order in the fluctuations of its local value. A simlar procedure for the vector potential, whose curl is the displacement field, yields a quantity analogous to the inverse dielectric constant in linear dielectrics. The bulk effective dielectric constant is given by a set of linear integral expressions in the rescaled coordinates and exact bounds for it are derived.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
Shoaling of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.; Pineda, J.
2008-01-01
The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record. Copyright 2008 by the American Geophysical Union.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.
Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials
NASA Astrophysics Data System (ADS)
Herbold, Eric B.
New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.
X-Ray generation in strongly nonlinear plasma waves.
NASA Astrophysics Data System (ADS)
Kiselev, Sergey; Pukhov, Alexander; Kostyukov, Igor
2004-11-01
Using three-dimensional particle-in-cell simulations we show that a strongly nonlinear plasma wave excited by an ultrahigh intensity laser pulse works as a compact high-brightness source of Xray radiation. It has been recently suggested by A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002), that in a strongly nonlinear regime the plasma wave transforms to a ``bubble'', which is almost free from background electrons. Inside the bubble, a dense bunch of relativistic electrons is produced. These accelerated electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband X-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of X-ray generation by an external 28.5-GeV electron bunch injected into the bubble. Gamma-quanta with up to GeV energies are observed in the simulation in a good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.
Modeling magnetic field amplification in nonlinear diffusive shock acceleration
NASA Astrophysics Data System (ADS)
Vladimirov, Andrey
2009-02-01
This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.
Zhou, Shengxi; Yan, Bo; Inman, Daniel J
2018-05-09
This paper presents a novel nonlinear piezoelectric energy harvesting system which consists of linear piezoelectric energy harvesters connected by linear springs. In principle, the presented nonlinear system can improve broadband energy harvesting efficiency where magnets are forbidden. The linear spring inevitably produces the nonlinear spring force on the connected harvesters, because of the geometrical relationship and the time-varying relative displacement between two adjacent harvesters. Therefore, the presented nonlinear system has strong nonlinear characteristics. A theoretical model of the presented nonlinear system is deduced, based on Euler-Bernoulli beam theory, Kirchhoff’s law, piezoelectric theory and the relevant geometrical relationship. The energy harvesting enhancement of the presented nonlinear system (when n = 2, 3) is numerically verified by comparing with its linear counterparts. In the case study, the output power area of the presented nonlinear system with two and three energy harvesters is 268.8% and 339.8% of their linear counterparts, respectively. In addition, the nonlinear dynamic response characteristics are analyzed via bifurcation diagrams, Poincare maps of the phase trajectory, and the spectrum of the output voltage.
Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling
NASA Astrophysics Data System (ADS)
Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.
2018-03-01
We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.
Hegna, Chris C.; Terry, Paul W.; Faber, Ben J.
2018-02-01
A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3Dmore » geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegna, Chris C.; Terry, Paul W.; Faber, Ben J.
A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3Dmore » geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.« less
Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis.
Fujita, André; Sato, João Ricardo; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide; Ferreira, Carlos Eduardo; Miyano, Satoru
2009-08-01
DNA microarrays have become a powerful tool to describe gene expression profiles associated with different cellular states, various phenotypes and responses to drugs and other extra- or intra-cellular perturbations. In order to cluster co-expressed genes and/or to construct regulatory networks, definition of distance or similarity between measured gene expression data is usually required, the most common choices being Pearson's and Spearman's correlations. Here, we evaluate these two methods and also compare them with a third one, namely Hoeffding's D measure, which is used to infer nonlinear and non-monotonic associations, i.e. independence in a general sense. By comparing three different variable association approaches, namely Pearson's correlation, Spearman's correlation and Hoeffding's D measure, we aimed at assessing the most appropriate one for each purpose. Using simulations, we demonstrate that the Hoeffding's D measure outperforms Pearson's and Spearman's approaches in identifying nonlinear associations. Our results demonstrate that Hoeffding's D measure is less sensitive to outliers and is a more powerful tool to identify nonlinear and non-monotonic associations. We have also applied Hoeffding's D measure in order to identify new putative genes associated with tp53. Therefore, we propose the Hoeffding's D measure to identify nonlinear associations between gene expression profiles.
The role of climatic variables in winter cereal yields: a retrospective analysis.
