Evaluating the phase diagram of superconductors with asymmetric spin populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannarelli, Massimo; Nardulli, Giuseppe; Ruggieri, Marco
2006-09-15
The phase diagram of a nonrelativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean-field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak- and strong-coupling regimes considering both homogeneous and nonhomogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong-coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that themore » inhomogeneous superconductive phase characterized by the condensate {delta}(x){approx}{delta} exp(iq{center_dot}x) is energetically favored in a range of values of the chemical-potential mismatch that shrinks to zero in the strong-coupling regime.« less
Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K
2009-08-04
The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.
NASA Astrophysics Data System (ADS)
Miyasaka, S.; Uekubo, M.; Tsuji, H.; Nakajima, M.; Tajima, S.; Shiota, T.; Mukuda, H.; Sagayama, H.; Nakao, H.; Kumai, R.; Murakami, Y.
2017-06-01
The phase diagram of the LaFeAs1 -xPxO system has been extensively studied through hole and electron doping as well as As/P substitution. It has been revealed that there are three different superconducting phases with different Fermi surface (FS) topologies and thus with possibly different pairing glues. One of them is well understood as spin fluctuation-mediated superconductivity within a FS nesting scenario. Another one with the FSs in a bad nesting condition must be explained in a different context such as orbital or spin fluctuation in a strongly correlated electronic system. In both phases, T -linear resistivity was commonly observed when the superconducting transition temperature Tc becomes the highest value, indicating that the strength of bosonic fluctuation determines Tc. In the last superconducting phase, the nesting condition of FSs and the related bosonic fluctuation are moderate. Variety of phase diagram characterizes the multiple orbital nature of the iron-based superconductors which are just near the boundary between weak and strong correlation regimes.
Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R
2015-09-01
Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.
Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J
2016-05-19
Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Describing the strongly interacting quark-gluon plasma through the Friedberg-Lee model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Song; Li Jiarong; Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079
2010-10-15
The Friedberg-Lee (FL) model is studied at finite temperature and density. The soliton solutions of the FL model in the deconfinement phase transition are solved and thoroughly discussed for certain boundary conditions. We indicate that the solitons before and after the deconfinement have different physical meanings: the soliton before deconfinement represents hadrons, while the soliton after the deconfinement represents the bound state of quarks which leads to a strongly interacting quark-gluon plasma phase. The corresponding phase diagram is given.
Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces
NASA Astrophysics Data System (ADS)
Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica
2007-06-01
We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp; Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp; Department of Fusion Science, SOKENDAI
2015-10-15
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) andmore » the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.« less
NASA Astrophysics Data System (ADS)
Zhang, Xicheng; Fang, Longjie; Zuo, Haoyi; Du, Jinglei; Gao, Fuhua; Pang, Lin
2018-07-01
It is studied in detail that whether the optimized phase distributions obtained from different approaches have relations in focusing light through turbid media. A view is proposed that there exists a strong correlation among the optimized phase distributions from different approaches. The numeric simulations and experiments indicate that the larger the number of segments is, the greater the correlation coefficient of optimized phase distributions from different approaches will be. This study might give an important insight into the essence of focusing light through turbid media by phase modulation.
Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7
NASA Astrophysics Data System (ADS)
Sun, D.; Rost, A. W.; Perry, R. S.; Mackenzie, A. P.; Brando, M.
2018-03-01
We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Δ C /T ˜-logT over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z , in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.
First-order inflation. [in cosmology
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.
NASA Astrophysics Data System (ADS)
Vagadia, Megha; Hester, James; Nigam, A. K.
2018-04-01
We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.
Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells
Burke, Russell T.; Marcus, Joshua M.; Orth, James D.
2017-01-01
Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801
Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing
2016-12-01
Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.
Electroweak and strong penguin diagrams in B+/-,0-->ππ, πK, and KK¯ decays
NASA Astrophysics Data System (ADS)
Kramer, G.; Palmer, W. F.
1995-12-01
We calculate CP-violating rates and asymmetry parameters in charged and neutral B-->ππ, πK, and K¯K decays arising from the interference of tree and penguin (strong and electroweak) amplitudes with different strong and CKM phases. The perturbative strong (electroweak) phases develop at order αs (αem) from absorptive parts of one-loop matrix elements of the next-to-leading (leading) logarithm corrected effective Hamiltonian. The BSW model is used to estimate the hadronic matrix elements. Based on this model, we find that the effect of strong phases and penguin diagrams is substantial in most channels, drastic in many. However, a measurement of the time dependence parameter aɛ+ɛ' in the π+π- channel is only influenced at the 20% level by the complication of the penguin diagrams. Recent flavor sum rules developed for B0,+/--->ππ, πK, KK¯ amplitudes are tested in this model. Some are well satisfied, others badly violated, when electroweak penguin diagrams are included.
NASA Astrophysics Data System (ADS)
Shwa, David; Katz, Nadav
2014-08-01
When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.
A time-dependent order parameter for ultrafast photoinduced phase transitions.
Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U
2014-10-01
Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.
Preparation Of Strong, Dense Potassium Beta''-Alumina Ceramic
NASA Technical Reports Server (NTRS)
Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Kikkert, Stanley J.; Losey, Robert; Suitor, Jerry W.
1995-01-01
Improved process for making mechanically strong, dense, phase-pure potassium beta''-alumina solid electrolyte (K-BASE) results in material superior to all previous K-BASE preparations and similar to commercial Na-BASE in strength, phase purity and high-temperature ionic conductivity. Potassium-based alkali-metal thermal-to-electric conversion (AMTEC) cells expected to operate efficiently at lower heat-input temperatures and lower rejection temperatures than sodium-based AMTEC cells, making them appropriate for somewhat different applications.
Anomalous Surface Wave Launching by Handedness Phase Control.
Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2015-11-25
Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed. PMID:27966596
NASA Astrophysics Data System (ADS)
Sajna, A. S.; Polak, T. P.
2018-06-01
Gauge potentials with different configurations have been recently realized in the optical lattice experiments. It is remarkable that one of the simplest gauge potential can generate particle energy spectrum with the self-similar structure known as a Hofstadter butterfly. We investigate theoretically the impact of strong on-site interaction on such a spectrum in the bosonic Mott insulator within Bose-Hubbard model. In particular, it is shown that the fractal structure is encoded in the quasi-particle and hole bosonic branches for different lattice backgrounds. For example a square lattice and other structures (brick-wall and staggered magnetic flux lattice) which contain Dirac points in energy dispersions are considered. This shows that single-particle physics is still present even in the strong interaction limit for whole Hofstadter spectrum. Additionally we observe, that although in brick-wall and staggered flux lattices the quasi-particle densities of states look qualitatively similar, the corresponding Hofstadter butterfly assumes different forms. In particular, we use a superposition of two different synthetic gauge fields which appears to be a generator of non-trivial phenomena in the optical lattice systems. We also discuss the consequences of these phenomena on the phase diagrams between bosonic Mott insulator and superfluid phase. The analysis is carried out within the strong coupling expansion method on the finite size lattices and also at finite temperatures which are relevant for the currently made experiments.
Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.
De, Amrit; Pryor, Craig E
2014-01-29
Crystalline semiconductors may exist in different polytypic phases with significantly different electronic and optical properties. In this paper, we calculate the electronic structure and optical properties of diamond, Si and Ge in the lonsdaleite (hexagonal diamond) phase using a transferable model empirical pseudopotential method with spin–orbit interactions. We calculate their band structures and extract various relevant parameters. Differences between the cubic and hexagonal phases are highlighted by comparing their densities of states. While diamond and Si remain indirect gap semiconductors in the lonsdaleite phase, Ge transforms into a direct gap semiconductor with a much smaller bandgap. We also calculate complex dielectric functions for different optical polarizations and find strong optical anisotropy. We further provide expansion parameters for the dielectric functions in terms of Lorentz oscillators.
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
NASA Astrophysics Data System (ADS)
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta-Eddington phase function and the transport approximation may perform poorly.
Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting
NASA Astrophysics Data System (ADS)
Wang, Yujia; Sun, Chengwei; Gan, Fengyuan; Li, Hongyun; Gong, Qihuang; Chen, Jianjun
2017-06-01
The Rabi-analogue splitting in nanostructures resulting from the strong coupling of different resonant modes is of importance for lasing, sensing, switching, modulating, and quantum information processes. To give a clearer physical picture, the phase analysis instead of the strong coupling is provided to explain the Rabi-analogue splitting in the Fabry-Pérot (FP) cavity, of which one end mirror is a metallic nanohole array and the other is a thin metal film. The phase analysis is based on an analytic model of the FP cavity, in which the reflectance and the reflection phase of the end mirrors are dependent on the wavelength. It is found that the Rabi-analogue splitting originates from the sharp phase variation brought by the plasmon mode in the FP cavity. In the experiment, the Rabi-analogue splitting is realized in the plasmonic-photonic coupling system, and this splitting can be continually tuned by changing the length of the FP cavity. These experimental results agree well with the analytic and simulation data, strongly verifying the phase analysis based on the analytic model. The phase analysis presents a clear picture to understand the working mechanism of the Rabi-analogue splitting; thus, it may facilitate the design of the plasmonic-photonic and plasmonic-plasmonic coupling systems.
Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions
NASA Astrophysics Data System (ADS)
Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.
2018-05-01
We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.
Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system
Wang, Y.; Moritz, B.; Chen, C. -C.; ...
2016-02-24
Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softeningmore » due to a stronger coupling near k F. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.« less
NASA Astrophysics Data System (ADS)
Cole, Michael A.; Chen, Wen-chen; Liu, Mingkai; Kruk, Sergey S.; Padilla, Willie J.; Shadrivov, Ilya V.; Powell, David A.
2017-07-01
We demonstrate terahertz chiral metamaterials that achieve resonant transmission and strong optical activity. This response is realized in a metasurface coupled to its Babinet complement, with additional twist. Uniquely, the optical activity achieved in this type of metamaterial is weakly dispersive around the resonant transmission maxima, but it can be highly dispersive around the transmission minima. It has recently been shown that this unique optical activity response is closely related to zeros in the transmission spectra of circular polarizations through the Kramers-Kronig relations and strong resonant features in the optical activity spectrum corresponding to the Blaschke phase terms. Here we demonstrate how modifying the meta-atom geometry greatly affects the location and magnitude of these Blaschke phase terms. We study three different meta-atoms, which are variations on the simple cross structure. Their responses are measured using terahertz time-domain spectroscopy and analyzed via numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun
2016-07-18
The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ωmore » transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.« less
Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.
Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less
Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)
Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.; ...
2017-12-14
Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less
Generation and manipulation of attosecond light pulses
NASA Astrophysics Data System (ADS)
Gaarde, Mette
2006-05-01
Attosecond pulses of light can be generated in the extremely non-linear interactions between an ultrashort, intense laser pulse and a gas of atoms, via the process of high harmonic generation [1,2]. In one approach, a number of odd harmonics of rougly equal strength are combined to form a train of sub-femtosecond pulses. If the harmonics are locked in phase to each other, the train will consist of the emission of one attosecond pulse every half cycle of the driving laser field [1,3]. It is in general not trivial to ensure that the harmonics are phase-locked as they are generated with intrinsically different phases. These phases originate in the strong field dynamics of the light-matter interaction [4].We will discuss different ways of generating and manipulating attosecond pulses via high harmonic generation. We will show how the harmonics can be phase-locked and better synchronized so as to form optimal pulse trains [3]. We will also show that it is possible to generate trains of pulses separated by a full laser cycle, by combining the driving laser field with its second harmonic [5]. The strong field continuum dynamics driven by the two-color field is very different from that of the one-color field and varies strongly with the delay between the two laser fields [6]. (1) P. M. Paul et al, Science 292, 1689 (2001).(2) M. Hentschel et al, Nature 414, 509 (2001).(3) R. Lopez-Martens et al, PRL 94, 033001 (2005).(4) P. Antoine, A. L'Huillier, and M. Lewenstein, PRL 77, 1234 (1996).(5) J. Mauritsson et al, in preparation (2006).(6) M. B. Gaarde et al, in preparation (2006).
NASA Astrophysics Data System (ADS)
Kim, Kimin; Choe, W.; In, Y.; Ko, W. H.; Choi, M. J.; Bak, J. G.; Kim, H. S.; Jeon, Y. M.; Kwak, J. G.; Yoon, S. W.; Oh, Y. K.; Park, J.-K.
2017-12-01
Toroidal rotation braking by neoclassical toroidal viscosity driven by non-axisymmetric (3D) magnetic fields, called magnetic braking, has great potential to control rotation profile, and thereby modify tokamak stability and performance. In order to characterize magnetic braking in the various 3D field configurations, dedicated experiments have been carried out in KSTAR, applying a variety of static n=1 , 3D fields of different phasing of -90 , 0, and +90 . Resonant-type magnetic braking was achieved by -90 phasing fields, accompanied by strong density pump-out and confinement degradation, and explained by excitation of kink response captured by ideal plasma response calculation. Strong resonant plasma response was also observed under +90 phasing at q95 ∼ 6 , leading to severe confinement degradation and eventual disruption by locked modes. Such a strong resonant transport was substantially modified to non-resonant-type transport at higher q95 ∼ 7.2 , as the resonant particle transport was significantly reduced and the rotation braking was pushed to plasma edge. This is well explained by ideal perturbed equilibrium calculations indicating the strong kink coupling at lower q95 is reduced at higher q95 discharge. The 0 phasing fields achieved quiescent magnetic braking without density pump-out and confinement degradation, which is consistent with vacuum and ideal plasma response analysis predicting deeply penetrating 3D fields without an excitation of strong kink response.
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2008-07-01
The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martiny, Christian Per Juul; Madsen, Lars Bojer
2006-09-01
In few-cycle pulses, the exact value of the carrier-envelope phase difference (CEPD) has a pronounced influence on the ionization dynamics of atoms and molecules. We show that, for atoms in circularly polarized light, a change in the CEPD is mapped uniquely to an overall rotation of the system, and results for arbitrary CEPD are obtained by rotation of the results from a single calculation with fixed CEPD. For molecules, this is true only for linear molecules aligned parallel with the propagation direction of the field. The effects of CEPD are classified as geometric or nongeometric. The observations are exemplified bymore » strong-field calculations on hydrogen.« less
Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; ...
2016-03-09
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysingmore » data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.« less
Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities
NASA Astrophysics Data System (ADS)
Li, Yinghua; Huang, Mingxia
2018-06-01
In this paper, we investigate a coupled Navier-Stokes/Allen-Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain Ω \\subset R^N(N=2,3). We prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density function ρ _0 has a positive lower bound.
Brittle-to-ductile transition in a fiber bundle with strong heterogeneity.
Kovács, Kornél; Hidalgo, Raul Cruz; Pagonabarraga, Ignacio; Kun, Ferenc
2013-04-01
We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition α(c) which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above α(c), however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=9/2. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.
Collective Transport Properties of Driven Skyrmions with Random Disorder
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-05-01
We use particle-based simulations to examine the static and driven collective phases of Skyrmions interacting with random quenched disorder. We show that nondissipative effects due to the Magnus term reduce the depinning threshold and strongly affect the Skyrmion motion and the nature of the dynamic phases. The quenched disorder causes the Hall angle to become drive dependent in the moving Skyrmion phase, while different flow regimes produce distinct signatures in the transport curves. For weak disorder, the Skyrmions form a pinned crystal and depin elastically, while for strong disorder the system forms a pinned amorphous state that depins plastically. At high drives the Skyrmions can dynamically reorder into a moving crystal, with the onset of reordering determined by the strength of the Magnus term.
NASA Astrophysics Data System (ADS)
Mendelev, M. I.; Schmalian, J.; Wang, C. Z.; Morris, J. R.; Ho, K. M.
2006-09-01
We present molecular dynamics (MD) studies of the liquid structure, thermodynamics, and dynamics in a one-component system described by the Ercolessi-Adams embedded atom method potential for Al. We find two distinct noncrystalline phases in this system. One of them is a liquid phase and the second phase has similar structure but different equation of state. Moreover, this phase has qualitatively different dynamics than that in the liquid phase. The transitions between these two noncrystalline phases can be seen during MD simulation. The hysteresis in this transition suggests that this is a first-order transition. This conclusion is strongly supported by simulations of the two phases that demonstrate that these phases may coexist with a well-defined interface. We find the coexistent temperature and the interface mobility. Finally, we discuss how these results can be explained using modern models of vitrification.
Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.
Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu
2015-11-11
The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.
Resonance fluorescence from an atom in a squeezed vacuum
NASA Astrophysics Data System (ADS)
Carmichael, H. J.; Lane, A. S.; Walls, D. F.
1987-06-01
The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somrani, Saida; Banu, Mihai; Jemal, Mohamed
2005-05-15
The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatiticmore » phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO{sub 4}{sup 2-} ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings.« less
Experimental implementation of optical clockwork without carrier-envelope phase control.
Mücke, O D; Kuzucu, O; Wong, F N C; Ippen, E P; Kärtner, F X; Foreman, S M; Jones, D J; Ma, L S; Hall, J L; Ye, J
2004-12-01
We demonstrate optical clockwork without the need for carrier-envelope phase control by use of sum-frequency generation between a continuous-wave optical parametric oscillator at 3.39 microm and a femtosecond mode-locked Ti:sapphire laser with two strong spectral peaks at 834 and 670 nm, a spectral difference matched by the 3.39-microm radiation.
Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems
ERIC Educational Resources Information Center
Sun, Kai
2009-01-01
This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…
On the asynchronization of hemispheric high-latitude solar activity
NASA Astrophysics Data System (ADS)
Li, K. J.; Gao, P. X.; Zhan, L. S.; Shi, X. J.; Zhu, W. W.
