Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.
A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.
Interactions of large amplitude solitary waves in viscous fluid conduits
NASA Astrophysics Data System (ADS)
Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.
2014-07-01
The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.
2018-02-01
In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.
Strongly interacting photons in asymmetric quantum well via resonant tunneling.
Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H
2012-04-09
We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.
Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing
NASA Astrophysics Data System (ADS)
Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.
2017-12-01
Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.
Observation of three-photon bound states in a quantum nonlinear medium
NASA Astrophysics Data System (ADS)
Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan
2018-02-01
Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahmansouri, M.; Alinejad, H.
2015-04-15
We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.
Head-on collision of the second mode internal solitary waves
NASA Astrophysics Data System (ADS)
Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae
2017-04-01
Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).
The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice
NASA Astrophysics Data System (ADS)
Xu, Quan; Tian, Qiang
2005-04-01
The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.
2015-09-30
We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves
NASA Astrophysics Data System (ADS)
Smith, F. T.; Bowles, R. I.
1992-10-01
The two stages I, II are studied by using recent nonlinear theory and then compared with the experiments of Nishioka et al. (1979) on the transition of plane Poiseuille flow. The first stage I starts at low amplitude from warped input, which is deformed through weakly nonlinear interaction into a blow-up in amplitude and phase accompanied by spanwise focusing into streets. This leads into the strongly nonlinear stage II. It holds for a broad range of interactive boundary layers and related flows, to all of which the nonlinear break-up criterion applies. The experimental comparisons on I, II for channel flow overall show encouraging quantitative agreement, supporting recent comparisons (in the boundary-layer setting) of the description of stage I in Stewart & Smith (1992) with the experiments of Klebanoff & Tidstrom (1959) and of the break-up criterion of Smith (1988a) with the computations of Peridier et al. (1991 a, b).
Nonlinear plasmonic imaging techniques and their biological applications
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Single-photon non-linear optics with a quantum dot in a waveguide
NASA Astrophysics Data System (ADS)
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-10-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F
2006-03-01
The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.
NASA Technical Reports Server (NTRS)
Bennett, J.; Hall, P.; Smith, F. T.
1988-01-01
Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.
NASA Astrophysics Data System (ADS)
Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia
2018-05-01
Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.; Klein, K. G.
2018-02-01
In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.
Ultra-low-power hybrid light–matter solitons
Walker, P. M.; Tinkler, L.; Skryabin, D. V.; Yulin, A.; Royall, B.; Farrer, I.; Ritchie, D. A.; Skolnick, M. S.; Krizhanovskii, D. N.
2015-01-01
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light–matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark–bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons. PMID:26400748
Ultra-low-power hybrid light-matter solitons.
Walker, P M; Tinkler, L; Skryabin, D V; Yulin, A; Royall, B; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N
2015-09-24
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light-matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark-bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons.
Nonlinear optical interactions in silicon waveguides
NASA Astrophysics Data System (ADS)
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Numerical model for the weakly nonlinear propagation of sound through turbulence
NASA Technical Reports Server (NTRS)
Lipkens, Bart; Blanc-Benon, Philippe
1994-01-01
When finite amplitude (or intense) sound, such as a sonic boom, propagates through a turbulent atmosphere, the propagation is strongly affected by the turbulence. The interaction between sound and turbulence has mostly been studied as a linear phenomenon, i.e., the nonlinear behavior of the intense sound has been neglected. It has been shown that turbulence has an effect on the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. Peak pressure and rise time are important factors that determine the loudness of the sonic boom when heard outdoors. However, the interaction between turbulence and nonlinear effects has mostly not been included in propagation studies of sonic booms. It is therefore important to investigate the influence of acoustical nonlinearity on the interaction of intense sound with turbulence.
Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2016-01-01
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814
Wave-vortex interactions in the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Guo, Yuan; Bühler, Oliver
2014-02-01
This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.
Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.
Shoaling of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.; Pineda, J.
2008-01-01
The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record. Copyright 2008 by the American Geophysical Union.
Electromagnetic-continuum-induced nonlinearity
NASA Astrophysics Data System (ADS)
Matsko, Andrey B.; Vyatchanin, Sergey P.
2018-05-01
A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative nonlinearity cannot be inferred from the standard Hamiltonian formalism.
Nonlinear Terahertz Absorption of Graphene Plasmons.
Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin
2016-04-13
Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Déjardin, Pierre-Michel; Kalmykov, Yuri P.
2017-09-01
Analytical formulas for the electric birefringence response of interacting polar and anisotropically polarizable molecules due to a uniform alternating electric field are derived using Berne's forced rotational diffusion model [B. J. Berne, J. Chem. Phys. 62, 1154 (1975)] in the nonlinear version described by Warchol and Vaughan [J. Chem. Phys. 71, 502 (1979)]. It is found for noninteracting molecules that the signal consists of a frequency-dependent DC component superimposed on an oscillatory part with a frequency twice that of the AC driving field. However, unlike noninteracting molecules, the AC part strongly deviates from its dilute counterpart. This suggests a possible way of motivating new experimental studies of intermolecular interactions involving electro-optical methods and complementary nonlinear dielectric relaxation experiments.
Spatial and temporal ultrafast imaging and control of terahertz wavepackets
NASA Astrophysics Data System (ADS)
Koehl, Richard Michael
Some polar optical phonons couple strongly to far- infrared electromagnetic radiation and move at light-like speeds through dielectric media. These phonon-polaritons retain both ionic and electromagnetic character. One of the fruitful implications of this mixing is that vibrational and electronic nonlinearities in ferroelectric and other highly anharmonic media interact with traveling electromagnetic waves spanning several frequency regimes, permitting nonlinear wave mixing at infrared and optical frequencies. Nonlinear optical mixing techniques are well-developed because optical light is easy to produce, but the lack of similar far- infrared sources has stymied similar efforts at terahertz frequencies. Nonlinear interactions in this frequency regime provide information about vibrational potential energy surfaces and are very strong when the lattice vibration is associated with a phase transition. In this thesis, I review methods based on a well known nonlinear optical technique, impulsive stimulated Raman scattering (ISRS), to monitor the progress of coherent phonon polaritons in a highly nonlinear ferroelectric, lithium tantalate. I also advance multiple-pulse ISRS optical techniques to attempt to elucidate information about the ferroelectric's vibrational potential energy surface, and I discuss significant recent progress that has been made in the development of ultrafast optical tools to generate far-infrared radiation through ISRS at specified times and spatial locations and control the interactions of coherent phonon-polariton wavepackets. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach
NASA Astrophysics Data System (ADS)
Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.
2015-10-01
In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.
Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Spatschek, K. H.
Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less
Nonlinear Electromagnetic Stabilization of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Whelan, G. G.; Pueschel, M. J.; Terry, P. W.
2018-04-01
The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.
Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal
NASA Astrophysics Data System (ADS)
Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hoja, Johannes; Tkatchenko, Alexandre
2017-09-01
The nonlinear response of soft-mode excitations in polycrystalline acetylsalicylic acid (aspirin) is studied with two-dimensional terahertz spectroscopy. We demonstrate that the correlation of CH3 rotational modes with collective oscillations of π electrons drives the system into the nonperturbative regime of light-matter interaction, even for a moderate strength of the THz driving field on the order of 50 kV /cm . Nonlinear absorption around 1.1 THz leads to a blueshifted coherent emission at 1.7 THz, revealing the dynamic breakup of the strong electron-phonon correlations. The observed behavior is reproduced by theoretical calculations including dynamic local-field correlations.
NASA Astrophysics Data System (ADS)
Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.
2002-05-01
The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.
Kong, Deying; Chen, Zilin
2017-05-01
Bisphosphonates are a class of chemical compounds used to treat diseases caused by increased bone resorption. Zoledronate is a third-generation bisphosphonate drug. Hydroxyapatite is main mineral constituent of bones, which can be bound by bisphosphonates in vivo. In this work, we report a method of nonlinear capillary electrochromatography for study on the interaction between hydroxyapatite and bisphosphonate. Hydroxyapatite was modified on the inner wall of capillary by a biomimetic-mineralization method. Then nonlinear chromatography was used to fit and analyze the interaction between zoledronate and hydroxyapatite. The association rate constants of zoledronate in hydroxyapatite-modified capillary and bare capillary are 642.3 and 195/M/min, respectively. This indicates that there is strong binding interactions and affinity between zoledronate and hydroxyapatite. Besides, the interaction between zoledronate and hydroxyapatite was confirmed further by ultraviolet spectroscopy. The method of nonlinear capillary electrochromatography provides a fast and effect approach for studying of bone metabolism disease by evaluation of interaction between hydroxyapatite and bisphosphonates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Breakdown of Goertler Vortices in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; Wu, Minwei; Greene, Ptrick T.
2010-01-01
The nonlinear development of G rtler instability over a concave surface gives rise to a highly distorted stationary flow in the boundary layer that has strong velocity gradients in both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high frequency secondary instability that leads to the onset of transition. For high Mach number flows, the boundary layer is also subject to the second mode instability. The nonlinear development of G rtler vortices and the ensuing growth and breakdown of secondary instability, the G rtler vortex interactions with second mode instabilities as well as oblique second mode interactions are examined in the context of both internal and external hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue analysis and direct numerical simulation. For G rtler vortex development inside the Purdue Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are identified and their linear and nonlinear evolution is examined. The computation of secondary instability is continued past the onset of transition to elucidate the physical mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios associated with transition over a Mach 6 compression cone configuration are also explored.
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Uniform strongly interacting soliton gas in the frame of the Nonlinear Schrodinger Equation
NASA Astrophysics Data System (ADS)
Gelash, Andrey; Agafontsev, Dmitry
2017-04-01
The statistical properties of many soliton systems play the key role in the fundamental studies of integrable turbulence and extreme sea wave formation. It is well known that separated solitons are stable nonlinear coherent structures moving with constant velocity. After collisions with each other they restore the original shape and only acquire an additional phase shift. However, at the moment of strong nonlinear soliton interaction (i.e. when solitons are located close) the wave field are highly complicated and should be described by the theory of inverse scattering transform (IST), which allows to integrate the KdV equation, the NLSE and many other important nonlinear models. The usual approach of studying the dynamics and statistics of soliton wave field is based on relatively rarefied gas of solitons [1,2] or restricted by only two-soliton interactions [3]. From the other hand, the exceptional role of interacting solitons and similar coherent structures - breathers in the formation of rogue waves statistics was reported in several recent papers [4,5]. In this work we study the NLSE and use the most straightforward and general way to create many soliton initial condition - the exact N-soliton formulas obtained in the theory of the IST [6]. We propose the recursive numerical scheme for Zakharov-Mikhailov variant of the dressing method [7,8] and discuss its stability with respect to increasing the number of solitons. We show that the pivoting, i.e. the finding of an appropriate order for recursive operations, has a significant impact on the numerical accuracy. We use the developed scheme to generate statistical ensembles of 32 strongly interacting solitons, i.e. solve the inverse scattering problem for the high number of discrete eigenvalues. Then we use this ensembles as initial conditions for numerical simulations in the box with periodic boundary conditions and study statics of obtained uniform strongly interacting gas of NLSE solitons. Author thanks the support of the Russian Science Foundation (Grand No. 14-22-00174) [1] D. Dutykh, E. Pelinovsky, Numerical simulation of a solitonic gas in kdv and kdv-bbm equations, Physics Letters A 378 (42) (2014) 3102-3110. [2] E. Shurgalina, E. Pelinovsky, Nonlinear dynamics of a soliton gas: Modified korteweg-de vries equation framework, Physics Letters A 380 (24) (2016) 2049-2053. [3] E. N. Pelinovsky, E. Shurgalina, A. Sergeeva, T. G. Talipova, G. El, R. H. Grimshaw, Two-soliton interaction as an elementary act of soliton turbulence in integrable systems, Physics Letters A 377 (3) (2013) 272-275 [4] J. Soto-Crespo, N. Devine, N. Akhmediev, Integrable turbulence and rogue waves: Breathers or solitons?, Physical review letters 116 (10) (2016) 103901. [5] D. S. Agafontsev, V. E. Zakharov, Integrable turbulence and formation of rogue waves, Nonlinearity 28 (8) (2015) 2791. [6] V. E. Zakharov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1) (1972) 62. [7] V. Zakharov, A. Mikhailov, Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Sov. Phys.-JETP (Engl. Transl.) 47 (6) (1978). [8] A. A. Gelash, V. E. Zakharov, Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability, Nonlinearity 27 (4) (2014) R1.
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.
Relativistic laser-plasma interactions in the quantum regime.
Eliasson, Bengt; Shukla, P K
2011-04-01
We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.
Tide-surge Interaction Intensified by the Taiwan Strait
NASA Astrophysics Data System (ADS)
Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.
2010-06-01
The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.
Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.
Third order nonlinear phenomena in silica solid and hollow whispering gallery mode resonators
NASA Astrophysics Data System (ADS)
Farnesi, D.; Barucci, A.; Berneschi, S.; Cosi, F.; Righini, G. C.; Nunzi Conti, G.; Soria, Silvia
2016-03-01
We report efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility χ(3) interactions in resonant silica microspheres and microbubbles in the regime of normal dispersion. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS) and comb generation. Unusually strong anti-Stokes components and extraordinarily symmetric spectra have been observed. Resonant SARS and SRS corresponding to different Raman bands were also observed. The lack of correlation between stimulated anti-stokes and stokes scattering spectra indicates that the signal has to be resonant with the cavity.
Optical wave turbulence and the condensation of light
NASA Astrophysics Data System (ADS)
Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania
2009-11-01
In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.
Engineering high-order nonlinear dissipation for quantum superconducting circuits
NASA Astrophysics Data System (ADS)
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
NASA Astrophysics Data System (ADS)
Kochurin, E. A.; Zubarev, N. M.
2018-01-01
Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a strip, the process of interaction of counter-propagating waves is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the wave amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.
Broadband nonlinear optical response of monolayer MoSe2 under ultrafast excitation
NASA Astrophysics Data System (ADS)
Nie, Zhonghui; Trovatello, Chiara; Pogna, Eva A. A.; Dal Conte, Stefano; Miranda, Paulo B.; Kelleher, Edmund; Zhu, Chunhui; Turcu, Ion Crisitan Edmond; Xu, Yongbing; Liu, Kaihui; Cerullo, Giulio; Wang, Fengqiu
2018-01-01
Due to their strong light-matter interaction, monolayer transition metal dichalcogenides (TMDs) have proven to be promising candidates for nonlinear optics and optoelectronics. Here, we characterize the nonlinear absorption of chemical vapour deposition (CVD)-grown monolayer MoSe2 in the 720-810 nm wavelength range. Surprisingly, despite the presence of strong exciton resonances, monolayer MoSe2 exhibits a uniform modulation depth of ˜80 ± 3% and a saturation intensity of ˜2.5 ± 0.4 MW/cm2. In addition, pump-probe spectroscopy is performed to confirm the saturable absorption and reveal the photocarrier relaxation dynamics over hundreds of picoseconds. Our results unravel the unique broadband nonlinear absorptive behavior of monolayer MoSe2 under ultrafast excitation and highlight the potential of using monolayer TMDs as broadband ultrafast optical switches with customizable saturable absorption characteristics.
Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime
2016-12-01
We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.
Nonlinear quantum Rabi model in trapped ions
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique
2018-02-01
We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
NASA Astrophysics Data System (ADS)
Taira, Yoshitaka; Katoh, Masahiro
2018-06-01
We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.
Many-body effects in nonlinear optical responses of 2D layered semiconductors
Aivazian, Grant; Yu, Hongyi; Wu, Sanfeng; ...
2017-01-05
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility ts well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, themore » exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials.« less
Many-body effects in nonlinear optical responses of 2D layered semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aivazian, Grant; Yu, Hongyi; Wu, Sanfeng
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility ts well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, themore » exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials.« less
Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.
Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G
2013-01-04
We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.
Dynamics in terahertz semiconductor microcavity: quantum noise spectra
NASA Astrophysics Data System (ADS)
Jabri, H.; Eleuch, H.
2018-05-01
We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.
Single-photon nonlinearities in the propagation of focused beams through dense atomic clouds
NASA Astrophysics Data System (ADS)
Wang, Yidan; Gorshkov, Alexey; Gullans, Michael
2017-04-01
We theoretically study single-photon nonlinearities realized when a highly focused Gaussian beam passes through a dense atomic cloud. In this system, strong dipole-dipole interactions arise between closely spaced atoms and significantly affect light propagation. We find that the highly focused Gaussian beam can be treated as an effective one-dimensional waveguide, which simplifies the calculation of photon transmission and correlation functions. The formalism we develop is also applicable to the case where additional atom-atom interactions, such as interactions between Rydberg atoms, are involved. This work was supported by the ARL, NSF PFC at the JQI, AFOSR, NSF PIF, ARO, and AFOSR MURI.
Impact of nonlinear effective interactions on group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar
2016-09-01
We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.
Exploring the nonlinear regime of light-matter interaction using electronic spins in diamond
NASA Astrophysics Data System (ADS)
Alfasi, Nir; Masis, Sergei; Winik, Roni; Farfurnik, Demitry; Shtempluck, Oleg; Bar-Gill, Nir; Buks, Eyal
2018-06-01
The coupling between defects in diamond and a superconducting microwave resonator is studied in the nonlinear regime. Both negatively charged nitrogen-vacancy and P1 defects are explored. The measured cavity mode response exhibits strong nonlinearity near a spin resonance. Data is compared with theoretical predictions and a good agreement is obtained in a wide range of externally controlled parameters. The nonlinear effect under study in the current paper is expected to play a role in any cavity-based magnetic resonance imaging technique and to impose a fundamental limit upon its sensitivity.
Nonlinearities in reservoir engineering: Enhancing quantum correlations
NASA Astrophysics Data System (ADS)
Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi
2017-12-01
There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.
Nonlinear Fano-Resonant Dielectric Metasurfaces
Yang, Yuanmu; Wang, Wenyi; Boulesbaa, Abdelaziz; ...
2015-10-26
Strong nonlinear light matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. We present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. Here, we measure a third harmonic generation enhancement factormore » of 1.5 105 with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 10 6 with a peak pump intensity of 3.2 GW cm 2. The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. Finally, the modulation mechanism is studied by pump probe experiments« less
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
NASA Astrophysics Data System (ADS)
Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa
2017-10-01
This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.
Modeling of Nonlinear Optical Response in Gaseous Media and Its Comparison with Experiment
NASA Astrophysics Data System (ADS)
Xia, Yi
This thesis demonstrates the model and application of nonlinear optical response with Metastable Electronic State Approach (MESA) in ultrashort laser propagation and verifies accuracy of MESA through extensive comparison with experimental data. The MESA is developed from quantum mechanics to describe the nonlinear off-resonant optical response together with strong-field ionization in gaseous medium. The conventional light-matter interaction models are based on a piece-wise approach where Kerr effect and multi-photon ionization are treated as independent nonlinear responses. In contrast, MESA is self-consistent as the response from freed electrons and bound electrons are microscopically linked. It also can be easily coupled to the Unidirectional Pulse Propagation Equations (UPPE) for large scale simulation of experiments. This work tests the implementation of MESA model in simulation of nonlinear phase transients of ultrashort pulse propagation in a gaseous medium. The phase transient has been measured through Single-Shot Supercontinuum Spectral Interferometry. This technique can achieve high temporal resolution (10 fs) and spatial resolution (5 mum). Our comparison between simulation and experiment gives a quantitive test of MESA model including post-adiabatic corrections. This is the first time such a comparison was achieved for a theory suitable for large scale numerical simulation of modern nonlinear-optics experiments. In more than one respect, ours is a first-of-a-kind achievement. In particular, • Large amount of data are compared. We compare the data of nonlinear response induced by different pump intensity in Ar and Nitrogen. The data sets are three dimensions including two transverse spacial dimensions and one axial temporal dimension which reflect the whole structure of nonlinear response including the interplay between Kerr and plasma-induced effects. The resolutions of spatial and temporal dimension are about a few micrometer and several femtosecond. • The regime of light-matter interaction investigated here is between the strong and perturbative, where the pulse intensity can induce nonlinear refractive index change and partial ionization of dielectric medium. Obviously, such regimes are difficult to study both experimentally and theoretically. • MESA is a quantum based model, but it retains the same computation complexity as conventional light-matter interaction model. MESA contains the response from both bound and continuum states in a single self-consistent "Package". So, it is fair to say that this experiment-theory comparison sets a new standard for nonlinear light-matter interaction models and their verification in the area of extreme nonlinear optics.
Academician Nikolai Nikolaevich Bogolyubov (for the 100th anniversary of his birth)
NASA Astrophysics Data System (ADS)
Martynyuk, A. A.; Mishchenko, E. F.; Samoilenko, A. M.; Sukhanov, A. D.
2009-07-01
This paper is dedicated to the memory of N. N. Bogolyubov in recognition of his towering stature in nonlinear mechanics and theoretical physics, his remarkable many-sided genius, and the originality and depth of his contribution to the world's science. The paper briefly describes Bogolyubov's achievements in nonlinear mechanics, classical statistical physics, theory of superconductivity, quantum field theory, and strong interaction theory
Interharmonic modulation products as a means to quantify nonlinear D-region interactions
NASA Astrophysics Data System (ADS)
Moore, Robert
Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.
NASA Technical Reports Server (NTRS)
Jarrah, Yousef Mohd
1989-01-01
The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong
2017-04-01
We investigate the defocusing coupled nonlinear Schrödinger equations from a 3×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.
Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S
2012-04-13
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
Polariton biexciton transitions in a ZnSe-based microcavity
NASA Astrophysics Data System (ADS)
Neukirch, U.; Bolton, S. R.; Fromer, N. A.; Sham, L. J.; Chemla, D. S.
2000-06-01
The optical third-order nonlinearity of a ZnSe-based microcavity is investigated by the pump-and-probe method. In the specially designed non-monolithic sample the biexciton binding energy exceeds all damping constants and the normal-mode splitting between exciton and cavity photon. For counter-circular polarized beams the nonlinear response exhibits strong oscillatory structures in the spectral vicinity of the polariton-biexciton transition. Comparison to model calculations shows that in this case the coherent nonlinearity is completely dominated by biexciton-exciton interactions beyond the Hartree-Fock approximation.
Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.
Bai, L; Wang, F; Wadee, M A; Yang, J
2017-11-01
A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.
NASA Astrophysics Data System (ADS)
Gangani, B. J.; Patel, J. P.; Parsania, P. H.
2015-12-01
The density, viscosity and ultrasonic speed (2 MHz) of chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane were investigated at 308.15 K. Various acoustical parameters such as specific acoustical impedance ( Z), adiabatic compressibility ( Ka), Rao's molar sound function ( R m), van der Waals constant ( b), internal pressure (π), free volume ( V f), intermolecular free path length ( L f), classical absorption coefficient (α/ f 2)Cl) and viscous relaxation time (τ) were determine using ultrasonic speed ( U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Linear increase of Z, b, R, τ, and (α/ f 2)Cl except π (nonlinear) and linear decrease of Ka and L f except V f (nonlinear) with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions. The positive values of solvation number further supported strong molecular interactions in the solutions. The nature and position of halogen substituent also affected the strength of molecular interactions.
One-dimensional optical wave turbulence: Experiment and theory
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
2012-05-01
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han
2014-01-01
By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1995-08-01
The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.
Second order nonlinear QED processes in ultra-strong laser fields
NASA Astrophysics Data System (ADS)
Mackenroth, Felix
2017-10-01
In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
NASA Astrophysics Data System (ADS)
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Optimisation of the vibrational response of ultrasonic cutting systems
NASA Astrophysics Data System (ADS)
Cartmell, M. P.; Lim, F. C. N.; Cardoni, A.; Lucas, M.
2005-10-01
This paper provides an account of an investigation into possible dynamic interactions between two coupled non-linear sub-systems, each possessing opposing non-linear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two-degree-of-freedom Duffing oscillator in which certain non-linear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently non-linear, and which is coupled to a bar- or block-horn, and to one or more material cutting blades, for example. The horn/blade configurations are also non-linear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two-degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall non-linear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also been shown experimentally that coupling of ultrasonic components with different non-linear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice. Further experiments have shown that a multiple horn/blade configuration can, under certain circumstances, display autoparametric responses based on the forced response of the desired longitudinal mode parametrically exciting an undesired lateral mode. Typical autoparametric response phenomena have been observed and are presented at the end of the paper.
Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk
Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.
2016-01-01
The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117
Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities
Wang, Feng; Martinson, Alex B. F.; Harutyunyan, Hayk
2017-04-03
Since their discovery in the 1960s, nonlinear optical effects have revolutionized optical technologies and laser industry. Development of efficient nanoscale nonlinear sources will pave the way for new applications in photonic circuitry, quantum optics and biosensing. However, nonlinear signal generation at dimensions smaller than the wavelength of light brings new challenges. The fundamental difficulty of designing an efficient nonlinear source is that some of the contributing factors involved in nonlinear wave-mixing at the nanoscale are often hard to satisfy simultaneously. Here, we overcome these limitations by developing a new type of nonplanar plasmonic metasurfaces, which can greatly enhance the secondmore » harmonic generation (SHG) at visible frequencies and achieve conversion efficiency of ~6 × 10 -5 at a peak pump intensity of ~0.5 GW/cm 2. This is 4-5 orders of magnitude larger than the efficiencies observed for nonlinear thin films and doubly resonant plasmonic antennas. The proposed metasurface consists of an array of metal-dielectric-metal (MDM) nanocavities formed by conformally cross-linked nanowires separated by an ultrathin nonlinear material layer. The nonplanar MDM geometry minimizes the destructive interference of nonlinear emission into the far-field, provides strongly enhanced independently tunable resonances both for fundamental and harmonic frequencies, a good mutual overlap of the modes and a strong interaction with the nonlinear spacer. Lastly, our findings enable the development of efficient nanoscale single photon sources, integrated frequency converters, and other nonlinear devices.« less
Frequency chirpings in Alfven continuum
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
NASA Astrophysics Data System (ADS)
Wang, Yi Jiao; Feng, Qing Yi; Chai, Li He
As one of the most important financial markets and one of the main parts of economic system, the stock market has become the research focus in economics. The stock market is a typical complex open system far from equilibrium. Many available models that make huge contribution to researches on market are strong in describing the market however, ignoring strong nonlinear interactions among active agents and weak in reveal underlying dynamic mechanisms of structural evolutions of market. From econophysical perspectives, this paper analyzes the complex interactions among agents and defines the generalized entropy in stock markets. Nonlinear evolutionary dynamic equation for the stock markets is then derived from Maximum Generalized Entropy Principle. Simulations are accordingly conducted for a typical case with the given data, by which the structural evolution of the stock market system is demonstrated. Some discussions and implications are finally provided.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2017-11-01
Molecules containing methoxy supported triphenylamine as strong electron-donor and dicyanovinyl as electron-acceptor groups interacting via isophorone as a configurationally locked polyene π-conjugated bridge are studied for their nonlinear optical properties. The photophysical study of examined chromophores in non-polar and polar solvents suggest that they exhibit strong emission solvatochromism and significant charge transfer characteristics supported by Lippert-Mataga plots and Generalised Mulliken Hush analysis. Linear and nonlinear optical properties as well as electronic properties measured by spectroscopic methods and cyclic voltametry and supported by DFT calculation were used to elucidate the structure property relationships. All three chromophores exhibit very high thermal stabilities with the decomposition temperatures higher than 340°C. The vibrational motions play very important role in determining the overall NLO response styryl chromophores which was established by DFT study. Dye 3 with maximum nonlinear optical susceptibility among three D-π-A systems proves that the multibranched push-pull chromophores exhibit a higher third order nonlinear susceptibility and justifies the design strategy.