Luo, Qunying; Wen, Li
2015-02-01
This study examined the effects of observed climate including [CO2] on winter cereal [winter wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa)] yields by adopting robust statistical analysis/modelling approaches (i.e. autoregressive fractionally integrated moving average, generalised addition model) based on long time series of historical climate data and cereal yield data at three locations (Moree, Dubbo and Wagga Wagga) in New South Wales, Australia. Research results show that (1) growing season rainfall was significantly, positively and non-linearly correlated with crop yield at all locations considered; (2) [CO2] was significantly, positively and non-linearly correlated with crop yields in all cases except wheat and barley yields at Wagga Wagga; (3) growing season maximum temperature was significantly, negatively and non-linearly correlated with crop yields at Dubbo and Moree (except for barley); and (4) radiation was only significantly correlated with oat yield at Wagga Wagga. This information will help to identify appropriate management adaptation options in dealing with the risk and in taking the opportunities of climate change.
Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik
2016-10-01
To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy
2018-05-01
By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.
NASA Astrophysics Data System (ADS)
Huang, J. G.; Slavcheva, G.; Hess, O.
2008-04-01
We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.
Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric
2016-12-01
In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.
Dynamics of a movable micromirror in a nonlinear optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Tarun; ManMohan; Bhattacherjee, Aranya B.
We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a chi{sup (3)} medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that the displacement spectrum of the micromirror could be used as a tool to detect the photon blockade effect. Moreover the ability to control the photon number fluctuation by tuning the Kerr nonlinearity emerges as a new handle to coherently control the dynamics of the micromirror, which further could be useful in the realization ofmore » tuneable quantum-mechanical devices. We also found that the temperature of the micromechanical mirror increases with increasing Kerr nonlinearity.« less
Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Deng, Dongmei; Guo, Qi
2011-10-01
The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.
NASA Astrophysics Data System (ADS)
Herbold, Eric
2005-07-01
Strongly nonlinear phononic crystals were assembled from chains of stainless steel spheres with diameter 4.78 mm. Propagation of solitary waves and splitting of initial pulse into train of solitary waves excited by the impact of piston was investigated in different viscous media in experiments and in numerical calculations. Oil of various grades was used to introduce controlled dissipation into the system. Preliminary results indicate that splitting of the initial pulse into the train of solitary waves was dramatically influenced by viscosity. This work was supported by NSF (Grant No. DCMS03013220).
1979-11-01
can be evaluated semi- analitically in both the strongly nonlinear inner (critical layer) region and the weakly nonlinear outer region, reproduce the...experimental evidence of Ref. 8 (Figure 3, stage 3). Whereas the exact s~lutions of the Schridinger equation (Ref. 13) predict that an arbitrary smooth...peaks and valleys, different from the comon rate predicted by linear theory) arise suddenly and at surpris- ingly low disturbance levels [(u’/U 10-2] as
Bistability in mushroom-type metamaterials
NASA Astrophysics Data System (ADS)
Fernandes, David E.; Silveirinha, Mário G.
2017-07-01
Here, we study the electromagnetic response of asymmetric mushroom-type metamaterials loaded with nonlinear elements. It is shown that near a Fano resonance, these structures may have a strong tunable, bistable, and switchable response and enable giant nonlinear effects. By using an effective medium theory and full wave simulations, it is proven that the nonlinear elements may allow the reflection and transmission coefficients to follow hysteresis loops, and to switch the metamaterial between "go" and "no-go" states similar to an ideal electromagnetic switch.
Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.
Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H
2017-11-01
This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.
NASA Astrophysics Data System (ADS)
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.
Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles
NASA Astrophysics Data System (ADS)
Chen, G. X.; Hong, M. H.
2010-11-01
Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.
Nazarov, V E; Kolpakov, A B; Radostin, A V
2012-07-01
The results of experimental and theoretical studies of low-frequency nonlinear acoustics phenomena (amplitude-dependent loss, resonance frequency shifts, and a generation of second and third harmonics) in a magnesite rod resonator are presented. Acceleration and velocity oscillograms of vibrations of the free boundary of the resonator caused by harmonic excitations were measured and analyzed. A theoretical description of the observed amplitude dependences was carried out within the framework of the phenomenological state equations that contain either of the two types of hysteretic nonlinearity (elastic and inelastic). The type of hysteresis and parameters of acoustic nonlinearity of magnesite were established from comparing the experimental measurements with the theoretical dependences. The values of the parameters were anomalously high even when compared to those of other strongly nonlinear polycrystalline materials such as granite, marble, limestone, sandstone, etc.