2008-11-01
The monthly mean numbers of polar faculae in the time interval of 1951 August to 1998 December, from observations of the National Astronomical Observatory of Japan are used to investigate the reasons which mathematically result in the asynchronization of high-latitude solar activity between the northern and southern hemispheres. It is found that the monthly mean numbers of polar faculae in the northern hemisphere three months lead those in the southern one, which should mathematically lead to phase asynchrony of the hemispheric polar-facula activity but with a slight effect. The Schwabe period length for the polar-facula activity in one hemisphere obviously differs from that in the other, which should also lead to phase asynchrony of the hemispheric polar-facula activity. It is the low-frequency components of the hemispheric polar-facula activity in period scales around the Schwabe cycle that are responsible for its strong phase synchronization. In the high-frequency components, there is a strong phase mixing, which should also lead to phase asynchrony of the hemispheric polar-facula activity.
High-Harmonic Generation in Solids with and without Topological Edge States
NASA Astrophysics Data System (ADS)
Bauer, Dieter; Hansen, Kenneth K.
2018-04-01
High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.
Soukup, Jan; Jandera, Pavel
2014-12-29
Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mormann, Florian; Lehnertz, Klaus; David, Peter; E. Elger, Christian
2000-10-01
We apply the concept of phase synchronization of chaotic and/or noisy systems and the statistical distribution of the relative instantaneous phases to electroencephalograms (EEGs) recorded from patients with temporal lobe epilepsy. Using the mean phase coherence as a statistical measure for phase synchronization, we observe characteristic spatial and temporal shifts in synchronization that appear to be strongly related to pathological activity. In particular, we observe distinct differences in the degree of synchronization between recordings from seizure-free intervals and those before an impending seizure, indicating an altered state of brain dynamics prior to seizure activity.
Identification and properties of the non-cubic phases of Mg 2Pb
Li, Yuwei; Bian, Guang; Singh, David J.
2016-12-20
Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less
Prediction of Phase Separation of Immiscible Ga-Tl Alloys
NASA Astrophysics Data System (ADS)
Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho
2017-06-01
Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.
Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles
NASA Astrophysics Data System (ADS)
Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.
2018-04-01
A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.
The evolution of the metallicity gradient and the star formation efficiency in disc galaxies
NASA Astrophysics Data System (ADS)
Sillero, Emanuel; Tissera, Patricia B.; Lambas, Diego G.; Michel-Dansac, Leo
2017-12-01
We study the oxygen abundance profiles of the gas-phase components in hydrodynamical simulations of pre-prepared disc galaxies including major mergers, close encounters and isolated configurations. We analyse the evolution of the slope of oxygen abundance profiles and the specific star formation rate (sSFR) along their evolution. We find that galaxy-galaxy interactions could generate either positive or negative gas-phase oxygen profiles, depending on the state of evolution. Along the interaction, galaxies are found to have metallicity gradients and sSFR consistent with observations, on average. Strong gas inflows produced during galaxy-galaxy interactions or as a result of strong local instabilities in gas-rich discs are able to produce both a quick dilution of the central gas-phase metallicity and a sudden increase of the sSFR. Our simulations show that, during these events, a correlation between the metallicity gradients and the sSFR can be set up if strong gas inflows are triggered in the central regions in short time-scales. Simulated galaxies without experiencing strong disturbances evolve smoothly without modifying the metallicity gradients. Gas-rich systems show large dispersion along the correlation. The dispersion in the observed relation could be interpreted as produced by the combination of galaxies with different gas-richness and/or experiencing different types of interactions. Hence, our findings suggest that the observed relation might be the smoking gun of galaxies forming in a hierarchical clustering scenario.
Different phases of a system of hard rods on three dimensional cubic lattice
NASA Astrophysics Data System (ADS)
Vigneshwar, N.; Dhar, Deepak; Rajesh, R.
2017-11-01
We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.
Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang
2013-05-10
A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo
2015-08-28
Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.
Food cravings and food cue responding across the menstrual cycle in a non-eating disordered sample.
McVay, Megan Apperson; Copeland, Amy L; Newman, Hannah S; Geiselman, Paula J
2012-10-01
The study aim was to examine changes in food cue-elicited cravings and the macronutrient content of craved foods across menstrual cycle phases in a non-eating disordered sample. Thirty-five college females attended laboratory sessions in the late follicular and late luteal phases. In each session they completed a measure of state food craving before and after exposure to preferred, high fat/high sugar chocolate candy. Candy consumption following cue exposure was measured during an ad libitum "taste test." Additionally, participants rated their desire to eat foods differing systematically and significantly in macronutrient content. Ovulation was confirmed with luteinizing hormone detection kits. Results show that whereas the food cue increased cravings, this effect did not differ between cycle phases examined. The macronutrient content of foods desired also did not differ significantly between cycle phases, however, a non-significant trend suggested that high fat/high complex carbohydrate and low fat/high protein foods were more strongly desired in the late luteal phase. Amount of chocolate candy eaten did not differ between cycle phases. These results suggest that cravings for high fat/high sugar foods do not differ between menstrual cycle phases examined, whereas cravings for other foods may fluctuate across cycle phases in non-eating disordered women. Copyright © 2012 Elsevier Ltd. All rights reserved.
Competing covalent and ionic bonding in Ge-Sb-Te phase change materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Alaska; Siegrist, Theo; Singh, David J.
Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less
Competing covalent and ionic bonding in Ge-Sb-Te phase change materials
Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...
2016-05-19
Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less
Unconventional Cooper pairing results in a pseudogap-like phase in s-wave superconductors
NASA Astrophysics Data System (ADS)
Springer, Daniel; Cheong, Siew Ann
2015-10-01
The impact of disorder on the superconducting (SC) pairing mechanism is the centre of much debate. Some evidence suggests a loss of phase coherence of pairs while others point towards the formation of a competing phase. In our work we show that the two perspectives may be different sides of the same coin. Using an extension of the perturbative renormalization group approach we compare the impact of different disorder-induced interactions on a SC ground state. We find that in the strongly disordered regime an interaction between paired fermions and their respective disordered environment replaces conventional Cooper pairing. For these unconventional Cooper pairs the phase coherence condition, required for the formation of a SC condensate, is not satisfied.
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
Pettini, Marco; Casetti, Lapo; Cerruti-Sola, Monica; Franzosi, Roberto; Cohen, E G D
2005-03-01
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond
NASA Astrophysics Data System (ADS)
Pettini, Marco; Casetti, Lapo; Cerruti-Sola, Monica; Franzosi, Roberto; Cohen, E. G. D.
2005-03-01
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.
Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.
Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit
2017-01-01
In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.
NASA Astrophysics Data System (ADS)
Tarzia, M.; Biroli, G.
2008-06-01
We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.
Observation of universal strong orbital-dependent correlation effects in iron chalcogenides
Yi, M.; Liu, Z. -K.; Zhang, Y.; ...
2015-07-23
Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56Se 0.44, monolayer FeSe grown on SrTiO 3 and K 0.76Fe 1.72Se 2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds frommore » a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less
Observation of universal strong orbital-dependent correlation effects in iron chalcogenides
Yi, M.; Liu, Z-K; Zhang, Y.; Yu, R.; Zhu, J.-X.; Lee, J.J.; Moore, R.G.; Schmitt, F.T.; Li, W.; Riggs, S.C.; Chu, J.-H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S.-K.; Hussain, Z.; Mao, Z.Q.; Chu, C.W.; Fisher, I.R.; Si, Q.; Shen, Z.-X.; Lu, D.H.
2015-01-01
Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors. PMID:26204461
Fernandez, Fernando R.; Malerba, Paola; Bressloff, Paul C.; White, John A.
2013-01-01
In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal “test” inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4–12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feed-back and feed-forward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low frequency membrane voltage fluctuations due to cancelation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations. PMID:23554484
Numerical calculation of Kossel diagrams of cholesteric blue phases
NASA Astrophysics Data System (ADS)
Fukuda, Jun-ichi; Okumura, Yasushi; Kikuchi, Hirotsugu
2018-02-01
Kossel diagrams visualize the directions of strong Bragg reflections from a specimen with periodic ordering. They have played a pivotal role in the determination of the symmetry of cholesteric blue phases, and in the investigation of their structural changes under an electric field. In this work, we present direct numerical calculations of the Kossel diagrams of cholesteric blue phases by solving the Maxwell equations for the transmission and reflection of light incident upon a finite-thickness blue phase cell. Calculated Kossel diagrams are in good agreement with what is expected as a result of Bragg reflections, although some differences are present.
Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing
2017-09-01
Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (p<0.001). The strong phase-amplitude-modulating low- and high-frequency oscillations in the mid-seizure epoch were mainly δ, θ, and α oscillations and γ and ripple oscillations, respectively. The phase-amplitude modulation and strength varied among channels and was asymmetrical in the left and right temporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high-frequency oscillation that appeared in the middle period of the seizures is a reliable biomarker in epileptogenic cortical areas. The modulation index can be used as a good tool for lateralization and localization for the epileptic focus in patients with epilepsy. Phase-amplitude coupling can provide meaningful reference for accurate resection of epileptogenic focus and provide insight into the underlying neural dynamics of the epileptic seizure in patients with temporal lobe epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Intermittent strong transport of the quasi-adiabatic plasma state.
Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon
2018-06-05
The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.
Mathematical modeling of the malignancy of cancer using graph evolution.
Gunduz-Demir, Cigdem
2007-10-01
We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...
2018-02-27
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai
2018-02-01
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage
NASA Astrophysics Data System (ADS)
Basirat, Farzad; Yang, Zhibing; Niemi, Auli
2017-11-01
Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.
Thin-film versus slurry-phase carbonation of steel slag: CO₂ uptake and effects on mineralogy.
Baciocchi, R; Costa, G; Di Gianfilippo, M; Polettini, A; Pomi, R; Stramazzo, A
2015-01-01
The results of direct aqueous accelerated carbonation of three types of steel manufacturing residues, including an electric arc furnace (EAF) slag and two basic oxygen furnace (BOF) slags, are reported. Batch accelerated carbonation tests were conducted at different temperatures and CO2 pressures applying the thin-film route (liquid to solid, L/S, ratio=0.3L/kg) or the slurry-phase route (L/S ratio=5L/kg). The CO2 uptake strongly depended on both the slag characteristics and the process route; maximum yields of 280 (EAF), 325 (BOF1) and 403 (BOF2) gCO2/kg slag were achieved in slurry phase at T=100°C and pCO2=10 bar. Differently from previous studies, additional carbonates (other than Ca-based phases) were retrieved in the carbonated BOF slags, indicating that also Mg-, Fe- and Mn-containing phases partially reacted with CO2 under the tested conditions. The results hence show that the effects of accelerated carbonation in terms of CO2 uptake capacity, yield of mineral conversion into carbonates and mineralogy of the treated product, strongly rely on several factors. These include, above all, the mineralogy of the original material and the operating conditions adopted, which thus need specific case-by-case optimization to maximize the CO2 sequestration yield. Copyright © 2014 Elsevier B.V. All rights reserved.
First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate
NASA Astrophysics Data System (ADS)
Toyoura, Kazuaki; Ohta, Masataka; Nakamura, Atsutomo; Matsunaga, Katsuyuki
2015-08-01
The phase transitions and ferroelectricity of LiNbO3 and LiTaO3 have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency between Nb4d-O2p and Ta5d-O2p orbitals, particularly dxz-px/dyz-py orbitals (π orbitals), from the electronic point of view.
Nuclear incorporation of iron during the eukaryotic cell cycle
Robinson, Ian; Yang, Yang; Zhang, Fucai; ...
2016-10-18
Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Finally, we discuss possible reasons for the Fe incorporation.
Basso, Julia C; Morrell, Joan I
2015-08-01
Voluntary wheel running in rats provides a preclinical model of exercise motivation in humans. We hypothesized that rats run because this activity has positive incentive salience in both the acquisition and habitual stages of wheel running and that gender differences might be present. Additionally, we sought to determine which forebrain regions are essential for the motivational processes underlying wheel running in rats. The motivation for voluntary wheel running in male and female Sprague-Dawley rats was investigated during the acquisition (Days 1-7) and habitual phases (after Day 21) of running using conditioned place preference (CPP) and the reinstatement (rebound) response after forced abstinence, respectively. Both genders displayed a strong CPP for the acquisition phase and a strong rebound response to wheel deprivation during the habitual phase, suggesting that both phases of wheel running are rewarding for both sexes. Female rats showed a 1.5 times greater rebound response than males to wheel deprivation in the habitual phase of running, while during the acquisition phase, no gender differences in CPP were found. We transiently inactivated the medial prefrontal cortex (mPFC) or the nucleus accumbens (NA), hypothesizing that because these regions are involved in the acquisition and reinstatement of self-administration of both natural and pharmacological stimuli, they might also serve a role in the motivation to wheel run. Inactivation of either structure decreased the rebound response in the habitual phase of running, demonstrating that these structures are involved in the motivation for this behavior. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Burov, V. A.; Morozov, S. A.
2001-11-01
Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.
Probing topological order with Rényi entropy
NASA Astrophysics Data System (ADS)
Halász, Gábor B.; Hamma, Alioscia
2012-12-01
We present an analytical study of the quantum phase transition between the topologically ordered toric-code-model ground state and the disordered spin-polarized state. The phase transition is induced by applying an external magnetic field, and the variation in topological order is detected via two nonlocal quantities: the Wilson loop and the topological Rényi entropy of order 2. By exploiting an equivalence with the transverse-field Ising model and considering two different variants of the problem, we investigate the field dependence of these quantities by means of an exact treatment in the exactly solvable variant and complementary perturbation theories around the limits of zero and infinite fields in both variants. We find strong evidence that the phase transition point between topological order and disorder is marked by a discontinuity in the topological Rényi entropy and that the two phases around the phase transition point are characterized by its different constant values. Our results therefore indicate that the topological Rényi entropy is a proper topological invariant: its allowed values are discrete and can be used to distinguish between different phases of matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polley, Anirban; Mayor, Satyajit; Rao, Madan, E-mail: madan@rri.res.in, E-mail: madan@ncbs.res.in
2014-08-14
A question of considerable interest to cell membrane biology is whether phase segregated domains across an asymmetric bilayer are strongly correlated with each other and whether phase segregation in one leaflet can induce segregation in the other. We answer both these questions in the affirmative, using an atomistic molecular dynamics simulation to study the equilibrium statistical properties of a 3-component asymmetric lipid bilayer comprising an unsaturated palmitoyl-oleoyl-phosphatidyl-choline, a saturated sphingomyelin, and cholesterol with different composition ratios. Our simulations are done by fixing the composition of the upper leaflet to be at the coexistence of the liquid ordered (l{sub o})-liquid disorderedmore » (l{sub d}) phases, while the composition of the lower leaflet is varied from the phase coexistence regime to the mixed l{sub d} phase, across a first-order phase boundary. In the regime of phase coexistence in each leaflet, we find strong transbilayer correlations of the l{sub o} domains across the two leaflets, resulting in bilayer registry. This transbilayer correlation depends sensitively upon the chain length of the participating lipids and possibly other features of lipid chemistry, such as degree of saturation. We find that the l{sub o} domains in the upper leaflet can induce phase segregation in the lower leaflet, when the latter is nominally in the mixed (l{sub d}) phase.« less
NASA Astrophysics Data System (ADS)
Basharov, Askhat M.
1995-10-01
It is shown theoretically that additional illumination by a squeezed field of a thin layer of two-level atoms, which interact with a resonant coherent electromagnetic wave, results in bistable transmission/reflection of this wave. This bistability depends strongly on the difference between the phases of the coherent and squeezed fields.
Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila
2018-01-01
The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4–7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution. PMID:29867412
Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila
2018-01-01
The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4-7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution.
Hanlon, Alaina B; Matson, Douglas M; Hyers, Robert W
2006-09-01
A new hypothesis has been developed to explain the effect of internal fluid flow on the lifetime of a metastable phase in solidifying Fe-Cr-Ni alloys. The hypothesis shows excellent agreement with available experimental results, but microgravity experiments are required for complete validation. Certain Fe-Cr-Ni stainless steel alloys solidify from an undercooled melt by a two-step process in which the metastable ferrite phase forms first followed by the stable austenite phase. Recent experiments using containerless processing techniques have shown that the lifetime of the metastable phase is strongly influenced by flow within the molten sample. Simulations using a commercial computational fluid dynamics (CFD) package, FIDAP, were performed to determine the time required for collision of dendrites and compared to experimental delay time. If the convective velocities are strong enough to bend the primary arms, then the secondary arms of adjacent dendrites can touch. The points of collision form low-angle boundaries and result in high-energy sites that can serve as nuclei for the transformation to the stable phase. It has been determined that the convective velocities in electrostatic levitation (ESL) are not strong enough to cause collision. However, in ground-based electromagnetic levitation (EML), the convective velocities are strong enough to cause the dendrites to deflect so that the secondary arms of adjacent dendrites collide. There is quantitative agreement between the numerically determined time to collision and the experimentally observed delay time in EML. The strong internal velocity due to convection within the EML samples is the reason for the observed difference in delay times between ESL and EML. Microgravity testing is essential because the significant change in nucleation behavior occurs between the ranges accessible by ground-based ESL and EML. Testing in microgravity using EML will permit a large range of internal convective velocities including those that are inaccessible in 1 g.
Phase equilibria in polymer blend thin films: A Hamiltonian approach
NASA Astrophysics Data System (ADS)
Souche, M.; Clarke, N.
2009-12-01
We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.
A minimal model of striped superconductors
NASA Astrophysics Data System (ADS)
Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.
2001-12-01
We present a minimal model of high-temperature superconductors that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of a classical BCS type.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Many-body localization in a long range XXZ model with random-field
NASA Astrophysics Data System (ADS)
Li, Bo
2016-12-01
Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.
NASA Astrophysics Data System (ADS)
Materlik, Robin; Künneth, Christopher; Falkowski, Max; Mikolajick, Thomas; Kersch, Alfred
2018-04-01
III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.
Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.
2014-01-01
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183
Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A
2014-04-01
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.
Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan
2009-10-01
We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.
Self-energy functional theory with symmetry breaking for disordered lattice bosons
NASA Astrophysics Data System (ADS)
Hügel, Dario; Strand, Hugo U. R.; Pollet, Lode
2018-07-01
We extend the self-energy functional theory to the case of interacting lattice bosons in the presence of symmetry breaking and quenched disorder. The self-energy functional we derive depends only on the self-energies of the disorder-averaged propagators, allowing for the construction of general non-perturbative approximations. Using a simple single-site reference system with only three variational parameters, we are able to reproduce numerically exact quantum Monte Carlo (QMC) results on local observables of the Bose–Hubbard model with box disorder with high accuracy. At strong interactions, the phase boundaries are reproduced qualitatively but shifted with respect to the ones observed with QMC due to the extremely low condensate fraction in the superfluid phase. Deep in the strongly-disordered weakly-interacting regime, the simple reference system employed is insufficient and no stationary solutions can be found within its restricted variational subspace. By systematically analyzing thermodynamical observables and the spectral function, we find that the strongly interacting Bose glass is characterized by different regimes, depending on which local occupations are activated as a function of the disorder strength. We find that the particles delocalize into isolated superfluid lakes over a strongly localized background around maximally-occupied sites whenever these sites are particularly rare. Our results indicate that the transition from the Bose glass to the superfluid phase around unit filling at strong interactions is driven by the percolation of superfluid lakes which form around doubly occupied sites.
First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoura, Kazuaki, E-mail: toyoura@numse.nagoya-u.ac.jp; Ohta, Masataka; Nakamura, Atsutomo
2015-08-14
The phase transitions and ferroelectricity of LiNbO{sub 3} and LiTaO{sub 3} have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency betweenmore » Nb4d-O2p and Ta5d-O2p orbitals, particularly d{sub xz}-p{sub x}/d{sub yz}-p{sub y} orbitals (π orbitals), from the electronic point of view.« less
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
Rule, Michael E.; Vargas-Irwin, Carlos E.; Donoghue, John P.
2017-01-01
Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs. PMID:28100654
Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions
Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.
2016-01-01
Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686
All-silicon nanorod-based Dammann gratings.
Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong
2015-09-15
Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.
Strongly correlated materials.
Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao
2012-09-18
Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Viewpoints about collaboration between primary care and public health in Canada
2013-01-01
Background Although there is a global movement toward health system integration and collaboration, little is known about values, beliefs, and attitudes towards collaboration between stakeholders in public health (i.e. promotion, protection, and prevention with vulnerable groups and/or at the population level) and primary care (i.e., family practices, nurse-led clinics). The purpose of this study was to explore viewpoints of key stakeholders regarding primary care (PC) and public health (PH) collaboration in Canada. Methods We used Q-methodology to identify common viewpoints held by participants who attended a national meeting in Canada in 2010 to discuss PC and PH collaboration. The study was conducted in two phases. In Phase 1 a Q-sample, a Q-sort table, and a short demographic questionnaire were developed which were used in Phase 2 for data collection. The Q-sorts then were analysed to identify the salient factors and consensus statements. Results In total, 25 multidisciplinary individuals including researchers, policy-makers, directors, managers, and practitioners (e.g., nurses, family physicians, dietitians) participated. Using a by-person factor analysis, three factors (salient viewpoints) emerged. Factors were named based on their distinguishing statements as follows: a) System Driven Collaborators, b) Cautious Collaborators, and c) Competent Isolationists. System Driven Collaborators strongly believed that a clear mandate from the top is needed to enable PH, PC and the rest of the health system to effectively work together and that people in different branches in the Ministry/ Ministries have to strongly believe in collaboration, actively support it, and develop directed policies to foster organizations work together. Cautious Collaborators strongly supported the idea of having better consciousness-raising about what collaborations might be possible and beneficial, and also reflecting on the collaborations already in place. The Competent Isolationists strongly believed that it is necessary for PC and PH sectors to spend time to ensure that both parties clearly understand the differences between their roles. They believe that physicians, nurses, and social workers will not see the value in collaboration because they lack inter-professional educational programs. Conclusions Different viewpoints are held by stakeholders around PC and PH collaboration which have the potential to influence the success of collaborations. Understanding and managing these differences is important to assist change management processes required to build and maintain strong PC and PH collaborations. PMID:23945461
Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events
NASA Astrophysics Data System (ADS)
Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.
2017-12-01
The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.
Jamming transitions induced by an attraction in pedestrian flow.
Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki
2017-08-01
We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.
Jamming transitions induced by an attraction in pedestrian flow
NASA Astrophysics Data System (ADS)
Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki
2017-08-01
We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.
Photoemission studies of fluorine functionalized porous graphitic carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens
2012-03-01
Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated,more » PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.« less
STM studies of topological phase transition in (Bi,In)2Se3
NASA Astrophysics Data System (ADS)
Zhang, Wenhan; Wang, Xueyun; Cheong, Sang-Wook; Wu, Weida; Weida Wu Team; Sang-Wook Cheong Collaboration
Topological insulators (TI) are a class of materials with insulating bulk and metallic surface state, which is the result of band inversion induced by strong spin-orbit coupling (SOC). The transition from topological phase to non-topological phase is of great significance. In theory, topological phase transition is realized by tuning SOC strength. It is characterized by the process of gap closing and reopening. Experimentally it was observed in two systems: TlBi(S1-xSex)2 and (Bi1-xInx)2 Se3 where the transition is realized by varying isovalent elements doping concentration. However, none of the previous studies addressed the impact of disorder, which is inevitable in doped systems. Here, we present a systematic scanning tunneling microscopy/spectroscopy study on (Bi1-xInx)2 Se3 single crystals with different In concentrations across the transition. Our results reveal an electronic inhomogeneity due to the random distribution of In defects which locally suppress the topological surface states. Our study provides a new angle of understanding the topological transition in the presence of strong disorders. This work is supported by NSF DMR-1506618.
Characterization of urban runoff pollution between dissolved and particulate phases.
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.
Repp, Bruno H
2003-04-01
Four experiments showed that both single and periodic distractor tones affected the timing of finger taps produced in synchrony with an isochronous auditory target sequence. Single distractors had only small effects, but periodic distractors occurring at various fixed or changing phase relationships exerted strong phase attraction. The attraction was asymmetric, being stronger when distractors preceded target tones than when they lagged behind. A large pitch difference between target and distractor tones (20 vs. 3 semitones) did not reduce phase attraction substantially, although in the case of continuously changing phase relationships it did prevent complete capture of the taps by the distractors. The results support the hypothesis that phase attraction is an automatic process that is sensitive primarily to event onsets.
Sensing Floquet-Majorana fermions via heat transfer
NASA Astrophysics Data System (ADS)
Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.
2017-09-01
Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.
Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO2 phases is not correct
NASA Astrophysics Data System (ADS)
Grau-Crespo, Ricardo; Wang, Hao; Schwingenschlögl, Udo
2012-08-01
In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases [Eyert, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.016401 107, 016401 (2011)], we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.
Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces
NASA Astrophysics Data System (ADS)
Takahashi, Misaki; Ohkawa, Takuma; Yoshida, Hiroyuki; Fukuda, Jun-ichi; Kikuchi, Hirostugu; Ozaki, Masanori
2018-03-01
Liquid crystalline cholesteric blue phases (BPs) continue to attract interest due to their fast response times and quasi-polarization-independent phase modulation capabilities. Various approaches have recently been proposed to control the crystal orientation of BPs on substrates; however, their basic orientation properties on standard, unidirectionally orienting alignment layers have not been investigated in detail. Through analysis of the azimuthal orientation of Kossel diagrams, we study the 3D crystal orientation of a BP material—with a phase sequence of cholesteric, BP I, and BP II—on unidirectionally orienting surfaces prepared using two methods: rubbing and photoalignment. BP II grown from the isotropic phase is sensitive to surface conditions, with different crystal planes orienting on the two substrates. On the other hand, strong thermal hysteresis is observed in BPs grown through a different liquid crystal phase, implying that the preceding structure determines the orientation. More specifically, the BP II-I transition is accompanied by a rotation of the crystal such that the crystal direction defined by certain low-value Miller indices transform into different directions, and within the allowed rotations, different azimuthal configurations are obtained in the same cell depending on the thermal process. Our findings demonstrate that, for the alignment control of BPs, the thermal process is as important as the properties of the alignment layer.
Moussa, N Ould; Molnár, G; Bonhommeau, S; Zwick, A; Mouri, S; Tanaka, K; Real, J A; Bousseksou, A
2005-03-18
The low-spin (LS-LS, S = 0) diamagnetic form of the binuclear spin crossover complex {[Fe(bt)(NCS)(2)](2)(bpm)} was selectively photoconverted into two distinct macroscopic phases at different excitation wavelengths (1342 or 647.1 nm). These long-lived metastable phases have been identified, respectively, as the symmetry-broken paramagnetic form (HS-LS, S = 2) and the antiferromagnetically coupled (HS-HS, S = 0) high-spin form of the compound. The selectivity may be explained by the strong coupling of the primary excited states to the paramagnetic state.
Implementation of a production Ada project: The GRODY study
NASA Technical Reports Server (NTRS)
Godfrey, Sara; Brophy, Carolyn Elizabeth
1989-01-01
The use of the Ada language and design methodologies that encourage full use of its capabilities have a strong impact on all phases of the software development project life cycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The differences observed during the implementation, unit testing, and integration phases of the two projects are described and the lessons learned during the implementation phase of the Ada development are outlined. Included are recommendations for future Ada development projects.
NASA Astrophysics Data System (ADS)
Ingebrigtsen, Trond S.; Schrøder, Thomas B.; Dyre, Jeppe C.
2012-01-01
This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s understanding of the term. Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlations between virial and potential-energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a direct property of the intermolecular potential because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law systems (r-n pair potentials with n=18,6,4), Lennard-Jones (LJ) models (the standard LJ model, two generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the single-point charge water model. The final part of the paper summarizes properties of strongly correlating liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be characterized in three quite different ways: (1) chemically by the fact that the liquid’s properties are fully determined by interactions from the molecules within the FCS, (2) physically by the fact that there are isomorphs in the phase diagram, i.e., curves along which several properties like excess entropy, structure, and dynamics, are invariant in reduced units, and (3) mathematically by the fact that throughout the phase diagram the reduced-coordinate constant-potential-energy hypersurfaces define a one-parameter family of compact Riemannian manifolds. No proof is given that the chemical characterization follows from the strong correlation property, but we show that this FCS characterization is consistent with the existence of isomorphs in strongly correlating liquids’ phase diagram. Finally, we note that the FCS characterization of simple liquids calls into question the physical basis of standard perturbation theory, according to which the repulsive and attractive forces play fundamentally different roles for the physics of liquids.
Military Wives' Transition and Coping: Deployment and the Return Home
Marnocha, Suzanne
2012-01-01
The objective of this qualitative study is to explore the experiences of wives of deployed soldiers. Semistructured interviews were used to answer the research questions. Meleis' Transitions Theory was used to guide the understanding of the wives' experiences. Phase One: news of deployment, property of awareness, themes of emotional chaos and making preparations. Phase Two: during deployment, property of engagement, themes of taking the reins and placing focus elsewhere, along with the property of change and difference, with themes of emotional and physical turmoil, staying strong, and reaching out. Phase Three: after deployment, property of time span, themes of absence makes the heart grow fonder and reestablishing roles. The study concluded that the wife often feels forgotten during deployment. Nurses can give better care by understanding how the different phases of deployment and separation affect the wife's coping ability and her physical and emotional health. PMID:22844613
Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2
Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...
2015-11-16
Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less
Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren
2017-01-01
The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting the very strong ecological risk; 50 % of the geoaccumulation index values of As are between 3 and 4, which has also presenting a strong ecological risk while Pb does not present the ecological risk characterization.
Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials
NASA Astrophysics Data System (ADS)
Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang
2018-04-01
The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.
Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero
2018-05-16
Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.
Conversion of the high-mode solitons in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
2017-01-01
The conversion of high-mode solitons propagating in Strongly Nonlocal Nonlinear Media (SNNM) in three coordinate systems, namely, the elliptic coordinate system, the rectangular coordinate system and the cylindrical coordinate system, based on the Snyder-Mitchell Model that describes the paraxial beam propagating in SNNM, is discussed. Through constituting the trial solution with modulating the Gaussian beam by Ince polynomials, the closed-solution of Gaussian beams in elliptic coordinate is accessed. The Ince-Gaussian (IG) beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian (LG) beams, which is controlled by the elliptic parameter. The conditions of conversion in the three types of solitons are given in relation to the Gouy phase invariability in stable propagation. The profiles of the IG breather at a different propagating distance are numerically obtained, and the conversions of a few IG solitons are illustrated. The difference between the IG soliton and the corresponding LG soliton is remarkable from the Poynting vector and phase plots at their profiles along the propagating axis.
NASA Astrophysics Data System (ADS)
Schmidt, Katja; Garbe-Schönberg, Dieter; Hannington, Mark D.; Anderson, Melissa O.; Bühring, Benjamin; Haase, Karsten; Haruel, Christy; Lupton, John; Koschinsky, Andrea
2017-06-01
In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl-H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.
Transition between strong and weak topological insulator in ZrTe5 and HfTe5
NASA Astrophysics Data System (ADS)
Fan, Zongjian; Liang, Qi-Feng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian
2017-04-01
ZrTe5 and HfTe5 have attracted increasingly attention recently since the theoretical prediction of being topological insulators (TIs). However, subsequent works show many contradictions about their topolog-ical nature. Three possible phases, i.e. strong TI, weak TI, and Dirac semi-metal, have been observed in different experiments until now. Essentially whether ZrTe5 or HfTe5 has a band gap or not is still a question. Here, we present detailed first-principles calculations on the electronic and topological prop-erties of ZrTe5 and HfTe5 on variant volumes and clearly demonstrate the topological phase transition from a strong TI, going through an intermediate Dirac semi-metal state, then to a weak TI when the crystal expands. Our work might give a unified explain about the divergent experimental results and propose the crucial clue to further experiments to elucidate the topological nature of these materials.
NASA Astrophysics Data System (ADS)
Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis
2014-10-01
A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.
Astafiev, O V; Ioffe, L B; Kafanov, S; Pashkin, Yu A; Arutyunov, K Yu; Shahar, D; Cohen, O; Tsai, J S
2012-04-18
A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta. As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology.
Quenched bond randomness: Superfluidity in porous media and the strong violation of universality
NASA Astrophysics Data System (ADS)
Falicov, Alexis; Berker, A. Nihat
1997-04-01
The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for3He-4He mixtures and incomplete4He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the λ-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low4He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixtures and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized “jungle-gym” aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling—strong randomness under rescaling), there is a new “hyperuniversality” at phase transitions with asymptotic strong coupling—strong randomness behavior, for example assigning the same critical exponents to random- bond tricriticality and random- field criticality.
Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids
NASA Astrophysics Data System (ADS)
Bose, Tushar Kanti; Saha, Jayashree
2014-05-01
The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.
Characteristics of ionospheric storms in East Asia
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wang, Guojun; Shi, Jiankui
The ionosphere experiences intense response during the geomagnetic storm and it varies with latitude and longitude. The DPS-4 digisonde measurements and GPS-TEC data of ionospheric stations located at different latitudes in the longitudinal sector of 90-130E during 2002 to 2012 were analyzed to investigate the ionospheric effects in the different latitude of East Asia during geomagnetic storm. About 70 geomagnetic storms are selected according to the Dst index and observed data and they are in different seasons and different solar activity levels. A few quiet days’ averages of data before geomagnetic storm were used as the undisturbed level. Results show that for the middle and high latitude, the short-lived positive disturbance associated with the initial phase of the every storm was observed in each season and then the disturbances were negative till the termination of storm. At the low latitude, storm-time disturbances of foF2 have obvious diurnal, seasonal and solar cycle characteristics. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime except for the summer in low solar activity period. The intensity of response of foF2 is stronger at nighttime than that at daytime. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only. It’s notable that geomagnetic activities occurred at local time nighttime can cause stronger and longer responses of foF2 at the low latitude. All in all, the obvious negative phase ionospheric storms often occurred at the low latitude. Moreover a notable phenomenon was observed for the low latitude, there are the intensive oscillations of foF2 occurring during the main storm phase of enhanced storm in Hainan, and it occurred in the morning generally. For the TEC data, strong disturbances can be observed simultaneously from high latitude to low latitude during the main phase of some storms. Generally strong/weak storms can cause the negative/positive phase storms of TEC in the low latitude and which are obvious in the daytime for the summer and winter and in the period from noon to midnight for the equinox. The differences of the responses of foF2 and TEC are also investigated.
Influence of the least-squares phase on optical vortices in strongly scintillated beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Mingzhou; Roux, Filippus S.; National Laser Centre, CSIR, P.O. Box 395, Pretoria 0001
2009-07-15
The optical vortices that exist in strongly scintillated beams make it difficult for conventional adaptive optics systems to remove the phase distortions. When the least-squares reconstructed phase is removed, the vortices still remain. However, we found that the removal of the least-squares phase induces a portion of the vortices to be annihilated during subsequent propagation, causing a reduction in the total number of vortices. This can be understood in terms of the restoration of equilibrium between explicit vortices, which are visible in the phase function, and vortex bound states, which are somehow encoded in the continuous phase fluctuations. Numerical simulationsmore » are provided to show that the total number of optical vortices in a strongly scintillated beam can be reduced significantly after a few steps of least-squares phase corrections.« less
Spontaneous dressed-state polarization in the strong driving regime of cavity QED.
Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo
2009-10-23
We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.
Hard X-ray and radio emission at the onset of great solar flares
NASA Technical Reports Server (NTRS)
Klein, K.-L.; Pick, M.; Magun, A.; Dennis, B. R.