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.
2007-01-01
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y
2007-01-15
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjung; Kovacic, Gregor; Cai, David
Using the (1+1)D Majda-McLaughlin-Tabak model as an example, we present an extension of the wave turbulence (WT) theory to systems with strong nonlinearities. We demonstrate that nonlinear wave interactions renormalize the dynamics, leading to (i) a possible destruction of scaling structures in the bare wave systems and a drastic deformation of the resonant manifold even at weak nonlinearities, and (ii) creation of nonlinear resonance quartets in wave systems for which there would be no resonances as predicted by the linear dispersion relation. Finally, we derive an effective WT kinetic equation and show that our prediction of the renormalized Rayleigh-Jeans distributionmore » is in excellent agreement with the simulation of the full wave system in equilibrium.« less
Giant asymmetric self-phase modulation in superconductor thin films
NASA Astrophysics Data System (ADS)
Robson, Charles W.; Biancalana, Fabio
2018-04-01
Self-phase modulation (SPM) of light pulses is found to occur strongly, at low incident intensities, in the coupling of light with superconductors. We develop a theory from a synthesis of the time-dependent Ginzburg-Landau (TDGL) equation and basic electrodynamics which shows the strongly non-linear phase accumulated in the interaction. Unusually, the SPM of the pulse in this system is found to be highly asymmetric, producing a strongly redshifted spectrum when interacting with a superconducting thin film, and it develops in just a few nanometers of propagation. In this paper we present theoretical results and simulations in the THz regime, for both hyperbolic secant and supergaussian-shaped pulses.
NASA Astrophysics Data System (ADS)
Kaya, N.; Tsutsui, M.; Matsumoto, H.; Kimura, I.
1980-09-01
A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.
Control of terahertz nonlinear transmission with electrically gated graphene metadevices.
Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U K; Hess, Ortwin; Rotermund, Fabian; Min, Bumki
2017-02-20
Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.
NASA Astrophysics Data System (ADS)
Huang, J. G.; Slavcheva, G.; Hess, O.
2008-04-01
We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.
Strong-field two-photon transition by phase shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook
2010-08-15
We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.
Multilevel adaptive control of nonlinear interconnected systems.
Motallebzadeh, Farzaneh; Ozgoli, Sadjaad; Momeni, Hamid Reza
2015-01-01
This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback
Wang, Zhaoyou; Safavi-Naeini, Amir H.
2017-01-01
A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon–photon interactions mediated by mechanical motion may be within experimental reach. PMID:28677674
Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback
NASA Astrophysics Data System (ADS)
Wang, Zhaoyou; Safavi-Naeini, Amir H.
2017-07-01
A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon-photon interactions mediated by mechanical motion may be within experimental reach.
Multiphoton excitation and high-harmonics generation in topological insulator.
Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F
2018-05-10
Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.
Multiphoton excitation and high-harmonics generation in topological insulator
NASA Astrophysics Data System (ADS)
Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.
2018-05-01
Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Rodkiewicz, C. M.
1975-01-01
The numerical results are obtained for heat transfer, skin-friction, and viscous interaction induced pressure for a step-wise accelerated flat plate in hypersonic flow. In the unified approach here the results are presented for both weak and strong-interaction problems without employing any linearization scheme. With the help of the numerical method used in this work an accurate prediction of wall shear can be made for the problems with plate velocity changes of 1% or larger. The obtained results indicate that the transient contribution to the induced pressure for helium is greater than that for air.
Nonlinear dynamics of trions under strong optical excitation in monolayer MoSe2.
Ye, Jialiang; Yan, Tengfei; Niu, Binghui; Li, Ying; Zhang, Xinhui
2018-02-05
By employing ultrafast transient reflection measurements based on two-color pump-probe spectroscopy, the population and valley polarization dynamics of trions in monolayer MoSe 2 were investigated at relatively high excitation densities under near-resonant excitation. Both the nonlinear dynamic photobleaching of the trion resonance and the redshift of the exciton resonance were found to be responsible for the excitation-energy- and density-dependent transient reflection change as a result of many-body interactions. Furthermore, from the polarization-resolved measurements, it was revealed that the initial fast population and polarization decay process upon strong photoexcitation observed for trions was determined by trion formation, transient phase-space filling and the short valley lifetime of excitons. The results provide a basic understanding of the nonlinear dynamics of population and valley depolarization of trions, as well as exciton-trion correlation in atomically thin MoSe 2 and other transition metal dichalcogenide materials.
Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium
NASA Astrophysics Data System (ADS)
Dasanayaka, Sahan; Atai, Javid
2011-08-01
Interactions between quiescent solitons in Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity are systematically investigated. In a previous work two disjoint families of solitons were identified in this model. One family can be viewed as the generalization of the Bragg grating solitons in Kerr nonlinearity with dispersive reflectivity (Type 1). On the other hand, the quintic nonlinearity is dominant in the other family (Type 2). For weak to moderate dispersive reflectivity, two in-phase solitons will attract and collide. Possible collision outcomes include merger to form a quiescent soliton, formation of three solitons including a quiescent one, separation after passing through each other once, asymmetric separation after several quasielastic collisions, and soliton destruction. Type 2 solitons are always destroyed by collisions. Solitons develop sidelobes when dispersive reflectivity is strong. In this case, it is found that the outcome of the interactions is strongly dependent on the initial separation of solitons. Solitons with sidelobes will collide only if they are in-phase and their initial separation is below a certain critical value. For larger separations, both in-phase and π-out-of-phase Type 1 and Type 2 solitons may either repel each other or form a temporary bound state that subsequently splits into two separating solitons. Additionally, in the case of Type 2 solitons, for certain initial separations, the bound state disintegrates into a single moving soliton.
Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates
NASA Astrophysics Data System (ADS)
Ge, Li; Nersisyan, Ani; Oztop, Baris; Tureci, Hakan
2014-03-01
Exciton-polaritons generated by light-induced potentials can spontaneously condense into macroscopic quantum states that display nontrivial spatial and temporal density modulation. While these patterns and their dynamics can be reproduced through the solution of the generalized Gross-Pitaevskii equation, a predictive theory of their thresholds, oscillation frequencies, and multi-pattern interactions has so far been lacking. Here we represent such an approach based on current-carrying quasi-modes of the non-Hermitian potential induced by the pump. The presented theory allows us to capture the patterns formed in the steady-state directly and account for nonlinearities exactly. We find a simple but powerful expression for thresholds of condensation and the associated frequencies of oscillations, quantifying the contribution of particle formation, leakage, and interactions. We also show that the evolution of the condensate with increasing pump strength is strongly geometry dependent and can display contrasting features such as enhancement or reduction of the spatial localization of the condensate. We acknowledge support by DARPA under Grant No. N66001-11-1-4162 and NSF under CAREER Grant No. DMR-1151810.
NASA Astrophysics Data System (ADS)
Deinekina, N. A.; Korosteleva, I. A.; Kravchenko, O. V.; Faleev, D. S.
2016-11-01
Esents the research results of biaxial crystals with mm2 symmetry class. These crystals were used for determining regularities of nonlinear conversion of broadband optical emission on the basis of collinear and vector light waves interactions of different nature. The quantities of the basis nonlinear optical characteristics of "KTP" (KTiOPO4) and "banana" (Ba2NaNb5O15) crystals were calculated in case of synchronous conversion of broadband emission from the area of 0.8 - 2.8 micron to the visible spectrum of 0.4 - 0.7 micron. The nonlinear optical characteristics of "KTP" crystals are defined by their geometrical structure, the mode of interaction of light waves, and the infra-red spectrum width, that was experimentally confirmed on "KTP" crystal. The quality characteristics β were calculated for the "KTP" crystal. For "banana" crystal the angle of phase synchronism θc changes insignificantly when the observation plane is changed. It can be explained by the fact that the biaxiality of crystal is not strongly expressed, because of the basis refraction indices the conditions nz<=ny≈nx are performed.
NASA Astrophysics Data System (ADS)
Nagatomo, M.; Kaya, N.; Matsumoto, H.
1984-10-01
One type of problem arising in connection with an evaluation of the feasibility of the Solar Power Satellite (SPS) and the definition of suitable SPS designs is related to environmental issues. Questions exist, for instance, regarding the interaction between microwave power and the upper atmosphere. The present investigation is concerned with the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX), which is a space plasma experiment originally devoted to the research of space plasma physics. MINIX is eventually to observe possible effects of a strong microwave field in the ionospheric environment. The scientific requirements of the MINIX are discussed, taking into account functional and experimental conditions. Attention is also given to rocket characteristics, experimental design, the payload, the inflight experiment configuration, and details concerning the conduction of the experiment.
Nonlinear subdiffusive fractional equations and the aggregation phenomenon.
Fedotov, Sergei
2013-09-01
In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that these equations describe the transition from an intermediate subdiffusive regime to asymptotically normal advection-diffusion transport regime. This transition is governed by nonlinear tempering parameter that generalizes the standard linear tempering. We illustrate the general results through the use of the examples from cell and population biology. We find that a nonuniform anomalous exponent has a strong influence on the aggregation phenomenon.
NASA Astrophysics Data System (ADS)
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
NASA Astrophysics Data System (ADS)
Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe
2017-09-01
The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.
X-Ray generation in strongly nonlinear plasma waves.
NASA Astrophysics Data System (ADS)
Kiselev, Sergey; Pukhov, Alexander; Kostyukov, Igor
2004-11-01
Using three-dimensional particle-in-cell simulations we show that a strongly nonlinear plasma wave excited by an ultrahigh intensity laser pulse works as a compact high-brightness source of Xray radiation. It has been recently suggested by A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002), that in a strongly nonlinear regime the plasma wave transforms to a ``bubble'', which is almost free from background electrons. Inside the bubble, a dense bunch of relativistic electrons is produced. These accelerated electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband X-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of X-ray generation by an external 28.5-GeV electron bunch injected into the bubble. Gamma-quanta with up to GeV energies are observed in the simulation in a good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.
Nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide
NASA Astrophysics Data System (ADS)
Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario
2004-10-01
The optical parametric process occurring in a photonic-band-gap planar waveguide is studied from the point of view of nonclassical-light generation. The nonlinearly interacting optical fields are described by the generalized superposition of coherent signals and noise using the method of operator linear corrections to a classical strong solution. Scattered backward-propagating fields are taken into account. Squeezed light as well as light with sub-Poissonian statistics can be obtained in two-mode fields under the specified conditions.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.
Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena
2016-04-26
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
NASA Astrophysics Data System (ADS)
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-04-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Stability of matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Ali, Sk. Golam; Roy, S. K.; Talukdar, B.
2010-08-01
We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.
NASA Astrophysics Data System (ADS)
Strano, Salvatore; Terzo, Mario
2018-05-01
The dynamics of the railway vehicles is strongly influenced by the interaction between the wheel and the rail. This kind of contact is affected by several conditioning factors such as vehicle speed, wear, adhesion level and, moreover, it is nonlinear. As a consequence, the modelling and the observation of this kind of phenomenon are complex tasks but, at the same time, they constitute a fundamental step for the estimation of the adhesion level or for the vehicle condition monitoring. This paper presents a novel technique for the real time estimation of the wheel-rail contact forces based on an estimator design model that takes into account the nonlinearities of the interaction by means of a fitting model functional to reproduce the contact mechanics in a wide range of slip and to be easily integrated in a complete model based estimator for railway vehicle.
Strong terahertz radiation from relativistic laser interaction with solid density plasmas
NASA Astrophysics Data System (ADS)
Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.
2012-06-01
We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.
Onset of chaos in helical vortex breakdown at low Reynolds number
NASA Astrophysics Data System (ADS)
Pasche, S.; Avellan, F.; Gallaire, F.
2018-06-01
The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan
2016-01-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less
Nonlinear QED effects in X-ray emission of pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeri, Soroush; Haghighat, Mansour; Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it
2017-10-01
In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarizationmore » characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.« less
Nonlinear response and bistability of driven ion acoustic waves
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-08-01
The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
NASA Astrophysics Data System (ADS)
Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George
2014-03-01
The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.
Sensitivity of nonlinear photoionization to resonance substructure in collective excitation
Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.
2015-01-01
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939
Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field
NASA Astrophysics Data System (ADS)
Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.
2018-02-01
The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.
NASA Astrophysics Data System (ADS)
Cheng, J. L.; Guo, C.
2018-05-01
Graphene exhibits extremely strong optical nonlinearity in a perpendicular magnetic field, the optical conductivities show complicated field dependence at a moderate light intensity, and the perturbation theory fails. The full optical currents induced by a periodic field are nonperturbatively investigated in an equation-of-motion framework based on the Floquet theorem, with the scattering described phenomenologically. The nonlinear responses are understood in terms of the dressed electronic states, or Floquet states, which could be characterized by a weak probe light field. The method is illustrated for a magnetic field at 5 T and a driving field with photon energy 0.05 eV. Our results show that the perturbation theory works for weak fields <3 kV/cm, confirming the unusual strong light-matter interaction for Landau levels of graphene. Our approach can be easily extended to other systems.
The nonlinear breakup of the sun's toroidal field
NASA Technical Reports Server (NTRS)
Hughes, D. W.; Cattaneo, F.
1989-01-01
There are good reasons for believing that the sun has a strong toroidal magnetic field in the stably stratified region of convective overshoot sandwiched between the radiative zone and convective zone proper. The magnetic field in this region is modeled by studying the behavior of a layer of uniform field embedded in a subadiabatic atmosphere. Since the field can support extra mass, such a configuration is top-heavy, and instabilities of the Rayleigh-Taylor type can occur. Numerical integration of the two-dimensional compressible MHD equations makes it possible to follow the evolution of this instability into the nonlinear regime. The initial buoyancy-driven instability of the magnetic field gives rise to strong shearing motions, thereby exciting secondary Kelvin-Helmholtz instabilities which wrap the gas into regions of intense vorticity. The somewhat surprising subsequent motions are determined primarily by the strong interactions between vortices.
Intermittency in generalized NLS equation with focusing six-wave interactions
NASA Astrophysics Data System (ADS)
Agafontsev, D. S.; Zakharov, V. E.
2015-10-01
We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger (NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. We demonstrate the universal behavior of this system for the region of parameters when six-wave interactions term affects significantly only the largest waves. In particular, in the statistically steady state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly non-Rayleigh one for large waves, with characteristic "fat tail" decaying with amplitude | Ψ | close to ∝ exp (- γ | Ψ |), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave coupling coefficient.
Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime
NASA Astrophysics Data System (ADS)
Lehmann, G.; Spatschek, K. H.
2013-07-01
Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.
NASA Astrophysics Data System (ADS)
Zonca, Fulvio; Chen, Liu
2007-11-01
We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)
Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Zhiping; Yang, Zhenjun, E-mail: zjyang@vip.163.com; Ling, Xiaohui
2016-03-15
The interaction trajectory of solitons in nonlocal nonlinear media is investigated. A simple differential equation describing the interaction trajectories is derived based on the light ray equation. Numerical calculations are carried out to illustrate the interaction trajectories with different parameters. The results show that the degree of nonlocality greatly affects the interaction of solitons. For a strongly nonlocal case, the interaction trajectory can be described by a cosine function. Analytical expressions describing the trajectory and the oscillation period are obtained. For generally and weakly nonlocal cases, the interaction trajectories still oscillate periodically, however it is no longer sinusoidal and themore » oscillation period increases with the nonlocal degree decreasing. In addition, the trajectory of two solitons launched with a relative angle at the entrance plane is investigated. It is found that there exists a critical angle. When the initial relative angle is larger than the critical angle, the two solitons do not collide on propagation. The influence of the degree of nonlocality on the critical angle is also discussed.« less
NASA Astrophysics Data System (ADS)
Elsaesser, Thomas
Terahertz (THz) spectroscopy gives insight into low-frequency excitations and charge dynamics in condensed matter. So far, most experiments in a frequency range from 0.5 to 30 THz have focused on the linear THz response to determine linear absorption and disperion spectra, and/or electric conductivities. The generation of ultrashort THz transients with peak electric fields up to megavolts/cm has allowed for addressing nonlinear light-matter interactions and inducing excitations far from equilibrium. The novel method of two-dimensional THz (2D-THz) spectroscopy allows for mapping ultrafast dynamics and couplings of elementary excitations up to arbitrary nonlinear order in the electric field, both under resonant and nonresonant excitation conditions. In particular, different contributions to the overall nonlinear response are separated by dissecting it as a function of excitation and detection frequencies and for different waiting times after excitation. This talk gives an introduction in 2D-THz spectroscopy, including its recent extension to 3-pulse sequences and interaction schemes. To illustrate the potential of the method, recent results on two-phonon coherences and high-order interband excitations in the semiconductor InSb will be presented. Nonlinear THz excitation of two-phonon coherences exploits a resonance enhancement by the large electronic interband dipole of InSb and is, thus, far more efficient than linear excitation via resonant two-phonon absorption. As a second application, the nonlinear softmode response in a crystal consisting of aspirin molecules will be discussed. At moderate THz driving fields, the pronounced correlation of rotational modes of CH3 groups with collective oscillations of π-electrons drives the system into the regime of nonperturbative light-matter interaction. Nonlinear absorption around 1.1 THz leads to a blue-shifted coherent emission at 1.5 THz, revealing a dynamic breakup of the strong electron-phonon correlations.
NASA Astrophysics Data System (ADS)
Reichhardt, Charles; Reichhardt, Cynthia J. Olson
We numerically examine skyrmions interacting with a periodic quasi-one-dimensional substrate. When we drive the skyrmions perpendicular to the substrate periodicity direction, a rich variety of nonlinear Magnus-induced effects arise, in contrast to an overdamped system that shows only a linear velocity-force curve for this geometry. The skyrmion velocity-force curve is strongly nonlinear and we observe a Magnus-induced speed-up effect when the pinning causes the Magnus velocity response to align with the dissipative response. At higher applied drives these components decouple, resulting in strong negative differential conductivity. For skyrmions under combined ac and dc driving, we find a new class of phase locking phenomena in which the velocity-force curves contain a series of what we call Shapiro spikes, distinct from the Shapiro steps observed in overdamped systems. There are also regimes in which the skyrmion moves in the direction opposite to the applied dc drive to give negative mobility.
Nonlinear Gyro-Landau-Fluid Equations
NASA Astrophysics Data System (ADS)
Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.
1996-11-01
We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).
A numerical and experimental study on the nonlinear evolution of long-crested irregular waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701
2011-01-15
The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less
Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.
de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael
2017-02-20
Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.
Sensitivity of nonlinear photoionization to resonance substructure in collective excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazza, T.; Karamatskou, A.; Ilchen, M.
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less
Sensitivity of nonlinear photoionization to resonance substructure in collective excitation
Mazza, T.; Karamatskou, A.; Ilchen, M.; ...
2015-04-09
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less
Synchronisation and stability in river metapopulation networks.
Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M
2014-03-01
Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Choi, Youngsun; Hahn, Choloong; Yoon, Jae Woong; Song, Seok Ho; Berini, Pierre
2017-01-01
Time-asymmetric state-evolution properties while encircling an exceptional point are presently of great interest in search of new principles for controlling atomic and optical systems. Here, we show that encircling-an-exceptional-point interactions that are essentially reciprocal in the linear interaction regime make a plausible nonlinear integrated optical device architecture highly nonreciprocal over an extremely broad spectrum. In the proposed strategy, we describe an experimentally realizable coupled-waveguide structure that supports an encircling-an-exceptional-point parametric evolution under the influence of a gain saturation nonlinearity. Using an intuitive time-dependent Hamiltonian and rigorous numerical computations, we demonstrate strictly nonreciprocal optical transmission with a forward-to-backward transmission ratio exceeding 10 dB and high forward transmission efficiency (~100%) persisting over an extremely broad bandwidth approaching 100 THz. This predicted performance strongly encourages experimental realization of the proposed concept to establish a practical on-chip optical nonreciprocal element for ultra-short laser pulses and broadband high-density optical signal processing.
Generation and multi-octave shaping of mid-infrared intense single-cycle pulses
NASA Astrophysics Data System (ADS)
Krogen, Peter; Suchowski, Haim; Liang, Houkun; Flemens, Noah; Hong, Kyung-Han; Kärtner, Franz X.; Moses, Jeffrey
2017-03-01
The generation of intense mid-infrared (mid-IR) optical pulses with customizable shape and spectra spanning a multiple-octave range of vibrational frequencies is an elusive technological capability. While some recent approaches to mid-IR supercontinuum generation—such as filamentation, multicolour four-wave-mixing and optical rectification—have successfully generated broad spectra, no process has been identified for achieving complex pulse shaping at the generation step. The adiabatic frequency converter allows for a one-to-one transfer of spectral phase through nonlinear frequency conversion over a larger-than-octave-spanning range and with an overall linear phase transfer function. Here, we show that we can convert shaped near-infrared (near-IR) pulses to shaped, energetic, multi-octave-spanning mid-IR pulses lasting only 1.2 optical cycles, and extendable to the sub-cycle regime. We expect this capability to enable a new class of precisely controlled nonlinear interactions in the mid-IR spectral range, from nonlinear vibrational spectroscopy to strong light-matter interactions and single-shot remote sensing.
Nonlinear light-matter interactions in engineered optical media
NASA Astrophysics Data System (ADS)
Litchinitser, Natalia
In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This work was supported by the Army Research Office Awards (W911NF-15-1-0146, W911NF-11-1-0297).
Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes
NASA Astrophysics Data System (ADS)
Scoccimarro, Román; Frieman, Joshua A.
1999-07-01
We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.
Optical Random Riemann Waves in Integrable Turbulence
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Gustave, François; Suret, Pierre; El, Gennady
2017-06-01
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schrödinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, prebreaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Pulse duration dependent nonlinear optical response in black phosphorus dispersions
NASA Astrophysics Data System (ADS)
Tang, Shana; He, Zhiliang; Liang, Guowen; Chen, Si; Ge, Yanqi; Sang, David K.; Lu, Jianxin; Lu, Shunbin; Wen, Qiao; Zhang, Han
2018-01-01
Black phosphorus (BP), is the most thermodynamically stable allotrope of phosphorus, the narrow direct band gap and the strong light-matter interaction make BP a promising nonlinear optical (NLO) nano-material. In this paper, we use the open aperture Z- scan method to measure the NLO property of BP dispersion. Saturable absorption was observed in the BP material through the excitation of Ti: sapphire laser at 800 nm. Three different excitation pulse duration (100 fs, 1 ps and 10 ps) were used in the experiments, and BP exhibited different NLO performance. The results show that nonlinear absorption coefficient and figure of merit of BP nanosheets are proportional to the pulse duration while saturable intensity is opposite to pulse duration.
Radical Change: Books for Youth in a Digital Age
ERIC Educational Resources Information Center
Dresang, Eliza T.
2008-01-01
"Radical Change: Books for Youth in a Digital Age" (Dresang, 1999) is a landmark work that examines ways in which young readers are affected by the Digital Age. The impetus for the book grew out of Eliza Dresang's observation that printed books with nonlinear, interactive qualities appeal strongly to contemporary children. She noted that…
Spiral density waves and vertical circulation in protoplanetary discs
NASA Astrophysics Data System (ADS)
Riols, A.; Latter, H.
2018-06-01
Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.
NASA Astrophysics Data System (ADS)
Hosseini, Mahdi
Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.
NASA Astrophysics Data System (ADS)
Cao, G.; Terzic, J.; Zhao, H. D.; Zheng, H.; De Long, L. E.; Riseborough, Peter S.
2018-01-01
Electrical control of structural and physical properties is a long-sought, but elusive goal of contemporary science and technology. We demonstrate that a combination of strong spin-orbit interactions (SOI) and a canted antiferromagnetic Mott state is sufficient to attain that goal. The antiferromagnetic insulator Sr2IrO4 provides a model system in which strong SOI lock canted Ir magnetic moments to IrO6 octahedra, causing them to rigidly rotate together. A novel coupling between an applied electrical current and the canting angle reduces the Néel temperature and drives a large, nonlinear lattice expansion that closely tracks the magnetization, increases the electron mobility, and precipitates a unique resistive switching effect. Our observations open new avenues for understanding fundamental physics driven by strong SOI in condensed matter, and provide a new paradigm for functional materials and devices.
Nonlinear damping of oblique whistler mode waves through Landau resonance
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Omura, Y.
2017-12-01
Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper is based on our model [Dolgobrodov et al., 2000. Hear. Res., submitted for publication] in which we examine the significance of the polyanionic surface layers of stereocilia for electrostatic interaction between them. We analyse how electrostatic forces modify the mechanical properties of the sensory hair bundle. Different charge distribution profiles within the glycocalyx are considered. When modelling a typical experiment on bundle stiffness measurements, applying an external force to the tallest row of stereocilia shows that the asymptotic stiffness of the hair bundle for negative displacements is always larger than the asymptotic stiffness for positive displacements. This increase in stiffness is monotonic for even charge distribution and shows local minima when the negative charge is concentrated in a thinner layer within the cell coat. The minima can also originate from the co-operative effect of electrostatic repulsion and inter-ciliary links with non-linear mechanical properties. Existing experimental observations are compared with the predictions of the model. We conclude that the forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena, which have been recorded from the auditory periphery.
Strong polymer-turbulence interactions in viscoelastic turbulent channel flow.
Dallas, V; Vassilicos, J C; Hewitt, G F
2010-12-01
This paper is focused on the fundamental mechanism(s) of viscoelastic turbulence that leads to polymer-induced turbulent drag reduction phenomenon. A great challenge in this problem is the computation of viscoelastic turbulent flows, since the understanding of polymer physics is restricted to mechanical models. An effective state-of-the-art numerical method to solve the governing equation for polymers modeled as nonlinear springs, without using any artificial assumptions as usual, was implemented here on a three-dimensional channel flow geometry. The capability of this algorithm to capture the strong polymer-turbulence dynamical interactions is depicted on the results, which are much closer qualitatively to experimental observations. This allowed a more detailed study of the polymer-turbulence interactions, which yields an enhanced picture on a mechanism resulting from the polymer-turbulence energy transfers.
Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects
NASA Astrophysics Data System (ADS)
Solodov, Igor; Döring, Daniel; Busse, Gerd
2008-06-01
Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.
Wave kinetics of random fibre lasers
Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.
2015-01-01
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177
The Equilibrium State of Colliding Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnock, R
2003-12-12
We study a nonlinear integral equation that is a necessary condition on the equilibrium phase space distribution function of stored, colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in one degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, asmore » would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.« less
NASA Astrophysics Data System (ADS)
Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael
2017-11-01
We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.
THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howes, Gregory G.
2016-08-20
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less
Simulation of linear and nonlinear Landau damping of lower hybrid waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Lei; Wang, X. Y.; Lin, Y.
2013-06-15
The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various k{sub ∥}/k,T{sub i}/T{sub e}, and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear dampingmore » rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less
Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model
NASA Technical Reports Server (NTRS)
Martin, J. E.; Meiburg, E.
1996-01-01
The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.
Evidence of nonlinear interaction between quasi 2 day wave and quasi-stationary wave
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang; Wu, Qian; Russell, James M.