Detecting nonlinear dynamics of functional connectivity
NASA Astrophysics Data System (ADS)
LaConte, Stephen M.; Peltier, Scott J.; Kadah, Yasser; Ngan, Shing-Chung; Deshpande, Gopikrishna; Hu, Xiaoping
2004-04-01
Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity. The application of fMRI to measure functional connectivity of related brain regions across hemispheres (e.g. left and right motor cortices) has great potential for revealing fundamental physiological brain processes. Primarily, functional connectivity has been characterized by linear correlations in resting-state data, which may not provide a complete description of its temporal properties. In this work, we broaden the measure of functional connectivity to study not only linear correlations, but also those arising from deterministic, non-linear dynamics. Here the delta-epsilon approach is extended and applied to fMRI time series. The method of delays is used to reconstruct the joint system defined by a reference pixel and a candidate pixel. The crux of this technique relies on determining whether the candidate pixel provides additional information concerning the time evolution of the reference. As in many correlation-based connectivity studies, we fix the reference pixel. Every brain location is then used as a candidate pixel to estimate the spatial pattern of deterministic coupling with the reference. Our results indicate that measured connectivity is often emphasized in the motor cortex contra-lateral to the reference pixel, demonstrating the suitability of this approach for functional connectivity studies. In addition, discrepancies with traditional correlation analysis provide initial evidence for non-linear dynamical properties of resting-state fMRI data. Consequently, the non-linear characterization provided from our approach may provide a more complete description of the underlying physiology and brain function measured by this type of data.
The periodic structure of the natural record, and nonlinear dynamics.
Shaw, H.R.
1987-01-01
This paper addresses how nonlinear dynamics can contribute to interpretations of the geologic record and evolutionary processes. Background is given to explain why nonlinear concepts are important. A resume of personal research is offered to illustrate why I think nonlinear processes fit with observations on geological and cosmological time series data. The fabric of universal periodicity arrays generated by nonlinear processes is illustrated by means of a simple computer mode. I conclude with implications concerning patterns of evolution, stratigraphic boundary events, and close correlations of major geologically instantaneous events (such as impacts or massive volcanic episodes) with any sharply defined boundary in the geologic column. - from Author
Variance adaptation in navigational decision making
NASA Astrophysics Data System (ADS)
Gershow, Marc; Gepner, Ruben; Wolk, Jason; Wadekar, Digvijay
Drosophila larvae navigate their environments using a biased random walk strategy. A key component of this strategy is the decision to initiate a turn (change direction) in response to declining conditions. We modeled this decision as the output of a Linear-Nonlinear-Poisson cascade and used reverse correlation with visual and fictive olfactory stimuli to find the parameters of this model. Because the larva responds to changes in stimulus intensity, we used stimuli with uncorrelated normally distributed intensity derivatives, i.e. Brownian processes, and took the stimulus derivative as the input to our LNP cascade. In this way, we were able to present stimuli with 0 mean and controlled variance. We found that the nonlinear rate function depended on the variance in the stimulus input, allowing larvae to respond more strongly to small changes in low-noise compared to high-noise environments. We measured the rate at which the larva adapted its behavior following changes in stimulus variance, and found that larvae adapted more quickly to increases in variance than to decreases, consistent with the behavior of an optimal Bayes estimator. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.
Fly-by-feel aeroservoelasticity
NASA Astrophysics Data System (ADS)
Suryakumar, Vishvas Samuel
Recent experiments have suggested a strong correlation between local flow features on the airfoil surface such as the leading edge stagnation point (LESP), transition or the flow separation point with global integrated quantities such as aerodynamic lift. "Fly-By-Feel" refers to a physics-based sensing and control framework where local flow features are tracked in real-time to determine aerodynamic loads. This formulation offers possibilities for the development of robust, low-order flight control architectures. An essential contribution towards this objective is the theoretical development showing the direct relationship of the LESP with circulation for small-amplitude, unsteady, airfoil maneuvers. The theory is validated through numerical simulations and wind tunnel tests. With the availability of an aerodynamic observable, a low-order, energy-based control formulation is derived for aeroelastic stabilization and gust load alleviation. The sensing and control framework is implemented on the Nonlinear Aeroelastic Test Apparatus at Texas A&M University. The LESP is located using hot-film sensors distributed around the wing leading edge. Stabilization of limit cycle oscillations exhibited by a nonlinear wing section is demonstrated in the presence of gusts. Aeroelastic stabilization is also demonstrated on a flying wing configuration exhibiting body freedom flutter through numerical simulations.
Nonlinear effects contributing to hand-stopping tones in a horn.