1987-01-01
A study of the onset phase of ten great hard X-ray bursts is presented. It is shown from hard X-ray and radio observations in different wavelength ranges that the energization of the electrons proceeds on a global time-scale for some tens of seconds. In nine of the bursts, two phases of emission can be distinguished during the onset phase: the preflash phase (during which emission up to an energy limit ranging from some tens of keV to 200 keV is observed) followed ten to some tens of seconds later by the flash phase (where the count rate in all detector channels rises simultaneously to within some seconds). For two of the events, strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase.
Perception of Elasticity in the Kinetic Illusory Object with Phase Differences in Inducer Motion
Masuda, Tomohiro; Sato, Kazuki; Murakoshi, Takuma; Utsumi, Ken; Kimura, Atsushi; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K.; Wada, Yuji
2013-01-01
Background It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object's elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2). Methodology/Principal Findings In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object's elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions. Conclusions/Significance These findings suggest that the phase difference in an object's motion is a significant factor in the material perception of motion-related elasticity. PMID:24205281
Are genetically robust regulatory networks dynamically different from random ones?
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Rikvold, Per Arne
We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.
Using phase locking for improving frequency stability and tunability of THz-band gyrotrons
NASA Astrophysics Data System (ADS)
Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.
2018-04-01
Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.
Strongly interacting high-partial-wave Bose gas
NASA Astrophysics Data System (ADS)
Yao, Juan; Qi, Ran; Zhang, Pengfei
2018-04-01
Motivated by recent experimental progress, we make an investigation of p - and d -wave resonant Bose gas. An explanation of the Nozières and Schmitt-Rink (NSR) scheme in terms of two-channel model is provided. Different from the s -wave case, high-partial-wave interaction supports a quasibound state in the weak-coupling regime. Within the NSR approximation, we study the equation of state, critical temperature, and particle population distributions. We clarify the effect of the quasibound state on the phase diagram and the dimer production. A multicritical point where normal phase, atomic superfluid phase, and molecular superfluid phase meet is predicted within the phase diagram. We also show the occurrence of a resonant conversion between solitary atoms and dimers when temperature kBT approximates the quasibound energy.
Concentration-dependent effect of melatonin on DSPC membrane
NASA Astrophysics Data System (ADS)
Sahin, Ipek; Bilge, Duygu; Kazanci, Nadide; Severcan, Feride
2013-11-01
The concentration-induced effects of melatonin on distearoyl phosphatidylcholine (DSPC) model membranes were investigated by using two different non-invasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). An investigation of the Csbnd H, Cdbnd O and PO2- double bond stretching mode in FTIR spectra and DSC studies reveals that the inclusion of melatonin changes the physical properties of the DSPC multilamellar liposomes (MLVs) by shifting the main phase transition to lower temperatures, abolishing the pretransition, ordering the system in the gel phase and slightly disordering the system in the liquid crystalline phase, increasing the dynamics both in the gel phase and liquid crystalline phases. Melatonin also causes strong hydrogen bonding between Cdbnd O and PO2- groups of lipids and the water molecules around.
Extraction of phenol using trialkylphosphine oxides (Cyanex 923) in kerosene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiaga, A.M.; Ortiz, I.
1997-04-01
A group of extractants based on phosphine oxides have been reported as an alternative to conventional polar solvents for phenol-liquid-liquid extraction. Among phosphoryl extractants, Cyanex 923 (a mixture of four trialkylphosphine oxides, alkyl = normal, C{sub 6}, C{sub 8}) has proved to combine high extraction efficiency and low water solubility, obviating the necessity of removing the solvent from the aqueous raffinate, a need associated with the use of methyl isobutyl ketone and isopropyl ether, the solvents most widely employed for this application. Phosphoryl extractants are solvating extractants, and are known to form relatively strong and reversible hydrogen bonds with phenols.more » The fact that most of these systems show a strong nonideality in the organic phase makes a general theoretical treatment of the equilibria almost impossible, leading to the necessity of obtaining a large number of data in order to describe the equilibria for design purposes. In this work the effect of the concentration of phenol in the aqueous phase on the partition coefficient for phenol in Cyanex 923-kerosene/water systems is investigated at six different concentrations of the extractant in the organic phase: 1, 5, 10, 20, 50, and 70% v/v of Cyanex 923-kerosene/water systems is investigated at six different concentrations of the extractant in the organic phase: 1, 5, 10, 20, 50, and 70% v/v of Cyanex 923 in kerosene. The initial concentrations of phenol in the aqueous phase were in the 1000 mg/L < C{sub PhOH} < 50,000 mg/L range.« less
NASA Astrophysics Data System (ADS)
Harnew, Samuel; Naik, Paras; Prouve, Claire; Rademacker, Jonas; Asner, David
2018-01-01
For the first time, the strong phase difference between D 0 and {\\overline{D}}^0\\to {π}+{π}-{π}+{π}- amplitudes is determined in bins of the decay phase space. The measurement uses 818 pb-1 of e + e - collision data that is taken at the ψ(3770) resonance and collected by the CLEO-c experiment. The measurement is important for the determination of the CP -violating phase γ in B ± → DK ± (and similar) decays, where the D meson (which represents a superposition of D 0 and {\\overline{D}}^0 ) subsequently decays to π + π - π + π -. To obtain optimal sensitivity to γ, the phase space of the D → π + π - π + π - decay is divided into bins based on a recent amplitude model of the decay. Although an amplitude model is used to define the bins, the measurements obtained are model-independent. The CP -even fraction of the D → π + π - π + π - decay is determined to be F + 4 π = 0.769 ± 0.021 ± 0.010, where the uncertainties are statistical and systematic, respectively. Using simulated B ± → DK ±, D → π + π - π + π - decays, it is estimated that by the end of the current LHC run, the LHCb experiment could determine γ from this decay mode with an uncertainty of (±10 ± 7)°, where the first uncertainty is statistical based on estimated LHCb event yields, and the second is due to the uncertainties on the parameters determined in this paper.
Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P
2015-08-01
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.
Single-particle spectral functions in the normal phase of a strongly attractive Bose-Fermi mixture
NASA Astrophysics Data System (ADS)
Fratini, E.; Pieri, P.
2013-07-01
We calculate the single-particle spectral functions and quasiparticle dispersions for a Bose-Fermi mixture when the boson-fermion attraction is sufficiently strong to suppress completely the condensation of bosons at zero temperature. Within a T-matrix diagrammatic approach, we vary the boson-fermion attraction from the critical value where the boson condensate first disappears to the strongly attractive (molecular) regime and study the effect of both mass and density imbalance on the spectral weights and dispersions. An interesting spectrum of particle-hole excitations mixing two different Fermi surfaces is found. These unconventional excitations could be produced and explored experimentally with radio-frequency spectroscopy.
Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann
2016-03-01
Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; ...
2015-11-24
In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHEmore » in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.« less
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.
2015-01-01
The anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gate-control of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured. PMID:26596472
NASA Astrophysics Data System (ADS)
Shao, Yun; Yuan, Zongqiang; Ye, Difa; Fu, Libin; Liu, Ming-Ming; Sun, Xufei; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan
2017-12-01
We measure the wavelength-dependent correlated-electron momentum (CEM) spectra of strong-field double ionization of Xe atoms, and observe a significant change from a roughly nonstructured (uncorrelated) pattern at 795 nm to an elongated distribution with V-shaped structure (correlated) at higher wavelengths of 1320 and 1810 nm, pointing to the transition of the ionization dynamics imprinted in the momentum distributions. These observations are well reproduced by a semiclassical model using Green-Sellin-Zachor potential to take into account the screening effect. We show that the momentum distribution of Xe2+ undergoes a bifurcation structure emerging from single-hump to double-hump structure as the laser wavelength increases, which is dramatically different from that of He2+, indicating the complex multi-electron effect. By back analyzing the double ionization trajectories in the phase space (the initial transverse momentum and the laser phase at the tunneling exit) of the first tunneled electrons, we provide deep insight into the physical origin for electron correlation dynamics. We find that a random distribution in phase-space is responsible for a less distinct structured CEM spectrum at shorter wavelength. While increasing the laser wavelength, a topology-invariant pattern in phase-space appears, leading to the clearly visible V-shaped structures.
Role of the polymer phase in the mechanics of nacre-like composites
NASA Astrophysics Data System (ADS)
Niebel, Tobias P.; Bouville, Florian; Kokkinis, Dimitri; Studart, André R.
2016-11-01
Although strength and toughness are often mutually exclusive properties in man-made structural materials, nature is full of examples of composite materials that combine these properties in a remarkable way through sophisticated multiscale architectures. Understanding the contributions of the different constituents to the energy dissipating toughening mechanisms active in these natural materials is crucial for the development of strong artificial composites with a high resistance to fracture. Here, we systematically study the influence of the polymer properties on the mechanics of nacre-like composites containing an intermediate fraction of mineral phase (57 vol%). To this end, we infiltrate ceramic scaffolds prepared by magnetically assisted slip casting (MASC) with monomers that are subsequently cured to yield three drastically different polymers: (i) poly(lauryl methacrylate) (PLMA), a soft and weak elastomer; (ii) poly(methyl methacrylate) (PMMA), a strong, stiff and brittle thermoplastic; and (iii) polyether urethane diacrylate-co-poly(2-hydroxyethyl methacrylate) (PUA-PHEMA), a tough polymer of intermediate strength and stiffness. By combining our experimental data with finite element modeling, we find that stiffer polymers can increase the strength of the composite by reducing stress concentrations in the inorganic scaffold. Moreover, infiltrating the scaffolds with tough polymers leads to composites with high crack initiation toughness KIC. An organic phase with a minimum strength and toughness is also required to fully activate the mechanisms programmed within the ceramic structure for a rising R-curve behavior. Our results indicate that a high modulus of toughness is a key parameter for the selection of polymers leading to strong and tough bioinspired nacre-like composites.
Q fever in pregnant goats: humoral and cellular immune responses
2013-01-01
Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats. PMID:23915213
Kjær, Christina; Stockett, Mark H; Pedersen, Bjarke M; Nielsen, Steen Brøndsted
2016-12-01
The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here, on the basis of photodissociation action spectroscopy, we establish that the redshift of the Soret absorption band due to binding of a negatively charged carboxylate (as present in aspartic acid and glutamic acid residues) is 0.1-0.2 eV for Chl a and b. This effect is almost enough to reproduce the well-known green color of plants and can account for the strong spectral variation between Chl's. The experimental data serve to benchmark future high-level calculations of excited-state energies. Finally, we demonstrate that complexes between Chl a and histidine, tagged by a quaternary ammonium ion, can be made in the gas phase by electrospray ionization, but more work is needed to produce enough ions for gas-phase spectroscopy.
NASA Astrophysics Data System (ADS)
Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng
2017-11-01
This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.
Determination of the coma dust back-scattering of 67P for phase angles from 1.2° to 75°
NASA Astrophysics Data System (ADS)
Fink, Uwe; Doose, Lyn
2018-07-01
A phase curve is derived for the dust coma of comet 67P/Churyumov-Gerasimenko (67P) from 1.2° to 74° using images from the OSIRIS camera system on board the Rosetta mission during the period 2014 July 25 to 2015 February 23 as the spacecraft approached the comet. We analyzed 123 images of the continuum filter at 612.6 nm and 60 images of the 375 nm UV continuum filter of the Wide Angle Camera. Our method of extracting a phase curve, close to the nucleus, taking into account illumination conditions, activity of the comet, strong radial radiance intensity decrease and varying phase angles across the image, is described in detail. Our derived backscattering phase curve is considerably steeper than earlier published data. The radiance of the scattering dust in the 612.6 nm filter increases by about a factor of 12 going from a phase angle of 75° to a phase angle of 2.0°. The phase curve for the 375 nm filter is similar but there is reasonable evidence that the I/F color ratio between the two filters changes from a roughly neutral color ratio of 1.2 to a more typical red color of ∼ 2.0 as the activity of the comet increases. No substantial change in the shape of the phase curve could be discerned between 2014 August and 2015 February 19-23 when the comet increased considerably in activity. The phase curve behavior on the illuminated side of the comet and the dark side is in general similar. A comparison of our phase curve with a recent phase curve for 67P by Bertini et al. for the phase angle range ∼15°-80°, where our two reductions overlap, shows good agreement (as does our color ratio between the 612.6 nm and the 375 nm filters) despite the fact that the two phase curve determinations observed the comet at different dust activity levels, at different distances from the nucleus and used completely different observing and data reduction methodologies. Trial scattering calculations demonstrate that the observed strong backscattering most likely arises from particles in the size range 1-20 μm. Our observed backscattering phase curve gives no constraints on the real index of refraction, the particle size distribution or the minimum and maximum particle size cut-offs. However, an upper limit to the imaginary index of refraction of ∼0.01 was required, making these particles quite transparent. Simple spherical scattering calculations including particle size distributions can fit the general characteristics of the phase curve but cannot produce a satisfactory detailed fit.
The physics of inhomogeneous striped superconductors
NASA Astrophysics Data System (ADS)
Martin, I.; Ortiz, G.; Eroles, J.; Balatsky, A. V.; Bishop, A. R.
2001-05-01
We present a minimal model of a doped Mott insulator that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous — striped nanoscale coexistence of superconductivity and magnetism — and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of the classical BCS type.
Geometrical-optics solution to light scattering by droxtal ice crystals.
Zhang, Zhibo; Yang, Ping; Kattawar, George W; Tsay, Si-Chee; Baum, Bryan A; Hu, Yongxiang; Heymsfield, Andrew J; Reichardt, Jens
2004-04-20
We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 microm by using an improved geometrical-optics method. An efficient method is developed to specify the incident rays and the corresponding impinging points on the particle surface necessary to initialize the ray-tracing computations. At the 0.66-microm wavelength, the optical properties of droxtals are different from those of hexagonal ice crystals. At the 11-microm wavelength, the phase functions for droxtals are essentially featureless because of strong absorption within the particles, except for ripple structures that are caused by the phase interference of the diffracted wave.
Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads.
Catledge, Shane A; Cook, Monique; Vohra, Yogesh K; Santos, Erick M; McClenny, Michelle D; David Moore, K
2003-10-01
One new and nine explanted zirconia femoral heads were studied using glancing angle X-ray diffraction, scanning electron microscopy, and nanoindentation hardness techniques. All starting zirconia implants consisted only of tetragonal zirconia polycrystals (TZP). For comparison, one explanted alumina femoral head was also studied. Evidence for a surface tetragonal-to-monoclinic zirconia phase transformation was observed in some implants, the extent of which was varied for different in-service conditions. A strong correlation was found between increasing transformation to the monoclinic phase and decreasing surface hardness. Microscopic investigations of some of the explanted femoral heads revealed ultra high molecular weight polyethylene and metallic transfer wear debris.
NASA Astrophysics Data System (ADS)
Ertaş, Mehmet; Keskin, Mustafa
2015-03-01
By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.
Theoretical exploration of competing phases of lattice Bose gases in a cavity
NASA Astrophysics Data System (ADS)
Liao, Renyuan; Chen, Huang-Jie; Zheng, Dong-Chen; Huang, Zhi-Gao
2018-01-01
We consider bosonic atoms loaded into optical lattices with cavity-mediated infinite-range interactions. Competing short- and global-range interactions cultivate a rich phase diagram. With a systematic field-theoretical perspective, we present an analytical construction of a global ground-state phase diagram. We find that the infinite-range interaction enhances the fluctuation of the number density. In the strong-coupling regime, we find four branches of elementary excitations, with two being "particlelike" and two being "holelike," and that the excitation gap becomes soft at the phase boundary between compressible phases and incompressible phases. We derive an effective theory describing compressible superfluid and supersolid states. To complement this perturbative study, we construct a self-consistent mean-field theory and find numerical results consistent with our theoretical analysis. We map out the phase diagram and find that a charge density wave may undergo a structure phase transition to a different charge density wave before it finally enters into the supersolid phase driven by increasing the hopping amplitude.
Quenched bond randomness: Superfluidity in porous media and the strong violation of universality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falicov, A.; Berker, A.N.
1997-04-01
The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for {sup 3}He-{sup 4}He mixtures and incomplete {sup 4}He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the A-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low {sup 4}He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixturesmore » and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized {open_quote}jungle-gym{close_quotes} aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling-strong randomness under resealing), there is a new {open_quotes}hyperuniversality{close_quotes} at phase transitions with asymptotic strong coupling-strong randomness behavior, for example assigning the same critical exponents to random-bond tricriticality and random-field criticality.« less
NASA Astrophysics Data System (ADS)
Habarulema, John Bosco; Katamzi, Zama Thobeka; Sibanda, Patrick; Matamba, Tshimangadzo Merline
2017-01-01
We present an analysis of a regional ionospheric response during six strong storms (-200 nT ≤Dst≤-100 nT) that occurred in 2012 for the geographic latitudinal coverage of 10°S-40°S within a longitude sector of 10°E-40°E. Although these storms occurred during the same solar activity period and were all coronal mass ejection driven, their impacts and associated features on the ionosphere have been found different due to different contributing factors to their driving mechanisms. With the exception of one case, the rest of the storm periods were characterized by positive storm effects during the main and (or) recovery phases with varying physical mechanisms including low-latitude electrodynamics, neutral composition changes, and traveling ionospheric disturbances (TIDs). The common result to all the analyzed strong storms was the presence of large-scale TIDs during the storm main phases. Using total electron content data derived from the Global Navigational Satellite System (GNSS) observations and radio occultation (RO) electron density data on a regional scale, we have attempted to investigate meridional and vertical propagation of TIDs simultaneously during the strong storms. We have showed that it is possible to identify vertical motion of TIDs using RO data in cases when equatorward TIDs, as revealed by GNSS total electron content data, are present. RO results were compared to ionosonde data, and both data sources gave vertical velocities below 100 m/s of the associated TIDs.
Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444
Solid-state harmonics beyond the atomic limit.
Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A
2016-06-23
Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.
Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films
NASA Astrophysics Data System (ADS)
Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.
2017-09-01
Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.
Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.
Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony
2016-03-01
Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.
Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor
Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E.; Proust, Cyril; Carrington, Antony
2016-01-01
Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc. PMID:27034989
NASA Astrophysics Data System (ADS)
Bhattacharya, Jishnu
We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.
Rashba sandwiches with topological superconducting phases
NASA Astrophysics Data System (ADS)
Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena
2018-05-01
We introduce a versatile heterostructure harboring various topological superconducting phases characterized by the presence of helical, chiral, or unidirectional edge states. Changing parameters, such as an effective Zeeman field or chemical potential, one can tune between these three topological phases in the same setup. Our model relies only on conventional nontopological ingredients. The bilayer setup consists of an s -wave superconductor sandwiched between two two-dimensional electron gas layers with strong Rashba spin-orbit interaction. The interplay between two different pairing mechanisms, proximity induced direct and crossed Andreev superconducting pairings, gives rise to multiple topological phases. In particular, helical edge states occur if crossed Andreev superconducting pairing is dominant. In addition, an in-plane Zeeman field leads to a two-dimensional gapless topological phase with unidirectional edge states, which were previously predicted to exist only in noncentrosymmetric superconductors. If the Zeeman field is tilted out of the plane, the system is in a topological phase hosting chiral edge states.
Three-player quantum Kolkata restaurant problem under decoherence
NASA Astrophysics Data System (ADS)
Ramzan, M.
2013-01-01
Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice's payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice's payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence ( p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice's payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
2018-01-12
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less
Phase Diagram of the Bose Hubbard Model with Weak Links
NASA Astrophysics Data System (ADS)
Hettiarachchilage, Kalani; Rousseau, Valy; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark; Sheehy, Daniel
2012-02-01
We study the ground state phase diagram of strongly interacting ultracold Bose gas in a one-dimensional optical lattice with a tunable weak link, by means of Quantum Monte Carlo simulation. This model contains an on-site repulsive interaction (U) and two different near-neighbor hopping terms, J and t, for the weak link and the remainder of the chain, respectively. We show that by reducing the strength of J, a novel intermediate phase develops which is compressible and non-superfluid. This novel phase is identified as a Normal Bose Liquid (NBL) which does not appear in the phase diagram of the homogeneous bosonic Hubbard model. Further, we find a linear variation of the phase boundary of Normal Bose Liquid (NBL) to SuperFluid (SF) as a function of the strength of the weak link. These results may provide a new path to design advanced atomtronic devices in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Hussain, A.; Silver, H.F.
1981-11-01
The normal-phase liquid chromatographic models of Scott, Snyder, and Soczewinski were considered for a ..mu..-Bondapak NH/sub 2/ stationary phase. n-Heptane:2-propanol and n-heptane:ethyl acetate mobile phases of different compositions were used. Linear relationships were obtained from graphs of log K' vs. log mole fraction of the strong solvent for both n-heptane:2-propanol and n-heptane:ethyl acetate mobile phases. A linear relationship was obtained between the reciprocal of corrected retention volume and % wt/v of 2-propanol but not between the reciprocal of corrected retention volume and % wt/v of ethyl acetate. The slopes and intercept terms from the Snyder and Soczewinski models were foundmore » to approximately describe interactions with ..mu..-Bondapak NH/sub 2/. Capacity factors can be predicted for the compounds by using the equations obtained from mobile phase composition variation experiments.« less
Modeling the dynamics of piano keys
NASA Astrophysics Data System (ADS)
Brenon, Celine; Boutillon, Xavier
2003-10-01
The models of piano keys available in the literature are crude: two degrees of freedom and a very few dynamical or geometrical parameters. Experiments on different piano mechanisms (upright, grand, one type of numerical keyboard) exhibit strong differences in the two successive phases of the key motion which are controlled by the finger. Understanding the controllability of the escapement velocity (typically a few percents for professional pianists), the differences between upright and grand pianos, the rationale for the numerous independent adjustments by technicians, and the feel by the pianist require sophisticated modeling. In addition to the inertia of the six independently moving parts of a grand piano mechanism, a careful modeling of friction at pivots and between the jack and the roll, of damping and nonlinearities in felts, and of internal springs will be presented. Simulations will be confronted to the measurements of the motions of the different parts. Currently, the first phase of the motion and the transition to the second phase are well understood while some progress must still be made in order to describe correctly this short but important phase before the escapement of the hammer. [Work done in part at the Laboratory for Musical Acoustics, Paris.
Harston, George W. J.; Kilburn-Toppin, Fleur; Matheson, Thomas; Burrows, Malcolm; Gabbiani, Fabrizio; Krapp, Holger G.
2010-01-01
Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes. PMID:19955292
Adelmann, S; Schembecker, G
2011-08-12
Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.
Accurate diblock copolymer phase boundaries at strong segregations
NASA Astrophysics Data System (ADS)
Matsen, M. W.; Whitmore, M. D.
1996-12-01
We examine the lamellar/cylinder and cylinder/sphere phase boundaries for strongly segregated diblock copolymer melts using self-consistent-field theory (SCFT) and the standard Gaussian chain model. Calculations are performed with and without the conventional unit-cell approximation (UCA). We find that for strongly segregated melts, the UCA simply produces a small constant shift in each of the phase boundaries. Furthermore, the boundaries are found to be linear at strong segregations when plotted versus (χN)-1, which allows for accurate extrapolations to χN=∞. Our calculations using the UCA allow direct comparisons to strong-segregation theory (SST), which is accepted as the χN=∞ limit of SCFT. A significant discrepancy between the SST and SCFT results indicate otherwise, suggesting that the present formulation of SST is incomplete.
Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; ...
2015-07-28
We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2018-01-01
Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.
Shear induced phase transitions induced in edible fats
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
NASA Astrophysics Data System (ADS)
Gusev, Aleksandr I.
2000-01-01
Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.
Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert
2004-06-01
Powder metallurgy is a well-established method for manufacturing ferrous precision parts. A very important step is sintering, which can be strongly enhanced by the formation of a liquid phase during the sintering process. Boron activates this process by forming such a liquid phase at about 1200 degrees C. In this work, the sintering of Fe-B was performed under the protective atmospheres of hydrogen, argon or nitrogen. Using different grain sizes of the added ferroboron leads to different formations of pores and to the formation of secondary pores. The effect of boron was investigated by means of Secondary Ion Mass Spectrometry (SIMS) supported by Scanning Electron Microscopy (SEM) and Light Microscopy (LM). To verify the influence of the process parameters on the mechanical properties, the microstructure (pore shape) was examined and impact energy measurements were performed. The concentrations of B in different samples were varied from 0.03-0.6 weight percent (wt%). Higher boron concentrations are detectable by EPMA, whereas the distributions of boron in the samples with interesting overall concentration in the low wt% range are only detectable by means of SIMS. This work shows that the distribution of boron strongly depends on its concentration and the sintering atmosphere used. At low concentration (up to 0.1 wt%) there are boride precipitations; at higher concentration there is a eutectic iron-boron grain boundary network. There is a decrease of the impact energy observed that correlates with the amount of eutectic phase.
Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min
2017-06-03
Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
No association of moon phase with stroke occurrence.
Ruuskanen, Jori O; Sipilä, Jussi O T; Rautava, Päivi; Kytö, Ville
2018-05-23
Stroke occurrence shows strong correlations with sleep disorders and even subtle sleep disturbances have been shown to affect ischemic stroke (IS) occurrence. Chronobiology also exerts effects, like the morning surge in IS occurrence. Lunar cycles have also been shown to affect sleep and other physiological processes, but studies on moon phases and its possible association with occurrence of stroke are rare and nonconclusive. Therefore, we studied the effects of moon phases on stroke hospitalizations and in-hospital mortality nationwide in Finland in 2004-2014. All patients aged ≥18 years with IS or intracerebral hemorrhage (ICH) as primary discharge diagnosis were included. Daily number of admissions was treated as a response variable while moon phase, year and astronomical season were independent variables in Poisson regression modeling. We found no association between moon phases and stroke occurrence. The overall occurrence rates did not vary between different moon phases for IS or ICH (p = 0.61 or higher). There were no differences between moon phases in daily admission rates among men, women, young and old patients for any of the stroke subtypes. There was no difference in in-hospital mortality with regard to moon phase for IS or ICH overall (p = 0.19 or higher), nor in subgroup analyses. There were no significant interactions between moon phase and astronomical season for stroke occurrence or in-hospital mortality. To conclude, in this over a decade-long nationwide study including a total of 46 million person years of follow-up, we found no association between moon phases and occurrence or in-hospital mortality rates of IS or intracerebral hemorrhage.
NASA Astrophysics Data System (ADS)
Boschi, Lapo
2006-10-01
I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.
Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition.
Park, Jun-Bum; Lee, Il-Min; Lee, Seung-Yeol; Kim, Kyuho; Choi, Dawoon; Song, Eui Young; Lee, Byoungho
2013-07-01
We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.
The Origin of the EUV Emission in Her X-1
NASA Technical Reports Server (NTRS)
Leahy, D. A.; Marshall, H.
1999-01-01
Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.
Structure and magnetic properties of Heusler alloy Co2RuSi melt-spun ribbons
NASA Astrophysics Data System (ADS)
Xin, Yuepeng; Ma, Yuexing; Hao, Hongyue; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan; Liu, Enke; Wu, Guangheng
2017-08-01
Heusler alloy Co2RuSi has been synthesized by melt-spinning technology successfully. Co2RuSi bulk sample after annealing is composed of an HCP Co-rich phase and a BCC Ru-Si phase, but melt-spinning can suppress the precipitation of the HCP phase and produce a single Co2RuSi Heusler phase. In the XRD pattern, it is found that Ru has a strong preference for the (A, C) sites, though it has fewer valence electrons compared with Co. This site preference is different from the case in Heusler alloys containing only 3d elements and is supported further by first-principles calculations. Melt-spun Co2RuSi has a Ms of 2.67 μB/f.u. at 5 K and a Tc of 491 K. An exothermic peak is observed at 871 K in the DTA curve, corresponding to the decomposition of the Heusler phase. Finally, the site preference and magnetic properties of Co2RuSi were discussed based on electronic structure calculation and charge density difference.
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) film on SrTiO3 (STO) substrate. The variations in out-of-plane lattice constant and BO6 octahedral rotation across the PSMO/STO interface strongly depend on the thickness of PSMO films. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI’) phase is formed during the cubic-to-tetragonal phase transition of STO, apparently due to enhanced electron-phonon interaction and atomic disorder in the film.more » The transport properties of the FI’ phase in the 30-nm film are masked because of the reduced interfacial effect and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to formation of the theoretically predicted novel ferromagnetic-polaronic insulator in systems, as illustrated in a new phase diagram, that are otherwise ferromagnetic metals (FM) in bulk form.« less
New Measurement of Ξ-→Λπ- Decay Parameters
NASA Astrophysics Data System (ADS)
Huang, M.; Burnstein, R. A.; Chakravorty, A.; Chen, Y. C.; Choong, W. S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Gidal, G.; Gustafson, H. R.; Holmstrom, T.; James, C.; Jenkins, C. M.; Jones, T.; Kaplan, D. M.; Lederman, L. M.; Leros, N.; Longo, M. J.; Lopez, Fred; Lu, L.; Luebke, W.; Luk, K. B.; Nelson, K. S.; Park, H. K.; Perroud, J. P.; Rajaram, D.; Rubin, H. A.; Volk, J.; White, C.; White, S.; Zyla, P.
2004-06-01
Based on a sample of 144×106 polarized Ξ-→Λπ-,Λ→pπ- decays collected by the HyperCP experiment (E871) at Fermilab, we report a new measurement of the Ξ- decay-parameter angle φΞ=(-2.39±0.64±0.64)° from which we deduce the decay parameters βΞ=-0.037±0.011±0.010 and γΞ=0.888±0.0004±0.006. Assuming that the CP-violating phase difference between s and p waves is negligible, the strong phase-shift difference, δp-δs, for Λπ scattering is determined to be (4.6±1.4±1.2)°.
NASA Astrophysics Data System (ADS)
Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.
2011-08-01
Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.
Neher, Tobias
2017-02-01
To scrutinize the binaural contribution to speech-in-noise reception, four groups of elderly participants with or without audiometric asymmetry <2 kHz and with or without near-normal binaural intelligibility level difference (BILD) completed tests of monaural and binaural phase sensitivity as well as cognitive function. Groups did not differ in age, overall degree of hearing loss, or cognitive function. Analyses revealed an influence of BILD status but not audiometric asymmetry on monaural phase sensitivity, strong correlations between monaural and binaural detection thresholds, and monaural and binaural but not cognitive BILD contributions. Furthermore, the N 0 S π threshold at 500 Hz predicted BILD performance effectively.
Janssens, Stoffel D; Drijkoningen, Sien; Saitner, Marc; Boyen, Hans-Gerd; Wagner, Patrick; Larsson, Karin; Haenen, Ken
2012-07-28
Interactions between ethanol-water mixtures and a hydrophobic hydrogen terminated nanocrystalline diamond surface, are investigated by sessile drop contact angle measurements. The surface free energy of the hydrophobic surface, obtained with pure liquids, differs strongly from values obtained by ethanol-water mixtures. Here, a model which explains this difference is presented. The model suggests that, due to a higher affinity of ethanol for the hydrophobic surface, when compared to water, a phase separation occurs when a mixture of both liquids is in contact with the H-terminated diamond surface. These results are supported by a computational study giving insight in the affinity and related interaction at the liquid-solid interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, Jisuke; Yamada, Masatoshi; Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg
We assume that the origin of the electroweak (EW) scale is a gauge-invariant scalar-bilinear condensation in a strongly interacting non-abelian gauge sector, which is connected to the standard model via a Higgs portal coupling. The dynamical scale genesis appears as a phase transition at finite temperature, and it can produce a gravitational wave (GW) background in the early Universe. We find that the critical temperature of the scale phase transition lies above that of the EW phase transition and below few O(100) GeV and it is strongly first-order. We calculate the spectrum of the GW background and find the scalemore » phase transition is strong enough that the GW background can be observed by DECIGO.« less
Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio
2016-04-21
We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.
NASA Astrophysics Data System (ADS)
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys
NASA Astrophysics Data System (ADS)
Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.
2014-12-01
Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.
Complex life cycles and offspring provisioning in marine invertebrates.
Marshall, Dustin J; Keough, Michael J
2006-10-01
Offspring size can have pervasive effects throughout an organism's life history. Mothers can make either a few large or many small offspring, and the balance between these extremes is determined by the relationship between offspring size and performance. This relationship in turn is thought to be determined by the offspring's environment. Recently, it has become clear that events in one life-history stage can strongly affect performance in another. Given these strong carryover effects, we asked whether events in the larval phase can change the relationship between offspring size and performance in the adult phase. We manipulated the length of the larval period in the bryozoan Bugula neritina and then examined the relationship between offspring size and various parameters of adult performance under field conditions. We found that despite the adult stage being outplanted into identical conditions, different offspring sizes were predicted to be optimal, depending on the experience of those adults as larvae. This work highlights the fact that the strong phenotypic links between life-history stages may result in optimal offspring size being highly unpredictable for organisms with complex life cycles.
Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.
Požar, Martina; Perera, Aurélien
2017-06-14
We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.
Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar.
Bader, Rolf
2012-01-01
Two recently built vihuelas, quasi-replicas of the Spanish Renaissance guitar, one with a small body and one sound hole and one with a large body with five sound holes, together with a classical guitar are investigated. Frequency dependent radiation strengths are measured using a 128 microphone array, back-propagating the frequency dependent sound field upon the body surface. All three instruments have a strong sound hole radiation within the low frequency range. Here the five tone holes vihuela has a much wider frequency region of strong sound hole radiation up to about 500 Hz, whereas the single hole instruments only have strong sound hole radiations up to about 300 Hz due to the enlarged radiation area of the sound holes. The strong broadband radiation of the five sound hole vihuela up to about 500 Hz is also caused by the sound hole phases, showing very consistent in-phase relations up to this frequency range. Also the radiation strength of the sound holes placed nearer to the center of the sound box are much stronger than those near the ribs, pointing to a strong position dependency of sound hole to radiation strength. The Helmholtz resonance frequency of the five sound hole vihuela is influenced by this difference in radiation strength but not by the rosettas, which only have a slight effect on the Helmholtz frequency. © 2012 Acoustical Society of America.
Alteration of Hormonal Levels in a Rootless Epiphytic Bromeliad in Different Phenological Phases.
Mercier; Endres
1999-11-01
Major changes in indole-3-acetic acid (IAA) and cytokinin (CK) levels occur at different phenological phases of Tillandsia recurvata shoots. This epiphytic rootless bromeliad was chosen as suitable material for hormonal analysis because CK synthesis is restricted to the shoots, thus avoiding problems in the interpretation of results caused by translocation and interconversion of CK forms between roots and leaves encountered in plants with both organs. Young plants of T. recurvata have weak apical dominance because side shoots appeared early in development, and branch growth was correlated with a strong increase in the level of zeatin. The flowering phase was characterized by a significant increase in free base CKs, zeatin, and isopentenyladenine compared with the levels found in adult vegetative shoots. In contrast, both free-base CKs declined in the fruiting phenological phase, and the IAA level increased dramatically. It was concluded that in phases characterized by intense organ formation, such as in the juvenile and flowering stages, there was an enhancement of CK content, mainly caused by zeatin, leading to a lower IAA/CK ratio. Higher ratios were correlated with phases that showed no organogenesis, such as adult and fruiting phenologies.
Large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} decay modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishima, Satoshi; Yoshikawa, Tadashi
2004-11-01
We discuss a possibility of large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B{yields}K{pi} decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B{yields}{pi}{pi}. We show, as an example, a solution to solve the discrepancies in both B{yields}K{pi} and B{yields}{pi}{pi}. However the magnitude of the parameters and the strong phase estimated from experimental data are quite largemore » compared with the theoretical estimations. It may be suggesting some new physics effects are included in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin-type processes.« less
NASA Astrophysics Data System (ADS)
Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.