2015-02-01
The nonlinear interaction between the westward quasi 2 day wave (QTDW) with zonal wave number s = 3 (W3) and stationary planetary wave with s = 1 (SPW1) is first investigated using both Thermosphere, Ionosphere, and Mesosphere Electric Dynamics (TIMED) satellite observations and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. A QTDW with westward s = 2 (W2) is identified in the mesosphere and lower thermosphere (MLT) region in TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and TIMED/TIMED Doppler Imager (TIDI) wind observations during 2011/2012 austral summer period, which coincides with a strong SPW1 episode at high latitude of the northern winter hemisphere. The temperature perturbation of W2 QTDW reaches a maximum amplitude of ~8 K at ~30°S and ~88 km in the Southern Hemisphere, with a smaller amplitude in the Northern Hemisphere at similar latitude and minimum amplitude at the equator. The maximum meridional wind amplitude of the W2 QTDW is observed to be ~40 m/s at 95 km in the equatorial region. The TIME-GCM is utilized to simulate the nonlinear interactions between W3 QTDW and SPW1 by specifying both W3 QTDW and SPW1 perturbations at the lower model boundary. The model results show a clear W2 QTDW signature in the MLT region, which agrees well with the TIMED/SABER temperature and TIMED/TIDI horizontal wind observations. We conclude that the W2 QTDW during the 2011/2012 austral summer period results from the nonlinear interaction between W3 QTDW and SPW1.
Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2017-12-01
Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.
Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity
NASA Astrophysics Data System (ADS)
Bache, Morten; Lavrinenko, Andrei V.
2017-09-01
Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.
Observation of migrating transverse Anderson localizations of light in nonlocal media.
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio
2014-05-16
We report the experimental observation of the interaction and attraction of many localized modes in a two-dimensional system realized by a disordered optical fiber supporting transverse Anderson localization. We show that a nonlocal optically nonlinear response of thermal origin alters the localization length by an amount determined by the optical power and also induces an action at a distance between the localized modes and their spatial migration. Evidence of a collective and strongly interacting regime is given.
Design of materials configurations for enhanced phononic and electronic properties
NASA Astrophysics Data System (ADS)
Daraio, Chiara
The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.
Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
NASA Astrophysics Data System (ADS)
Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail
2018-05-01
We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Analysis and gyrokinetic simulation of MHD Alfven wave interactions
NASA Astrophysics Data System (ADS)
Nielson, Kevin Derek
The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the effect of wave amplitude upon the validity of our analytic solution, exploring the nature of strong turbulence. In the kinetic limit where k⊥ rhoi ≳ 1 where incompressible MHD is no longer a valid description, we illustrate how the nonlinear evolution departs from our analytic expression. The analytic theory we develop provides a framework from which more sophisticated of weak and strong inertial-range turbulence theories may be developed. Characterization of the limits of this theory may provide guidance in the development of kinetic Alfven wave turbulence.
Two-soliton interaction as an elementary act of soliton turbulence in integrable systems
NASA Astrophysics Data System (ADS)
Pelinovsky, E. N.; Shurgalina, E. G.; Sergeeva, A. V.; Talipova, T. G.; El, G. A.; Grimshaw, R. H. J.
2013-01-01
Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg-de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence.
Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers
NASA Technical Reports Server (NTRS)
Rothmayer, A. P.
1992-01-01
The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.
Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Nandkishore, Rahul M.
2017-09-01
In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.
Electrophoresis in strong electric fields.
Barany, Sandor
2009-01-01
Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a function of the electric field strength, particle size, electrolyte concentration and the adsorbed polymer amount. It has been shown that the electrophoretic velocity of the particles/cells increases with field strength linearly up to about 100 and 200 V/cm (for cells) without and with adsorbed polymers both in pure water and in electrolyte solutions. In line with the theoretical predictions, in stronger fields substantial non-linear effects were recorded (V(ef)~E(3)). The ef velocity of unipolar ion-type conducting (ion-exchanger particles and fibres), electron-type conducting (magnesium and Mg/Al alloy) and semiconductor particles (graphite, activated carbon, pyrite, molybdenite) increases significantly with the electric field (V(ef)~E(2)) and the particle's size but is almost independent of the ionic strength. These trends are inconsistent with Smoluchowski's equation for dielectric particles, but are consistent with the Dukhin-Mishchuk theory of superfast electrophoresis.
Joint symbolic dynamic analysis of cardiorespiratory interactions in patients on weaning trials.
Caminal, P; Giraldo, B; Zabaleta, H; Vallverdu, M; Benito, S; Ballesteros, D; Lopez-Rodriguez, L; Esteban, A; Baumert, M; Voss, A
2005-01-01
Assessing autonomic control provides information about patho-physiological imbalances. Measures of variability of the cardiac interbeat duration RR(n) and the variability of the breath duration T
A coupling method for a cardiovascular simulation model which includes the Kalman filter.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2012-01-01
Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.
Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.
Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke
2009-12-21
Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.
Transmission and reflection of strongly nonlinear solitary waves at granular interfaces.
Tichler, A M; Gómez, L R; Upadhyaya, N; Campman, X; Nesterenko, V F; Vitelli, V
2013-07-26
The interaction of a solitary wave with an interface formed by two strongly nonlinear noncohesive granular lattices displays rich behavior, characterized by the breakdown of continuum equations of motion in the vicinity of the interface. By treating the solitary wave as a quasiparticle with an effective mass, we construct an intuitive (energy- and linear-momentum-conserving) discrete model to predict the amplitudes of the transmitted solitary waves generated when an incident solitary-wave front, parallel to the interface, moves from a denser to a lighter granular hexagonal lattice. Our findings are corroborated with simulations. We then successfully extend this model to oblique interfaces, where we find that the angle of refraction and reflection of a solitary wave follows, below a critical value, an analogue of Snell's law in which the solitary-wave speed replaces the speed of sound, which is zero in the sonic vacuum.
Transmission and Reflection of Strongly Nonlinear Solitary Waves at Granular Interfaces
NASA Astrophysics Data System (ADS)
Tichler, A. M.; Gómez, L. R.; Upadhyaya, N.; Campman, X.; Nesterenko, V. F.; Vitelli, V.
2013-07-01
The interaction of a solitary wave with an interface formed by two strongly nonlinear noncohesive granular lattices displays rich behavior, characterized by the breakdown of continuum equations of motion in the vicinity of the interface. By treating the solitary wave as a quasiparticle with an effective mass, we construct an intuitive (energy- and linear-momentum-conserving) discrete model to predict the amplitudes of the transmitted solitary waves generated when an incident solitary-wave front, parallel to the interface, moves from a denser to a lighter granular hexagonal lattice. Our findings are corroborated with simulations. We then successfully extend this model to oblique interfaces, where we find that the angle of refraction and reflection of a solitary wave follows, below a critical value, an analogue of Snell’s law in which the solitary-wave speed replaces the speed of sound, which is zero in the sonic vacuum.
Stability of strongly nonlinear normal modes
NASA Astrophysics Data System (ADS)
Recktenwald, Geoffrey; Rand, Richard
2007-10-01
It is shown that a transformation of time can allow the periodic solution of a strongly nonlinear oscillator to be written as a simple cosine function. This enables the stability of strongly nonlinear normal modes in multidegree of freedom systems to be investigated by standard procedures such as harmonic balance.
Some theoretical aspects of boundary layer stability theory
NASA Technical Reports Server (NTRS)
Hall, Philip
1990-01-01
Increased understanding in recent years of boundary layer transition has been made possible by the development of strongly nonlinear stability theories. After some twenty or so years when nonlinear stability theory was restricted to the application of the Stuart-Watson method (or less formal amplitude expansion procedures), there now exist strongly nonlinear theories which can describe processes which have an 0(1) effect on the basic state. These strongly nonlinear theories and their possible role in pushing theoretical understanding of transition ever further into the nonlinear regime are discussed.
Turbulence of electrostatic electron cyclotron harmonic waves observed by Ogo 5.
NASA Technical Reports Server (NTRS)
Oya, H.
1972-01-01
Analysis of VLF emissions that have been observed near 3/2, 5/2, and 7/2 f sub H by Ogo 5 in the magnetosphere (f sub H is the electron cyclotron frequency) in the light of the mechanism used for the diffuse plasma resonance f sub Dn observed by Alouette 2 and Isis 1. The VLF emission is considered to be generated by nonlinear coupling mechanisms in certain portions of the observation as the f sub Dn is enhanced by its association with nonlinear wave-particle interaction of the electrostatic electron cyclotron harmonic wave, including the instability due to the nonlinear inverse Landau damping mechanism in the turbulence. The difference between the two observations is in the excitation mechanism of the turbulence; the turbulence in the plasma trough detected by Ogo 5 is due to natural origins, whereas the ionospheric topside sounder makes the plasma wave turbulence artificially by submitting strong stimulation pulses. Electron density values in the plasma trough are deduced by applying the f sub Dn-f sub N/f sub H relationship obtained from the Alouette 2 experiment as well as by applying the condition for the wave-particle nonlinear interactions. The electron density values reveal good agreement with the ion density values observed simultaneously by the highly sensitive ion mass spectrometer.
Nonlinear Optical Interactions in Plasmas at JILA
NASA Astrophysics Data System (ADS)
Dollar, F.; Hickstein, D. D.; Popmintchev, D.; Becker, A.; Ellis, J.; Hernandez-Garcia, C.; Jaron-Becker, A.; Popmintchev, T.; Xiong, W.; Murnane, M. M.; Kapteyn, H. C.; Dukovic, G.; Jimenez, J.; Palm, B.; Schnitzenbaumer, K.; Perez-Hernandez, J.; Gaeta, A.; Gao, X.; Shim, B.; Plaja, L.; Levis, R.; Tarazkar, M.; Foord, M. E.; Gaffney, J. A.; Libby, S. B.
2014-10-01
We present data from two recent experiments. First, we demonstrate direct observations of localized light absorption in a single nanoparticle irradiated by a strong femtosecond laser field. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Secondly, we show the high linear and nonlinear UV refractive indices of both neutral atoms and ions compensate for plasma dispersion, even in multiply-ionized gases. The experimental work was primarily funded by DOE Grant Number: DE-SC0008803, the DARPA PULSE program, and ARO W911NF-12-1-0436.
Nonlinear properties of gated graphene in a strong electromagnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am; Moulopoulos, K., E-mail: cos@ucy.ac.cy
We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.
Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragas, Andrea V.; Singh, Mahi R.
2014-03-31
Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metalmore » nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.« less
Nonlinear optical response and its theoretical modelling of Sb2S3 nanorod
NASA Astrophysics Data System (ADS)
Yadav, Rajesh Kumar; Barik, A. R.; Das, Amlan; Adarsh, K. V.
2018-05-01
Light-matter interaction in nanoscale regime have unprecedented and accelerating demand in optoelectronics, valley electronics and device applications. Such interaction in 1-dimention (1D) metal chalcogenides has emerged as an important research topic because of its possibility to custom design optical properties, implying enormous application including optical computers, communications, bioimaging, and so on. However, understanding of nonlinear optical response of these nanostructures is still lacking, although it constitutes an interesting problem on the light-matter interaction. Here, we have presented the nonlinear optical response in Sb2S3 nanorod using Z-scan technique. Our experimental findings show a strong saturable absorption (SA). In this context, we have numerically simulated the experimental result using two level rate equation. The solutions of these two-level rate equation for a Gaussian shaped pulse exactly replicated the experimental data. From the best numerical fit, we found excited state decay time (τ ≈ 0.15ns) and saturation intensity (IS ≈ 0.01 GW/cm2). Additionally, we have calculated number of career density (N ≈ 5.31 × 10-17 cm-3), ground state absorption cross section (σ1 ≈ 1.63 × 10-17 cm2). Our experimental finding indicates that they can be employed as saturable absorbers.
Rewriting the rules governing high intensity interactions of light with matter
NASA Astrophysics Data System (ADS)
Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K.
2016-04-01
The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I ≈ 1016 W cm-2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α → Z 2 α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z ≅ 18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z 2 α ≅ 2.4 > 1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also conclusively demonstrated by an abundance of data that the utterly peerless champion of the experimental campaign leading to the definition of the fundamental nonlinear domain was excimer laser technology. The basis of this unique role was the ability to satisfy simultaneously a triplet (ω, I, P) of conditions stating the minimal values of the frequency ω, intensity I, and the power P necessary to enable the key physical processes to be experimentally observed and controllably combined. The historical confluence of these developments creates a solid foundation for the prediction of future advances in the fundamental understanding of ultra-high power density states of matter. The atomic findings graciously generalize to the composition of a nuclear stanza expressing the accessibility of the nuclear domain. With this basis serving as the launch platform, a cadenza of three grand challenge problems representing both new materials and new interactions is presented for future solution; they are (1) the performance of an experimental probe of the properties of the vacuum state associated with the dark energy at an intensity approaching the Schwinger/Heisenberg limit, (2) the attainment of amplification in the γ-ray region (~1 MeV) and the discovery of a nuclear excimer, and (3) the determination of a path to the projected super-heavy nuclear island of stability.
Rewriting the rules governing high intensity interactions of light with matter.
Borisov, Alex B; McCorkindale, John C; Poopalasingam, Sankar; Longworth, James W; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K
2016-04-01
The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 10(3) eV and I ≈ 10(16) W cm(-2), it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α → Z(2)α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d(10)5s(2)5p(6)) supershell for which Z ≅ 18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z(2)α ≅ 2.4 > 1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also conclusively demonstrated by an abundance of data that the utterly peerless champion of the experimental campaign leading to the definition of the fundamental nonlinear domain was excimer laser technology. The basis of this unique role was the ability to satisfy simultaneously a triplet (ω, I, P) of conditions stating the minimal values of the frequency ω, intensity I, and the power P necessary to enable the key physical processes to be experimentally observed and controllably combined. The historical confluence of these developments creates a solid foundation for the prediction of future advances in the fundamental understanding of ultra-high power density states of matter. The atomic findings graciously generalize to the composition of a nuclear stanza expressing the accessibility of the nuclear domain. With this basis serving as the launch platform, a cadenza of three grand challenge problems representing both new materials and new interactions is presented for future solution; they are (1) the performance of an experimental probe of the properties of the vacuum state associated with the dark energy at an intensity approaching the Schwinger/Heisenberg limit, (2) the attainment of amplification in the γ-ray region (~1 MeV) and the discovery of a nuclear excimer, and (3) the determination of a path to the projected super-heavy nuclear island of stability.
Linear and nonlinear dynamics of isospectral granular chains
NASA Astrophysics Data System (ADS)
Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.
2017-04-01
We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.
Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes
NASA Astrophysics Data System (ADS)
Xiong, G. Z.; Wang, L.; Li, X. Q.; Liu, H. F.; Tang, C. J.; Huang, J.; Zhang, X.; Wang, X. Q.
2017-06-01
The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet-Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs.
Good vibrations: Controlling light with sound (Conference Presentation)
NASA Astrophysics Data System (ADS)
Eggleton, Benjamin J.; Choudhary, Amol
2016-10-01
One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.
Low-Dimensional Models for Physiological Systems: Nonlinear Coupling of Gas and Liquid Flows
NASA Astrophysics Data System (ADS)
Staples, A. E.; Oran, E. S.; Boris, J. P.; Kailasanath, K.
2006-11-01
Current computational models of biological organisms focus on the details of a specific component of the organism. For example, very detailed models of the human heart, an aorta, a vein, or part of the respiratory or digestive system, are considered either independently from the rest of the body, or as interacting simply with other systems and components in the body. In actual biological organisms, these components and systems are strongly coupled and interact in complex, nonlinear ways leading to complicated global behavior. Here we describe a low-order computational model of two physiological systems, based loosely on a circulatory and respiratory system. Each system is represented as a one-dimensional fluid system with an interconnected series of mass sources, pumps, valves, and other network components, as appropriate, representing different physical organs and system components. Preliminary results from a first version of this model system are presented.
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
MoS2 /Carbon Nanotube Core-Shell Nanocomposites for Enhanced Nonlinear Optical Performance.
Zhang, Xiaoyan; Selkirk, Andrew; Zhang, Saifeng; Huang, Jiawei; Li, Yuanxin; Xie, Yafeng; Dong, Ningning; Cui, Yun; Zhang, Long; Blau, Werner J; Wang, Jun
2017-03-08
Nanocomposites of layered MoS 2 and multi-walled carbon nanotubes (CNTs) with core-shell structure were prepared by a simple solvothermal method. The formation of MoS 2 nanosheets on the surface of coaxial CNTs has been confirmed by scanning electron microscopy, transmission electron microscopy, absorption spectrum, Raman spectroscopy, and X-ray photoelectron spectroscopy. Enhanced third-order nonlinear optical performances were observed for both femtosecond and nanosecond laser pulses over a broad wavelength range from the visible to the near infrared, compared to those of MoS 2 and CNTs alone. The enhancement can be ascribed to the strong coupling effect and the photoinduced charge transfer between MoS 2 and CNTs. This work affords an efficient way to fabricate novel CNTs based nanocomposites for enhanced nonlinear light-matter interaction. The versatile nonlinear properties imply a huge potential of the nanocomposites in the development of nanophotonic devices, such as mode-lockers, optical limiters, or optical switches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo
2012-02-01
Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.
A robust adaptive observer for a class of singular nonlinear uncertain systems
NASA Astrophysics Data System (ADS)
Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali
2017-05-01
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.
NASA Astrophysics Data System (ADS)
Texier, Christophe; Mitscherling, Johannes
2018-02-01
We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and
Homogenized description and retrieval method of nonlinear metasurfaces
NASA Astrophysics Data System (ADS)
Liu, Xiaojun; Larouche, Stéphane; Smith, David R.
2018-03-01
A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry and material composition, across the electromagnetic spectrum.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
Electromagnetically Induced Transparency In Rydberg Atomic Medium
NASA Astrophysics Data System (ADS)
Deng, Li; Cong, Lu; Chen, Ai-Xi
2018-03-01
Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.
Ultrafast Nonlinear Response of Atomic and Molecular Gases in Near-IR and Mid-IR Regions
NASA Astrophysics Data System (ADS)
Zahedpour Anaraki, Sina
There is a dynamical interaction between an ultrashort laser pulse and the medium it propagates through. At the shortest timescales, the near-instantaneous electronic response of the medium contributes to an induced polarization nonlinearity. On a longer timescale, the vibrational response can contribute, followed on even longer timescales by the rotational response. One of the major consequences of these nonlinearities is that they can induce the collapse and filamentation of the laser pulse, leading to ionization and plasma generation. In this dissertation, measurements and theory are presented for both the fundamental atomic and molecular nonlinearities themselves (electronic, rovibrational, and ionization rates) in the range lambda=400nm-2600nm, and their applications. The media investigated are air constituents (Ar, N 2, O2), H2, D2, and common transparent optical materials. In particular, in one application it is shown that in molecular gases like N2 and O2, the propagating laser electric field can pump a rotational wavepacket, producing molecular ensembles with both transient and long-lived ("permanent") alignment components. This alignment, which generates quantum echoes (rotational revivals), can interact with the pulse that generated it (rotational nonlinearity) and with any pulses that may follow. We show that a properly timed train of ultrashort laser pulses can resonate with the rotational revivals, causing a "permanent" alignment in the gas which thermalizes and then drives a strong hydrodynamic response which can exceed that from the plasma heating by a filament.
Shock wave structure in a strongly nonlinear lattice with viscous dissipation.
Herbold, E B; Nesterenko, V F
2007-02-01
The shock wave structure in a one-dimensional lattice (e.g., granular chain of elastic particles) with a power law dependence of force on displacement between particles (F proportional to delta(n)) with viscous dissipation is considered and compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity between neighboring particles is included to investigate its influence on the shape of a steady shock. The critical viscosity coefficient p(c), defining the transition from an oscillatory to a monotonic shock profile in strongly nonlinear systems, is obtained from the long-wave approximation for arbitrary values of the exponent n. The expression for the critical viscosity is comparable to the value obtained in the numerical analysis of a discrete system with a Hertzian contact interaction (n=3/2) . The expression for p(c) in the weakly nonlinear case converges to the known equation for the critical viscosity. An initial disturbance in a discrete system approaches a stationary shock profile after traveling a short distance that is comparable to the width of the leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its critical value.
Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.
Andres, Jeanne Therese H; Cardoso, Silvana S S
2012-09-01
We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.
Analysis of tristable energy harvesting system having fractional order viscoelastic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.
2015-01-15
A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the systemmore » response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.« less
Abbasi, Mohammad
2018-04-01
The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Malaspina, David M.; Ukhorskiy, Aleksandr; Chu, Xiangning; Wygant, John
2018-04-01
Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g., occurrence rates, amplitudes, and spatial scales). Kinetic structures and nonlinear waves have broadband signatures in frequency space, and consequently, high-resolution time domain electric and magnetic field data are required to uniquely identify such structures and waves as well as determine their properties. However, most high-resolution fields data are collected with a strong bias toward high-amplitude signals in a preselected frequency range, strongly biasing observations of structure and wave properties. In this study, an ˜45 min unbroken interval of 16,384 samples/s field burst data, encompassing an electron injection event, is examined. This data set enables an unbiased census of the kinetic structures and nonlinear waves driven by this electron injection, as well as determination of their "typical" properties. It is found that the properties determined using this unbiased burst data are considerably different than those inferred from amplitude-biased burst data, with significant implications for wave-particle interactions due to kinetic structures and nonlinear waves in the inner magnetosphere.
A photon-photon quantum gate based on a single atom in an optical resonator.
Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan
2016-08-11
That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.
NASA Astrophysics Data System (ADS)
Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.
2017-10-01
We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with 'ab initio' calculations of the phonon energies and the phonon density of state reveal strong interaction with the E‧ and E″ phonon modes.
NASA Astrophysics Data System (ADS)
Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.
2017-06-01
We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with ‘ab initio’ calculations of the phonon energies and the phonon density of state reveal strong interaction with the E’ and E” phonon modes.
Tunable resonant and non-resonant interactions between a phase qubit and LC resonator
NASA Astrophysics Data System (ADS)
Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.
Sarkar, Sujit
2017-05-12
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).
Shen, Ming; Gao, Jinsong; Ge, Lijuan
2015-01-01
We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878
Many-body dynamics of driven-dissipative Rydberg cavity polaritons
NASA Astrophysics Data System (ADS)
Pistorius, Tim; Fan, Jingtao; Weimer, Hendrik
2017-04-01
The usage of photons as long-range information carriers has greatly increased the interest in systems with nonlinear optical properties in recent years. The nonlinearity is easily achievable in Rydberg mediums through the strong van der Waals interaction which makes them one of the best candidates for such a system. Here, we propose a way to analyze the steady state solutions of a Rydberg medium in a cavity through the combination of the variational principle for open quantum systems and the P-distribution of the density matrix. To get a better understanding of the many-body-dynamics a transformation into the polariton picture is performed and investigated. Volkswagen Foundation, Deutsche Forschungsgemeinschaft.
Stability of two-mode internal resonance in a nonlinear oscillator
NASA Astrophysics Data System (ADS)
Zanette, Damián H.
2018-05-01
We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.
Nonlinear adhesion dynamics of confined lipid membranes
NASA Astrophysics Data System (ADS)
To, Tung; Le Goff, Thomas; Pierre-Louis, Olivier
Lipid membranes, which are ubiquitous objects in biological environments are often confined. For example, they can be sandwiched between a substrate and the cytoskeleton between cell adhesion, or between other membranes in stacks, or in the Golgi apparatus. We present a study of the nonlinear dynamics of membranes in a model system, where the membrane is confined between two flat walls. The dynamics derived from the lubrication approximation is highly nonlinear and nonlocal. The solution of this model in one dimension exhibits frozen states due to oscillatory interactions between membranes caused by the bending rigidity. We develope a kink model for these phenomena based on the historical work of Kawasaki and Otha. In two dimensions, the dynamics is more complex, and depends strongly on the amount of excess area in the system. We discuss the relevance of our findings for experiments on model membranes, and for biological systems. Supported by the grand ANR Biolub.
Nonlinear interactions between black holes and Proca fields
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Witek, Helvi; Cardoso, Vitor
2015-12-01
Physics beyond the standard model is an important candidate for dark matter, and an interesting testing ground for strong-field gravity: the equivalence principle ‘forces’ all forms of matter to fall in the same way, and it is therefore natural to look for imprints of these fields in regions with strong gravitational fields, such as compact stars or black holes (BHs). Here we study general relativity minimally coupled to a massive vector field, and how BHs in this theory lose ‘hair’. Our results indicate that BHs can sustain Proca field condensates for extremely long time-scales.
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State
NASA Astrophysics Data System (ADS)
Stoop, Ruedi; Gomez, Florian
2016-07-01
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2013-01-01
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank
NASA Astrophysics Data System (ADS)
Xue, Mi-An; Zheng, Jinhai; Lin, Pengzhi; Xiao, Zhong
2017-08-01
A finite difference model for solving Navier Stokes equations with turbulence taken into account is used to investigate viscous liquid sloshing-wave interaction with baffles in a tank. The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.
2001-01-01
Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended, negatively charged surface coat, the glycocalyx. Different charge distribution profiles within the glycocalyx are analysed. It is shown that charged glycocalices on the apical surface of the hair cells can support spatial separation between adjacent stereocilia in the hair bundles through electrostatic repulsion between stereocilia. The charge density profile within the glycocalyx is a crucial parameter. In fact, attraction instead of repulsion between adjacent stereocilia will be observed if the charge of the glycocalyx is concentrated near the membrane of the stereocilia, thereby making this type of charge distribution unlikely. The forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena that have been recorded from the periphery of the auditory and vestibular systems.
de Carvalho, Sidney Jurado; Fenley, Márcia O; da Silva, Fernando Luís Barroso
2008-12-25
Electrostatic interactions are one of the key driving forces for protein-ligands complexation. Different levels for the theoretical modeling of such processes are available on the literature. Most of the studies on the Molecular Biology field are performed within numerical solutions of the Poisson-Boltzmann Equation and the dielectric continuum models framework. In such dielectric continuum models, there are two pivotal questions: (a) how the protein dielectric medium should be modeled, and (b) what protocol should be used when solving this effective Hamiltonian. By means of Monte Carlo (MC) and Poisson-Boltzmann (PB) calculations, we define the applicability of the PB approach with linear and nonlinear responses for macromolecular electrostatic interactions in electrolyte solution, revealing some physical mechanisms and limitations behind it especially due the raise of both macromolecular charge and concentration out of the strong coupling regime. A discrepancy between PB and MC for binding constant shifts is shown and explained in terms of the manner PB approximates the excess chemical potentials of the ligand, and not as a consequence of the nonlinear thermal treatment and/or explicit ion-ion interactions as it could be argued. Our findings also show that the nonlinear PB predictions with a low dielectric response well reproduce the pK shifts calculations carried out with an uniform dielectric model. This confirms and completes previous results obtained by both MC and linear PB calculations.
Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities.
Chen, Wei; Shen, Ming; Kong, Qian; Shi, Jielong; Wang, Qi; Krolikowski, Wieslaw
2014-04-01
We investigate analytically and numerically the interactions of dark solitons under competing nonlocal cubic and local quintic nonlinearities. It is shown that the self-defocusing quintic nonlinearity will strengthen the attractive interaction and decrease the relative distance between solitons, whereas the self-focusing quintic nonlinearity will enhance the repulsive interaction and increase soliton separation. We demonstrate these results by approximate variational approach and direct numerical simulation.
Long-range intercellular Ca2+ wave patterns
NASA Astrophysics Data System (ADS)
Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.
2015-10-01
Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.
Thermodynamic description of Hofmeister effects on the LCST of thermosensitive polymers.