Ebihara, Takayasu; Yoshikawa, Shigeru
2013-05-01
Hand stopping is a technique for playing the French horn while closing the bell relatively tightly using the right hand. The resulting timbre is called "penetrating" and "metallic." The effect of hand stopping on the horn input impedance has been studied, but the tone quality has hardly ever been considered. In the present paper, the dominant physical cause of the stopped-tone quality is discussed in detail. Numerical calculations of the transmission function of the stopped-horn model and the measurements of both sound pressure and wall vibration in hand stopping are carried out. They strongly suggest that the metallicness of the stopped tone is characterized by the generation of higher harmonics extending over 10 kHz due to the rapidly corrugating waveform and that the associated wall vibration on the bell may be responsible for this higher harmonic generation. However, excitation experiments and immobilization experiments performed to elucidate the relationship between sound radiation and wall vibration deny their correlation. Instead, the measurement result of the mouthpiece pressure in hand stopping suggests that minute wave corrugations peculiar to the metallic stopped tones are probably formed by nonlinear sound propagation along the bore.
NASA Astrophysics Data System (ADS)
Cai, Congbo; Dong, Jiyang; Cai, Shuhui; Cheng, En; Chen, Zhong
2006-11-01
Intermolecular multiple quantum coherences (iMQCs) have many potential applications since they can provide interaction information between different molecules within the range of dipolar correlation distance, and can provide new contrast in magnetic resonance imaging (MRI). Because of the non-localized property of dipolar field, and the non-linear property of the Bloch equations incorporating the dipolar field term, the evolution behavior of iMQC is difficult to deduce strictly in many cases. In such cases, simulation studies are very important. Simulation results can not only give a guide to optimize experimental conditions, but also help analyze unexpected experimental results. Based on our product operator matrix and the K-space method for dipolar field calculation, the MRI simulation software was constructed, running on Windows operation system. The non-linear Bloch equations are calculated by a fifth-order Cash-Karp Runge-Kutta formulism. Computational time can be efficiently reduced by separating the effects of chemical shifts and strong gradient field. Using this software, simulation of different kinds of complex MRI sequences can be done conveniently and quickly on general personal computers. Some examples were given. The results were discussed.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
Joint transform correlators with spatially incoherent illumination
NASA Astrophysics Data System (ADS)
Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.
1997-03-01
Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.
NASA Technical Reports Server (NTRS)
Barger, R. L.
1980-01-01
The nonlinear propagation equations for sound generated by a constant speed blade tip are presented. Propagation from a subsonic tip is treated as well as the various cases that can occur at supersonic speeds. Some computed examples indicate that the nonlinear theory correlates with experimental results better than linear theory for large amplitude waves. For swept tips that generate a wave with large amplitude leading expansion, the nonlinear theory predicts a cancellation effect that results in a significant reduction of both amplitude and impulse.
Shallow near-fault material self organizes so it is just nonlinear in typical strong shaking
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2011-12-01
Cracking within shallow compliant fault zones self-organizes so that strong dynamic stresses marginally exceed the elastic limit. To the first order, the compliant material experiences strain boundary conditions imposed by underlying stiffer rock. A major strike-slip fault yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic stress is this quantity times the local shear modulus. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock surrounding the shallow fault zone. The imposed dynamic strain in stiff rock causes Coulomb failure and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Each subsequent event causes more cracking until the rock becomes compliant enough that it just reaches its elastic limit. Further events maintain the material at the shear modulus where it just fails. Analogously, shallow damaged regolith forms with its shear modulus and S-wave velocity increasing with depth so it just reaches failure during typical strong shaking. The general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock. The equilibrium shear modulus and S-wave velocity depend only modestly on the effective coefficient of internal friction.
NASA Astrophysics Data System (ADS)
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice
NASA Astrophysics Data System (ADS)
Xu, Quan; Tian, Qiang
2005-04-01
The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.
Rademacher, Georg; Warm, Stefan; Petermann, Klaus
2015-01-12
We analyze the impact of Differential Mode Delay (DMD) Management on the nonlinear impairments in mode-division multiplexed transmission systems. It is found out that DMD Management can lead to a degraded performance, due to enhanced intermodal nonlinear interaction. This can be attributed to an increased correlation of co-propagating channels, similar to the effects that show up in dispersion managed single-mode systems.
Remote detection of electronic devices
Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM
2012-09-25
An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at
NASA Astrophysics Data System (ADS)
Aubert, J.; Fournier, A.