2018-07-01
In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.
Comment on ``Symmetry and structure of quantized vortices in superfluid 3'
NASA Astrophysics Data System (ADS)
Sauls, J. A.; Serene, J. W.
1985-10-01
Recent theoretical attempts to explain the observed vortex-core phase transition in superfluid 3B yield conflicting results. Variational calculations by Fetter and Theodrakis, based on realistic strong-coupling parameters, yield a phase transition in the Ginzburg-Landau region that is in qualitative agreement with the phase diagram. Numerically precise calculations by Salomaa and Volivil (SV), based on the Brinkman-Serene-Anderson (BSA) parameters, do not yield a phase transition between axially symmetric vortices. The ambiguity of these results is in part due to the large differences between the β parameters, which are inputs to the vortex free-energy functional. We comment on the relative merits of the β parameters based on recent improvements in the quasiparticle scattering amplitude and the BSA parameters used by SV.
Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.
Dorsaz, N; Foffi, G
2010-03-17
We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.
Noise Spectroscopy in Strongly Correlated Oxides
NASA Astrophysics Data System (ADS)
Alsaqqa, Ali M.
Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T < 50 K), the noise behavior switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the fundamental physics point of view and for applications. Its transition from a metal to an insulator (MIT) with simple application of voltage is quite interesting. For use in applications, e.g. transistors, it is very important to have a clear understanding of the MIT. Equally important is the question of whether the thermally- and electrically-driven transitions have the same origin. In this thesis, we tried to answer this question by utilizing three different tuning parameters: temperature, voltage bias and strain. Our results point to an unusual noise behavior in the high-temperature metallic phase, and provide valuable insight into the transport dynamics of this material. CuxV2O5 exhibit a metal-insulator transition and, more interestingly, a superconductivity transition. Unlike VO2, copper vanadium bronzes are much less studied and many questions are still open, including the possibility of charge ordering transition, just like in other members of the vanadium family. In this thesis, we studied this material and found evidences for charge ordering transitions and possibly other transitions as well. The last material, NbSe3, is a prototypical example of charge density wave systems, where Peierls transitions exist. Here, we study the effects of contacts on resistance noise in the 1D limit. The study aimed to confirm that the electric field threshold is sample length independent, to find out if there is a relation between contact separation and the noise generated and to explore the characteristics of the contact noise. The results confirm that the electric field threshold is independent of the sample length. It was also found that the separation between the contacts does not affect the noise. Finally, the contact noise is of the 1/f-type and has a Gaussian distribution. These results are timely for future device applications utilizing NbSe3.
Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice
Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming
2014-01-01
Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369
Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices
Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2017-01-01
A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system’s own evolution. PMID:28225012
Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices.
Kozlowski, Wojciech; Caballero-Benitez, Santiago F; Mekhov, Igor B
2017-02-22
A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system's own evolution.
Intercalation Dynamics in Lithium-Ion Batteries
2009-09-01
When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4 , this model predicts phase-transformation waves between the...new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic mate- rials such as LiFePO4 ...93 6.3.5 Relevance to LiFePO4 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.6 Wave propagation
NASA Astrophysics Data System (ADS)
Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina
2013-10-01
Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.
NASA Astrophysics Data System (ADS)
Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.
2018-05-01
In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowrey, N.; Mehrabyan, S.; Selen, M.
The first measurements of the coherence factors (R{sub K{pi}}{sub {pi}{sup 0}} and R{sub K3{pi}}) and the average strong-phase differences ({delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}} and {delta}{sub D}{sup K3{pi}}) for D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} are presented. These parameters can be used to improve the determination of the unitarity triangle angle {gamma} in B{sup -}{yields}DK{sup -} decays, where D is a D{sup 0} or D{sup 0} meson decaying to the same final state. The measurements are made using quantum-correlated, fully reconstructed D{sup 0}D{sup 0} pairs produced in e{sup +}e{sup -} collisions at the {psi}(3770)more » resonance. The measured values are: R{sub K{pi}}{sub {pi}{sup 0}}=0.84{+-}0.07, {delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}}=(227{sub -17}{sup +14}) deg., R{sub K3{pi}}=0.33{sub -0.23}{sup +0.20}, and {delta}{sub D}{sup K3{pi}}=(114{sub -23}{sup +26}) deg. These results indicate significant coherence in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0}, whereas lower coherence is observed in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}. The analysis also results in a small improvement in the knowledge of other D-meson parameters, in particular, the strong-phase difference for D{sup 0}{yields}K{sup -}{pi}{sup +}, {delta}{sub D}{sup K{pi}}, and the mixing parameter y.« less
Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna
2002-02-01
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.
Equation of State of Structured Matter at Finite Temperature
NASA Astrophysics Data System (ADS)
Maruyama, T.; Yasutake, N.; Tatsumi, T.
We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.
Multiple topological electronic phases in superconductor MoC
NASA Astrophysics Data System (ADS)
Huang, Angus; Smith, Adam D.; Schwinn, Madison; Lu, Qiangsheng; Chang, Tay-Rong; Xie, Weiwei; Jeng, Horng-Tay; Bian, Guang
2018-05-01
The search for a superconductor with non-s -wave pairing is important not only for understanding unconventional mechanisms of superconductivity but also for finding new types of quasiparticles such as Majorana bound states. Materials with both topological band structure and superconductivity are promising candidates as p +i p superconducting states can be generated through pairing the spin-polarized topological surface states. In this work, the electronic and phonon properties of the superconductor molybdenum carbide (MoC) are studied with first-principles methods. Our calculations show that nontrivial band topology and s -wave Bardeen-Cooper-Schrieffer superconductivity coexist in two structural phases of MoC, namely the cubic α and hexagonal γ phases. The α phase is a strong topological insulator and the γ phase is a topological nodal-line semimetal with drumhead surface states. In addition, hole doping can stabilize the crystal structure of the α phase and elevate the transition temperature in the γ phase. Therefore, MoC in different structural forms can be a practical material platform for studying topological superconductivity.
Hwang, Kyusung; Kim, Yong Baek
2016-01-01
We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293
On the composition dependence of faceting behaviour of primary phases during solidification
NASA Astrophysics Data System (ADS)
Saroch, Mamta; Dubey, K. S.; Ramachandrarao, P.
1993-02-01
The entropy of solution of the primary aluminium-rich phase in the aluminium-tin melts has been evaluated as a function of temperature using available thermodynamic and phase equilibria data with a view to understand the faceting behaviour of this phase. It was noticed that the range of compositions in which alloys of aluminium and tin yield a faceted primary phase is correlated with the domain of compositions over which the entropy of solution shows a strong temperature dependence. It is demonstrated that both a high value of the entropy of solution and a strong temperature dependence of it are essential for providing faceting. A strong temperature dependence of the entropy of solution is in turn a consequence of negligible liquidus slope and existence of retrograde solubility. The AgBi and AgPb systems have similar features.
NASA Astrophysics Data System (ADS)
Bava, Yanina B.; Tamone, Luciana M.; Juncal, Luciana C.; Seng, Samantha; Tobón, Yeny A.; Sobanska, Sophie; Picone, A. Lorena; Romano, Rosana M.
2017-07-01
The IR spectrum of methyl thioglycolate (MTG) was studied in three different phases, and interpreted with the aid of DFT calculations. The gas phase IR spectrum was explainable by the presence of the most stable conformer (syn-gauche-(-)gauche) only, while the IR spectrum of the liquid reveals strong intermolecular interactions, coincident with the formation of a dimeric form. The matrix-isolated spectra allow the identification of the second conformer (syn-gauche-gauche), in addition to the most stable form. The MTG dimer was also isolated by increasing the proportion of MTG in the matrix. The theoretical most stable structure of the dimer, which calculated IR spectrum agrees very well with the experimental one, is stabilized by a double interaction of the lone pair of the O atom of each of the Cdbnd O groups with the antibonding orbitals σ* (Ssbnd H).
van der Ham, Alida Joanna; Ujano-Batangan, Maria Theresa; Ignacio, Raquel; Wolffers, Ivan
2015-01-01
Female domestic workers face many migration-related stressors that affect their mental health, but we know little about the dynamics of stress and coping in different migration phases. This exploratory study aims to assess stress and coping of female migrant domestic workers from the Philippines in different phases of the migration process; prior to migration, in the country of destination and upon return to the Philippines. Data were collected in 2010 using questionnaires (N = 500). Validation of findings took place in a work shop (23 participants) and two focus groups (13 and 8 participants). Stress levels of women were significantly higher abroad than in the Philippines. Stress and coping in the Philippines was primarily related to financial issues, while stress and coping abroad related more strongly loneliness, working conditions and employers. Findings from this study provide insight in the phase-specific and transnational dimensions of stress and coping.
Hydrodynamic effects on phase transition in active matter
NASA Astrophysics Data System (ADS)
Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team
2017-11-01
Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Moens, Bart; Muller, Chris; van Noorden, Leon; Franěk, Marek; Celie, Bert; Boone, Jan; Bourgois, Jan; Leman, Marc
2014-01-01
In this study we explore how music can entrain human walkers to synchronise to the musical beat without being instructed to do so. For this, we use an interactive music player, called D-Jogger, that senses the user's walking tempo and phase. D-Jogger aligns the music by manipulating the timing difference between beats and footfalls. Experiments are reported that led to the development and optimisation of four alignment strategies. The first strategy matched the music's tempo continuously to the runner's pace. The second strategy matched the music's tempo at the beginning of a song to the runner's pace, keeping the tempo constant for the remainder of the song. The third alignment starts a song in perfect phase synchrony and continues to adjust the tempo to match the runner's pace. The fourth and last strategy additionally adjusts the phase of the music so each beat matches a footfall. The first two strategies resulted in a minor increase of steps in phase synchrony with the main beat when compared to a random playlist, the last two strategies resulted in a strong increase in synchronised steps. These results may be explained in terms of phase-error correction mechanisms and motor prediction schemes. Finding the phase-lock is difficult due to fluctuations in the interaction, whereas strategies that automatically align the phase between movement and music solve the problem of finding the phase-locking. Moreover, the data show that once the phase-lock is found, alignment can be easily maintained, suggesting that less entrainment effort is needed to keep the phase-lock, than to find the phase-lock. The different alignment strategies of D-Jogger can be applied in different domains such as sports, physical rehabilitation and assistive technologies for movement performance.
Moens, Bart; Muller, Chris; van Noorden, Leon; Franěk, Marek; Celie, Bert; Boone, Jan; Bourgois, Jan; Leman, Marc
2014-01-01
In this study we explore how music can entrain human walkers to synchronise to the musical beat without being instructed to do so. For this, we use an interactive music player, called D-Jogger, that senses the user's walking tempo and phase. D-Jogger aligns the music by manipulating the timing difference between beats and footfalls. Experiments are reported that led to the development and optimisation of four alignment strategies. The first strategy matched the music's tempo continuously to the runner's pace. The second strategy matched the music's tempo at the beginning of a song to the runner's pace, keeping the tempo constant for the remainder of the song. The third alignment starts a song in perfect phase synchrony and continues to adjust the tempo to match the runner's pace. The fourth and last strategy additionally adjusts the phase of the music so each beat matches a footfall. The first two strategies resulted in a minor increase of steps in phase synchrony with the main beat when compared to a random playlist, the last two strategies resulted in a strong increase in synchronised steps. These results may be explained in terms of phase-error correction mechanisms and motor prediction schemes. Finding the phase-lock is difficult due to fluctuations in the interaction, whereas strategies that automatically align the phase between movement and music solve the problem of finding the phase-locking. Moreover, the data show that once the phase-lock is found, alignment can be easily maintained, suggesting that less entrainment effort is needed to keep the phase-lock, than to find the phase-lock. The different alignment strategies of D-Jogger can be applied in different domains such as sports, physical rehabilitation and assistive technologies for movement performance. PMID:25489742
Tang, Jing; Zheng, Jianbin; Wang, Yang; Yu, Lie; Zhan, Enqi; Song, Qiuzhi
2018-02-06
This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM) sets a threshold to divide the ground contact forces (GCFs) into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA) that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs) were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold) were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA), which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM) and Lopez-Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.
Glutathione protects Candida albicans against horseradish volatile oil.
Bertóti, Regina; Vasas, Gábor; Gonda, Sándor; Nguyen, Nhat Minh; Szőke, Éva; Jakab, Ágnes; Pócsi, István; Emri, Tamás
2016-10-01
Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet
NASA Astrophysics Data System (ADS)
Voráč, J.; Potočňáková, L.; Synek, P.; Hnilica, J.; Kudrle, V.
2016-04-01
Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 102 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications.
No-Go Theorem for Nonstandard Explanations of the τ →KSπ ντ C P Asymmetry
NASA Astrophysics Data System (ADS)
Cirigliano, Vincenzo; Crivellin, Andreas; Hoferichter, Martin
2018-04-01
The C P asymmetry in τ →KSπ ντ , as measured by the BABAR collaboration, differs from the standard model prediction by 2.8 σ . Most nonstandard interactions do not allow for the required strong phase needed to produce a nonvanishing C P asymmetry, leaving only new tensor interactions as a possible mechanism. We demonstrate that, contrary to previous assumptions in the literature, the crucial interference between vector and tensor phases is suppressed by at least 2 orders of magnitude due to Watson's final-state-interaction theorem. Furthermore, we find that the strength of the relevant C P -violating tensor interaction is strongly constrained by bounds from the neutron electric dipole moment and D - D ¯ mixing. These observations together imply that it is extremely difficult to explain the current τ →KSπ ντ measurement in terms of physics beyond the standard model originating in the ultraviolet.
Wyss, R; Bucheli, F
1988-12-02
During method development for the determination of either isotretinoin, tretinoin and their 4-oxo-metabolites, or etretinate, acitretin and 13-cis-acitretin in plasma using high-performance liquid chromatography and column switching, recovery problems arose, when undiluted plasma samples were injected directly onto the precolumn. These recovery problems may be due to the strong binding of the retinoids to different plasma proteins. Measures to overcome this strong protein binding, such as variation of the injection solution composition and the purge mobile phase, were systematically investigated. Best recoveries were obtained by diluting of plasma with 9 mM sodium hydroxide-acetonitrile (8:2, v/v) and protein precipitation with ethanol for the isotretinoin and etretinate series, respectively, in combination with the use of a purge mobile phase containing ammonium acetate and 10-20% acetonitrile. Less effective was the use of a longer precolumn or heating of the precolumn.
Magnetic fields in Neutron Stars
NASA Astrophysics Data System (ADS)
Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.
2015-05-01
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
Strong, tough and stiff bioinspired ceramics from brittle constituents
NASA Astrophysics Data System (ADS)
Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain
2014-05-01
High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.
Persistent dopants and phase segregation in organolead mixed-halide perovskites
Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...
2016-07-25
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales, Bryan A.; Men, Long; Cady, Sarah D.
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
NASA Astrophysics Data System (ADS)
Ikeda, Ryusuke
2015-05-01
Motivated by recent experiments on liquid 3He reporting emergence of novel superfluid phases in globally anisotropic aerogels, our previous theory on superfluid 3He in globally anisotropic aerogels is extended to incorporate the effects of anisotropy of the quasiparticle scattering cross section on the strong-coupling (SC) contributions to the Ginzburg-Landau (GL) free energy on the basis of the spin-fluctuation (paramagnon) approach to the SC contributions developed by Brinkman et al. [Phys. Rev. A 10, 2386 (1974), 10.1103/PhysRevA.10.2386]. In the globally isotropic case, impurity effects on the SC correction destabilize the A phase even at higher pressures of about 30 bar and make the B phase the only state in equilibrium, while SC contributions accompanied by a global stretched anisotropy to the GL quartic terms generally tend to broaden the stability region of the A phase compared with that of the B phase. In particular, in contrast to the cases in bulk and in the isotropic aerogel, the SC corrections to the GL quadratic terms are not negligible in the globally anisotropic case but may change the sign of the apparent anisotropy depending on the magnitude of the frequency cutoff of the normal paramagnon propagator. Based on this sign change of the apparent anisotropy, we discuss different strange observations on superfluid 3He in porous media such as the disappearance of the polar superfluid phase at higher pressures seen in nematically ordered aerogels and the absence of B and A phases with planar l ̂ vector in a stretched aerogel.
Role of Madden-Julian Oscillation in Modulating Monsoon Retreat
NASA Astrophysics Data System (ADS)
Singh, Madhu; Bhatla, R.
2018-01-01
The Madden-Julian oscillation (MJO) is the major fluctuation in tropical weather on a seasonal scale. The impact of MJO on different epochs, viz., onset, advance and active break is well known. There can be several MJO events in a season and it may enhance/suppress the retreat process. The present study aims to find the MJO-modulated retreat of monsoon. The results suggest that the fastest retreat of monsoon occurred in the years 2007 and 2008, while slowest retreat of monsoon occurred in the year 1979. The retreat features of the Indian summer monsoon (ISM) are investigated with the MJO phase and amplitude variations. The daily MJO indices for the retreat period 1979-2016 are used. The results reveal that the MJO strength decreases during the transition phase (i.e., summer monsoon to winter monsoon transition). The monsoon retreat is most favored by strong MJO phase 4 and phase 5. The fastest retreat of monsoon occurred in the years 2007 and 2008, while the slowest retreat of monsoon occurred in the year 1979. There exists a weak positive correlation between the MJO amplitude and the retreat period of monsoon. The monsoon retreat is most favored by strong MJO phase 4 and phase 5. The MJO amplitude variations during MJO phases 1-8 suggest that the MJO amplitude decreases with increase in retreat period. The MJO-modulated retreat results in slow retreat of monsoon, whereas fast and normal retreat of monsoon is seen on rare occasions. Weak MJO events lead to normal retreat of monsoon.