Heyda, Jan; Dzubiella, Joachim
2014-09-18
Cosolvent effects on protein or polymer collapse transitions are typically discussed in terms of a two-state free energy change that is strictly linear in cosolute concentration. Here we investigate in detail the nonlinear thermodynamic changes of the collapse transition occurring at the lower critical solution temperature (LCST) of the role-model polymer poly(N-isopropylacrylamide) [PNIPAM] induced by Hofmeister salts. First, we establish an equation, based on the second-order expansion of the two-state free energy in concentration and temperature space, which excellently fits the experimental LCST curves and enables us to directly extract the corresponding thermodynamic parameters. Linear free energy changes, grounded on generic excluded-volume mechanisms, are indeed found for strongly hydrated kosmotropes. In contrast, for weakly hydrated chaotropes, we find significant nonlinear changes related to higher order thermodynamic derivatives of the preferential interaction parameter between salts and polymer. The observed non-monotonic behavior of the LCST can then be understood from a not yet recognized sign change of the preferential interaction parameter with salt concentration. Finally, we find that solute partitioning models can possibly predict the linear free energy changes for the kosmotropes, but fail for chaotropes. Our findings cast strong doubt on their general applicability to protein unfolding transitions induced by chaotropes.
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
NASA Astrophysics Data System (ADS)
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Thermally Driven Inhibition of Superconducting Vortex Avalanches
NASA Astrophysics Data System (ADS)
Lara, Antonio; Aliev, Farkhad G.; Moshchalkov, Victor V.; Galperin, Yuri M.
2017-09-01
Complex systems close to their critical state can exhibit abrupt transitions—avalanches—between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here, we investigate microwave stimulation of avalanches in the so-called vortex matter of type-II superconductors—a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the microwave stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counterintuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the microwave excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.
Reconfiguring crystal and electronic structures of MoS 2 by substitutional doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Joonki; Tan, Teck Leong; Zhao, Weijie
Doping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS 2 crystals. The doping readily induces a structural transformation from naturally occurring 2H stacking to 3R stacking. Electronically, a strong interaction of the Nb impurity states with the host valence bands drastically and nonlinearly modifies the electronic band structure with the valencemore » band maximum of multilayer MoS 2 at the Γ point pushed upward by hybridization with the Nb states. Finally, when thinned down to monolayers, in stark contrast, such significant nonlinear effect vanishes, instead resulting in strong and broadband photoluminescence via the formation of exciton complexes tightly bound to neutral acceptors.« less
Reconfiguring crystal and electronic structures of MoS 2 by substitutional doping
Suh, Joonki; Tan, Teck Leong; Zhao, Weijie; ...
2018-01-15
Doping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS 2 crystals. The doping readily induces a structural transformation from naturally occurring 2H stacking to 3R stacking. Electronically, a strong interaction of the Nb impurity states with the host valence bands drastically and nonlinearly modifies the electronic band structure with the valencemore » band maximum of multilayer MoS 2 at the Γ point pushed upward by hybridization with the Nb states. Finally, when thinned down to monolayers, in stark contrast, such significant nonlinear effect vanishes, instead resulting in strong and broadband photoluminescence via the formation of exciton complexes tightly bound to neutral acceptors.« less
Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1989-01-01
The nonlinear interaction between planar or near-planar Tollmien-Schlichting waves and longitudinal vortices, induced or input, is considered theoretically for channel flows at high Reynolds numbers. Several kinds of nonlinear interaction, dependent on the input amplitudes and wavenumbers or on previously occurring interactions, are found and inter-related. The first, Type 1, is studied the most here and it usually produces spanwise focusing of both the wave and the vortex motion, within a finite scaled time, along with enhancement of both their amplitudes. This then points to the nonlinear interaction Type 2 where new interactive effects come into force to drive the wave and the vortex nonlinearly. Types 3, 4 correspond to still higher amplitudes, with 3 being related to 2, while 4 is connected with a larger-scale interaction 5 studied in an allied paper. Both 3, 4 are subsets of the full three-dimensional triple-deck-lie interaction, 6. The strongest nonlinear interactions are those of 4, 5, 6 since they alter the mean-flow profile substantially, i.e., by an 0(1) relative amount. All the types of nonlinear interaction however can result in the formation of focussed responses in the sense of spanwise concentrations and/or amplifications of vorticity and wave amplitude.
Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event
NASA Astrophysics Data System (ADS)
Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping
2013-03-01
Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.
NASA Astrophysics Data System (ADS)
Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.
2012-04-01
We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these findings add further evidence that the shallow mesoscale spectrum is not generated by balanced two-dimensional turbulence.
A theoretical study of interaction effects on the remanence curves of particulate dispersions
NASA Astrophysics Data System (ADS)
Fearon, M.; Chantrell, R. W.; Wohlfarth, E. P.
1990-05-01
The remanence curves of strongly interacting fine-particle systems are investigated theoretically. It is shown that the Henkel plot of the dc demagnetisation remanence vs. the isothermal remanence is a useful representation of interactions. The form of the plot is found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is also investigated. The results are consistent with a previous experimental study. Finally, the effect of interactions on the Switching Field Distribution are investigated.
Electrical control of second-harmonic generation in a WSe 2 monolayer transistor
Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; ...
2015-04-20
Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe 2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an ordermore » of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less
Three-dimensional earthquake analysis of roller-compacted concrete dams
NASA Astrophysics Data System (ADS)
Kartal, M. E.
2012-07-01
Ground motion effect on a roller-compacted concrete (RCC) dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam-foundation-reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.
Quantum Transport Theory of Optical and Plasmonic Response of Nanomaterials
NASA Astrophysics Data System (ADS)
Karimi, Farhad
The light-matter interaction is the cornerstone of photonics and optoelectronics. Advances in the fabrication techniques that has enabled the miniaturization of the semiconductor devices, along with emergence of nanomaterials such as graphene, have brought the fields of photonics and optoelectronics down to the nanoscale. Controlling the light-matter interaction at the nanoscale will impact on the development and improvement of many technologies, ranging from solar-energy harvesting to biosensing. However, the quantum confinement at the nanoscale makes nanostructured devices behave significantly differently than their larger counterparts, which turns the nanoscale control into a grand challenge. In order to pave the path toward it, we need to have a clear and accurate picture of how electrons interact with light at the nanoscale. This dissertation presents a rigorous quantum-transport method for studying the optical and plasmonic properties of nanomaterials. This method is based on a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with the full-wave electromagnetic equations. The SCF-MMEF captures the interband electron-hole generation, as well as the interband and intraband transitions due to multiple competing scattering mechanisms, where the transition rates can have pronounced and widely differing dependencies on both carrier energy and momentum. The SCF-MMEF is applicable to any type of material with an arbitrary band dispersion and Bloch wave functions. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum, we obtain the plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO2 and hBN], impurity densities, carrier densities, and temperatures. We find that plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. In pursuit of finding less dissipative plasmonic materials, we calculate the dielectric function and plasmonic response of armchair (aGNRs)and zigzag (zGNRs) graphene nanoribbons via the SCF-MMEF. Supported GNRs provide almost the same interesting plasmonic features as graphene, with the added benefit of a less dissipative environment for electrons, owing to the low electronic density of states and thus lower electron scattering rates. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4-5-nm-wide ribbons having the longest propagation length. In other types of aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much greater on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO2 or hBN), where electrons scatter strongly with surface optical phonons. Another advantage of the SCF-MMEF is that it can be used perturbatively to calculate the nonlinear optical response. We perturbatively employ the SCF-MMEF to calculate the GNRs optical nonlinearity. We show that graphene nanoribbons have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the nearinfrared. In the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intrasubband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. At the midinfrared to nearinfrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.
Interaction of solitons for obliquely propagating magnetoacoustic waves in stellar atmosphere
NASA Astrophysics Data System (ADS)
Jahangir, R.; Masood, W.; Siddiq, M.; Batool, Nazia
2016-12-01
We study here the nonlinear oblique propagation of magnetoacoustic waves in dense plasmas with degenerate electrons by deriving Kadomtsev-Petviashvili (KP) equation for small but finite amplitude perturbations. The two soliton interaction has been studied by finding the solution of the KP equation using the Hirota bilinear formalism. For illustrative purposes, we have used the plasma parameters typically found in white dwarf stars for both the fast and slow modes of magnetoacoustic waves. It has been observed that the soliton interaction in the fast and slow modes is strongly influenced by the predominant and weak dispersive coefficients of the KP equation. The single soliton behavior has also been explained for the fast and slow magnetoacoustic modes.
NASA Technical Reports Server (NTRS)
Lin, Ray-Quing; Kuang, Weijia
2011-01-01
In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.
Peddie, Victoria; Anderson, Jack; Harvey, Joanne E; Smith, Gerald J; Kay, Andrew
2014-11-07
We report details of the synthesis of a series of bi- and trichromophores. These compounds contain mixtures of chromophores that have zwitterionic (ZWI) and neutral ground state (NGS) components covalently attached to each other. The neutral ground state moieties are based on dyes with aniline donors--such as Disperse Red 1--whereas the zwitterionic components are derived from chromophores with pro-aromatic donors such as 1,4-dihydropyridinylidene. By combining both ZWI and NGS components, we aim to develop novel compounds for nonlinear optics in which there is an enhancement of the overall hyperpolarizability coupled with a decrease in the net dipole moment. Thus, this approach should eliminate the electrostatic effects that result when only one type of chromophore is used, and so reduce the likelihood of undesirable aggregation occurring. This, in turn, should enable us to realize organic materials with large macroscopic optical nonlinearities. An analysis of the UV-vis results suggests that there is a strong dependence on solvent polarity that determines whether the embedded constituents should be treated as discrete elements; in low polarity solvents, there appear to be strong intramolecular interactions occurring, particularly when a 1,4-quinolinylidene-based donor is used in the ZWI component.
Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase
NASA Astrophysics Data System (ADS)
Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.
2015-12-01
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.
Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft
NASA Astrophysics Data System (ADS)
Patil, Mayuresh Jayawant
The focus of this research was to analyze a high-aspect-ratio wing aircraft flying at low subsonic speeds. Such aircraft are designed for high-altitude, long-endurance missions. Due to the high flexibility and associated wing deformation, accurate prediction of aircraft response requires use of nonlinear theories. Also strong interactions between flight dynamics and aeroelasticity are expected. To analyze such aircraft one needs to have an analysis tool which includes the various couplings and interactions. A theoretical basis has been established for a consistent analysis which takes into account, (i) material anisotropy, (ii) geometrical nonlinearities of the structure, (iii) rigid-body motions, (iv) unsteady flow behavior, and (v) dynamic stall. The airplane structure is modeled as a set of rigidly attached beams. Each of the beams is modeled using the geometrically exact mixed variational formulation, thus taking into account geometrical nonlinearities arising due to large displacements and rotations. The cross-sectional stiffnesses are obtained using an asymptotically exact analysis, which can model arbitrary cross sections and material properties. An aerodynamic model, consisting of a unified lift model, a consistent combination of finite-state inflow model and a modified ONERA dynamic stall model, is coupled to the structural system to determine the equations of motion. The results obtained indicate the necessity of including nonlinear effects in aeroelastic analysis. Structural geometric nonlinearities result in drastic changes in aeroelastic characteristics, especially in case of high-aspect-ratio wings. The nonlinear stall effect is the dominant factor in limiting the amplitude of oscillation for most wings. The limit cycle oscillation (LCO) phenomenon is also investigated. Post-flutter and pre-flutter LCOs are possible depending on the disturbance mode and amplitude. Finally, static output feedback (SOF) controllers are designed for flutter suppression and gust alleviation. SOF controllers are very simple and thus easy to implement. For the case considered, SOF controllers with proper choice of sensors give results comparable to full state feedback (linear quadratic regulator) designs.
Efficient quantum computing using coherent photon conversion.
Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A
2011-10-12
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.
NASA Astrophysics Data System (ADS)
Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.
2018-01-01
In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.
Quasisubharmonic vibrations in metal plates excited by high-power ultrasonic pulses
NASA Astrophysics Data System (ADS)
Chen, Zhao-jiang; Zhang, Shu-yi; Zheng, Kai; Kuo, Pao-kuang
2009-07-01
Strongly nonlinear vibration phenomena in metal plates excited by high-power ultrasonic pulses in different conditions are studied experimentally and theoretically. The experimental conditions for generating quasisubharmonics and subharmonics are found and discussed. The plate vibrations are characterized by waveforms, frequency spectra, pseudostate portraits, and Poincaré maps. Then, a three-degree-of-freedom vibroimpact-dynamic model is presented to explore the generation mechanisms of the quasisubharmonic and subharmonic vibrations in the plates. According to the model, the intermittent contact-impact forces caused by the interactions between the transducer horn tip and the plate are considered as the main source for generating the complex nonlinear vibration in the plate. The numerical calculation results can explain reasonably the observed experimental phenomena.
Nonalgebraic integrability of one reversible dynamical system of the Cremona type
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
1998-05-01
A reversible dynamical system (RDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions [the Chew-Low-type equations with crossing-symmetry matrix A(l,1)], are considered. This RDS is split into one- and two-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous three-point functional equation. Nonalgebraic integrability of RDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a nonresonant fixed point.
Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes
NASA Astrophysics Data System (ADS)
Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing
2018-04-01
Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2018-01-01
The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.
Nonlinear Plasma Experiments in Geospace with Gigawatts of RF Power at HAARP
NASA Astrophysics Data System (ADS)
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.
2014-10-01
The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and suprathermal electrons. Applications are made to the study and control of irregularities affecting spacecraft communication and navigation systems.
Time-dependent behavior in a transport-barrier model for the quasi-single helcity state
NASA Astrophysics Data System (ADS)
Terry, P. W.; Whelan, G. G.
2014-09-01
Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH) state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas 19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same helicity, and shows that strong magnetic and velocity shears in the structure suppress the nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation energies over wavenumber, we reduce the theory to a predator-prey model. The suppression of the nonlinear interaction is governed by the single helicity energy, which, for fixed radial structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma current which, in the theory, sets the shearing threshold for suppression. The model shows a limit cycle oscillation in which the system toggles between QSH and multiple helicity states, with the single helicity phase becoming increasingly long-lived relative to the multiple helicity phase as plasma current increases.
Fluid-structure interaction simulations of deformable structures with non-linear thin shell elements
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Hedayat, Mohammadali; Borazjani, Iman; Scientific Computing; Biofluids Laboratory Team
2017-11-01
Large deformation of structures in a fluid is simulated using a strongly coupled partitioned fluid-structure interaction (FSI) approach which is stabilized with under-relaxation and the Aitken acceleration technique. The fluid is simulated using a recently developed implicit Newton-Krylov method with a novel analytical Jacobian. Structures are simulated using a triangular thin-shell finite element formulation, which considers only translational degrees of freedom. The thin-shell method is developed on the top of a previously implemented membrane finite element formulation. A sharp interface immersed boundary method is used to handle structures in the fluid domain. The developed FSI framework is validated against two three-dimensional experiments: (1) a flexible aquatic vegetation in the fluid and (2) a heaving flexible panel in fluid. Furthermore, the developed FSI framework is used to simulate tissue heart valves, which involve large deformations and non-linear material properties. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.
Super-luminescent jet light generated by femtosecond laser pulses
Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng
2014-01-01
Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611
NASA Astrophysics Data System (ADS)
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
NASA Astrophysics Data System (ADS)
Wang, Liyun; Yuan, Jinhui; Wang, Kuiru; Kang, Zhe; Sang, Xinzhu; Yu, Chongxiu; Yan, Binbin
2016-11-01
In this paper, the supercontinuum (SC) generation in a carbon disulfide (CS2)-filled photonic crystal fiber (PCF) with strong slow nonlinearity is investigated. When the PCF is pumped at 1.55 μm in the anomalous dispersion region, we obtain highly coherent SC spanning from 0.99 to 2.32 μm, at -40 dB level. Moreover, the influences of the slow nonlinearity, the input pulse width, the pulse peak power, the fiber length, and the temperature on the supercontinuum generation (SCG) are studied. The role of the slow nonlinearity in enhancing the coherence of SC is proved. To our best knowledge, this is the first demonstration on generating the octave-spanning SC with high coherence using the slow nonlinearity of CS2. CS2 is a material that has high nonlinearity coefficient and well transparency in infrared. What's more, the slow nonlinearity is very strong in this material.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-08-11
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less
Unified Aerosol Microphysics for NWP
2013-09-30
it may be treated as a generic variable such as when it is processed by advection, or it may be used specifically like dust in ice nucleation...interactions. We shifted instead to a winter-time passage of a low pressure system across North Africa and the Mediterranean Sea (Figure 1). The strong...MODIS multispectral albedo data, MODIS land surface data, and the NRL DSD for SW Asia and E Asia a multi-variate, non-linear classification was
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2016-11-01
One-dimensional and quasi-one-dimensional strongly coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the one-ring are measured and found to be in excellent agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-Hückel) potential. These rings provide a new experimental system to directly study one-dimensional and quasi-one-dimensional linear and nonlinear phenomena.
Nonlinear evolution of the Kelvin-Helmholtz instability in the double current sheet configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Aohua; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp; Kishimoto, Yasuaki
2016-03-15
The nonlinear evolution of the Kelvin-Helmholtz (KH) instability driven by a radially antisymmetric shear flow in the double current sheet configuration is numerically investigated based on a reduced magnetohydrodynamic model. Simulations reveal different nonlinear fate of the KH instability depending on the amplitude of the shear flow, which restricts the strength of the KH instability. For strong shear flows far above the KH instability threshold, the linear electrostatic-type KH instability saturates and achieves a vortex flow dominated quasi-steady state of the electromagnetic (EM) KH turbulence with large-amplitude zonal flows as well as zonal fields. The magnetic surfaces are twisted significantlymore » due to strong vortices but without the formation of magnetic islands. However, for the shear flow just over the KH instability threshold, a weak EM-type KH instability is saturated and remarkably damped by zonal flows through modifying the equilibrium shear flow. Interestingly, a secondary double tearing mode (DTM) is excited subsequently in highly damped KH turbulence, behaving as a pure DTM in a flowing plasma as described in Mao et al. [Phys. Plasmas 21, 052304 (2014)]. However, the explosive growth phenomenon is replaced by a gradually growing oscillation due to the extremely twisted islands. As a result, the release of the magnetic energy becomes slow and the global magnetic reconnection tends to be gentle. A complex nonlinear interaction between the EM KH turbulence and the DTMs occurs for the medium shear flows above the KH instability threshold, turbulent EM fluctuations experience oscillatory nonlinear growth of the DTMs, finally achieves a quasi-steady state with the interplay of the fluctuations between the DTMs and the EM KH instability.« less
Epsilon-near-zero modes for tailored light-matter interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Liu, Sheng; Benz, Alexander
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less
Epsilon-near-zero modes for tailored light-matter interaction
Campione, Salvatore; Liu, Sheng; Benz, Alexander; ...
2015-10-20
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less
Optical nonlinearities in plasmonic metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zayats, Anatoly V.
2016-04-01
Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.
General implementation of arbitrary nonlinear quadrature phase gates
NASA Astrophysics Data System (ADS)
Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.
Antagonistic and synergistic interactions among predators.
Huxel, Gary R
2007-08-01
The structure and dynamics of food webs are largely dependent upon interactions among consumers and their resources. However, interspecific interactions such as intraguild predation and interference competition can also play a significant role in the stability of communities. The role of antagonistic/synergistic interactions among predators has been largely ignored in food web theory. These mechanisms influence predation rates, which is one of the key factors regulating food web structure and dynamics, thus ignoring them can potentially limit understanding of food webs. Using nonlinear models, it is shown that critical aspects of multiple predator food web dynamics are antagonistic/synergistic interactions among predators. The influence of antagonistic/synergistic interactions on coexistence of predators depended largely upon the parameter set used and the degree of feeding niche differentiation. In all cases when there was no effect of antagonism or synergism (a ( ij )=1.00), the predators coexisted. Using the stable parameter set, coexistence occurred across the range of antagonism/synergism used. However, using the chaotic parameter strong antagonism resulted in the extinction of one or both species, while strong synergism tended to coexistence. Whereas using the limit cycle parameter set, coexistence was strongly dependent on the degree of feeding niche overlap. Additionally increasing the degree of feeding specialization of the predators on the two prey species increased the amount of parameter space in which coexistence of the two predators occurred. Bifurcation analyses supported the general pattern of increased stability when the predator interaction was synergistic and decreased stability when it was antagonistic. Thus, synergistic interactions should be more common than antagonistic interactions in ecological systems.
Analysis of complex neural circuits with nonlinear multidimensional hidden state models
Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.
2016-01-01
A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584
O Wave Interactions: Explosive Resonant Triads and Critical Layers.
NASA Astrophysics Data System (ADS)
Mahoney, Daniel J.
This thesis considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These are nearly linear waves with slowly varying amplitudes which become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability, in the sense that a weakly nonlinear perturbation to some system grows to such magnitudes that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems which are linearly or neutrally stable. This is contrasted with previous resolutions of this problem, which treated such perturbations as being large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims. These waves represent a potentially important effect in a variety of physical systems, most notably plasma physics. Attention here is turned to their occurrence in fluid mechanics. Here previous work is extended to include flow systems with continuously varying basic velocities and densities. Many of the problems encountered here will be found to be of a singular nature themselves, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context will be presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Large-amplitude nonlinear normal modes of the discrete sine lattices.
Smirnov, Valeri V; Manevitch, Leonid I
2017-02-01
We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.
ViSEN: methodology and software for visualization of statistical epistasis networks
Hu, Ting; Chen, Yuanzhu; Kiralis, Jeff W.; Moore, Jason H.
2013-01-01
The non-linear interaction effect among multiple genetic factors, i.e. epistasis, has been recognized as a key component in understanding the underlying genetic basis of complex human diseases and phenotypic traits. Due to the statistical and computational complexity, most epistasis studies are limited to interactions with an order of two. We developed ViSEN to analyze and visualize epistatic interactions of both two-way and three-way. ViSEN not only identifies strong interactions among pairs or trios of genetic attributes, but also provides a global interaction map that shows neighborhood and clustering structures. This visualized information could be very helpful to infer the underlying genetic architecture of complex diseases and to generate plausible hypotheses for further biological validations. ViSEN is implemented in Java and freely available at https://sourceforge.net/projects/visen/. PMID:23468157
Linear summation of outputs in a balanced network model of motor cortex.
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.
The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currentsmore » and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.« less
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
Bloch-Siegert shift in an interacting Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Zhang, Jinyi; Eigen, Christoph; Lopes, Raphael; Garratt, Sam; Rousso, David; Smith, Robert P.; Hadzibabic, Zoran; Navon, Nir
2017-04-01
The Bloch-Siegert shift (BSS) is a paradigmatic frequency shift that arises from the nonlinear response of a two-level system (TLS) subjected to strong driving fields. When a TLS is driven by a linearly polarized field, the co-rotating-wave component leads to the famous Rabi oscillations. By contrast the co-rotating-wave component, whose role is usually neglected in a weak driving, leads to a frequency shift of the TLS resonance frequency. This phenomenon is encountered in various areas, from quantum optics to nuclear magnetic resonance.Here, we investigate the BSS in a box-trapped 87 Rb Bose-Einstein condensate (BEC) driven by a strong oscillating magnetic field gradient. By tuning the chemical potential of the gas, we investigate how the BSS evolves from the ideal shift of the two lowest energy levels of a single particle in a box to the unexplored shift of long-wavelength collective excitations of the interacting BEC.
Nonlinear and quantum optics near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman
We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study any n-level atomic system experimentally in the presence of ensembles of quantum emitters. In the last chapter, we suggested a variant of a pulse-shaping technique applicable in stimulated Raman spectroscopy (SRS) for detection of atoms and molecules in multiscattering media. We used discrete-dipole approximation to obtain the fields created by the nanoparticles.
NASA Astrophysics Data System (ADS)
Wiederrecht, Gary
2014-03-01
Collective hybrid excitations resulting from the coupling of metal nanostructures with organic molecules present unique opportunities for manipulating light-matter interactions at the nanoscale. In this talk, I discuss recent studies that are examples of the breadth of phenomena that are possible. First, the interactions of coupled plasmonic nanostructures with azobenzene-based polymers are described, in which the spatial features of the plasmonic near-field can be used to manipulate molecular motion. The directional molecular transport that results is shown to be useful for imaging the spatial and polarization features of the optical near-field. The modeling of this effect is described. Second, the coupling of excitonic molecular aggregates to metal nanostructures produces coherent coupling that provides added structure to the optical extinction spectra of metal nanoparticles, thereby by providing a photonic handle with which to manipulate energy flow on an ultrafast timescale. Monitoring the rate of energy flow as a function of photon energy reveals important information about the energy dissipation channels and the structural interactions between molecule and metal. Third, the strongly enhanced optical nonlinearity resulting from coupled plasmonic nanorods is described. The closely spaced nanorod material exhibits nonlocality of the optical response that has an unusually strong nonlinear dependence on incident light intensity. Electromagnetic modeling confirms the nonlocal response of the plasmonic metamaterial. The broader impact of collective hybrid excitations on nanophotonics applications is described. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions
NASA Astrophysics Data System (ADS)
Itin, A. P.; Katsnelson, M. I.
2018-05-01
Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.
NASA Astrophysics Data System (ADS)
Kochetov, Andrey
2016-07-01
Numerical simulations of the dynamics of electromagnetic fields in a smoothly inhomogeneous nonlinear plasma layer in frameworks of the nonlinear Schrödinger equation with boundary conditions responsible for the pumping of the field in the layer by an incident wave and the inverse radiation losses supplemented the volume field dissipation due to the electromagnetic excitation of Langmuir turbulence are carried out. The effects of the threshold of non-linearity and it's evolution, of the threshold and saturation levels of dissipation in the vicinity of the wave reflection point on the features of the dynamics of reflection and absorption indexes are investigated. We consider the hard drive damping depending on the local field amplitude and hysteresis losses with different in several times "on" and "off" absorption thresholds as well. The dependence of the thresholds of the steady-state, periodic and chaotic regimes of plasma-wave interaction on the scenario of turbulence evolution is demonstrated. The results are compared with the experimental observations of Langmuir stage ionospheric modification.
Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection.
Suslov, Sergey A
2010-02-01
Nonlinear (non-Boussinesq) variations in fluid's density, viscosity, and thermal conductivity caused by a large temperature gradient in a flow domain lead to a wide variety of instability phenomena in mixed convection channel flow of a simple gas such as air. It is known that in strongly nonisothermal flows, the instabilities and the resulting flow patterns are caused by competing buoyancy and shear effects [see S. A. Suslov and S. Paolucci, J. Fluid Mech. 302, 91 (1995)]. However, as is the case in the Boussinesq limit of small temperature gradients, in moderately non-Boussinesq regimes, only a shear instability mechanism is active. Yet in contrast to Boussinesq flows, multiple instability modes are still detected. By reducing the system of full governing Navier-Stokes equations to a dynamical system of coupled Landau-type disturbance amplitude equations we compute a comprehensive parametric map of various shear-driven instabilities observed in a representative moderately non-Boussinesq regime. Subsequently, we analyze nonlinear interaction of unstable modes and reveal physical reasons for their appearance.
Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action
NASA Astrophysics Data System (ADS)
Giesecke, André; Vogt, Tobias; Gundrum, Thomas; Stefani, Frank
2018-01-01
We have conducted experimental measurements and numerical simulations of a precession-driven flow in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rmc≈430 , which is well within the range of the planned liquid sodium experiment.
Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action.
Giesecke, André; Vogt, Tobias; Gundrum, Thomas; Stefani, Frank
2018-01-12
We have conducted experimental measurements and numerical simulations of a precession-driven flow in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rm^{c}≈430, which is well within the range of the planned liquid sodium experiment.