2011-10-01
Over the past decades, direct three-dimensional numerical modelling has been successfully used to reproduce the main features of the geodynamo. Here we report on efforts to solve the associated inverse problem, aiming at inferring the underlying properties of the system from the sole knowledge of surface observations and the first principle dynamical equations describing the convective dynamo. To this end we rely on twin experiments. A reference model time sequence is first produced and used to generate synthetic data, restricted here to the large-scale component of the magnetic field and its rate of change at the outer boundary. Starting from a different initial condition, a second sequence is next run and attempts are made to recover the internal magnetic, velocity and buoyancy anomaly fields from the sparse surficial data. In order to reduce the vast underdetermination of this problem, we use stochastic inversion, a linear estimation method determining the most likely internal state compatible with the observations and some prior knowledge, and we also implement a sequential evolution algorithm in order to invert time-dependent surface observations. The prior is the multivariate statistics of the numerical model, which are directly computed from a large number of snapshots stored during a preliminary direct run. The statistics display strong correlation between different harmonic degrees of the surface observations and internal fields, provided they share the same harmonic order, a natural consequence of the linear coupling of the governing dynamical equations and of the leading influence of the Coriolis force. Synthetic experiments performed with a weakly nonlinear model yield an excellent quantitative retrieval of the internal structure. In contrast, the use of a strongly nonlinear (and more realistic) model results in less accurate static estimations, which in turn fail to constrain the unobserved small scales in the time integration of the evolution scheme. Evaluating the quality of forecasts of the system evolution against the reference solution, we show that our scheme can improve predictions based on linear extrapolations on forecast horizons shorter than the system e-folding time. Still, in the perspective of forthcoming data assimilation activities, our study underlines the need of advanced estimation techniques able to cope with the moderate to strong nonlinearities present in the geodynamo.
Nonlinear response and bistability of driven ion acoustic waves
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-08-01
The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.
NASA Astrophysics Data System (ADS)
Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.
2018-06-01
Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.
Liu, P.; Archuleta, R.J.; Hartzell, S.H.
2006-01-01
We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (< ∼1 Hz) in a 3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by others for the Northridge rupture.
Efficient non-linear two-photon effects from the Cesium 6D manifold
NASA Astrophysics Data System (ADS)
Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.
2018-02-01
We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.
Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines
NASA Astrophysics Data System (ADS)
Coughlin, Mark F.; Fredberg, Jeffrey J.
2013-12-01
Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.
NASA Astrophysics Data System (ADS)
Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.
2017-07-01
This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.
Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach
NASA Astrophysics Data System (ADS)
Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.
2015-10-01
In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.
Nonlinear Time Series Analysis in the Absence of Strong Harmonics
NASA Astrophysics Data System (ADS)
Stine, Peter; Jevtic, N.
2010-05-01
Nonlinear time series analysis has successfully been used for noise reduction and for identifying long term periodicities in variable star light curves. It was thought that good noise reduction could be obtained when a strong fundamental and second harmonic are present. We show that, quite unexpectedly, this methodology for noise reduction can be efficient for data with very noisy power spectra without a strong fundamental and second harmonic. Not only can one obtain almost two orders of magnitude noise reduction of the white noise tail, insight can also be gained into the short time scale of organized behavior. Thus, we are able to obtain an estimate of this short time scale, which is on the order of 1.5 hours in the case of a variable white dwarf.
Instabilities and transport in Hall plasmas with ExB drift
NASA Astrophysics Data System (ADS)
Smolyakov, Andrei
2016-10-01
Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.
NASA Astrophysics Data System (ADS)
Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro
2016-12-01
Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases of streak saturation, providing a contemporary growth of all of the velocity components due to strong nonlinear coupling.
NASA Astrophysics Data System (ADS)
Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will
2017-04-01
The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.
NASA Astrophysics Data System (ADS)
Viens, L.; Denolle, M.; Hirata, N.
2017-12-01
Strong ground motion can induce dynamic strains large enough for the shallow subsurface to respond non-linearly and cause permanent velocity changes during earthquakes. We investigate the behavior of the near-surface in the Tokyo metropolitan area during the 2011 Mw 9.0 Tohoku-Oki earthquake using continuous records from 234 seismometers of the Metropolitan Seismic Observation network (MeSO-net). This network, which was deployed in shallow 20-m depth boreholes, recorded horizontal accelerations up to 236 cm/s2 during the mainshock. For each MeSO-net station, we compute the near-surface response using the single-station cross-correlation technique between vertical and horizontal components, every 6 hours for 2.5 months around the main event. Comparing each near-surface response against the pre-event reference, we find seismic velocity drops up to 10% in the near-surface of the Tokyo metropolitan area during the mainshock. The amplitude of the coseismic velocity drop increases with increasing ground shaking and decreasing VS30, which is the S-wave velocity the first 30-m of the ground. Furthermore, the waveforms experience a loss of coherence that recovers exponentially over a time. This recovery rate also increases with the acceleration levels. While most of the velocity changes and waveform coherence recover within a few days, we also find permanent changes at stations that experienced liquefaction and the strongest ground motions. The ambient seismic field captures the coseismic velocity changes in the shallow structure and the following healing process, and may be used to detect permanent damage.