Nuclear physics from lattice QCD at strong coupling.
de Forcrand, Ph; Fromm, M
2010-03-19
We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound "nuclear" matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principles limiting case of QCD, the masses of "atomic nuclei" up to A=12 "carbon".
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.
2010-01-01
We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.
NASA Astrophysics Data System (ADS)
Lyubutin, I. S.; Starchikov, S. S.; Gavriliuk, A. G.; Troyan, I. A.; Nikiforova, Yu. A.; Ivanova, A. G.; Chumakov, A. I.; Rüffer, R.
2017-01-01
The high-pressure properties of a new multiferroic of the langasite family Ba3TaFe3Si2O14 were investigated in diamond-anvil cells (DAC) in the temperature range of 4.2-295 K by a new method of synchrotron Mössbauer spectroscopy. Strong enhancement of the Néel temperature T N was observed at pressures above 20 GPa associated with the structural transformation. The highest value of T N is about 130 K which is almost five times larger than the value at ambient pressure (about 27 K). It was suggested that the high value of T N appears due to redistribution of Fe ions over 3 f and 2 d tetrahedral sites of the langasite structure. In this case, the short Fe-O distances and favorable Fe-O-Fe bond angles create conditions for strong superexchange interactions between iron ions, and effective two-dimensional (2D) magnetic ordering appears in the ( ab) plane. The separation of the sample into two magnetic phases with different T N values of about 50 and 130 K was revealed, which can be explained by the strong 2D magnetic ordering in the ab plane and 3D ordering involving inter-plane interaction.
Coexistence of two electronic phases in LaTiO3+δ (0.01⩽δ⩽0.12) and their evolution with δ
NASA Astrophysics Data System (ADS)
Zhou, H. D.; Goodenough, J. B.
2005-04-01
Although LaTiO3+δ(0.01⩽δ⩽0.12) is single-phase to powder x-ray diffraction, its properties reveal that a hole-poor strongly correlated electronic phase coexists with a hole-rich itinerant-electron phase. With δ⩽0.03 , the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With δ⩾0.08 , isolated hole-poor clusters are embedded in an itinerant-electron matrix. As δ>0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to superparamagnetic strong-correlation fluctuations by δ=0.12 . This behavior is consistent with prediction from the virial theorem of a first-order phase change at the crossover from localized (or strongly correlated) to itinerant electronic behavior, a smaller equilibrium (Ti-O) bond length being in the itinerant-electron phase. Accordingly, the variation of volume with oxidation state does not obey Végard’s law; the itinerant-electron minority phase exerts a compressive force on the hole-poor matrix, and the hole-poor minority phase exerts a tensile stress on the hole-rich matrix.
Sponberg, S; Daniel, T L
2012-10-07
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.
Sponberg, S.; Daniel, T. L.
2012-01-01
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272
Low cost label-free live cell imaging for biological samples
NASA Astrophysics Data System (ADS)
Seniya, C.; Towers, C. E.; Towers, D. P.
2017-02-01
This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.
Effects of heat input on pitting corrosion in super duplex stainless steel weld metals
NASA Astrophysics Data System (ADS)
Shin, Yong taek; Shin, Hak soo; Lee, Hae woo
2012-12-01
Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.
Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow
NASA Astrophysics Data System (ADS)
Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.
2003-05-01
We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.
In-line phase retarder and polarimeter for conversion of linear to circular polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kortright, J.B.; Smith, N.V.; Denlinger, J.D.
1997-04-01
An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structuralmore » (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.« less
Half-metallic ferromagnetism in Sr3Ru2O7
NASA Astrophysics Data System (ADS)
Rivero, Pablo; Meunier, Vincent; Shelton, William
2017-05-01
The bilayered member of the Ruddesden-Popper family of ruthenates, Sr3Ru2O7 , has received increasing attention due to its interesting properties and phases. By using first principle calculations we find that the ground state is characterized by a ferromagnetic (FM) half-metallic state. This state strongly competes with an antiferromagnetic metallic phase, which indicates the possible presence of a particular state characterized by the existence of different magnetic domains. To drive the system towards a phase transition we studied the electronic and magnetic properties as a function of RuO6 octahedra rotations and found that the magnetic phase does not couple with the rotation angle. Our results provide accurate electronic, structure, and magnetic ground-state properties of Sr3Ru2O7 and stimulate the investigation of other types of octahedra rotations and distortions in the search of phase transitions.
Energy and mass balance in the three-phase interstellar medium
NASA Technical Reports Server (NTRS)
Wang, Zhong; Cowie, Lennox L.
1988-01-01
Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.
Phase coexistence and pinning of charge density waves by interfaces in chromium
NASA Astrophysics Data System (ADS)
Singer, A.; Patel, S. K. K.; Uhlíř, V.; Kukreja, R.; Ulvestad, A.; Dufresne, E. M.; Sandy, A. R.; Fullerton, E. E.; Shpyrko, O. G.
2016-11-01
We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDW periods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that the phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface.
Manipulation of wavefront using helical metamaterials.
Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming
2016-08-08
Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.
Characterization of retentivity of reversed phase liquid chromatography columns.
Ying, P T; Dorsey, J G
1991-03-01
There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".
Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP
NASA Astrophysics Data System (ADS)
Lynner, Colton; Long, Maureen D.
2014-05-01
Shear wave splitting of SK(K)S phases is often used to examine upper mantle anisotropy. In specific cases, however, splitting of these phases may reflect anisotropy in the lowermost mantle. Here we present SKS and SKKS splitting measurements for 233 event-station pairs at 34 seismic stations that sample D″ beneath Africa. Of these, 36 pairs show significantly different splitting between the two phases, which likely reflects a contribution from lowermost mantle anisotropy. The vast majority of discrepant pairs sample the boundary of the African large low shear velocity province (LLSVP), which dominates the lower mantle structure beneath this region. In general, we observe little or no splitting of phases that have passed through the LLSVP itself and significant splitting for phases that have sampled the boundary of the LLSVP. We infer that the D″ region just outside the LLSVP boundary is strongly deformed, while its interior remains undeformed (or weakly deformed).
Topological phases in frustrated synthetic ladders with an odd number of legs
NASA Astrophysics Data System (ADS)
Barbarino, Simone; Dalmonte, Marcello; Fazio, Rosario; Santoro, Giuseppe E.
2018-01-01
The realization of the Hofstadter model in a strongly anisotropic ladder geometry has now become possible in one-dimensional optical lattices with a synthetic dimension. In this work, we show how the Hofstadter Hamiltonian in such ladder configurations hosts a topological phase of matter which is radically different from its two-dimensional counterpart. This topological phase stems directly from the hybrid nature of the ladder geometry and is protected by a properly defined inversion symmetry. We start our analysis by considering the paradigmatic case of a three-leg ladder which supports a topological phase exhibiting the typical features of topological states in one dimension: robust fermionic edge modes, a degenerate entanglement spectrum, and a nonzero Zak phase; then, we generalize our findings—addressable in the state-of-the-art cold-atom experiments—to ladders with a higher number of legs.
Three-dimensional mantle dynamics with an endothermic phase transition
NASA Technical Reports Server (NTRS)
Honda, S.; Balachandar, S.; Yuen, D. A.; Reuteler, D.
1993-01-01
3D convection for the spinel to perovskite phase change has been simulated numerically. Results for Rayleigh (Ra) numbers of 0(10 exp 6) show intermittent layering with a strong robust plume rising through the phase boundary. Many descending instabilities are deflected but merging cold sheets come together at a junction. A pool of cold material accumulates underneath in the phase-transition zone. A strong gravitational instability results, which precipitates a rapid and massive discharge of upper-mantle material.
Mondal, Mintu; Kamlapure, Anand; Chand, Madhavi; Saraswat, Garima; Kumar, Sanjeev; Jesudasan, John; Benfatto, L; Tripathi, Vikram; Raychaudhuri, Pratap
2011-01-28
We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.
Strongly Correlated Topological Insulators
2016-02-03
Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators . In the past 3 years, we have started a new direction, that of fractional topological insulators . These are materials...Strongly Correlated Topological Insulators Report Title In the past year, the grant was used for work in the field of topological phases, with emphasis
Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie
2018-01-26
Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.
2015-08-01
Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.
Brauch, Katrin; Pfefferle, Dana; Hodges, Keith; Möhle, Ulrike; Fischer, Julia; Heistermann, Michael
2007-09-01
Although female catarrhine primates show cyclic changes in sexual behavior and sexual swellings, the value of these sexual signals in providing information to males about timing of the fertile phase is largely unclear. Recently, we have shown that in Barbary macaques, males receive information from females which enables them to discern the fertile phase and to focus their reproductive effort accordingly. Here, we investigate the nature of the cues being used by examining female sexual behavior and the size of sexual swelling as potential indicators of the fertile phase. We collected behavioral data and quantified swelling size using digital images of 11 females of the Gibraltar Barbary macaque population and related the data to the time of ovulation and the fertile phase as determined from fecal hormone analysis. We found that rates of female sexual behaviors were not correlated with female estrogen levels and did not significantly differ between the fertile and non-fertile phases of the cycle. In contrast, swelling size was significantly correlated with female estrogen levels and increased predictably towards ovulation with size being maximal during the fertile phase. Moreover, frequencies of male ejaculatory copulations showed a strong positive correlation with swelling size and highest rates were found during maximum swelling. Our data provide strong evidence that female Barbary macaques honestly signal the probability of fertility through sexual swelling and that males apparently use this information to time their mating activities. Honest advertising of the fertile phase might be part of a female strategy to manipulate male mating behavior for their own advantage, such as ensure fertilization with high quality sperm or influence paternity outcome.
Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping; Li, Xiangzhen
2014-04-01
Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4(+), lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor.
Dispersions of Goethite Nanorods in Aprotic Polar Solvents
Coursault, Delphine; Dozov, Ivan; Nobili, Maurizio; Dupont, Laurent; Chanéac, Corinne
2017-01-01
Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation). For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH) nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethylsulfoxide (DMSO), without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles. PMID:29039797
NASA Astrophysics Data System (ADS)
Lee, Cheng-Hsien; Huang, Zhenhua
2018-05-01
The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.
Infrared x-ray pump-probe spectroscopy of the NO molecule
NASA Astrophysics Data System (ADS)
Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.
2005-07-01
Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.
Lorenz, Ramona; Bock, Jelena; Snyder, Jeff; Korvink, Jan G; Jung, Bernd A; Markl, Michael
2014-07-01
The measurement of velocities based on phase contrast MRI can be subject to different phase offset errors which can affect the accuracy of velocity data. The purpose of this study was to determine the impact of these inaccuracies and to evaluate different correction strategies on three-dimensional visualization. Phase contrast MRI was performed on a 3 T system (Siemens Trio) for in vitro (curved/straight tube models; venc: 0.3 m/s) and in vivo (aorta/intracranial vasculature; venc: 1.5/0.4 m/s) data. For comparison of the impact of different magnetic field gradient designs, in vitro data was additionally acquired on a wide bore 1.5 T system (Siemens Espree). Different correction methods were applied to correct for eddy currents, Maxwell terms, and gradient field inhomogeneities. The application of phase offset correction methods lead to an improvement of three-dimensional particle trace visualization and count. The most pronounced differences were found for in vivo/in vitro data (68%/82% more particle traces) acquired with a low venc (0.3 m/s/0.4 m/s, respectively). In vivo data acquired with high venc (1.5 m/s) showed noticeable but only minor improvement. This study suggests that the correction of phase offset errors can be important for a more reliable visualization of particle traces but is strongly dependent on the velocity sensitivity, object geometry, and gradient coil design. Copyright © 2013 Wiley Periodicals, Inc.
Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Ananikian, N. S.; Campa, A.; Ruffo, S.
2017-12-01
We study inequivalence of canonical and microcanonical ensembles in the mean-field Blume-Emery-Griffiths model. This generalizes previous results obtained for the Blume-Capel model. The phase diagram strongly depends on the value of the biquadratic exchange interaction K , the additional feature present in the Blume-Emery-Griffiths model. At small values of K , as for the Blume-Capel model, lines of first- and second-order phase transitions between a ferromagnetic and a paramagnetic phase are present, separated by a tricritical point whose location is different in the two ensembles. At higher values of K the phase diagram changes substantially, with the appearance of a triple point in the canonical ensemble, which does not find any correspondence in the microcanonical ensemble. Moreover, one of the first-order lines that starts from the triple point ends in a critical point, whose position in the phase diagram is different in the two ensembles. This line separates two paramagnetic phases characterized by a different value of the quadrupole moment. These features were not previously studied for other models and substantially enrich the landscape of ensemble inequivalence, identifying new aspects that had been discussed in a classification of phase transitions based on singularity theory. Finally, we discuss ergodicity breaking, which is highlighted by the presence of gaps in the accessible values of magnetization at low energies: it also displays new interesting patterns that are not present in the Blume-Capel model.
Early visual processing is enhanced in the midluteal phase of the menstrual cycle.
Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L
2015-12-01
Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
Characterization of morphological response of red cells in a sucrose solution.
Rudenko, Sergey V
2009-01-01
The dynamics of red cell shape changes following transfer into sucrose media having a low chloride content was studied. Based on a large number of measurements, six types of morphological response (MR), differing both in the degree of shape changes and the time course of the process, were identified. The most prominent type of response is a triphasic sequence of shape changes consisting of a fast transformation into a sphere (phase 1), followed by restoration of the discoid shape (phase 2) and final transformation into spherostomatocytes (phase 3), with individual parameters which could vary significantly. It was found that individual morphological response exhibited day to day variations, depending on the initial state of the red blood cells and the donor, but to a larger extent depended on the composition of the sucrose solution, such as concentration and type of buffers, the presence of EDTA, calcium, as well as very small amounts of extracellular hemoglobin. MR shows strong pH and ionic strength dependence. Low pH inhibited phase 1 and high pH changed dramatically the time course of the response. Increasing ionic strength inhibited all phases of MR, and at concentrations above 10-20 mM NaCl it was fully suppressed. Tris and phosphate were also inhibitory whereas HEPES, MOPS and Tricine were less effective. MR occurred also in hypertonic or hypotonic sucrose solutions, with exception of extreme hypotonicity due to volume restrictions. It is concluded that strong membrane depolarization per se is not a causal factor leading to MR, and its different phases could be regulated independently. For some types of morphological response the fast shape transformation from sphere to disc and back to sphere occurs within a 10 s time interval and could be accelerated several fold in the presence of a small amount of hemoglobin. It is suggested that MR represents a type of general cell reaction that occurs upon exposure to low ionic strength.
Semimetallization of dielectrics in strong optical fields
Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I.; Kim, D.
2016-01-01
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics. PMID:26888147
Semimetallization of dielectrics in strong optical fields
Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; ...
2016-02-18
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drivemore » this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Lastly, our results may blaze a trail to PHz-rate optoelectronics.« less
Semimetallization of dielectrics in strong optical fields.
Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I; Kim, D
2016-02-18
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.
Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D
2002-10-25
Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.
Classical dimer model with anisotropic interactions on the square lattice
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
2009-07-01
We discuss phase transitions and the phase diagram of a classical dimer model with anisotropic interactions defined on a square lattice. For the attractive region, the perturbation of the orientational order parameter introduced by the anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a dimer-liquid to columnar phases. According to the discussion by Nomura and Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we proffer criteria to determine transition points and also universal level-splitting conditions. Subsequently, we perform numerical diagonalization calculations of the nonsymmetric real transfer matrices up to linear dimension specified by L=20 and determine the global phase diagram. For the repulsive region, we find the boundary between the dimer-liquid and the strong repulsion phases. Based on the dispersion relation of the one-string motion, which exhibits a twofold “zero-energy flat band” in the strong repulsion limit, we give an intuitive account for the property of the strong repulsion phase.
Ishmayana, Safri; Kennedy, Ursula J; Learmonth, Robert P
2017-11-27
Membrane lipid unsaturation index and membrane fluidity have been related to yeast ethanol stress tolerance in published studies, however findings have been inconsistent. In this study, viability reduction on exposure to 18% (v/v) ethanol was compared to membrane fluidity determined by laurdan generalized polarization. Furthermore, in the determination of viability reduction, we examined the effectiveness of two methods, namely total plate count and methylene violet staining. We found a strong negative correlation between ethanol tolerance and membrane fluidity, indicated by negative Pearson correlation coefficients of - 0.79, - 0.65 and - 0.69 for Saccharomyces cerevisiae strains A12, PDM and K7, respectively. We found that lower membrane fluidity leads to higher ethanol tolerance, as indicated by decreased viability reduction and higher laurdan generalized polarization in respiratory phase compared to respiro-fermentative phase cells. Total plate count better differentiated ethanol tolerance of yeast cells in different growth phases, while methylene violet staining was better to differentiate ethanol tolerance of the different yeast strains at a particular culture phase. Hence, both viability assessment methods have their own advantages and limitations, which should be considered when comparing stress tolerance in different situations.
NASA Astrophysics Data System (ADS)
Wang, Runzhi; Go, Ara; Millis, Andrew
Pyrochlore iridates (R2 Ir2O7) are studied using density functional theory plus single-site and cluster dynamical mean-field theory (DFT+DMFT). The calculations include spin-orbit coupling. Significant differences between the single-site and cluster calculations are found. The single-site approximation fails to account for the properties of the paramagnetic insulator phase, in particular predicting a larger gap than found in experiments, while cluster calculations yield gaps consistent with transport data. A ground-state phase diagram is computed. Paramagnetic metal, metallic all-in/all-out (AIAO) and insulating AIAO phases are found. Tilted Weyl cones are observed in the AIAO metallic phase for a relatively wide range of interaction strength. Our paramagnetic calculations predict almost identical behaviors for the Y and Eu compound, conflicting with the strong material dependence reported in experiments. Inclusion of magnetic order restores the material difference. The physical origin of the difference is discussed. The results indicate that intersite effects, most likely of antiferromagnetic origin, play an important role in studying the physics of pyrochlore iridates. This work is supported by DOE-ER046169.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves.