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
Asymmetry of nonlinear interactions of solar MHD discontinuities with the bow shock
NASA Astrophysics Data System (ADS)
Grib, S. A.; Pushkar, E. A.
2006-07-01
Oblique interaction between the solar fast shock wave, which is a typical nonstationary strong discontinuity in the interplanetary space, and the bow shock front upstream of an Earth-type planetary magnetosphere is studied. Attention has been paid to the qualitative and quantitative (with respect to the proton density distribution) dawn-dusk (or morning-evening) asymmetry of the discontinuities refracted into the magnetosheath, which originates in the ecliptic plane on different sides of the Sun-Earth line. The results under discussion have been corroborated experimentally by the gas-kinetic pattern of the bow-shock front and the WIND and ISEE 3 spacecraft measurements of the plasma density.
NASA Astrophysics Data System (ADS)
Somov, B. V.
If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
ISS method for coordination control of nonlinear dynamical agents under directed topology.
Wang, Xiangke; Qin, Jiahu; Yu, Changbin
2014-10-01
The problems of coordination of multiagent systems with second-order locally Lipschitz continuous nonlinear dynamics under directed interaction topology are investigated in this paper. A completely nonlinear input-to-state stability (ISS)-based framework, drawing on ISS methods, with the aid of results from graph theory, matrix theory, and the ISS cyclic-small-gain theorem, is proposed for the coordination problem under directed topology, which can effectively tackle the technical challenges caused by locally Lipschitz continuous dynamics. Two coordination problems, i.e., flocking with a virtual leader and containment control, are considered. For both problems, it is assumed that only a portion of the agents can obtain the information from the leader(s). For the first problem, the proposed strategy is shown effective in driving a group of nonlinear dynamical agents reach the prespecified geometric pattern under the condition that at least one agent in each strongly connected component of the information-interconnection digraph with zero in-degree has access to the state information of the virtual leader; and the strategy proposed for the second problem can guarantee the nonlinear dynamical agents moving to the convex hull spanned by the positions of multiple leaders under the condition that for each agent there exists at least one leader that has a directed path to this agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.
The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less
D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; ...
2015-11-19
The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less
Laboratory tests of short intense envelope solitons
NASA Astrophysics Data System (ADS)
Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.
2012-04-01
Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long-living nonlinear wave groups in dynamics of intense sea waves. [1] V.E. Zakharov, A.I. Dyachenko, A.O. Prokofiev, Eur. J. Mech. B / Fluids 25, 677 (2006). [2] A.I. Dyachenko, V.E. Zakharov, JETP Lett. 88, 307 (2008). [3] A.V. Slunyaev, JETP 109, 676 (2009).
NASA Astrophysics Data System (ADS)
Florin Balan, Stefan; Apostol, Bogdan Felix; Ionescu, Constantin
2017-12-01
The purpose of the paper is to show the great influence of nonlinear seismology in the analysis of the soil deposit response. Some elements about nonlinear seismology, the complexity of the seismic phenomenon are presented, and how we perceive seismic input for constructions at the surface of the earth. Further is presented the nonlinear behaviour of soil deposits during strong earthquakes as it results from resonant column tests (in laboratory) and from the spectral amplification factors (in situ records). The resonance phenomenon between natural period of a structure and soil deposit during strong earthquakes is analysed. All these studies have in common nonlinear behaviour of the soil deposit during strong earthquakes, in fact, the site where a new construction is built or an old one is rehabilitated and needs an optional assessment for mitigation seismic risk. All these studies stand up in supporting nonlinear seismology, the seismology of the XXI-st century.
How long time will we go with linear seismology?
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Cioflan, Carmen; Marmureanu, Alexandru; Apostol, Bogdan
2013-04-01
Motto: The nonlinear seismology is the rule, The linear seismology is the exception. Paraphrasing Tullio Levi-Civita The leading question is: how many cities, villages, metropolitan areas etc. in seismic regions are constructed on rock sites? Most of them are located on alluvial deposits/ sediments, on Quaternary layers or in river valleys. In last book written by Peter M. Shearer, Professor of Geophysics at University of California, we can find, in total, only 12 rows about non-linear seismology(page 176).Among others are the following conclusions:(i)-Strong ground accelerations from large earthquakes can produce a non-linear response in shallow soils; (ii)-When a non-linear site response is present, then the shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes; (iii)-This is an active area of research in strong motion and engineering seismology. On the other hand, Aki wrote: Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification(Aki, A., Local Site Effects on Weak and Strong Ground Motion, Tectonophysics,218,93-111,1993). The difficulty to seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding and separating of the effects of earthquake source, propagation path and local geological site conditions. To see the actual influence of nonlinearity of the whole system (seismic source-path propagation-local geological structure) the authors used to study the response spectra because they are the last in this chain and, of course, that they are the ones who are taken into account in seismic design of all structures Stress-strain relationships for soils are usually nonlinear, soil stiffness decreases and internal damping increases with increasing shear strain during of strong earthquakes. There is a strong nonlinear dependence of the spectral amplification factors(SAF) on earthquake magnitude for all seismic stations on Romanian territory on extra-Carpathian area (Iasi, Bacau, Focsani, Bucharest etc.). Median values of SAF for last strong Vrancea earthquakes are decreasing from 4.16(May 31,1990;Mw=6.4),to 3.63 (May 30,1990;Mw=6.9) and to 3.26 (August 30, 1986; Mw=7.1) .The novelty and the complexity degree comes from the fact that for first time, the final decision for NPP Cernavoda site was also based on local strong nonlinear spectral amplifications for strong earthquakes and used in last "STRESS TEST" asked by IAEA Vienna in 2011. The present analysis indicates that the effect of nonlinearity could be very important and if the analysis is made for peak accelerations, it is 48.87% and for stronger earthquakes it will be bigger. The authors are coming with new recorded data which will open up a new challenge for seismologists studying nonlinear site effects in 2-D and 3-D irregular geological structures, leading them to a fascinating research subject in earth physics(Aki,1993, p.108,idem),in nonlinear seismology and,finally, in a real evaluation of earthquake risk and loss estimates.
Secondary Instability of Second Modes in Hypersonic Boundary Layers
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.
2012-01-01
Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.
Heat current through an artificial Kondo impurity beyond linear response
NASA Astrophysics Data System (ADS)
Sierra, Miguel A.; Sánchez, David
2018-03-01
We investigate the heat current of a strongly interacting quantum dot in the presence of a voltage bias in the Kondo regime. Using the slave-boson mean-field theory, we discuss the behavior of the energy flow and the Joule heating. We find that both contributions to the heat current display interesting symmetry properties under reversal of the applied dc bias. We show that the symmetries arise from the behavior of the dot transmission function. Importantly, the transmission probability is a function of both energy and voltage. This allows us to analyze the heat current in the nonlinear regime of transport. We observe that nonlinearities appear already for voltages smaller than the Kondo temperature. Finally, we suggest to use the contact and electric symmetry coefficients as a way to measure pure energy currents.
NASA Astrophysics Data System (ADS)
Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-10-01
Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.
Turbulence and wave particle interactions in solar-terrestrial plasmas
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Goldman, M. V.; Toomre, J.
1985-01-01
Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.
All-optical regenerator of multi-channel signals.
Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael
2017-10-12
One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.
NASA Astrophysics Data System (ADS)
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
Stratoudaki, Theodosia; Ellwood, Robert; Sharples, Steve; Clark, Matthew; Somekh, Michael G; Collison, Ian J
2011-04-01
A dual frequency mixing technique has been developed for measuring velocity changes caused by material nonlinearity. The technique is based on the parametric interaction between two surface acoustic waves (SAWs): The low frequency pump SAW generated by a transducer and the high frequency probe SAW generated and detected using laser ultrasonics. The pump SAW stresses the material under the probe SAW. The stress (typically <5 MPa) is controlled by varying the timing between the pump and probe waves. The nonlinear interaction is measured as a phase modulation of the probe SAW and equated to a velocity change. The velocity-stress relationship is used as a measure of material nonlinearity. Experiments were conducted to observe the pump-probe interaction by changing the pump frequency and compare the nonlinear response of aluminum and fused silica. Experiments showed these two materials had opposite nonlinear responses, consistent with previously published data. The technique could be applied to life-time predictions of engineered components by measuring changes in nonlinear response caused by fatigue.
Collins, Joel T; Hooper, David C; Mark, Andrew G; Kuppe, Christian; Valev, Ventsislav Kolev
2018-05-31
Chiral plasmonic nanostructures, those lacking mirror symmetry, can be designed to manipulate the polarization of incident light resulting in chiroptical (chiral optical) effects such as circular dichroism (CD) and optical rotation (OR). Due to high symmetry sensitivity, corresponding effects in second harmonic generation (SHG-CD and SHG-OR) are typically much stronger in comparison. These nonlinear effects have long been used for chiral molecular analysis and characterization, however both linear and nonlinear optical rotation can occur even in achiral structures, if the structure is birefringent due to anisotropy. Crucially, chiroptical effects resulting from anisotropy typically exhibit a strong dependence on structural orientation. Here we report large second-harmonic generation optical rotation of ±45°, due to intrinsic chirality in a highly anisotropic helical metamaterial. The SHG intensity is found to strongly relate to the structural anisotropy, however the angle of SHG-OR is invariant under sample rotation. We show that by tuning the geometry of anisotropic nanostructures, the interaction between anisotropy, chirality, and experiment geometry can allow even greater control over the chiroptical properties of plasmonic metamaterials.
Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Opanchuk, B.; He, Q. Y.; Reid, M. D.; Drummond, P. D.
2012-08-01
We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. A local nonlinear S-wave scattering interaction has the effect of creating spin squeezing at each well, while a tunneling coupling, analogous to a beam splitter in optics, introduces an interference between these fields that causes interwell entanglement. We consider two internal modes at each well so that the entanglement can be detected by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number. It becomes sufficiently strong at higher numbers of atoms so that the EPR paradox and steering nonlocality can be realized. The entanglement is predicted using an analytical approach and, for larger atom numbers, using stochastic simulations based on a truncated Wigner function approximation. We find generally that strong tunneling is favorable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.
Nonlinear interaction of the Tsugaru Warm Current and tide in the Tsugaru Strait
NASA Astrophysics Data System (ADS)
Wada, Ryota; Waseda, Takuji; Nanjo, Hirotada
2012-06-01
The Tsugaru Strait, which connects the Sea of Japan with the Pacific Ocean, is characterized by the eastward Tsugaru Warm Current (TWC) and oscillating tidal currents of similar magnitude. A 15-day current observation was conducted in one of the two narrow channels in the strait, at the northwest tip of the Shimokita Peninsula. The observation revealed that the spectral energy of the semidiurnal current exceeds that of the diurnal current, contrary to the conventional view. The Tsugaru Strait regional model was developed to study the mechanism of this spectral energy reversal (140-141.5° E, 40.4-42.6° N, 500 m grid resolution). At the eastern and western open boundaries, the model was driven by the constant Tsugaru warm current and tidal elevation, which was adjusted by comparing the model with tidal gauge observations within the channel. The relative magnitude of the spectral energies differed from that of the observation when the model was driven by tide only. However, the spectral energy levels were reversed when the model was driven by both tide and current. The nonlinear interaction of periodic tidal currents and the steady TWC was explained by the vorticity equation, which describes the production and advection of residual currents from tidal currents. According to the model results, flow separation and advection of vorticity by the TWC was the most prominent factor in this phenomenon. Because of the strong nonlinearities, flow separation around the headland occurred during the tidal period with dominant current magnitude and furnished the main difference between the diurnal and semidiurnal interactions. These phenomena were enhanced by the complex topography, and demonstrate the importance of scale interaction, especially when developing high-resolution regional models.
Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047
Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering
NASA Astrophysics Data System (ADS)
Karimi, F.; Davoody, A. H.; Knezevic, I.
2018-06-01
Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.
Geng, Qi; Zhu, Ka-Di
2016-07-10
We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.
Interacting Bosons in a Double-Well Potential: Localization Regime
NASA Astrophysics Data System (ADS)
Rougerie, Nicolas; Spehner, Dominique
2018-06-01
We study the ground state of a large bosonic system trapped in a symmetric double-well potential, letting the distance between the two wells increase to infinity with the number of particles. In this context, one should expect an interaction-driven transition between a delocalized state (particles are independent and all live in both wells) and a localized state (particles are correlated, half of them live in each well). We start from the full many-body Schrödinger Hamiltonian in a large-filling situation where the on-site interaction and kinetic energies are comparable. When tunneling is negligible against interaction energy, we prove a localization estimate showing that the particle number fluctuations in each well are strongly suppressed. The modes in which the particles condense are minimizers of nonlinear Schrödinger-type functionals.
NASA Astrophysics Data System (ADS)
Umucalılar, R. O.; Carusotto, I.
2017-11-01
We investigate theoretically a driven dissipative model of strongly interacting photons in a nonlinear optical cavity in the presence of a synthetic magnetic field. We show the possibility of using a frequency-dependent incoherent pump to create a strongly correlated ν =1 /2 bosonic Laughlin state of light: Due to the incompressibility of the Laughlin state, fluctuations in the total particle number and excitation of edge modes can be tamed by imposing a suitable external potential profile for photons. We further propose angular-momentum-selective spectroscopy of the emitted light as a tool to obtain unambiguous signatures of the microscopic physics of the quantum Hall liquid of light.
Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport
Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.
2015-07-29
Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less
Newtonian self-gravitation in the neutral meson system
NASA Astrophysics Data System (ADS)
Großardt, André; Hiesmayr, Beatrix C.
2015-03-01
We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger equation in this manner strongly depends on the relation between the flavor wave function and spatial wave function and its particular shape. In opposition to the continuous spontaneous localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.
Polarization domain wall pulses in a microfiber-based topological insulator fiber laser
Liu, Jingmin; Li, Xingliang; Zhang, Shumin; Zhang, Han; Yan, Peiguang; Han, Mengmeng; Pang, Zhaoguang; Yang, Zhenjun
2016-01-01
Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states. PMID:27381942
Polarization domain wall pulses in a microfiber-based topological insulator fiber laser
NASA Astrophysics Data System (ADS)
Liu, Jingmin; Li, Xingliang; Zhang, Shumin; Zhang, Han; Yan, Peiguang; Han, Mengmeng; Pang, Zhaoguang; Yang, Zhenjun
2016-07-01
Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states.
Non-linear scale interactions in a forced turbulent boundary layer
NASA Astrophysics Data System (ADS)
Duvvuri, Subrahmanyam; McKeon, Beverley
2015-11-01
A strong phase-organizing influence exerted by a single synthetic large-scale spatio-temporal mode on directly-coupled (through triadic interactions) small scales in a turbulent boundary layer forced by a spatially-impulsive dynamic wall-roughness patch was previously demonstrated by the authors (J. Fluid Mech. 2015, vol. 767, R4). The experimental set-up was later enhanced to allow for simultaneous forcing of multiple scales in the flow. Results and analysis are presented from a new set of novel experiments where two distinct large scales are forced in the flow by a dynamic wall-roughness patch. The internal non-linear forcing of two other scales with triadic consistency to the artificially forced large scales, corresponding to sum and difference in wavenumbers, is dominated by the latter. This allows for a forcing-response (input-output) type analysis of the two triadic scales, and naturally lends itself to a resolvent operator based model (e.g. McKeon & Sharma, J. Fluid Mech. 2010, vol. 658, pp. 336-382) of the governing Navier-Stokes equations. The support of AFOSR (grant #FA 9550-12-1-0469, program manager D. Smith) is gratefully acknowledged.
Quasiparticle Representation of Coherent Nonlinear Optical Signals of Multiexcitons
NASA Astrophysics Data System (ADS)
Fingerhut, Benjamin; Bennet, Kochise; Roslyak, Oleksiy; Mukamel, Shaul
2013-03-01
Elementary excitations of many-Fermion systems can be described within the quasiparticle approach which is widely used in the calculation of transport and optical properties of metals, semiconductors, molecular aggregates and strongly correlated quantum materials. The excitations are then viewed as independent harmonic oscillators where the many-body interactions between the oscillators are mapped into anharmonicities. We present a Green's function approach based on coboson algebra for calculating nonlinear optical signals and apply it onwards the study of two and three exciton states. The method only requires the diagonalization of the single exciton manifold and avoids equations of motion of multi-exciton manifolds. Using coboson algebra many body effects are recast in terms of tetradic exciton-exciton interactions: Coulomb scattering and Pauli exchange. The physical space of Fermions is recovered by singular-value decomposition of the over-complete coboson basis set. The approach is used to calculate third and fifth order quantum coherence optical signals that directly probe correlations in two- and three exciton states and their projections on the two and single exciton manifold.
Linear summation of outputs in a balanced network model of motor cortex
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452
NASA Astrophysics Data System (ADS)
Chu, Henry; Zia, Roseanna
2014-11-01
In our recently developed non-equilibrium Stokes-Einstein relation for microrheology, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here we generalize our theory to develop a simple analytical relation connecting diffusive fluctuation, viscous dissipation and suspension stress in systems of hydrodynamically interacting colloids. In active microrheology, a Brownian probe is driven through a complex medium. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, normal stress differences scale as Pe4 and Pe for weak and strong probe forcing, respectively. But as hydrodynamics become important, interparticle forces give way to lubrication interactions and the normal stresses scale as Pe2 and Peδln(Pe), where 0.773 <= δ <= 1 as hydrodynamics vary from strong to weak. The new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. A connection is made between the stress and an effective temperature of the medium, prompting the interpretation of the particle stress as the energy density, and the expression for osmotic pressure as a ``non-equilibrium equation of state.''
Single nano-hole as a new effective nonlinear element for third-harmonic generation
NASA Astrophysics Data System (ADS)
Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.
2013-07-01
In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.
Comparison of damping in buildings under low-amplitude and strong motions
Celebi, M.
1996-01-01
This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.
Solitons in a nonlinear model of spin transport in helical molecules
NASA Astrophysics Data System (ADS)
Albares, P.; Díaz, E.; Cerveró, Jose M.; Domínguez-Adame, F.; Diez, E.; Estévez, P. G.
2018-02-01
We study an effective integrable nonlinear model describing an electron moving along the axis of a deformable helical molecule. The helical conformation of dipoles in the molecular backbone induces an unconventional Rashba-like interaction that couples the electron spin with its linear momentum. In addition, a focusing nonlinearity arises from the electron-lattice interaction, enabling the formation of a variety of stable solitons such as bright solitons, breathers, and rogue waves. A thorough study of the soliton solutions for both focusing and defocusing nonlinear interaction is presented and discussed.
The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...
2016-06-06
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less
NASA Astrophysics Data System (ADS)
Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.
2012-09-01
Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the amplification factors in the frequency-detuned resonances can be even higher than in tuned cases, in spite of the strong base-flow non-self-similarity. An explanation of this unusual phenomenon is found based on the theoretical analysis and comparison of experimental, theoretical, and DNS data.
Explaining outcome type interactions with frame: aspiration level and the value function.
Bloomfield, Amber N
2008-06-01
Research on framing effects has revealed cases where the type of outcome at risk (e.g., human lives vs. animal lives) affects the magnitude of the framing effect. Some authors have appealed to the shape of the value function as predicting when framing effects will occur: The more valuable the outcome type, the more nonlinear its value function, and the larger the resulting framing effect (Levin & Chapman, 1990). However, having a more or less nonlinear value function cannot explain situations in which participants strongly prefer the same option in both frames. Another factor that may be at work in these types of outcome effects is an aspiration level (AL; Lopes, 1987; Schneider, 1992), which determines how acceptable the options are and combines (or competes) with the risk attitude encouraged by frame. The results described here indicate that differences in the shape of the value function between outcome types are evident but are inconsistent between framed losses and gains, though nonlinearity in the value function can be increased with a manipulation that also encourages framing effects. The results also demonstrate that an AL can lead to the same predominant risk preference in the positive and negative frame. These findings indicate that the shape of the value function and the AL each play a role in outcome type interactions with frame, and in some cases, a combination of the two factors may be at work.
Photoinduced currents in metal-barrier-metal junctions
NASA Technical Reports Server (NTRS)
Guedes, M. P.; Gustafson, T. K.; Heiblum, M.; Siu, D. P.; Slayman, C. W.; Whinnery, J. R.; Yasuoka, Y.
1978-01-01
The fabrication and application of metal-barrier-metal tunneling junctions for radiative interactions are discussed. Particular attention is given to the photolithographic fabrication of small area devices and the coupling to such devices via surface plasmon waves which play an important role at infrared and optical frequencies. It has been shown that the junction electron tunneling currents can be strongly coupled to surface plasmon junction modes, and spontaneous and stimulated emission of the latter are possible as well as nonlinear interactions. Finally, results demonstrating the photo-excitation of electrons with subsequent tunneling induced by ultraviolet radiation are presented. It is estimated that quantum efficiencies of the order of 5% and higher are possible in the ultraviolet region.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-04-01
Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.
Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.
2000-01-01
The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
Nonlinear dynamic analysis of flexible multibody systems
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Kang, Nam Kook
1991-01-01
Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.
Nonlinearity of the forward-backward correlation function in the model with string fusion
NASA Astrophysics Data System (ADS)
Vechernin, Vladimir
2017-12-01
The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.
Theoretical Studies of Strongly Interacting Fine Particle Systems
NASA Astrophysics Data System (ADS)
Fearon, Michael
Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.
Chimera states in two-dimensional networks of locally coupled oscillators
NASA Astrophysics Data System (ADS)
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
Chimera states in two-dimensional networks of locally coupled oscillators.
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
NASA Astrophysics Data System (ADS)
Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert
2017-11-01
We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
NASA Astrophysics Data System (ADS)
Xie, Tao; Kuang, Hai-Lan; William, Perrie; Zou, Guang-Hui; Nan, Cheng-Feng; He, Chao; Shen, Tao; Chen, Wei
2009-07-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.
Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic
NASA Astrophysics Data System (ADS)
Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.
2018-01-01
A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.
Flying relativistic mirrors for nonlinear QED studies.
NASA Astrophysics Data System (ADS)
Bulanov, Stepan; Schroeder, Carl; Esarey, Eric; Leemans, Wim
2017-10-01
Recent progress in laser technology has led to a dramatic increase of laser power and intensity. As a result, the laser-matter interaction will happen in the radiation dominated regimes. In a strong electromagnetic field, electrons can be accelerated to such high velocities that the radiation reaction starts to play an important role. The radiation effects change drastically the laser-plasma interaction leading to fast energy losses. Moreover, previously unexplored regimes of the interaction will be entered into, in which quantum electrodynamics (QED) can occur. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail. In order to study different regimes of interaction as well as the transition from one into another the utilization of flying relativistic mirrors, which can generate electromagnetic pulses with varying frequency and intensity, is proposed. The scheme is demonstrated for multiphoton Compton scattering. Work supported by U.S. DOE under Contract No. DE-AC02-05CH11231.
Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai
2018-01-01
Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
NASA Astrophysics Data System (ADS)
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
NASA Astrophysics Data System (ADS)
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition
NASA Technical Reports Server (NTRS)
Smith, F. T.
1988-01-01
The nonlinear interactions that evolve between a planar or nearly planar Tollmien-Schlichting (TS) wave and the associated longitudinal vortices are considered theoretically for a boundary layer at high Reynolds number. The vortex flow is either induced by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave development. Three major kinds of nonlinear spatial evolution, Types 1-3, are found. Each can start from secondary instability and then become nonlinear, Type 1 proving to be relatively benign but able to act as a pre-cursor to the Types 2, 3 which turn out to be very powerful nonlinear interactions. Type 2 involves faster stream-wise dependence and leads to a finite-distance blow-up in the amplitudes, which then triggers the full nonlinear 3-D triple-deck response, thus entirely altering the mean-flow profile locally. In contrast, Type 3 involves slower streamwise dependence but a faster spanwise response, with a small TS amplitude thereby causing an enhanced vortex effect which, again, is substantial enough to entirely alter the meanflow profile, on a more global scale. Streak-like formations in which there is localized concentration of streamwise vorticity and/or wave amplitude can appear, and certain of the nonlinear features also suggest by-pass processes for transition and significant changes in the flow structure downstream. The powerful nonlinear 3-D interactions 2, 3 are potentially very relevant to experimental findings in transition.
Transport equations for subdiffusion with nonlinear particle interaction.
Straka, P; Fedotov, S
2015-02-07
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.
Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George
2017-03-01
Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).
Electron plasma wave filamentation in the kinetic regime
NASA Astrophysics Data System (ADS)
Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis
2016-10-01
We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 < kλD < 0.45 , which is typical for current high temperature laser-plasma interaction experiments, where k is the EPW wavenumber and λD is the electron Debye length. In this kinetic regime, EPW frequency reduction due to electron trapping may dominate the ponderomotive frequency shift. Previous 3D PIC simulations showed that the trapped electron EPW filamentation instability can saturate stimulated Raman backscatter by reducing the EPWs coherence but multidimensional Vlasov simulations [1] are needed to address that saturation in details. We performed nonlinear, non-equilibrium 2D Vlasov simulations to study the EPW filamentation. The initial conditions are created either by external forcing or by constructing the appropriate 1D travelling Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.