Spatial and temporal ultrafast imaging and control of terahertz wavepackets
NASA Astrophysics Data System (ADS)
Koehl, Richard Michael
Some polar optical phonons couple strongly to far- infrared electromagnetic radiation and move at light-like speeds through dielectric media. These phonon-polaritons retain both ionic and electromagnetic character. One of the fruitful implications of this mixing is that vibrational and electronic nonlinearities in ferroelectric and other highly anharmonic media interact with traveling electromagnetic waves spanning several frequency regimes, permitting nonlinear wave mixing at infrared and optical frequencies. Nonlinear optical mixing techniques are well-developed because optical light is easy to produce, but the lack of similar far- infrared sources has stymied similar efforts at terahertz frequencies. Nonlinear interactions in this frequency regime provide information about vibrational potential energy surfaces and are very strong when the lattice vibration is associated with a phase transition. In this thesis, I review methods based on a well known nonlinear optical technique, impulsive stimulated Raman scattering (ISRS), to monitor the progress of coherent phonon polaritons in a highly nonlinear ferroelectric, lithium tantalate. I also advance multiple-pulse ISRS optical techniques to attempt to elucidate information about the ferroelectric's vibrational potential energy surface, and I discuss significant recent progress that has been made in the development of ultrafast optical tools to generate far-infrared radiation through ISRS at specified times and spatial locations and control the interactions of coherent phonon-polariton wavepackets. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture
NASA Astrophysics Data System (ADS)
Hazra, Milan K.; Bagchi, Biman
2018-03-01
In order to understand the intermolecular vibrational spectrum and the collective excitations of water-ethanol binary mixture, we investigate the density of states and the power spectrum using computer simulations aided by theory. We investigate in particular the spectra at intermediate to low frequencies (a few hundreds to few tens of cm-1) by calculating (i) the density of states from quenched normal modes, (ii) the power spectrum from velocity time correlation function, and (iii) the far infrared and dielectric spectra (that is, the Cole-Cole plot) from the total dipole moment time correlation function. The different spectra are in broad agreement with each other and at the same time reveal unique characteristics of the water-ethanol mixture. Inverse participation ratio reveals several interesting features. Libration of pure ethanol is more localized than that of pure water. With increasing ethanol content, we observe localization of the collective libration mode as well as of the hindered translational and rotational mode. An interesting mixing between the libration of water and ethanol is observed. Solvation dynamics of tryptophan measured by equilibrium energy fluctuation time correlation function show surprisingly strong non-linear dependence on composition that can be tested against experiments.
Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture.
Hazra, Milan K; Bagchi, Biman
2018-03-21
In order to understand the intermolecular vibrational spectrum and the collective excitations of water-ethanol binary mixture, we investigate the density of states and the power spectrum using computer simulations aided by theory. We investigate in particular the spectra at intermediate to low frequencies (a few hundreds to few tens of cm -1 ) by calculating (i) the density of states from quenched normal modes, (ii) the power spectrum from velocity time correlation function, and (iii) the far infrared and dielectric spectra (that is, the Cole-Cole plot) from the total dipole moment time correlation function. The different spectra are in broad agreement with each other and at the same time reveal unique characteristics of the water-ethanol mixture. Inverse participation ratio reveals several interesting features. Libration of pure ethanol is more localized than that of pure water. With increasing ethanol content, we observe localization of the collective libration mode as well as of the hindered translational and rotational mode. An interesting mixing between the libration of water and ethanol is observed. Solvation dynamics of tryptophan measured by equilibrium energy fluctuation time correlation function show surprisingly strong non-linear dependence on composition that can be tested against experiments.
Ambient Noise Tomography of central Java, with Transdimensional Bayesian Inversion
NASA Astrophysics Data System (ADS)
Zulhan, Zulfakriza; Saygin, Erdinc; Cummins, Phil; Widiyantoro, Sri; Nugraha, Andri Dian; Luehr, Birger-G.; Bodin, Thomas
2014-05-01
Delineating the crustal structure of central Java is crucial for understanding its complex tectonic setting. However, seismic imaging of the strong heterogeneity typical of such a tectonically active region can be challenging, particularly in the upper crust where velocity contrasts are strongest and steep body wave ray-paths provide poor resolution. We have applied ambient noise cross correlation of pair stations in central Java, Indonesia by using the MERapi Amphibious EXperiment (MERAMEX) dataset. The data were collected between May to October 2004. We used 120 of 134 temporary seismic stations for about 150 days of observation, which covered central Java. More than 5000 Rayleigh wave Green's function were extracted by cross-correlating the noise simultaneously recorded at available station pairs. We applied a fully nonlinear 2D Bayesian inversion technique to the retrieved travel times. Features in the derived tomographic images correlate well with previous studies, and some shallow structures that were not evident in previous studies are clearly imaged with Ambient Noise Tomography. The Kendeng Basin and several active volcanoes appear with very low group velocities, and anomalies with relatively high velocities can be interpreted in terms of crustal sutures and/or surface geological features.
Culpepper, Steven Andrew
2016-06-01
Standardized tests are frequently used for selection decisions, and the validation of test scores remains an important area of research. This paper builds upon prior literature about the effect of nonlinearity and heteroscedasticity on the accuracy of standard formulas for correcting correlations in restricted samples. Existing formulas for direct range restriction require three assumptions: (1) the criterion variable is missing at random; (2) a linear relationship between independent and dependent variables; and (3) constant error variance or homoscedasticity. The results in this paper demonstrate that the standard approach for correcting restricted correlations is severely biased in cases of extreme monotone quadratic nonlinearity and heteroscedasticity. This paper offers at least three significant contributions to the existing literature. First, a method from the econometrics literature is adapted to provide more accurate estimates of unrestricted correlations. Second, derivations establish bounds on the degree of bias attributed to quadratic functions under the assumption of a monotonic relationship between test scores and criterion measurements. New results are presented on the bias associated with using the standard range restriction correction formula, and the results show that the standard correction formula yields estimates of unrestricted correlations that deviate by as much as 0.2 for high to moderate selectivity. Third, Monte Carlo simulation results demonstrate that the new procedure for correcting restricted correlations provides more accurate estimates in the presence of quadratic and heteroscedastic test score and criterion relationships.
Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin
2014-01-01
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.
Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation
Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin
2014-01-01
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference. PMID:24551058
Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.
1987-01-01
Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.
Sustained Strong Fluctuations in a Nonlinear Chain at Acoustic Vacuum: Beyond Equilibrium
2011-10-21
studied [5]. Fermi, Pasta , and Ulam (FPU) in collaboration with Tsingou [6] probed the dynamics of such a system in the presence of linear and nonlinear...D. Vitali and P. Grigolini, ibid. 39, 1486 (1989). [6] E. Fermi, J. Pasta , and S. Ulam, Los Alamos National Laboratory Report No. LA-1940, 1955
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.; ...
2016-01-26
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Generation of Caustics and Rogue Waves from Nonlinear Instability.
Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W
2017-11-17
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
NASA Astrophysics Data System (ADS)
Lao, Jiashun; Nie, He; Jiang, Yonghong
2018-06-01
This paper employs SBW proposed by Baker and Wurgler (2006) to investigate the nonlinear asymmetric Granger causality between investor sentiment and stock returns for US economy while considering different time-scales. The wavelet method is utilized to decompose time series of investor sentiment and stock returns at different time-scales to focus on the local analysis of different time horizons of investors. The linear and nonlinear asymmetric Granger methods are employed to examine the Granger causal relationship on similar time-scales. We find evidence of strong bilateral linear and nonlinear asymmetric Granger causality between longer-term investor sentiment and stock returns. Furthermore, we observe the positive nonlinear causal relationship from stock returns to investor sentiment and the negative nonlinear causal relationship from investor sentiment to stock returns.
Generation of Caustics and Rogue Waves from Nonlinear Instability
NASA Astrophysics Data System (ADS)
Safari, Akbar; Fickler, Robert; Padgett, Miles J.; Boyd, Robert W.
2017-11-01
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.
Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-12-02
We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.
Self-accelerating parabolic beams in quadratic nonlinear media
NASA Astrophysics Data System (ADS)
Dolev, Ido; Libster, Ana; Arie, Ady
2012-09-01
We present experimental observation of self-accelerating parabolic beams in quadratic nonlinear media. We show that the intensity peaks of the first and second harmonics are asynchronous with respect to one another in the two transverse coordinates. In addition, the two coupled harmonics have the same acceleration within and after the nonlinear medium. We also study the evolution of second harmonic accelerating beams inside the quadratic media and their correlation with theoretical beams.
NASA Technical Reports Server (NTRS)
Wenzel, L M; Hart, C E; Craig, R T
1957-01-01
Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.
Superconducting cuprate heterostructures for hot electron bolometers
NASA Astrophysics Data System (ADS)
Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.
2013-11-01
Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.
NASA Astrophysics Data System (ADS)
Ganguli, G.; Keskinen, M. J.; Romero, H.; Heelis, R.; Moore, T.; Pollock, C.