Theory and modeling of atmospheric turbulence, part 1
NASA Technical Reports Server (NTRS)
1984-01-01
The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jia-Lu; Gu, Bing, E-mail: gubing@seu.edu.cn; Liu, Dahui
2014-10-27
Optical limiting (OL) effects can be enhanced by exploiting various limiting mechanisms and by designing nonlinear optical materials. In this work, we present the large enhancement of OL effects by manipulating the polarization distribution of the light field. Theoretically, we develop the Z-scan and nonlinear transmission theories on a two-photon absorber under the excitation of cylindrical vector beams. It is shown that both the sensitivity of Z-scan technique and the OL effect using radially polarized beams have the large enhancement compared with that using linearly polarized beams (LPBs). Experimentally, we investigate the nonlinear absorption properties of a double-decker Pr[Pc(OC{sub 8}H{submore » 17}){sub 8}]{sub 2} rare earth complex by performing Z-scan measurements with femtosecond-pulsed radially polarized beams at 800 nm wavelength. The observed two-photon absorption process, which originates from strong intramolecular π–π interaction, is exploited for OL application. The results demonstrate the large enhancement of OL effects using radially polarized beams instead of LPBs.« less
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
Atom-field dressed states in slow-light waveguide QED
NASA Astrophysics Data System (ADS)
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
Photophysics of single-walled carbon nanotubes: similarity with π-conjugated polymer
NASA Astrophysics Data System (ADS)
Zhao, Hongbo
2006-03-01
Coulomb electron-electron (e-e) interactions among the π-electrons have a strong effect on the energy spectra of semiconducting single-walled carbon nanotubes (S-SWCNTs), because of their quasi-one-dimensionality. The primary photoexcitations in S-SWCNTs as a consequence of e-e interactions are excitons, as opposed to free electrons and holes. There already exists a vast literature on excitons in π-conjugated polymers, the other class of carbon-based quasi-one-dimensional semiconductors. In order to seek guidance from this knowledge base, we have performed theoretical calculations of the excited state electronic structures, linear absorptions and excited state absorptions for ten different S-SWCNTs with a wide range in diameters, within the same correlated π-electron model that has previously been applied to π-conjugated polymers. We found remarkable similarities in the excitonic energy spectra and nonlinear optical properties of S-SWCNTs on the one hand, and π-conjugated polymers on the other. The ``essential states'' model of third-order optical nonlinearity, previously developed for π-conjugated polymers, applies also to S-SWCNTs (with minor modifications for chiral S-SWCNTs which lack center of inversion). Our theory is able to explain semiquantitatively the results of nonlinear spectroscopic measurements on both S-SWCNTs and π-conjugated polymers. For wide S-SWCNTs with diameters ranging from 0.8--1.0 nm, we calculate exciton binding energies of 0.3--0.4 eV, in strong agreement with the values predicted from the experiments. We also remark on the occurrence of dark excitons below the optical excitons in the S-SWCNTs, and the consequence thereof on the photoluminescence of these materials. H. Zhao, et al., cond-mat/0506097; J. W. Kennedy, et al., cond-mat/0505071. S. N. Dixit, D. Guo, and S. Mazumdar, Phys. Rev. B 43, R6781 (1991) H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Ortanza Cioflan, Carmen; Marmureanu, Alexandru
2010-05-01
Nonlinear effects in ground motion during large earthquakes have long been a controversial issue between seismologists and geotechnical engineers. Aki wrote in 1993:"Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification( Local site effects on weak and strong ground motion, Tectonophysics,218,93-111). In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding of the effects of earthquake source, propagation path and local geological site conditions. The difficulty for seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and path propagation. The researchers from National Institute for Earth Physics ,in order to make quantitative evidence of large nonlinear effects, introduced the spectral amplification factor (SAF) as ratio between maximum spectral absolute acceleration (Sa), relative velocity (Sv) , relative displacement (Sd) from response spectra for a fraction of critical damping at fundamental period and peak values of acceleration(a-max),velocity (v-max) and displacement (d-max),respectively, from processed strong motion record and pointed out that there is a strong nonlinear dependence on earthquake magnitude and site conditions.The spectral amplification factors(SAF) are finally computed for absolute accelerations at 5% fraction of critical damping (β=5%) in five seismic stations: Bucharest-INCERC(soft soils, quaternary layers with a total thickness of 800 m);Bucharest-Magurele (dense sand and loess on 350m); Cernavoda Nuclear Power Plant site (marl, loess, limestone on 270 m) Bacau(gravel and loess on 20m) and Iassy (loess, sand, clay, gravel on 60 m) for last strong and deep Vrancea earthquakes: March 4,1977 (MGR =7.2 and h=95 km);August 30,1986(MGR =7.0 and h=130 km);May 30,1990 (MGR =6.7 and h=90 km) and May 31,1990 (MGR =6.1 and h=87 km). With a view to understand the characteristics of nonlinear soil behavior and the nonlinearity in the seismology and the influence to hazard and risk assessment ,this study examined the ways that nonlinearity would expected to appear on strong motion records made on Romania territory during to last Vrancea earthquake. The effect on nonlinearity is very large. For example, if we maintain the same amplification factor (SAF=5.8942) as for relatively strong earthquake on May 31,1990 with magnitude Ms =6,1 then at Bacau seismic station for earthquake on May 30,1990 (MGR =6.7) the peak acceleration has to be a*max =0.154g( +14.16%) and the actual recorded was only, a max =0.135g. Also, for Vrancea earthquake on August 30,1986, the peak acceleration has to be a*max=0.107g (+45,57%), instead of real value of 0.0736 g recorded at Bacau seismic station. More, the spectral amplification factors(SAF) are function of earthquake magnitude and there is a strong nonlinear dependence of the SAF of earthquake magnitude. The median values of SAF of the last strong Vrancea earthquakes for damping 5% are: 4.16; 3.63 and 3.26 corresponding to May 31,1990 Vrancea earthquake (Ms=6.1),May 30,1990 Vrancea earthquake(Ms=6.7),respectively, August 30,1986 Vrancea one(Ms=7.0). At the same seismic station, for example at Bacau, for 5% damping, SAF for accelerations is 5.22 for May 31,1990 earthquake (Ms =6.1);4.32 for May 30,1990 earthquake (Ms =6.7) and 3,94 for August 30,1986 one (Ms=7.0) etc. Finally, it will be made a comment in connection to U.S. Atomic Energy Commission-Regulatory Guide 1.60 on "Design Response Spectra for seismic design of nuclear power plants " to see spectral amplification factors for deep Vrancea earthquakes are larger and different.
High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong Laser Field
NASA Astrophysics Data System (ADS)
Bragin, Sergey; Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino
2017-12-01
A long-standing prediction of quantum electrodynamics, yet to be experimentally observed, is the interaction between real photons in vacuum. As a consequence of this interaction, the vacuum is expected to become birefringent and dichroic if a strong laser field polarizes its virtual particle-antiparticle dipoles. Here, we derive how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. Furthermore, we consider an experimental scheme to measure these effects in the nonperturbative high-energy regime, where the Euler-Heisenberg approximation breaks down. By employing circularly polarized high-energy probe photons, as opposed to the conventionally considered linearly polarized ones, the feasibility of quantitatively confirming the prediction of nonlinear QED for vacuum birefringence at the 5 σ confidence level on the time scale of a few days is demonstrated for upcoming 10 PW laser systems. Finally, dichroism and anomalous dispersion in vacuum are shown to be accessible at these facilities.
Pérez-Hernández, J A; Roso, L; Plaja, L
2009-06-08
The physics of laser-mater interactions beyond the perturbative limit configures the field of extreme non-linear optics. Although most experiments have been done in the near infrared ( lambda
Two-Photon Raman Gain in a Laser Driven Potassium Vapor
1996-02-01
between light and matter becomes highly nonlinear and the light and matter strongly couple, the systems become much more difficult to understand both...theoretically and experimentally. One example of a strongly coupled, highly nonlinear system is the two-photon laser that is based on the two-photon
Cluster-based control of a separating flow over a smoothly contoured ramp
NASA Astrophysics Data System (ADS)
Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek
2017-12-01
The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.
Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization
NASA Astrophysics Data System (ADS)
Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François
2012-09-01
Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic response at the free surface, depending on the energy dissipation rate. Free surface time histories, stress-strain hysteresis loops and in-depth profiles of octahedral stress and strain are estimated for each soil column. The combination of three separate 1D-1C non-linear analyses is compared to the proposed 1D-3C approach, evidencing the influence of the 3C-polarization and the 3-D loading path on strong seismic motions.
NASA Astrophysics Data System (ADS)
Fuchs, Matthias
2017-08-01
The nature of the glass transition is one of the frontier questions in Statistical Physics and Materials Science. Highly cooperative structural processes develop in glass-forming melts exhibiting relaxational dynamics which is spread out over many decades in time. While considerable progress has been made in recent decades towards understanding dynamical slowing-down in quiescent systems, the interplay of glassy dynamics with external fields reveals a wealth of novel phenomena yet to be explored. This special issue focuses on recent results obtained by the Research Unit FOR 1394 `Nonlinear response to probe vitrification' which was funded by the German Science Foundation (DFG). In the projects of the research unit, strong external fields were used in order to gain insights into the complex structural and transport phenomena at the glass transition under far-from-equilibrium conditions. This aimed inter alia to test theories of the glass transition developed for quiescent systems by pushing them beyond their original regime. Combining experimental, simulational, and theoretical efforts, the eight projects within the FOR 1394 measured and determined aspects of the nonlinear response of supercooled metallic, polymeric, and silica melts, of colloidal dispersions, and of ionic liquids. Applied fields included electric and mechanic fields, and forced active probing (`micro-rheology'), where a single probe is forced through the glass-forming host. Nonlinear stress-strain and force-velocity relations as well as nonlinear dielectric susceptibilities and conductivities were observed. While the physical manipulation of melts and glasses is interesting in its own right, especially technologically, the investigations performed by the FOR 1394 suggest to use the response to strong homogeneous and inhomogeneous fields as technique to explore on the microscopic level the cooperative mechanisms in dense melts of strongly interacting constituents. Questions considered concern the (de-)coupling of different dynamical degrees of freedom in an external field, and the ensuing state diagrams. What forces are required to detach a localized probe particle from its initial environment in a supercooled liquid, in a glassy or granular system? Do metallic and colloidal glasses yield homogeneously or by strain localization under differently applied stresses? Which mechanisms determine field-dependent susceptibilities in dielectric and ionically conducting glass formers?
Experimental demonstration of an efficient hybrid equalizer for short-reach optical SSB systems
NASA Astrophysics Data System (ADS)
Zhu, Mingyue; Ying, Hao; Zhang, Jing; Yi, Xingwen; Qiu, Kun
2018-02-01
We propose an efficient enhanced hybrid equalizer combining the feed forward equalization (FFE) with a modified Volterra filter to mitigate the linear and nonlinear interference for the short-reach optical single side-band (SSB) system. The optical SSB signal is generated by a relatively low-cost dual-drive Mach-Zehnder modulator (DDMZM). The two driving signals are a pair of Hilbert signals with Nyquist pulse-shaped four-level pulse amplitude modulation (NPAM-4). After the fiber transmission, the neighboring received symbols are strongly correlated due to the pulse spreading in time domain caused by the chromatic dispersion (CD). At the receiver equalization stage, the FFE followed by higher order terms of modified Volterra filter, which utilizes the forward and backward neighboring symbols to construct the kernels with strong correlation, are used as an enhanced hybrid equalizer to mitigate the inter symbol interference (ISI) and nonlinear distortion due to the interaction of the CD and the square-law detection. We experimentally demonstrate that the optical SSB NPAM-4 signal of 40 Gb/s transmitting over 80 km standard single mode fiber (SSMF) with a bit-error-rate (BER) of 7 . 59 × 10-4.
Inverse energy cascade in three-dimensional isotropic turbulence.
Biferale, Luca; Musacchio, Stefano; Toschi, Federico
2012-04-20
We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer: from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse energy cascade may be detected and rationalize the role played by helicity in the energy transfer process, showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves the road for future studies on the influence of helicity on small-scale intermittency and the nature of the nonlinear interaction in magnetohydrodynamics.
Synchronism of nonlinear internal waves in a three-layer fluid
NASA Astrophysics Data System (ADS)
Talipova, Tatiana; Kurkina, Oxana; Terletska, Katerina; Rouvinskaya, Ekaterina
2017-04-01
In a three layer fluid with arbitrary layer widths and densities the existence of long internal solitons and breathers is proven theoretically and numerically, see for example (Pelinovsky et al., 2007; Lamb et al., 2007). The existence of breather-like waves of the intermediate length is also shown in numerical simulations (Terletska et al., 2016). For such waves conditions of synchronism are valid when a breather of the first mode and a soliton of the second mode move together with the same speed and form an asymmetric solitary wave of the second mode. The process of strong interaction of long nonlinear internal waves in the framework of three-layer Camassa-Choi model demonstrates the same effect (Jo&Choi, 2014; Barros, 2016). We analyze possible synchronism conditions for steady-state internal waves in a three-layer fluid analytically the framework of the Gardner equation, which is valid for long weakly nonlinear internal waves. The equations for synchronism conditions are derived and considered in terms of wave amplitudes, layer widths and density jumps. The configurations of three-layer fluid are found for which such a synchronism is possible. References: Barros R. Large amplitude internal waves in three-layer flows. The forth international conference "Nonlinear Waves - Theory and Applications", MS7, Beijing, China, June 25 - 28, 2016 Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book "Solitary Waves in Fluids". WIT Press. Southampton, Boston. 2007. P. 85 - 110. K. Terletska., K. T. Jung, T. Talipova, V. Maderich, I. Brovchenko and R. Grimshaw Internal breather-like wave generation by the second mode solitary wave interaction with a step// Physics of Fluids, 2016, accepted
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Fu, W.; Koven, C.; Swann, A. L. S.; Mahowald, N. M.; Lindsay, K. T.; Munoz, E.
2017-12-01
Quantifying interactions between global biogeochemical cycles and the Earth system is important for predicting future atmospheric composition and informing energy policy. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. We re-analyzed other CMIP5 model results to quantify the effects of such nonlinearities on their projected climate-carbon cycle feedback gains.
Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions
NASA Astrophysics Data System (ADS)
Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.
2017-04-01
Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.
Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen
2018-05-04
In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.
Nonlinear parallel momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu, E-mail: luwang@hust.edu.cn; Wen, Tiliang; Diamond, P. H.
2015-05-15
Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller thanmore » the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.« less
Ordered and disordered dynamics in monolayers of rolling particles.
Kim, Byungsoo; Putkaradze, Vakhtang
2010-12-10
We consider the ordered and disordered dynamics for monolayers of rolling self-interacting particles modeling water molecules. The rolling constraint represents a simplified model of a strong, but rapidly decaying bond with the surface. We show the existence and nonlinear stability of ordered lattice states, as well as disturbance propagation through and chaotic vibrations of these states. We study the dynamics of disordered gas states and show that there is a surprising and universal linear connection between distributions of angular and linear velocity, allowing definition of temperature.
Süßmann, F.; Seiffert, L.; Zherebtsov, S.; Mondes, V.; Stierle, J.; Arbeiter, M.; Plenge, J.; Rupp, P.; Peltz, C.; Kessel, A.; Trushin, S. A.; Ahn, B.; Kim, D.; Graf, C.; Rühl, E.; Kling, M. F.; Fennel, T.
2015-01-01
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena. PMID:26264422
Süßmann, F; Seiffert, L; Zherebtsov, S; Mondes, V; Stierle, J; Arbeiter, M; Plenge, J; Rupp, P; Peltz, C; Kessel, A; Trushin, S A; Ahn, B; Kim, D; Graf, C; Rühl, E; Kling, M F; Fennel, T
2015-08-12
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.
Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun
2008-05-15
Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software
Observation of redshifting and harmonic radiation in inverse Compton scattering
Sakai, Y.; Pogorelsky, I.; Williams, O.; ...
2015-06-17
Inverse Compton scattering of laser photons by ultrarelativistic electron beam provides polarized x- to γ-ray pulses due to the Doppler blueshifting. Nonlinear electrodynamics in the relativistically intense linearly polarized laser field changes the radiation kinetics established during the Compton interaction. These are due to the induced figure-8 motion, which introduces an overall redshift in the radiation spectrum, with the concomitant emission of higher order harmonics. To experimentally analyze the strong field physics associated with the nonlinear electron-laser interaction, clear modifications to the angular and wavelength distributions of x rays are observed. The relativistic photon wave field is provided by themore » ps CO 2 laser of peak normalized vector potential of 0.5L<0.7, which due to the quadratic dependence of the strength of nonlinear phenomena on aL permits sufficient effects not observed in past 2 nd harmonic study with a L ≈ 0.3 laser [M. Babzien et al., Phys. Rev. Lett. 96, 054802 (2006)]. The angular spectral characteristics are revealed using K-, L-edge, and high energy attenuation filters. The observation indicates existence of the electrons’ longitudinal motion through frequency redshifting understood as the mass shift effect. The 3 rd harmonic radiation has been observed containing on-axis x-ray component that is directly associated with the induced figure-8 motion. These are further supported by an initial evidence of off-axis 2 nd harmonic radiation produced in a circularly polarized laser wave field. Total x-ray photon number per pulse, scattered by 65 MeV electron beam of 0.3 nC, at the interaction point is measured to be approximately 10 9.« less
Metastable states and energy flow pathway in square graphene resonators
NASA Astrophysics Data System (ADS)
Wang, Yisen; Zhu, Zhigang; Zhang, Yong; Huang, Liang
2018-01-01
Nonlinear interaction between flexural modes is critical to heat conductivity and mechanical vibration of two-dimensional materials such as graphene. Much effort has been devoted to understand the underlying mechanism. In this paper, we examine solely the out-of-plane flexural modes and identify their energy flow pathway during thermalization process. The key is the development of a universal scheme that numerically characterizes the strength of nonlinear interactions between normal modes. In particular, for our square graphene system, the modes are grouped into four classes by their distinct symmetries. The couplings are significantly larger within a class than between classes. As a result, the equations for the normal modes in the same class as the initially excited one can be approximated by driven harmonic oscillators, therefore, they get energy almost instantaneously. Because of the hierarchical organization of the mode coupling, the energy distribution among the modes will arrive at a stable profile, where most of the energy is localized on a few modes, leading to the formation of "natural package" and metastable states. The dynamics for modes in other symmetry classes follows a Mathieu type of equation, thus, interclass energy flow, when the initial excitation energy is small, starts typically when there is a mode that lies in the unstable region in the parameter space of Mathieu equation. Due to strong coupling of the modes inside the class, the whole class will get energy and be lifted up by the unstable mode. This characterizes the energy flow pathway of the system. These results bring fundamental understandings to the Fermi-Pasta-Ulam problem in two-dimensional systems with complex potentials, and reveal clearly the physical picture of dynamical interactions between the flexural modes, which will be crucial to the understanding of their abnormal contribution to heat conduction and nonlinear mechanical vibrations.
NASA Astrophysics Data System (ADS)
Maute, A.; Hagan, M. E.; Richmond, A. D.; Roble, R. G.
2014-02-01
This modeling study quantifies the daytime low-latitude vertical E×B drift changes in the longitudinal wave number 1 (wn1) to wn4 during the major extended January 2006 stratospheric sudden warming (SSW) period as simulated by the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM), and attributes the drift changes to specific tides and planetary waves (PWs). The largest drift amplitude change (approximately 5 m/s) is seen in wn1 with a strong temporal correlation to the SSW. The wn1 drift is primarily caused by the semidiurnal westward propagating tide with zonal wave number 1 (SW1), and secondarily by a stationary planetary wave with zonal wave number 1 (PW1). SW1 is generated by the nonlinear interaction of PW1 and the migrating semidiurnal tide (SW2) at high latitude around 90-100 km. The simulations suggest that the E region PW1 around 100-130 km at the different latitudes has different origins: at high latitudes, the PW1 is related to the original stratospheric PW1; at midlatitudes, the model indicates PW1 is due to the nonlinear interaction of SW1 and SW2 around 95-105 km; and at low latitudes, the PW1 might be caused by the nonlinear interaction between DE2 and DE3. The time evolution of the simulated wn4 in the vertical E×B drift amplitude shows no temporal correlation with the SSW. The wn4 in the low-latitude vertical drift is attributed to the diurnal eastward propagating tide with zonal wave number 3 (DE3), and the contributions from SE2, TE1, and PW4 are negligible.
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.
2018-02-01
We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.
Moderately nonlinear ultrasound propagation in blood-mimicking fluid.
Kharin, Nikolay A; Vince, D Geoffrey
2004-04-01
In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.
Turbulence and wave particle interactions in solar-terrestrial plasmas
NASA Technical Reports Server (NTRS)
Dulk, G. A.
1982-01-01
Theoretical modelling of two dimensional compressible convection in the Sun shows that convective flows can extend over many pressure scale heights without the nonlinear motions becoming supersonic, and that compressional work arising from pressure fluctuations can be comparable to that by buoyancy forces. These results are contrary to what was supposed in prevailing mixing length models for solar convection, and they imply a much greater degree of organized flow extending over the full depth of the convection zone. The nonlinear penetration of motions into the stable region below the convection zone was emphasized. These compressible flows are dominated by downward directed plumes in the unstable zone. Their strong penetration into the region of stable stratification below excites a broad spectrum of internal gravity waves there, and these in turn feed back upon the convection in the unstable zone to produce a rich time dependence.
Boundary enhanced effects on the existence of quadratic solitons
NASA Astrophysics Data System (ADS)
Chen, Manna; Zhang, Ting; Li, Wenjie; Lu, Daquan; Guo, Qi; Hu, Wei
2018-05-01
We investigate, both analytically and numerically, the boundary enhanced effects exerted on the quadratic solitons consisting of fundamental waves and oscillatory second harmonics in the presence of boundary conditions. The nonlocal analogy predicts that the soliton for fundamental wave is supported by the balance between equivalent nonlinear confinement and diffraction (or dispersion). Under Snyder and Mitchell's strongly nonlocal approximation, we obtain the analytical soliton solutions both with and without the boundary conditions to show the impact of boundary conditions. We can distinguish explicitly the nonlinear confinement between the second harmonic mutual interaction and the enhanced effects caused by remote boundaries. Those boundary enhanced effects on the existence of solitons can be positive or negative, which depend on both sample size and nonlocal parameter. The piecewise existence regime of solitons can be explained analytically. The analytical soliton solutions are verified by the numerical ones and the discrepancy between them is also discussed.
A perspective on the contributions of Ronald C. Davidson to plasma physics
NASA Astrophysics Data System (ADS)
Wurtele, Jonathan S.
2016-10-01
Starting in the 1960s and continuing for half a century, Ronald C. Davidson made fundamental theoretical contributions to a wide range of areas of pure and applied plasma physics. Davidson was one of the founders of nonneutral plasma physics and a pioneer in developing and applying kinetic theory and nonlinear stability theorems to collective interaction processes and nonlinear dynamics of nonneutral plasmas and intense charged particle beams. His textbooks on nonneutral plasmas are the classic references for the field and educated generations of graduate students. Davidson was a strong advocate for applying the ideas of plasma theory to develop techniques that benefit other branches of science. For example, one of the major derivative fields enabled by nonneutral plasmas is the study of antimatter plasmas and the synthesis of antihydrogen. This talk will review a few highlights of Ronald Davidson's impact on plasma physics and related fields of science.
Antibunching and unconventional photon blockade with Gaussian squeezed states
NASA Astrophysics Data System (ADS)
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2014-12-01
Photon antibunching is a quantum phenomenon typically observed in strongly nonlinear systems where photon blockade suppresses the probability of detecting two photons at the same time. Antibunching has also been reported with Gaussian states, where optimized amplitude squeezing yields classically forbidden values of the intensity correlation, g(2 )(0 ) <1 . As a consequence, observation of antibunching is not necessarily a signature of photon-photon interactions. To clarify the significance of the intensity correlations, we derive a sufficient condition for deducing whether a field is non-Gaussian based on a g(2 )(0 ) measurement. We then show that the Gaussian antibunching obtained with a degenerate parametric amplifier is close to the ideal case reached using dissipative squeezing protocols. We finally shed light on the so-called unconventional photon blockade effect predicted in a driven two-cavity setup with surprisingly weak Kerr nonlinearities, stressing that it is a particular realization of optimized Gaussian amplitude squeezing.
NASA Astrophysics Data System (ADS)
Kouloumentas, Christos
2011-09-01
The concept of the all-fiberized multi-wavelength regenerator is analyzed, and the design methodology for operation at 40 Gb/s is presented. The specific methodology has been applied in the past for the experimental proof-of-principle of the technique, but it has never been reported in detail. The regenerator is based on a strong dispersion map that is implemented using alternating dispersion compensating fibers (DCF) and single-mode fibers (SMF), and minimizes the nonlinear interaction between the wavelength-division multiplexing (WDM) channels. The optimized regenerator design with + 0.86 ps/nm/km average dispersion of the nonlinear fiber section is further investigated. The specific design is capable of simultaneously processing five WDM channels with 800 GHz channel spacing and providing Q-factor improvement higher than 1 dB for each channel. The cascadeability of the regenerator is also indicated using a 6-node metropolitan network simulation model.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
NASA Astrophysics Data System (ADS)
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized by the cantilever-surface mechanism. The optimization results show that the 2DOF nonlinear system presents the best average performance when the excitation signals have three possible forms. Moreover, we observe that while for the linear systems the optimal performance is obtained for small values of the electromagnetic damping, for the 2DOF nonlinear system optimal performance is achieved for large values of damping. This feature is of particular importance for the system's robustness to parasitic damping.
NASA Astrophysics Data System (ADS)
Schroeder, J. W. R.; Drake, D. J.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.; Auerbach, D.
2012-10-01
Turbulence plays an important role in the transport of mass and energy in many space and astrophysical plasmas ranging from galaxy clusters to Earth's magnetosphere. One active topic of research is the application of idealized Alfv'enic turbulence models to plasma conditions relevant to space and astrophysical plasmas. Alfv'enic turbulence models based on incompressible magnetohydrodynamics (MHD) contain a nonlinear interaction that drives the cascade of energy to smaller scales. We describe experiments at the Large Plasma Device (LaPD) that focus on the interaction of an Alfv'en wave traveling parallel to the mean magnetic field with a counterpropagating Alfv'en wave. Theory predicts the nonlinear interaction of the two primary waves will produce a secondary daughter Alfv'en wave. In this study, we present the first experimental identification of the daughter wave generated by nonlinear interactions between the primary Alfv'en waves.
Vortex generation and wave-vortex interaction over a concave plate with roughness and suction
NASA Technical Reports Server (NTRS)
Bertolotti, Fabio
1993-01-01
The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.
Distinguishing time-delayed causal interactions using convergent cross mapping
Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George
2015-01-01
An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402
Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy
NASA Astrophysics Data System (ADS)
Ho, I.-Chen
Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms, electron intervalley scattering and impact ionization of InAs crystals, are observed under the excitation of intense THz field on a sub-picosecond time scale. These two competing mechanisms are demonstrated by changing the impurity doping type of the semiconductors and varying the strength of the THz field. Another investigation of nonlinear carrier dynamics is the observation of coherent polaron oscillation in n-doped semiconductors excited by intense THz pulses. Through modulations of surface reflection with a THz pump/THz probe technique, this work experimentally verifies the interaction between energetic electrons and a phonon field, which has been theoretically predicted by previous publications, and shows that this interaction applies for the acoustic phonon modes. Usually, two transverse acoustic (2TA) phonon responses are inactive in infrared measurement, while they are detectable in second-order Raman spectroscopy. The study of polaron dynamics, with nonlinear THz spectroscopy (in the far-infrared range), provides a unique method to diagnose the overtones of 2TA phonon responses of semiconductors, and therefore incorporates the abilities of both infrared and Raman spectroscopy. This work presents a new milestone in wave-matter interaction and seeks to benefit the industrial applications in high power, small scale devices.
NASA Technical Reports Server (NTRS)
Ohnami, S.; Hayakawa, M.; Bell, T. F.; Ondoh, T.
1993-01-01
Nonlinear wave-wave interaction between signals from a ground-based VLF transmitter and narrow-band ELF emissions in the subauroral ionosphere is studied by means of the bispectrum and bicoherence analysis. A bicoherence analysis has indicated that the sideband structures around the Siple transmitter signal received onboard the ISIS satellite are due to the nonlinear interaction between the Siple VLF signal and the pre-existing ELF emission.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang
2018-06-01
Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.
NASA Astrophysics Data System (ADS)
Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.
2013-02-01
The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter Δ.
Three-wave and four-wave interactions in gravity wave turbulence
NASA Astrophysics Data System (ADS)
Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas
2017-11-01
Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.
NASA Astrophysics Data System (ADS)
Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.
2017-12-01
During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.
Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE.
Schiecke, Karin; Pester, Britta; Piper, Diana; Benninger, Franz; Feucht, Martha; Leistritz, Lutz; Witte, Herbert
2016-12-01
Epileptic seizure activity influences the autonomic nervous system (ANS) in different ways. Heart rate variability (HRV) is used as indicator for alterations of the ANS. It was shown that linear, nondirected interactions between HRV and EEG activity before, during, and after epileptic seizure occur. Accordingly, investigations of directed nonlinear interactions are logical steps to provide, e.g., deeper insight into the development of seizure onsets. Convergent cross mapping (CCM) investigates nonlinear, directed interactions between time series by using nonlinear state space reconstruction. CCM is applied to simulated and clinically relevant data, i.e., interactions between HRV and specific EEG components of children with temporal lobe epilepsy (TLE). In addition, time-variant multivariate Autoregressive model (AR)-based estimation of partial directed coherence (PDC) was performed for the same data. Influence of estimation parameters and time-varying behavior of CCM estimation could be demonstrated by means of simulated data. AR-based estimation of PDC failed for the investigation of our clinical data. Time-varying interval-based application of CCM on these data revealed directed interactions between HRV and delta-related EEG activity. Interactions between HRV and alpha-related EEG activity were visible but less pronounced. EEG components mainly drive HRV. The interaction pattern and directionality clearly changed with onset of seizure. Statistical relevant interactions were quantified by bootstrapping and surrogate data approach. In contrast to AR-based estimation of PDC CCM was able to reveal time-courses and frequency-selective views of nonlinear interactions for the further understanding of complex interactions between the epileptic network and the ANS in children with TLE.