1994-05-01
Recent observations indicate that low-altitude (below 1500 km) ion energization and thermal ion upwelling are colocated in the convective flow reversal region. In this region the convective velocity V(sub perpendicular) is generally small but spatial gradients in V(sub perpendicular) can be large. As a result, Joule heating is small. The observed high level of ion heating (few electron volts or more) cannot be explained by classical Joule heating alone but requires additional heating sources such as plasma waves. At these lower altitudes, sources of free energy are not obvious and hence the nature of ion energization remains ill understood. The high degree of correlation of ion heating with shear in the convective velocity (Tsunoda et al., 1989) is suggestive of an important role of velocity shear in this phenomenon. We provide more recent evidence for this correlation and show that even a small amount of velocity shear in the transverse flow is sufficient to excite a large-scale Kelvin-Helmholtz mode, which can nonlinearly steepen and give rise to highly stressed regions of strongly sheared flows. Futhermore, these stressed regions of strongly sheared flows may seed plasma waves in the range of ion cyclotron to lower hybrid frequencies, which are potential sources for ion heating. This novle two-step mechanism for ion energization is applied to typical observations of low-altitude thermal ion upwelling events.
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan
2016-01-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less
Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Modal test/analysis correlation of Space Station structures using nonlinear sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Strongly nonlinear dynamics of electrolytes in large ac voltages.
Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik
2010-07-01
We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.
THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howes, Gregory G.
2016-08-20
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less
Driven superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Nakamura, Yasunobu
2014-03-01
Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.
NASA Astrophysics Data System (ADS)
Su, Chin-Kuo; Sung, Yu-Chi; Chang, Shuenn-Yih; Huang, Chao-Hsun
2007-09-01
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity-wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load-deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
Optimisation of the vibrational response of ultrasonic cutting systems
NASA Astrophysics Data System (ADS)
Cartmell, M. P.; Lim, F. C. N.; Cardoni, A.; Lucas, M.
2005-10-01
This paper provides an account of an investigation into possible dynamic interactions between two coupled non-linear sub-systems, each possessing opposing non-linear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two-degree-of-freedom Duffing oscillator in which certain non-linear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently non-linear, and which is coupled to a bar- or block-horn, and to one or more material cutting blades, for example. The horn/blade configurations are also non-linear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two-degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall non-linear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also been shown experimentally that coupling of ultrasonic components with different non-linear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice. Further experiments have shown that a multiple horn/blade configuration can, under certain circumstances, display autoparametric responses based on the forced response of the desired longitudinal mode parametrically exciting an undesired lateral mode. Typical autoparametric response phenomena have been observed and are presented at the end of the paper.
The effect of topography of upper-mantle discontinuities on SS precursors
NASA Astrophysics Data System (ADS)
Koroni, Maria; Trampert, Jeannot
2016-01-01
Using the spectral-element method, we explored the effect of topography of upper-mantle discontinuities on the traveltimes of SS precursors recorded on transverse component seismograms. The latter are routinely used to infer the topography of mantle transition zone discontinuities. The step from precursory traveltimes to topographic changes is mainly done using linearised ray theory, or sometimes using finite-frequency kernels. We simulated exact seismograms in 1-D and 3-D elastic models of the mantle. In a second simulation, we added topography to the discontinuities. We compared the waveforms obtained with and without topography by cross correlation of the SS precursors. Since we did not add noise, the precursors are visible in individual seismograms without the need of stacking. The resulting time anomalies were then converted into topographic variations and compared to the original topographic models. Based on the correlation between initial and inferred models, and provided that ray coverage is good, we found that linearised ray theory gives a relatively good idea on the location of the uplifts and depressions of the discontinuities. It seriously underestimates the amplitude of the topographic variations by a factor ranging between 2 and 7. Real data depend on the 3-D elastic structure and the topography. All studies to date correct for the 3-D elastic effects assuming that the traveltimes can be linearly decomposed into a structure and a discontinuity part. We found a strong non-linearity in this decomposition which cannot be modelled without a fully non-linear inversion for elastic structure and discontinuities simultaneously.
Influence of heating rate on the condensational instability. [in outer layers of solar atmosphere
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Mariska, J. T.
1988-01-01
Analysis and numerical simulation are used to determine the effect that various heating rates have on the linear and nonlinear evolution of a typical plasma within a solar magnetic flux tube subject to the condensational instability. It is found that linear stability depends strongly on the heating rate. The results of numerical simulations of the nonlinear evolution of the condensational instability in a solar magnetic flux tube are presented. Different heating rates lead to quite different nonlinear evolutions, as evidenced by the behavior of the global internal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing
2016-08-17
We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response.