NASA Astrophysics Data System (ADS)
Karakatsanis, L. P.; Pavlos, G. P.; Iliopoulos, A. C.; Pavlos, E. G.; Clark, P. M.; Duke, J. L.; Monos, D. S.
2018-09-01
This study combines two independent domains of science, the high throughput DNA sequencing capabilities of Genomics and complexity theory from Physics, to assess the information encoded by the different genomic segments of exonic, intronic and intergenic regions of the Major Histocompatibility Complex (MHC) and identify possible interactive relationships. The dynamic and non-extensive statistical characteristics of two well characterized MHC sequences from the homozygous cell lines, PGF and COX, in addition to two other genomic regions of comparable size, used as controls, have been studied using the reconstructed phase space theorem and the non-extensive statistical theory of Tsallis. The results reveal similar non-linear dynamical behavior as far as complexity and self-organization features. In particular, the low-dimensional deterministic nonlinear chaotic and non-extensive statistical character of the DNA sequences was verified with strong multifractal characteristics and long-range correlations. The nonlinear indices repeatedly verified that MHC sequences, whether exonic, intronic or intergenic include varying levels of information and reveal an interaction of the genes with intergenic regions, whereby the lower the number of genes in a region, the less the complexity and information content of the intergenic region. Finally we showed the significance of the intergenic region in the production of the DNA dynamics. The findings reveal interesting content information in all three genomic elements and interactive relationships of the genes with the intergenic regions. The results most likely are relevant to the whole genome and not only to the MHC. These findings are consistent with the ENCODE project, which has now established that the non-coding regions of the genome remain to be of relevance, as they are functionally important and play a significant role in the regulation of expression of genes and coordination of the many biological processes of the cell.
N-soliton interactions: Effects of linear and nonlinear gain and loss
NASA Astrophysics Data System (ADS)
Carretero-González, R.; Gerdjikov, V. S.; Todorov, M. D.
2017-10-01
We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.
NASA Astrophysics Data System (ADS)
Döring, D.; Solodov, I.; Busse, G.
Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.
Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.
Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa
2015-01-01
Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Nonlinear transport of soft droplets in pore networks
NASA Astrophysics Data System (ADS)
Vernerey, Franck; Benet Cerda, Eduard; Koo, Kanghyeon
A large number of biological and technological processes depend on the transport of soft colloidal particles through porous media; this includes the transport and separation of cells, viruses or drugs through tissues, membranes and microfluidic devices. In these systems, the interactions between soft particles, background fluid and the surrounding pore space yield complex, nonlinear behaviors such as non-Darcy flows, localization and jamming. We devise a computational strategy to investigate the transport of non-wetting and deformable water droplets in a microfluidic device made of a random distribution of cylindrical obstacles. We first derive scaling laws for the entry of the droplet in a single pore and discuss the role of surface tension, contact angle and size in this process. This information is then used to study the transport of multiple droplets in an obstacle network. We find that when the droplet size is close to the pore size, fluid flow and droplet trafficking strongly interact, leading to local redistributions in pressure fields, intermittent clogging and jamming. Importantly, it is found that the overall droplet and fluid transport display three different scaling regimes depending on the forcing pressure, and that these regimes can be related to droplet properties.
Enhanced energy transport owing to nonlinear interface interaction
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-01
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco
2015-04-01
This study presents an innovative strategy for automatic evaluation of the variable fundamental frequency and related damping factor of nonlinear structures during strong motion phases. Most of methods for damage detection are based on the assessment of the variations of the dynamic parameters characterizing the monitored structure. A crucial aspect of these methods is the automatic and accurate estimation of both structural eigen-frequencies and related damping factors also during the nonlinear behaviour. A new method, named STIRF (Short-Time Impulse Response Function - STIRF), based on the nonlinear interferometric analysis combined with the Fourier Transform (FT) here is proposed in order to allow scientists and engineers to characterize frequencies and damping variations of a monitored structure. The STIRF approach helps to overcome some limitation derived from the use of techniques based on simple Fourier Transform. These latter techniques provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary, time-varying behaviour: even non-stationary input, soil-foundation and/or adjacent structures interaction phenomena can show the inadequacy of classic techniques to analysing the nonlinear and/or non-stationary behaviour of structures. In fact, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. Results are consistent with those expected if compared with other techniques. The main advantage derived from the use of the proposed approach (STIRF) for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency and the related equivalent viscous damping factor. The proposed methodology has been tested on both numerical and experimental models also using data retrieved from shaking table tests. Based on the results provided in this study, the methodology seems to be able to evaluate fast variations (over time) of dynamic parameters of a generic reinforced concrete framed structure. Further analyses are necessary to better calibrate the length of the moving time-window (in order to minimize the spurious frequency within each Interferometric Response Function evaluated on both weak and strong motion phases) and to verify the possibility to use the STIRF to analyse the nonlinear behaviour of general systems. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''. References R. Ditommaso, F.C. Ponzo (2015). Automatic evaluation of the fundamental frequency variations and related damping factor of reinforced concrete framed structures using the Short Time Impulse Response Function (STIRF). Engineering Structures, 82 (2015), 104-112. http://dx.doi.org/10.1016/j.engstruct.2014.10.023.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2018-02-01
Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.
Observation of Tropical Cyclone-Induced Shallow Water Currents in Taiwan Strait
NASA Astrophysics Data System (ADS)
Shen, Junqiang; Qiu, Yun; Zhang, Shanwu; Kuang, Fangfang
2017-06-01
The data from three stations equipped with Acoustic Doppler Current Profilers (ADCPs) deployed in the shallow water of the Taiwan Strait (TWS) were used to study the shallow coastal ocean response to five quasi-continuous tropical cyclone (TC) events in the late summer 2006. We revealed that, in the forced stage, when the large and strong TC (Bilis) transited, the geostrophic currents were formed which dominated the whole event, while the strong but relatively small one (Saomai) or the weak one (Bopha) primarily leaded to the generation of Ekman currents. In the relaxation stage, the barotropic subinertial waves and/or the baroclinic near-inertial oscillations (NIOs) were triggered. Typically, during the transit of the Saomai, subinertial waves were induced which demonstrated a period of 2.8-4.1 days and a mean alongshore phase velocity of 14.9 ± 3.2 m/s in the form of free-barotropic continental shelf waves. However, the NIOs are only notable in the area in which the water column is stably stratified and also where the wind stress is dominated by the clockwise component and accompanied by high-frequency (near-inertial) variations. We also demonstrated that, due to the damping effects, the nonlinear wave-wave interaction (e.g., between NIO and semidiurnal tide in our case), together with the well-known bottom friction, led to the rapid decay of the observed TC-induced near-inertial currents, giving a typical e-folding time scale of 1-3 inertial periods. Moreover, such nonlinear wave-wave interaction was even found to play a major role during the spring tide in TWS.
Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf
NASA Astrophysics Data System (ADS)
Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo
2016-05-01
Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.
Wang, Wen-Yong; Wang, Li; Ma, Na-Na; Zhu, Chang-Li; Qiu, Yong-Qing
2015-06-07
The electron donor-acceptor complexes, which undergo intramolecular charge transfer under external stimulus, are an emerging class of materials showing important application in nonlinear optics. Synthesizing ferrocene/fullerene complexes through face-to-face fusion would enjoy the merits of both ferrocene and fullerene due to their strong donor-acceptor interactions. Four ferrocene/fullerene hybrid complexes with the gradual extension of fullerene cage size, including CpFe(C60H5), CpFe(C66H5), CpFe(C70H5), and CpFe(C80H5) (Cp is cyclopentadienyl), have been investigated by density functional theory. These hybrid molecules give eclipsed and staggered isomers. The main reason that the eclipsed isomer is stable is that the eclipsed structure possesses large CpFefullerene bonding energy. The CpFefullerene interaction is smaller than that of CpFefullerene, which must come from two different interfaces. The presence of covalent bond character between CpFe and fullerene is supported by the localized orbital locator, deformation of electron density distribution and energy decomposition analysis. Significantly, the absorption bands and first hyperpolarizabilities of these hybrid complexes are strongly sensitive to the fullerene cage size, which is ascribed to a change in the charge transfer pattern, especially for CpFe(C80H5), which displays reverse π → π* charge transfer from bottom to top cage, leading to notable hyperpolarizability. Investigation of the structure-property relationship at the molecular level can benefit the design and preparation of such hybrid complexes in chemistry and materials science.
Nonlinear wavenumber shift of large amplitude Langmuir waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dehui, E-mail: dhli@ipp.ac.cn; Wang, Shaojie
2016-07-15
Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Rogue wave modes for a derivative nonlinear Schrödinger model.
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-03-01
Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.
A New Theoretical Foundation for Relationship-centered Care
Suchman, Anthony L
2006-01-01
Relationship-centered care (RCC) is a clinical philosophy that stresses partnership, careful attention to relational process, shared decision-making, and self-awareness. A new complexity-inspired theory of human interaction called complex responsive processes of relating (CRPR) offers strong theoretical confirmation for the principles and practices of RCC, and thus may be of interest to communications researchers and reflective practitioners. It points out the nonlinear nature of human interaction and accounts for the emergence of self-organizing patterns of meaning (e.g., themes or ideas) and patterns of relating (e.g., power relations). CRPR offers fresh new perspectives on the mind, self, communication, and organizations. For observers of interaction, it focuses attention on the nature of moment-to-moment relational process, the value of difference and diversity, and the importance of authentic and responsive participation, thus closely corresponding to and providing theoretical support for RCC. PMID:16405709
Third-order nonlinear optical properties of methylammonium lead halide perovskite films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Justin C.; Li, Zhen; Ndione, Paul F.
2016-01-01
We report third-order nonlinear coefficient values and decay time kinetics vs. halide composition (CH3NH3PbBr3 and CH3NH3PbBr2I), temperature, and excitation wavelength. The maximum values of the third-order nonlinear susceptibility X(3) (-1.6 x 10-6 esu) are similar to or larger than many common third-order materials. The source of the nonlinearity is shown to be primarily excitonic in the tribromide film by virtue of its strong enhancement near the exciton resonance. Nonresonant excitation reduces the nonlinearity significantly, as does increasing the temperature. Substitution of one I for one Br also reduces the nonlinearity by at least one order of magnitude, presumably due tomore » the lack of strong exciton resonance in the substituted form. The thin films are stable, highly homogenous (lacking significant light scattering), and simple and inexpensive to fabricate, making them potentially useful in a variety of optoelectronic applications in which wavelength selectivity is important.« less
Nonlinear dynamics and quantum entanglement in optomechanical systems.
Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2014-03-21
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
Personality and the perception of health and happiness.
Cloninger, C Robert; Zohar, Ada H
2011-01-01
Health is a state of physical, mental, and social well-being. Personality traits measure individual differences in adaptive functioning and mental health, but little is known about how well personality accounts for health's affective aspects (i.e., "happiness") and its non-affective aspects (i.e., "wellness") in the general population. 1102 volunteer representatives of the Sharon area of Israel completed the Temperament and Character Inventory (TCI), the Positive and Negative Affect Scale (PANAS), the Satisfaction with Life Scale (SWLS), the Multidimensional Scale of Perceived Social Support (PSS), and the subjective health assessment of the General Health Questionnaire (GHQ). Multidimensional personality profiles were used to evaluate the linear and non-linear effects of interactions among dimensions on different aspects of well-being. Self-directedness was strongly associated with all aspects of well-being regardless of interactions with other dimensions. Cooperativeness was strongly associated with perceived social support, and weakly with other aspects of well-being, particularly when Self-directedness was low. Self-transcendence was strongly associated with positive emotions when the influence of the other character dimensions was taken into account. Personality explained nearly half the variance in happiness and more than one-third of the variance in wellness. Our data are cross-sectional and self-reported, so they are subject to personal perceptual bias. The emotional, social, and physical aspects of well-being are interdependent, but specific configurations of TCI Self-directedness, Cooperativeness, and Self-transcendence influence them differentially. Interactions among different combinations of character traits have strong effects on the perception of both wellness and happiness. Copyright © 2010 Elsevier B.V. All rights reserved.
Lagrangian methods in nonlinear plasma wave interaction
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1980-01-01
Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.
Physics of Alfvén waves and energetic particles in burning plasmas
NASA Astrophysics Data System (ADS)
Chen, Liu; Zonca, Fulvio
2016-01-01
Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.
NASA Astrophysics Data System (ADS)
Fernandez, L.; Toffoli, A.; Monbaliu, J.
2012-04-01
In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
Interaction between telencephalic signals and respiratory dynamics in songbirds
Méndez, Jorge M.; Mindlin, Gabriel B.
2012-01-01
The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649
Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R
2018-02-22
Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F
2016-10-21
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong Qian; Department of Physics, Shanghai University, Shanghai 200444; Wang, Q.
2010-07-15
We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.
Localization of intense electromagnetic waves in a relativistically hot plasma.
Shukla, P K; Eliasson, B
2005-02-18
We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a relativistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a nonlinear Schro dinger equation describing the dynamics of the EMWs and the Poisson-relativistic Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with localized EMWs.
NASA Astrophysics Data System (ADS)
Engwirda, Darren; Kelley, Maxwell; Marshall, John
2017-08-01
Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.
Simulations of heart valves by thin shells with non-linear material properties
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali
2016-11-01
The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.
Development of a Nonlinear Acoustic Phased Array and its Interaction with Thin Plates
NASA Astrophysics Data System (ADS)
Anzel, Paul; Donahue, Carly; Daraio, Chiara
2015-03-01
Numerous technologies are based on the principle of focusing acoustic energy. We propose a new device to focus sound waves which exploits highly nonlinear dynamics. The advantages of this device are the capability of generating very highly powerful acoustic pulses and potential operation in high-temperature environments where traditional piezoelectrics may fail. This device is composed of rows of ball bearings placed in contact with a medium of interest and with an actuator on the top. Elastic spherical particles have a contact force that grows with their relative displacement to the three-halves power (Hertzian contact). When several spheres are placed in a row, the particles support the propagation of ``solitary waves''--strong, compact stress-wave pulses whose tendency to disperse is counteracted by the nonlinearity of the sphere's contact force. We present results regarding the experimental operation of the device and its comparison to theory and numerical simulations. We will show how well this system is capable of focusing energy at various locations in the medium, and the limits imposed by pre-compression. Finally, the effects of timing error on energy focusing will be demonstrated. This research has been supported by a NASA Space Technology Research Fellowship.
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2017-10-01
We present comparisons of magnetic tearing fluctuation activity between RFP experiments on the low-aspect-ratio RELAX device (R / a 2) and nonlinear simulations of zero-beta, single-fluid MHD using the NIMROD code in both cylindrical and toroidal geometries at a Lundquist number of S =104 , nearly as high as experimental values. Time-average fluctuation amplitudes observed in the simulations are similar to those from the experiments, but more rigorous comparisons versus spectral mode numbers are in progress. We also focus on how the spatiotemporal dynamics of the fluctuations vary with RFP equilibrium parameters. Interestingly, at shallow reversal, cylindrical simulations show a relatively uncoupled spectrum of nearly quiescent modes periodically varying in time, whereas the corresponding toroidal cases show a fully chaotic spectrum of strongly nonlinearly interacting modes. We ascribe this to the geometric m = 1 coupling present in the toroidal but not the cylindrical case. We present initial results from convergence studies with increased spatial resolution for both geometries. Simulations at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
Selected Problems in Nonlinear Dynamics and Sociophysics
NASA Astrophysics Data System (ADS)
Westley, Alexandra Renee
This Ph.D. dissertation focuses on a collection of problems on the dynamical behavior of nonlinear many-body systems, drawn from two substantially different areas. First, the dynamical behavior seen in strongly nonlinear lattices such as in the Fermi-Pasta-Ulam-Tsingou (FPUT) system (part I) and second, time evolution behavior of interacting living objects which can be broadly considered as sociophysics systems (part II). The studies on FPUT-like systems will comprise of five chapters, dedicated to the properties of solitary and anti-solitary waves in the system, how localized nonlinear excitations decay and spread throughout these lattices, how two colliding solitary waves can precipitate highly localized and stable excitations, a possible alternative way to view these localized excitations through Duffing oscillators, and finally an exploration of parametric resonance in an FPUT-like lattice. Part II consists of two problems in the context of sociophysics. I use molecular dynamics inspired simulations to study the size and the stability of social groups of chimpanzees (such as those seen in central Africa) and compare the results with existing observations on the stability of chimpanzee societies. Secondly, I use an agent-based model to simulate land battles between an intelligent army and an insurgency when both have access to equally powerful weaponry. The study considers genetic algorithm based adaptive strategies to infer the strategies needed for the intelligent army to win the battles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwage, Andreas; Shinohara, Kouji
2016-04-15
The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectramore » of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.« less
NASA Astrophysics Data System (ADS)
Cifra, Michal; Pokorný, Jirí; Kucera, Ondrej
2011-12-01
This volume contains papers presented at the International Fröhlich's Symposium entitled 'Electrodynamic Activity of Living Cells' (1-3 July 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. The hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic-polarization interactions should be connected in a unified theory and the solution based on comprehensive non-linear characteristics. Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences - including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg's discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on the study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity-oxidative energy production is connected with the formation of a strong static electric field around them, water ordering, and liberation of non-utilized energy to their surroundings. Mitochondrial function connected with water ordering and excitation of oscillations in microtubules may play a central role in biological activity, in particular in transport, organization, interactions, and information transfer. Mitochondrial disfunction results in disturbances of the generated electrodynamic field with bad consequences in biological activity and the creation of pathological states. A special issue of the biological activity concerns the brain function (consciousness is not yet adequately understood). Experimental investigation using nanotechnology would supply yet unknown data and parameters of physical mechanisms in living systems. Extremely weak biological signals have to be separated from technical noise under conditions of possible non-linear mutual interactions. Some authors questioned the validity of the Fröhlich hypothesis. Foster and Baish (J. Biol. Phys. 26 2000, 255) neglected water ordering and concluded that strong damping by water viscosity effects prevents the formation of a coherent state. Reimers et al (PNAS 106 2009, 4219) and McKemmish et al (Phys. Rev. E 80 2009, 021912-1) omitted non-linear elastic-electrical polarization interactions and analyzed a linearized model of downconversion with strong damping that cannot represent the Fröhlich system. Fröhlich assumed a high quality non-linear system with energy supply. Some methods used for analysis of linear systems (for instance the method of superposition) are not valid in non-linear systems. For this reason also experimental analysis based on subtraction of the noise from the measured signal spectrum is not a simple question. There is another special issue concerning biological activity. The living state and in particular consciousness are very often connected with an idea of a non-material and non-measurable entity entering the biological system from outside. There is a splendid harmony and order in nature. Science should disclose measurable mechanisms of the harmony and order. But human knowledge about the electrodynamic and electromagnetic fields in biological systems is still at a low level. The Symposium continued in the series of international scientific meetings devoted to physical processes in living cells organized in Prague. The first meeting was entitled 'Biophysical Aspects of Cancer' (6-9 July 1987). On this occasion the Anglo-German physicist H Fröhlich presented a lecture 'Coherence in Biology'. The next meeting which was devoted to the Fröhlich coherent systems, information transfer, and neural activity was in 1993. The role of the Fröhlich coherence in the neural activity was included in the meeting 'Biophysical Aspects of Coherence' in 1995 too. The subsequent symposia were entitled 'Electromagnetic Fields in Biological Systems' (1998), 'Electromagnetic Aspects of Selforganization in Biology' (2000), 'Endogenous Physical Fields in Biology' (2002), 'Coherence and Electromagnetic Fields in Biological Systems' (2005), and 'Biophysical Aspects of Cancer - Electromagnetic Mechanisms' (2008). In 2008 a novel project for research of convergence of physics and oncology was triggered in the USA by the National Cancer Institute and the Institute of Public Health. This volume contains the a large number of the papers presented at the Symposium. The ideas presented at the Symposium might have impact on the future research of physical processes and mechanisms in biological systems. Experimental research may provide a background for understanding the neglected part of biological activity and reveal the physical mechanisms of the cancer transformation pathway. The Symposium and this volume were prepared by a scientific team whose members were M Cifra, D Havelka, A Jandová, F Jelínek, O Kucera, M Nedbalová, and F Šrobár. Jirí Pokorný A list of committees, sponsors, the list of talks and some photographs from the conference can be found in the PDF file.
Multipulse interaction quenched ultracold few-bosonic ensembles in finite optical lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Neuhaus-Steinmetz, Jannis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The correlated non-equilibrium dynamics following a multipulse interaction quench protocol in few-bosonic ensembles confined in finite optical lattices is investigated. The multipulse interaction quench gives rise to the cradle and a global breathing mode. These modes are generated during the interaction pulse and persist also after the pulse. The corresponding tunneling dynamics consists of several energy channels accompanying the dynamics. The majority of the tunneling channels persist after the pulse, while only a few occur during the pulse. The induced excitation dynamics is also explored and a strong non-linear dependence on the delayed time of the multipulse protocol is observed. Moreover, the character of the excitation dynamics is also manifested by the periodic population of higher-lying lattice momenta. The above mentioned findings pave the way for future investigations on the direct control of the excitation dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
NASA Astrophysics Data System (ADS)
Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.
2018-01-01
Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.
NASA Astrophysics Data System (ADS)
Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.
2017-12-01
The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.
Employment, Production and Consumption model: Patterns of phase transitions
NASA Astrophysics Data System (ADS)
Lavička, H.; Lin, L.; Novotný, J.
2010-04-01
We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.
Near-Infrared Laser Pumped Intersubband THz Laser Gain in InGaAs-AlAsSb-InP Quantum Wells
NASA Technical Reports Server (NTRS)
Liu, An-Sheng; Ning, Cun-Zheng
1999-01-01
We investigate the possibility of using InGaAs-AlAsSb-InP coupled quantum wells to generate THz radiation by means of intersubband optical pumping. We show that large conduction band offsets of these quantum wells make it possible to use conventional near-infrared diode lasers around 1.55 micron as pump sources. Taking into account the pump-probe coherent interaction and the optical nonlinearity for the pump field, we calculate the THz gain of the quantum well structure. We show that resonant Raman scattering enhances the THz gain at low and moderate optical pumping levels. When the pump intensity is strong, the THz gain is reduced by pump-induced population redistribution and pump-probe coherent interactions.
Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi
2016-03-03
Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.
Unsteady three-dimensional marginal separation, including breakdown
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
A situation involving a three-dimensional marginal separation is considered, where a (steady) boundary layer flow is on the verge of separating at a point (located along a line of symmetry/centerline). At this point, a triple-deck is included, thereby permitting a small amount of interaction to occur. Unsteadiness is included within this interaction region through some external means. It is shown that the problem reduces to the solution of a nonlinear, unsteady, partial-integro system, which is solved numerically by means of time-marching together with a pseudo-spectral method spatially. A number of solutions to this system are presented which strongly suggest a breakdown of this system may occur, at a finite spatial position, at a finite time. The structure and details of this breakdown are then described.
NASA Astrophysics Data System (ADS)
Gurevich, A.; Ciovati, G.
2008-03-01
We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.
Strong coupling effects in hybrid plexitonic systems
NASA Astrophysics Data System (ADS)
Melnikau, Dzmitry; Esteban, Ruben; Govyadinov, Alexander A.; Savateeva, Diana; Simon, Thomas; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K.; Urban, Alexander S.; Liz-Marzán, Luis M.; Feldmann, Jochen; Aizpurua, Javier; Rakovich, Yury P.
2017-08-01
We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states
Lefauve, Adrien; Saintillan, David
2014-02-01
Strongly confined active liquids are subject to unique hydrodynamic interactions due to momentum screening and lubricated friction by the confining walls. Using numerical simulations, we demonstrate that two-dimensional dilute suspensions of fore-aft asymmetric polar swimmers in a Hele-Shaw geometry can exhibit a rich variety of novel phase behaviors depending on particle shape, including coherent polarized density waves with global alignment, persistent counterrotating vortices, density shocks and rarefaction waves. We also explain these phenomena using a linear stability analysis and a nonlinear traffic flow model, both derived from a mean-field kinetic theory.
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
Rademacher, Georg; Warm, Stefan; Petermann, Klaus
2015-01-12
We analyze the impact of Differential Mode Delay (DMD) Management on the nonlinear impairments in mode-division multiplexed transmission systems. It is found out that DMD Management can lead to a degraded performance, due to enhanced intermodal nonlinear interaction. This can be attributed to an increased correlation of co-propagating channels, similar to the effects that show up in dispersion managed single-mode systems.
Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction
NASA Astrophysics Data System (ADS)
Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.
2005-03-01
We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.
Experimental study of isolas in nonlinear systems featuring modal interactions
Noël, Jean-Philippe; Virgin, Lawrence N.; Kerschen, Gaëtan
2018-01-01
The objective of the present paper is to provide experimental evidence of isolated resonances in the frequency response of nonlinear mechanical systems. More specifically, this work explores the presence of isolas, which are periodic solutions detached from the main frequency response, in the case of a nonlinear set-up consisting of two masses sliding on a horizontal guide. A careful experimental investigation of isolas is carried out using responses to swept-sine and stepped-sine excitations. The experimental findings are validated with advanced numerical simulations combining nonlinear modal analysis and bifurcation monitoring. In particular, the interactions between two nonlinear normal modes are shown to be responsible for the creation of the isolas. PMID:29584758
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.
2018-06-01
Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
Quasi-superradiant soliton state of matter in quantum metamaterials
NASA Astrophysics Data System (ADS)
Asai, Hidehiro; Kawabata, Shiro; Savel'ev, Sergey E.; Zagoskin, Alexandre M.
2018-02-01
Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic field induces specific correlations in the system accompanied by a drastic increase of emitted radiation (superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was subject to a vigorous experimental and theoretical research, there remain open question, in particular, concerning the possibility of a first order phase transition to the superradiant state from the vacuum state. In systems of natural and charge-based artificial atom this transition is prohibited by "no-go" theorems. Here we demonstrate numerically and confirm analytically a similar transition in a one-dimensional quantum metamaterial - a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic fields in a transmission line. The system switches from vacuum state to the quasi-superradiant (QS) phase with one or several magnetic solitons and finite average occupation of qubit excited states along the transmission line. A quantum metamaterial in the QS phase circumvents the "no-go" restrictions by considerably decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons.
Non-Fermi-liquid and topological states with strong spin-orbit coupling.
Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon
2013-11-15
We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.
NASA Astrophysics Data System (ADS)
Castillo, Andrés; Delgado, Rafael L.; Dobado, Antonio; Llanes-Estrada, Felipe J.
2017-07-01
By considering a non-linear electroweak chiral Lagrangian, including the Higgs, coupled to heavy quarks, and the equivalence theorem, we compute the one-loop scattering amplitudes W^+W^-→ t\\bar{t}, ZZ→ t\\bar{t} and hh→ t\\bar{t} (in the regime M_t^2/v^2≪ √{s}M_t/v^2≪ s/v^2 and to NLO in the effective theory). We calculate the scalar partial-wave helicity amplitudes which allow us to check unitarity at the perturbative level in both M_t/v and s/ v. As with growing energy perturbative unitarity deteriorates, we also introduce a new unitarization method with the right analytical behavior on the complex s-plane and that can support poles on the second Riemann sheet to describe resonances in terms of the Lagrangian couplings. Thus we have achieved a consistent phenomenological description of any resonant t\\bar{t} production that may be enhanced by a possible strongly interacting electroweak symmetry breaking sector.
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
Evolution of cooperation on complex networks with synergistic and discounted group interactions
NASA Astrophysics Data System (ADS)
Zhou, Lei; Li, Aming; Wang, Long
2015-06-01
In the real world individuals often engage in group interactions and their payoffs are determined by many factors, including the typical nonlinear interactions, i.e., synergy and discounting. Previous literatures assume that individual payoffs are either synergistically enhanced or discounted with the additional cooperators. Such settings ignore the interplay of these two factors, which is in sharp contrast with the fact that they ubiquitously coexist. Here we investigate how the coexistence and periodical switching of synergistic and discounted group interactions affect the evolution of cooperation on various complex networks. We show that scale-free networks facilitate the emergence of cooperation in terms of fixation probability for group interactions. With nonlinear interactions the heterogeneity of the degree acts as a double-edged sword: below the neutral drift it is the best for cooperation while above the neutral drift it instead provides the least opportunity for cooperators to be fixed. The advantages of the heterogeneity fade as interactive attributes switch between synergy and discounting, which suggests that the heterogeneity of population structures cannot favor cooperators in group interactions even with simple nonlinear interactions. Nonetheless, scale-free networks always guarantee cooperators the fastest rate of fixation. Our work implies that even very simple nonlinear group interactions could greatly shape the fixation probability and fixation time of cooperators in structured populations indicated by complex networks.
ERIC Educational Resources Information Center
Prosser, Andrew
2014-01-01
Digital storytelling is already used extensively in language education. Web documentaries, particularly in terms of design and narrative structure, provide an extension of the digital storytelling concept, specifically in terms of increased interactivity. Using a model of interactive, non-linear storytelling, originally derived from computer game…
Acoustics of One-Dimensional Homogeneous Granular Chains
NASA Astrophysics Data System (ADS)
Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.
The Chapter 1 provided a brief glimpse of the general ordered granular chain/lattices, their subtle features and the intricacies associated with their analysis. By now it should be clear that this class of highly-inhomogeneous and discontinuous systems poses new challenges in the form of strongly nonlinear behavior, bead separations, and twice (at most) differentiable interaction potential. It follows that the traditional analytical methodologies may need to be modified to effectively address these challenges. To begin with, we consider the simplest case of the homogeneous granular chains, wherein, the particles are identical and are perfectly in contact (no gaps) initially. We consider the case of both the uncompressed (strongly nonlinear) and the pre-compressed (weakly nonlinear) chains and elucidate the striking differences between their dynamical behaviors. In the latter case, the long wave/continuum approximation is invoked in this analysis thus precluding any bead separations. A landmark discovery in this class of systems is the realization of the solitary wave propagation [1-3]. These waves are highly localized spatially symmetric disturbances which propagate in the nonlinear medium. In general, it is well known that the linear nondispersive waves have a characteristic wave speed (property of the medium), and a disturbance of any amplitude or waveform propagates at the same speed undistorted. In contrast, the propagation velocity of the solitary waves in a nonlinear medium is a function of the wave amplitude (a general nonlinear behavior) and the physical properties of the medium. It is worth noting that any arbitrary disturbance set in motion in a homogeneous granular chain eventually disintegrates into a train of the solitary waves of varying amplitudes propagating at the proportional velocities (higher the amplitude, higher the propagation velocity). Although these waves are called solitary waves, they do not necessarily conform to the definition [4] provided in the previous chapter. In fact such a definition is applicable when the medium is a continuum and does not consist of a discrete set of particles. Thus such localized waves are alternatively given the name compactons as they span a limited spatial domain of about 6-7 beads or in other words they only require compact support in the media where they propagate (although the characterization as solitary wave is also common in the research community). We briefly dwell on the concept of the compactons [5] and the decaying characteristic [6] of these waves. An aspect that has interested many researchers is the interaction of these solitary waves with the mass defects/intruders (disparity in masses). Such defects, e.g., in the form of a large mass disparity, can lead to the discrete breathers that transiently entrap the energy in space. In the final part of this chapter we consider the effects of the periodic intruders on the wave propagation and the shock mitigation of pulse propagating in the granular chains.
Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman Operator Theory
2017-03-01
calculus, applied mathematics, Director’s Research Initiative 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18... research of Svenkeson et al.4 Section 2 is Accomplishments and Section 3 is the Conclusion. 2. Accomplishments 2.1 Prescribed External Forcing To study ...ARL-TR-7959 MAR 2017 US Army Research Laboratory Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman
Fundamental Particle Structure in the Cosmological Dark Matter
NASA Astrophysics Data System (ADS)
Khlopov, Maxim
2013-11-01
The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying fundamental relationship of micro- and macro-worlds, the problem of cosmological dark matter implies cross disciplinary theoretical, experimental and observational studies for its solution.
Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence
NASA Astrophysics Data System (ADS)
Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.
2017-12-01
The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.
The mechanism by which nonlinearity sustains turbulence in plane Couette flow
NASA Astrophysics Data System (ADS)
Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.
2018-04-01
Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.
Spatiotemporal Airy Ince-Gaussian wave packets in strongly nonlocal nonlinear media.
Peng, Xi; Zhuang, Jingli; Peng, Yulian; Li, DongDong; Zhang, Liping; Chen, Xingyu; Zhao, Fang; Deng, Dongmei
2018-03-08
The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.
Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita
Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described.
Synchronization and Cardio-pulmonary feedback in Sleep Apnea
NASA Astrophysics Data System (ADS)
Xu, Limei; Ivanov, Plamen Ch.; Chen, Zhi; Hu, Kun; Paydarfar, David; Stanley, H. Eugene
2004-03-01
Findings indicate a dynamical coupling between respiratory and cardiac function. However, the nature of this nonlinear interaction remains not well understood. We investigate transient patterns in the cardio-pulmonary interaction under healthy conditions by means of cross-correlation and nonlinear synchronization techniques, and we compare how these patterns change under pathologic conditions such as obstructive sleep apnea --- a periodic cessation of breathing during sleep. We find that during apnea episodes the nonlinear features of cardio-pulmonary interaction change intermittently, and can exhibit variations characterized by different time delays in the phase synchronization between breathing and heartbeat dynamics.
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.
2018-04-01
Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
Our Numerical Spectral Model (NSM), which extends from the ground up into the thermosphere, is non-linear, time-dependent and has been employed for 2D and 3D applications. The standard version of the NSM incorporates Hines' Doppler Spread Parameterization for small scale gravity waves (GW), but planetary waves generated in the troposphere have also been incorporated. The NSM has been applied to describe: (1) the anomalous seasonal variations of the zonal circulation and temperature in the upper mesosphere, (2) the equatorial oscillations (quasi-biennial and semi-annual oscillations (QBO and SAO)) extending from the stratosphere into the upper mesosphere, (3) the diurnal and semi-diurnal tides, and (4) the planetary waves that are excited in the mesosphere. With the emphasis to provide understanding, we present here results from numerical experiments with the NSM that shed light on the GW processes that are of central importance in the mesosphere and lower thermosphere. These are our conclusions: (1) The large semiannual variations in the diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength, but variations in eddy viscosity associated with GW interactions are also important. (2) The semidiurnal tide (SDT) and its phase in particular, is strongly influenced by the mean zonal circulation. The SDT, individually, is also amplified by GW. But the DT filters out GW such that the GW interaction effectively reduces the amplitude of the SDT, producing a strong nonlinear interaction between the DT and SDT. (3) Without external time dependent energy or momentum sources, planetary waves (PW) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 40 m/s and periods between 50 and 2 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW induced reversal in the latitudinal temperature gradient) is playing an important role. Numerical experiment show that GW, directly, also greatly amplify the PW. A common feature of the PW generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large, which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PW propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter at altitudes below 80 km. (4) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT. In summary we conclude that GW play major roles in generating and amplifying the dynamical components in the MLT region and, acting principally through wave filtering, produce important non-linear interactions between the components.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Spillane, S M; Pati, G S; Salit, K; Hall, M; Kumar, P; Beausoleil, R G; Shahriar, M S
2008-06-13
We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.
Stability, diffusion and interactions of nonlinear excitations in a many body system
NASA Astrophysics Data System (ADS)
Coste, Christophe; Jean, Michel Saint; Dessup, Tommy
2017-04-01
When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.
Heinz, M G; Colburn, H S; Carney, L H
2001-10-01
The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.
Active experiments in geospace plasmas with gigawatts of RF power at HAARP
NASA Astrophysics Data System (ADS)
Sheerin, James
2016-07-01
The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.
From conservative to reactive transport under diffusion-controlled conditions
NASA Astrophysics Data System (ADS)
Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.
2016-05-01
We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.
Interaction of strong converging shock wave with SF6 gas bubble
NASA Astrophysics Data System (ADS)
Liang, Yu; Zhai, ZhiGang; Luo, XiSheng
2018-06-01
Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.
Computation of nonlinear ultrasound fields using a linearized contrast source method.
Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A
2013-08-01
Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.
A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2017-04-01
Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.
Corepressive interaction and clustering of degrade-and-fire oscillators
Fernandez, Bastien; Tsimring, Lev S.
2016-01-01
Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a delayed negative feedback loop as their core element. Here we study the synchronization of DF oscillators coupled through a common repressor field. For weak coupling, initially distinct oscillators remain desynchronized. For stronger coupling, oscillators can be forced to wait in the repressed state until the global repressor field is sufficiently degraded, and then they fire simultaneously forming a synchronized cluster. Our analytical theory provides necessary and sufficient conditions for clustering and specifies the maximum number of clusters that can be formed in the asymptotic regime. We find that in the thermodynamic limit a phase transition occurs at a certain coupling strength from the weakly clustered regime with only microscopic clusters to a strongly clustered regime where at least one giant cluster has to be present. PMID:22181453
Polariton devices and quantum fluids
NASA Astrophysics Data System (ADS)
Ballarini, D.; De Giorgi, M.; Lerario, G.; Cannavale, A.; Cancellieri, E.; Bramati, A.; Gigli, G.; Laussy, F.; Sanvitto, D.
2014-02-01
Exciton-polaritons, composite particles resulting from the strong coupling between excitons and photons, have shown the capability to undergo condensation into a macroscopically coherent quantum state, demonstrating strong non-linearities and unique propagation properties. These strongly-coupled light-matter particles are promising candidates for the realization of semiconductor all-optical devices with fast time response and small energy consumption. Recently, quantum fluids of polaritons have been used to demonstrate the possibility to implement optical functionalities as spin switches, transistors or memories, but also to provide a channel for the transmission of information inside integrated circuits. In this context, the possibility to extend the range of light-matter interaction up to room temperature becomes of crucial importance. One of the most intriguing promises is to use organic Frenkel excitons, which, thanks to their huge oscillator strength, not only sustain the polariton picture at room temperature, but also bring the system into the unexplored regime of ultra-strong coupling. The combination of these materials with ad-hoc designed structures may allow the control of the propagation properties of polaritons, paving the way towards their implementation of the polariton functionalities in actual devices for opto-electronic applications.
Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding
NASA Astrophysics Data System (ADS)
Michelin, Sebastien Honore Roland
The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.
Strong quantum squeezing near the pull-in instability of a nonlinear beam
Passian, Ali; Siopsis, George
2016-08-04
Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less
NASA Astrophysics Data System (ADS)
Shvets, Gennady; Kalmykov, Serguei; Dreher, Matthias; Meyer-Ter-Vehn, Juergen
2003-10-01
The strongly non-linear regime of Raman backscattering [1,2] holds the promise of compressing long low-intensity laser beams into ultra-short high intensity pulses. As the short pulse is amplified by the long counter-propagating pump via backscattering the pump off the nonlinear plasma wave, its duration shrinks and intensity grows. The increase of the bandwidth of the amplified pulse only occurs in the nonlinear amplification regime, and is its most telling signature. Recent experiments at MPQ carried out in the strongly nonlinear regime reveal two previously unobserved features: (i) bandwidth expansion, and (ii) breakdown of the initially smooth amplified pulse into several spikes. Using semi-analytic model and particle-in-cell simulations, we explain the multiple pulse formation by the synchrotron motion of plasma electrons in the ponderomotive potential. Self-similar solutions consisting of multiple spikes are derived, and their nonlinear frequency shifts evaluated. The nonlinear focusing of the pulse by the pump is predicted and compared with experimental observations. [1] G. Shvets et. al., Phys. Rev. Lett. 81, 4879 (1998). [2] A. Pukhov, Rep. Progr. Phys. 66, 47 (1998).
SuBmann, F.; Seiffert, L.; Zherebtsov, S.; ...
2015-08-12
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
SuBmann, F.; Seiffert, L.; Zherebtsov, S.
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less
Thermalization and confinement in strongly coupled gauge theories
NASA Astrophysics Data System (ADS)
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2016-11-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.
ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase
NASA Astrophysics Data System (ADS)
Zvyagin, S.; Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M.; Furuya, S. C.; Giamarchi, T.
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. This work was partially supported by the DFG and Helmholtz Gemeinschaft (Germany), Swiss SNF under Division II, and ERC synergy UQUAM project. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL).
APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.
Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S
2015-06-26
Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates. Copyright © 2015, American Association for the Advancement of Science.
Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, Franz
2015-03-27
This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.
Normal forms for reduced stochastic climate models
Majda, Andrew J.; Franzke, Christian; Crommelin, Daan
2009-01-01
The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943
NASA Astrophysics Data System (ADS)
Guha, Anirban
2017-11-01
Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.
NASA Astrophysics Data System (ADS)
Arabahmadi, Ehsan; Ahmadi, Zabihollah; Rashidian, Bizhan
2018-06-01
A quantum theory for describing the interaction of photons and plasmons, in one- and two-dimensional arrays is presented. Ohmic losses and inter-band transitions are not considered. We use macroscopic approach, and quantum field theory methods including S-matrix expansion, and Feynman diagrams for this purpose. Non-linear interactions are also studied, and increasing the probability of such interactions, and its application are also discussed.
Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information
NASA Astrophysics Data System (ADS)
Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David
2018-05-01
The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.
NASA Astrophysics Data System (ADS)
Ren, Yefei; Wen, Ruizhi; Yao, Xinxin; Ji, Kun
2017-08-01
The consideration of soil nonlinearity is important for the accurate estimation of the site response. To evaluate the soil nonlinearity during the 2008 Ms8.0 Wenchuan Earthquake, 33 strong-motion records obtained from the main shock and 890 records from 157 aftershocks were collected for this study. The horizontal-to-vertical spectral ratio (HVSR) method was used to calculate five parameters: the ratio of predominant frequency (RFp), degree of nonlinearity (DNL), absolute degree of nonlinearity (ADNL), frequency of nonlinearity (fNL), and percentage of nonlinearity (PNL). The purpose of this study was to evaluate the soil nonlinearity level of 33 strong-motion stations and to investigate the characteristics, performance, and effective usage of these five parameters. Their correlations with the peak ground acceleration (PGA), peak ground velocity (PGV), average uppermost 30-m shear-wave velocity ( V S30), and maximum amplitude of HVSR ( A max) were investigated. The results showed that all five parameters correlate well with PGA and PGV. The DNL, ADNL, and PNL also show a good correlation with A max, which means that the degree of soil nonlinearity not only depends on the ground-motion amplitude (e.g., PGA and PGV) but also on the site condition. The fNL correlates with PGA and PGV but shows no correlation with either A max or V S30, implying that the frequency width affected by the soil nonlinearity predominantly depends on the ground-motion amplitude rather than the site condition. At 16 of the 33 stations analyzed in this study, the site response showed evident (i.e., strong and medium) nonlinearity during the main shock of the Wenchuan Earthquake, where the ground-motion level was almost beyond the threshold of PGA > 200 cm/s2 or PGV > 15 cm/s. The site response showed weak and no nonlinearity at the other 14 and 3 stations. These results also confirm that RFp, DNL, ADNL, and PNL are effective in identifying the soil nonlinearity behavior. The identification results vary for different parameters because each parameter has individual features. The performance of the PNL was better than that of DNL and ADNL in this case study. The thresholds of ADNL and PNL are proposed to be 2.0 and 7%, respectively.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Wierschem, Nicholas E.; Quinn, D. Dane; Hubbard, Sean A.; Al-Shudeifat, Mohammad A.; McFarland, D. Michael; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; Vakakis, Alexander F.; Bergman, Lawrence A.
2012-12-01
This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.
NASA Astrophysics Data System (ADS)
Cai, Wenshan
2016-09-01
Metamaterials can be designed to exhibit extraordinarily strong chiral responses. Here we present a chiral metamaterial that produces both distinguishable linear and nonlinear features in the visible to near-infrared range. In additional to the gigantic chiral effects in the linear regime, the metamaterial demonstrates a pronounced contrast between second harmonic responses from the two circular polarizations. Linear and nonlinear images probed with circularly polarized lights show strongly defined contrast. Moreover, the chiral centers of the nanometallic structures with enhanced hotspots can be purposely opened for direct access, where emitters occupying the light-confining regions produce chiral-selective enhancement of two-photon luminescence.
Studies of central interactions of Si ions at 14.5 x A GeV/c in Au and Cu
NASA Astrophysics Data System (ADS)
Eiseman, S. E.; Etkin, A.; Foley, K. J.; Hackenburg, R. W.; Longacre, R. S.; Love, W. A.; Morris, T. W.; Platner, E. D.; Saulys, A. C.; Lindenbaum, S. J.
Understanding the growth and saturation of parametric instabilities in laser-produced plasmas requires knowledge of the nonlinear properties of the instabilities and their interaction with each other. Nonlinear behavior of parametric instabilities, which are usually associated with unique optical features, were evidenced in numerous experiments on a variety of laser facilities. Four examples of nonlinear behavior in laser-produced plasmas are discussed: nonlinear stimulated Brillouin scattering spectra, suppression of stimulated Raman scattering by stimulated Brillouin scattering, the parametric decay instability and the onset of turbulence, and the transition to bursting behavior of the two-plasmon decay instability. Experiments are discussed that demonstrate the nonlinear effects which occur as a consequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai
2013-07-15
We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less
Enhancing light-atom interactions via atomic bunching
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie L.; Gauthier, Daniel J.
2014-07-01
There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.
NASA Astrophysics Data System (ADS)
Holland, Christopher George
Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well-separated frequencies. These results are qualitatively reproduced in a simple numerical "thought experiment," described in Chapter VI, which suggests that zonal flows may trigger the L-H transition.
Optical Emissions Enhanced by O and X Mode Ionosphere HF Pumping: Similarities and Differences
NASA Astrophysics Data System (ADS)
Sergienko, T.; Brandstrom, U.; Gustavsson, B.; Blagoveshchenskaya, N. F.
2013-12-01
Strong enhancement of the optical emissions with excitation thresholds from 1.96 eV up to 18.75 eV have been observed during experiments of ionosphere modification by high power HF radio waves since the early 1970s. Up to now all these emissions were observed only during the interaction of the O-mode HF radio wave with the ionospheric plasma. On 19 October 2012, during an EISCAT heating experiment, strong optical emissions were observed by ALIS, in first time, for X-mode ionosphere pumping. While for O-mode heating the optical emission enhancements can be explained by the ionospheric electron heating and acceleration due to the nonlinear interaction of the powerful radio wave with ionosphere, the mechanism responsible for the emission enhancements during the X-mode heating is not known. In the experiment optical emissions have been measured in three different wave-lengths simultaneously from four ALIS stations. The emission intensity ratios as well as the characteristics of the spatial distribution of the enhanced optical emissions provide important information on the possible mechanisms of the radio wave - ionosphere interaction. In this report we present the results of comparison of the characteristics of the optical emissions caused by X-mode heating with the characteristics of the emissions enhanced by O-mode measured during same experiment.
NASA Astrophysics Data System (ADS)
Aman, Fazlina; Mohamad Khazim, Wan Nor Hafizah Wan; Mansur, Syahira
2017-09-01
Interaction of motile microorganisms and nanoparticles along with buoyancy forces will produce nanofluid bioconvection. Bioconvection happened because of the microorganisms are imposed into the nanofluid to stabilize the nanoparticles to suspend. In this paper, we investigated the problem of mixed convection flow of a nanofluid combined with gyrotactic microorganisms over a stretching/shrinking sheet under the influence of magnetic field. The nonlinear partial differential equations are transformed into a set of five similarities nonlinear ordinary differential equations by using similarity transformation, before being solved numerically. Some of the governing parameters involve in this problem are magnetic parameter, stretching/shrinking parameter, Brownian motion parameter, thermophoresis parameter and Prandtl number. Using tables and graphs, the consequences of numerous parameters on the flow and heat transfer features are examined and discussed. The results indicate that the skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms are strongly affected by the governing parameters.
Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen
2018-04-17
Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.
Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms
Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun
2011-01-01
This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927
MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons
Cui, Yudong; Lu, Feifei; Liu, Xueming
2016-01-01
Molybdenum disulfide (MoS2), whose monolayer possesses a direct band gap, displays promising applications in optoelectronics, photonics, and lasers. Recent researches have demonstrated that MoS2 has not only a significant broadband saturable absorption performance, but also a higher optical nonlinear response than graphene. However, MoS2 shows much lower optical damage threshold owing to the poorer thermal conductivity and mechanical property. Here, we exploit a MoS2-clad microfibre (MCM) as the saturable absorber (SA) for the generation of ultrashort pulses under different dispersion conditions. The improved evanescent field interaction scheme can overcome the laser-induced thermal damage, as well as take full advantage of the strong nonlinear effect of MoS2. With the MCM SA, conventional, dispersion-managed, and dissipative solitons are generated around 1600 nm in Er-doped fibre lasers with anomalous, near-zero, and normal cavity dispersions, respectively. Our work paves the way for applications of 2D layered materials in photonics, especially in laser sources. PMID:27456468
Modeling Boulder Transport by Smooth Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Karpytchev, M.
2017-12-01
Large coastal boulders are often believed to have been transported by strong tsunami andstorm waves. Understanding and quantifying the boulder transport processes is, therefore,crucial for evaluation of strength and timing of the past tsunamis and storms. Over the last10-15 year, a series of studies have obtained estimates of basic wave parameters neededto set in motion a boulder of given size, shape and mass by using simplified paramaterizationsof fluid-particle interactions. Although, parameterizing the principal hydraulic forces drivingboulder transport was succefull in reproducing effects of several historical tsunamis, someimportant details about initiation of boulder motion and the contribution of coastal wavetransformations as well as of suspended sediment to enhancing coastal currents are still lacking.These essentially non-linear processes can be particularly important for distingushing, in everyparticular case, whether it is a storm wave or a tsunami (or both) that was capable to transportspecific boulder to a given site.In this study, we employ the Smooth Particle Hydrodynamics (SPH) method in orderto get new insights on interaction of waves with boulders in the nearshore area.We first compare the SPH predictions with available laboratory experiments and thenexplore the effects of realistic 3D coastal bathymetry, non-linear behaviour of coastal waves,boulders shape and the impact of bedload and suspended sediment on dislodgement and initiationof boulder transport.
NASA Astrophysics Data System (ADS)
Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi
The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aburjania, G. D.; Chargazia, Kh. Z.
A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth's angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are shearedmore » flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.« less
Period of vibration of axially vibrating truly nonlinear rod
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2016-07-01
In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.
Self-modulational formation of pulsar microstructures
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Chian, A. C.-L.
1987-01-01
A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.
Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides
NASA Astrophysics Data System (ADS)
Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.
2018-04-01
Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.
Transfer of dipolar gas through the discrete localized mode.
Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui
2013-12-01
By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.
Linear approximations of global behaviors in nonlinear systems with moderate or strong noise
NASA Astrophysics Data System (ADS)
Liang, Junhao; Din, Anwarud; Zhou, Tianshou
2018-03-01
While many physical or chemical systems can be modeled by nonlinear Langevin equations (LEs), dynamical analysis of these systems is challenging in the cases of moderate and strong noise. Here we develop a linear approximation scheme, which can transform an often intractable LE into a linear set of binomial moment equations (BMEs). This scheme provides a feasible way to capture nonlinear behaviors in the sense of probability distribution and is effective even when the noise is moderate or big. Based on BMEs, we further develop a noise reduction technique, which can effectively handle tough cases where traditional small-noise theories are inapplicable. The overall method not only provides an approximation-based paradigm to analysis of the local and global behaviors of nonlinear noisy systems but also has a wide range of applications.
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael
We study theoretically the second-order nonlinear optical conductivity σ (2) of graphene as a function of frequency and momentum. We distinguish two regimes. At frequencies ω higher than the temperature-dependent electron-electron collision rate γee- 1 , the conductivity σ (2) can be derived from the semiclassical kinetic equation. The calculation requires taking into account the photon drag (Lorentz force) due to the ac magnetic field. In the low-frequency hydrodynamic regime ω <<γee- 1 , the nonlinear conductivity has a different form and the photon drag effect is suppressed. As a consequence of the nonlinearity, a strong enough photoexcitation can cause spontaneous generation of collective modes in a graphene strip: plasmons in the high-frequency regime and energy waves (demons) in the hydrodynamic one. The dominant instability occurs at frequency ω / 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com; El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg
The nonplanar amplitude modulation of dust acoustic (DA) envelope solitary waves in a strongly coupled dusty plasma (SCDP) has been investigated. By using a reductive perturbation technique, a modified nonlinear Schrödinger equation (NLSE) including the effects of geometry, polarization, and ion superthermality is derived. The modulational instability (MI) of the nonlinear DA wave envelopes is investigated in both planar and nonplanar geometries. There are two stable regions for the DA wave propagation strongly affected by polarization and ion superthermality. Moreover, it is found that the nonlinear DA waves in spherical geometry are the more structurally stable. The larger growth ratemore » of the nonlinear DA MI is observed in the cylindrical geometry. The salient characteristics of the MI in the nonplanar geometries cannot be found in the planar one. The DA wave propagation and the NLSE solutions are investigated both analytically and numerically.« less
NASA Astrophysics Data System (ADS)
Ingber, Lester
1991-09-01
A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single-neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memory and electroencephalographic (EEG) systematics. The necessity of including nonlinear and stochastic structures in this development has been stressed. In this paper, a more stringent test is placed on SMNI: The algebraic and numerical algorithms previously developed in this and similar systems are brought to bear to fit large sets of EEG and evoked-potential data being collected to investigate genetic predispositions to alcoholism and to extract brain ``signatures'' of short-term memory. Using the numerical algorithm of very fast simulated reannealing, it is demonstrated that SMNI can indeed fit these data within experimentally observed ranges of its underlying neuronal-synaptic parameters, and the quantitative modeling results are used to examine physical neocortical mechanisms to discriminate high-risk and low-risk populations genetically predisposed to alcoholism. Since this study is a control to span relatively long time epochs, similar to earlier attempts to establish such correlations, this discrimination is inconclusive because of other neuronal activity which can mask such effects. However, the SMNI model is shown to be consistent with EEG data during selective attention tasks and with neocortical mechanisms describing short-term memory previously published using this approach. This paper explicitly identifies similar nonlinear stochastic mechanisms of interaction at the microscopic-neuronal, mesoscopic-columnar, and macroscopic-regional scales of neocortical interactions. These results give strong quantitative support for an accurate intuitive picture, portraying neocortical interactions as having common algebraic or physics mechanisms that scale across quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of neurons, and regional masses of neurons.