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-03-22
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
Impact of vacancy ordering on thermal transport in crystalline phase-change materials.
Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M
2015-01-01
Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.
Impact of vacancy ordering on thermal transport in crystalline phase-change materials
NASA Astrophysics Data System (ADS)
Siegert, K. S.; Lange, F. R. L.; Sittner, E. R.; Volker, H.; Schlockermann, C.; Siegrist, T.; Wuttig, M.
2015-01-01
Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.
NASA Astrophysics Data System (ADS)
Raeesi, Behrooz; Piri, Mohammad
2009-10-01
SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area significantly in oil-wet systems. A qualitative comparison of our results with the experimental data available in literature for glass beads shows, with some expected differences, an encouraging agreement. Also, our results agree well with those generated by the previously developed models.
Software for MR image overlay guided needle insertions: the clinical translation process
NASA Astrophysics Data System (ADS)
Ungi, Tamas; U-Thainual, Paweena; Fritz, Jan; Iordachita, Iulian I.; Flammang, Aaron J.; Carrino, John A.; Fichtinger, Gabor
2013-03-01
PURPOSE: Needle guidance software using augmented reality image overlay was translated from the experimental phase to support preclinical and clinical studies. Major functional and structural changes were needed to meet clinical requirements. We present the process applied to fulfill these requirements, and selected features that may be applied in the translational phase of other image-guided surgical navigation systems. METHODS: We used an agile software development process for rapid adaptation to unforeseen clinical requests. The process is based on iterations of operating room test sessions, feedback discussions, and software development sprints. The open-source application framework of 3D Slicer and the NA-MIC kit provided sufficient flexibility and stable software foundations for this work. RESULTS: All requirements were addressed in a process with 19 operating room test iterations. Most features developed in this phase were related to workflow simplification and operator feedback. CONCLUSION: Efficient and affordable modifications were facilitated by an open source application framework and frequent clinical feedback sessions. Results of cadaver experiments show that software requirements were successfully solved after a limited number of operating room tests.
Electron-electron correlations in Raman spectra of VO2
NASA Astrophysics Data System (ADS)
Goncharuk, I. N.; Ilinskiy, A. V.; Kvashenkina, O. E.; Shadrin, E. B.
2013-01-01
It has been shown that, in single crystals and films of a strongly correlated material, namely, vanadium dioxide, upon a thermally stimulated phase transition from the low-temperature monoclinic phase to the high-temperature tetragonal phase, the narrow-line Raman spectrum of the insulating (monoclinic) phase transforms into the broad-band Raman spectrum, which contains two peaks at 500 and 5000 cm-1 with widths of 400 and 3500 cm-1, respectively. It has been found that, as the temperature of the monoclinic phase approaches the structural phase transition temperature (340 K), the line profile of soft-mode phonons at a frequency of 149 cm-1 with A g symmetry and the line profile of phonons at a frequency of 201 cm-1 with A g symmetry acquire an asymmetric shape with a Fano antiresonance that is characteristic of the interaction of a single phonon vibration with a continuum of strongly correlated electrons. It has been demonstrated that the thermal transformation of peaks in the Raman spectra of the VO2 metallic phase is in quantitative agreement with the theory of Raman scattering in strongly correlated materials.
Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.
Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F
2018-05-03
Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Zhao, Bo
Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.
Zeng, Lin-Yan; Lian, Jiang-Shan; Chen, Jian-Yang; Jia, Hong-Yu; Zhang, Yi-Min; Xiang, Dai-Rong; Yu, Liang; Hu, Jian-Hua; Lu, Ying-Feng; Zheng, Lin; Li, Lan-Juan; Yang, Yi-Da
2014-07-21
To determine the baseline hepatitis B surface antigen (HBsAg) levels during the different phases of chronic hepatitis B (CHB) patients in China. Six hundred and twenty-three hepatitis B virus or un-infected patients not receiving antiviral therapy were analyzed in a cross-sectional study. The CHB patients were classified into five phases: immune-tolerant (IT, n = 108), immune-clearance (IC, n = 161), hepatitis B e antigen negative hepatitis (ENH, n = 149), low-replicative (LR, n = 135), and liver cirrhosis (LC, n = 70). HBsAg was quantified (Abbott ARCHITECT assay) and correlated with hepatitis B virus (HBV) DNA, and serum alanine aminotransferase/aspartate aminotransferase (ALT/AST) in each phase of CHB was also determined. Median HBsAg titers were different in each phase of CHB (P < 0.001): IT (4.85 log10 IU/mL), IC (4.36 log10 IU/mL), ENH (2.95 log10 IU/mL), LR (3.18 log10 IU/mL) and LC (2.69 log10 IU/mL). HBsAg titers were highest in the IT phase and lowest in the LC phase. Serum HBsAg titers showed a strong correlation with HBV viral load in the IC phase (r = 0.683, P < 0.001). No correlation between serum HBsAg level and ALT/AST was observed. The mean baseline HBsAg levels differ significantly during the five phases of CHB, providing evidence on the natural history of HBV infection. HBsAg quantification may predict the effects of immune-modulator or oral nucleos(t)ide analogue therapy.
Electronic and magnetic properties of epitaxial SrRh O 3 films
Nichols, John A.; Yuk, Simuck F.; Sohn, Changhee; ...
2017-06-16
The strong interplay of fundamental order parameters in complex oxides is known to give rise to exotic physical phenomena. The 4$d$ transition-metal oxide SrRh O 3 has generated much interest, but advances have been hindered by difficulties in preparing single-crystalline phases. Here we epitaxially stabilize high-quality single-crystalline SrRh O 3 films and investigate their structural, electronic, and magnetic properties. Lastly, we determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of Rh O 6 octahedra.
Probing strong correlations with light scattering: Example of the quantum Ising model
Babujian, H. M.; Karowski, M.; Tsvelik, A. M.
2016-10-01
In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.
Probing strong correlations with light scattering: Example of the quantum Ising model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babujian, H. M.; Karowski, M.; Tsvelik, A. M.
In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohner, Bíborka; Endrődi, Balázs; Tóth, Ágota, E-mail: atoth@chem.u-szeged.hu
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence ofmore » a strong gravity current.« less
Novel Phases from the Interplay of Topology and Strong Interactions
NASA Astrophysics Data System (ADS)
Hickey, Ciaran
In recent years, topology has become increasingly prevalent in condensed matter physics. It has allowed us to understand, and even predict, a variety of striking and remarkable physical phenomena. The study of strongly interacting systems has similarly lavished us with a diverse range of exotic phases and unconventional transitions, many of which are still poorly understood. In this thesis we will explore the interplay between topology and interactions in an effort to uncover new and novel phases. First we study how interactions impact the quantum phase transition between a topologically non-trivial phase and a trivial phase. The combination of interactions and the low-energy degrees of freedom associated with the transition leads to the emergence of a dome of lattice-symmetry breaking nematic order. Such behaviour is reminiscent of a number of strongly correlated electronic systems. We move on to study the strongly interacting limit of one of the earliest and best-known non-interacting topological phases, Haldane's model of a Chern insulator. Recently realized with ultracold atoms in a shaken optical lattice, the model has a non-trivial topological invariant associated with its band structure. In the strongly interacting limit the spin degrees of freedom are all that survive and we find a rich phase diagram of magnetically ordered phases, using a combination of both classical and quantum techniques. Supplementing the model with an additional term we can 'quantum-melt' one of these ordered states to produce a disordered, liquid state that we positively identify as a chiral spin liquid, a highly entangled state of matter with fractionalised excitations. We generalise this mechanism to other two dimensional lattices, uncovering a possible unifying framework with which to understand the emergence of chiral spin liquids in lattice spin models. Finally, motivated by groundbreaking experiments in the ultracold atoms community, we investigate a model of two-component bosons with an artificial spin-orbit coupling. The interplay between the lattice, interactions and spin-orbit coupling produces a variety of unusual superfluid phases. Using a novel Monte Carlo technique we reveal the finite temperature phase diagram that appears close to the Mott transition.
Vieler, Astrid; Scheidt, Holger A; Schmidt, Peter; Montag, Cindy; Nowoisky, Janine F; Lohr, Martin; Wilhelm, Christian; Huster, Daniel; Goss, Reimund
2008-04-01
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.
Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2016-09-01
Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.
Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity.
Bahr, Benjamin; Steinhaus, Sebastian
2016-09-30
Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.
2017-12-01
The phase transition sequence of SiO2 inducing by high pressure was theoretically predicted as coordination number (CN=6) structures (rutile, pyrite), CN=8 (Pnma) and CN=9 (P-62m) structures, but only the phases up to pyrite structure in SiO2 were observed experimentally up to now. The CN8 phase and CN9 phases of SiO2 were predicted to be stable at least 650 GPa, which is challenging to achieve in the static DAC experiment at present. In other metal dioxide systems, such as TiO2, the ambient rutile and anatase phases first transform to pyrite (CN6), then to the baddeleyite (CN7) phase, to a Pnma (CN8) phase and P-62m(CN9) phase. In this report, under strong compression at room temperature, several metal dioxides were studied experimentally and theoretically, to verify whether this theoretical predicted trend is common transition path under strong compression. This work was supported by Natural Science Foundation of China (11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (JC201005), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (HIT. BRET1.2010002, HIT. IBRSEM.A.201403).
Jud, Corinne; Schmutz, Isabelle; Hampp, Gabriele; Oster, Henrik
2005-01-01
Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions. PMID:16136228
Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes
NASA Astrophysics Data System (ADS)
Brabec, Christoph J.; Winder, Christoph; Scharber, Markus C.; Sariciftci, N. Serdar; Hummelen, Jan C.; Svensson, Mattias; Andersson, Mats R.
2001-10-01
Regioregular poly(3-(4'-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv-visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer.
The phase behavior of cationic lipid-DNA complexes.
May, S; Harries, D; Ben-Shaul, A
2000-01-01
We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951
NASA Astrophysics Data System (ADS)
Belyanchikov, M. A.; Gorelik, V. S.; Gorshunov, B. P.; Pyatyshev, A. Yu.
2017-03-01
Strong sharp lines due to the librational modes characterized by a pseudoscalar symmetry type have been found in the low-frequency Raman spectra of the lattices of glycine and tyrosine amino acids. The intensities of these lines exceed those for Raman scattering in the region of intramolecular vibrations. The spectra of chirally pure and racemic phases of amino acids differ significantly. The results obtained can be used to observe stimulated Raman scattering from the librational modes of crystalline amino acids and monitor the chiral purity of bioactive preparations containing amino acids.
Quantum phase transition in dimerised spin-1/2 chains
NASA Astrophysics Data System (ADS)
Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali
2015-11-01
Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.
Grain size effect on activation energy in spinel CoFe{sub 2}O{sub 4} ceramic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriya, Sweety, E-mail: sweety@iitp.ac.in; Kumar, Sunil; Kar, Manoranjan
2016-05-23
Cobalt ferrite of different average crystallites (from nanocrystallite to micro crystallites) has been prepared by the Sol-Gel Method. The X-ray diffraction (XRD) analysis confirms the cubic spinel phase with no trace of impurity phases. The effect of annealing temperature on micro structure and electric transport properties as a function of frequency and temperature has been studied. It is observed that the electric impedance and conductivity are strongly dependent on grain size. The impedance spectroscopic study is employed to understand the electrical transport properties of cobalt ferrite.
Ganymede and Callisto - Surface textural dichotomies and photometric analysis
NASA Technical Reports Server (NTRS)
Buratti, Bonnie J.
1991-01-01
Complete solar phase curves of the Ganymede and Callisto leading and trailing hemispheres, which have been obtained by reducing Voyager imaging observations and combining them with ground-based telescopic data, are presently fit to scattering models in order to derive hemispherical values of the single scattering albedo, the single particle phase function (SPPF), the compaction state (CS) of the optically active portion of the regolith, and the mean slope angle of macroscopic features. While Callisto's leading side is composed of particles that are more strongly backscattering than the trailing side, no hemispheric differences are found in the CS, surface roughness, or SPPF.
Giant asymmetric self-phase modulation in superconductor thin films
NASA Astrophysics Data System (ADS)
Robson, Charles W.; Biancalana, Fabio
2018-04-01
Self-phase modulation (SPM) of light pulses is found to occur strongly, at low incident intensities, in the coupling of light with superconductors. We develop a theory from a synthesis of the time-dependent Ginzburg-Landau (TDGL) equation and basic electrodynamics which shows the strongly non-linear phase accumulated in the interaction. Unusually, the SPM of the pulse in this system is found to be highly asymmetric, producing a strongly redshifted spectrum when interacting with a superconducting thin film, and it develops in just a few nanometers of propagation. In this paper we present theoretical results and simulations in the THz regime, for both hyperbolic secant and supergaussian-shaped pulses.
Electronic transition in La1-xSrxTiO3
NASA Astrophysics Data System (ADS)
Hays, C. C.; Zhou, J.-S.; Markert, J. T.; Goodenough, J. B.
1999-10-01
The transition with increasing x in La1-xSrxTiO3 from an antiferromagnetic, p-type polaronic conductor to an n-type metal with an enhanced Pauli paramagnetism was investigated by monitoring changes in structure, magnetic properties, and, under different hydrostatic pressures, the resistance and thermoelectric power of ceramic samples. We conclude that LaTiO3 is an itinerant-electron antiferromagnet and the transition is first order with a phase separation associated with cooperative oxygen-atom displacements that segregate strongly correlated states from Fermi-liquid states. The Néel temperature TN~145 K decreases precipitously to 100 K at the phase limit x=0.045+/-0.005 the two-phase domain extends over the compositions 0.045<=x<=0.08.
Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources
NASA Astrophysics Data System (ADS)
Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim
2016-03-01
We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Multipoint entanglement in disordered systems
NASA Astrophysics Data System (ADS)
Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim
2017-02-01
We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.
Conflict in Relationships and Perceived Support in Innovative Work Behavior
NASA Astrophysics Data System (ADS)
Battistelli, Adalgisa; Picci, Patrizia; Odoardi, Carlo
In recent years, the idea that innovation is one of the determining factors in the efficacy and survival of organizations has been strongly consolidated. Individuals and groups within the various organizations undertake specific creative activities with the express intention of deriving direct benefits from the changes with regard to the generational phase of ideas. Innovative Work Behavior (IWB) is a complex behavioral pattern which consists of a set of three different tasks, namely, idea generation, idea promotion and idea realization. Considering the scant attention that has been paid to date to the potentially different role of antecedent factors in the various phases of innovative behavior, the aim of the present work was to examine the combined conflicting and supportive roles on innovation within the three stages of IWB. The results obtained from a sample of 110 Public Elementary School teachers confirm, as expected, that in the realization phase there are a positive influence from conflicting and supportive roles on innovation and a positive influence from support for innovation also in the phase of idea promotion; whereas, unexpectedly, a positive influence from conflicting is exercised in the phases of idea generation.
Comas, M; Beersma, D G M; Spoelstra, K; Daan, S
2006-10-01
To understand entrainment of circadian systems to different photoperiods in nature, it is important to know the effects of single light pulses of different durations on the free-running system. The authors studied the phase and period responses of laboratory mice (C57BL6J//OlaHsd) to single light pulses of 7 different durations (1, 3, 4, 6, 9, 12, and 18 h) given once per 11 days in otherwise constant darkness. Light-pulse duration affected both amplitude and shape of the phase response curve. Nine-hour light pulses yielded the maximal amplitude PRC. As in other systems, the circadian period slightly lengthened following delays and shortened following advances. The authors aimed to understand how different parts of the light signal contribute to the eventual phase shift. When PRCs were plotted using the onset, midpoint, and end of the pulse as a phase reference, they corresponded best with each other when using the mid-pulse. Using a simple phase-only model, the authors explored the possibility that light affects oscillator velocity strongly in the 1st hour and at reduced strength in later hours of the pulse due to photoreceptor adaptation. They fitted models based on the 1-h PRC to the data for all light pulses. The best overall correspondence between PRCs was obtained when the effect of light during all hours after the first was reduced by a factor of 0.22 relative to the 1st hour. For the predicted PRCs, the light action centered on average at 38% of the light pulse. This is close to the reference phase yielding best correspondence at 36% of the pulses. The result is thus compatible with an initial major contribution of the onset of the light pulse followed by a reduced effect of light responsible for the differences between PRCs for different duration pulses. The authors suggest that the mid-pulse is a better phase reference than lights-on to plot and compare PRCs of different light-pulse durations.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics.
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-10-07
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.
Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests.
Vanhoenacker, Gerd; Vandenheede, Isabel; David, Frank; Sandra, Pat; Sandra, Koen
2015-01-01
Comprehensive two-dimensional liquid chromatography (LC×LC) is here proposed as a novel tool for peptide mapping of therapeutic monoclonal antibodies in both R&D and routine (QA/QC) environments. This is illustrated by the analysis of the tryptic digest of trastuzumab (Herceptin) applying a commercially available two-dimensional 2D-LC system. Three different LC×LC combinations, i.e., strong cation-exchange × reversed-phase (SCX×RP), reversed-phase × reversed-phase (RP×RP), and hydrophilic interaction × reversed-phase (HILIC×RP), are reported. Detection was carried out using both UV detection (DAD) and mass spectrometry (MS). Several challenges related to the application of LC×LC in peptide mapping and the hyphenation to MS are addressed. The applicability of LC×LC in the assessment of identity, purity, and comparability is demonstrated by the analysis of different Herceptin innovator production batches, a Herceptin biosimilar in development and of stressed samples. The described methodology was shown to be precise in terms of peak volume and (2)D retention time opening interesting perspectives for use in QA/QC testing.
NASA Astrophysics Data System (ADS)
Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.
2017-02-01
The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.
Drude weight fluctuations in many-body localized systems
NASA Astrophysics Data System (ADS)
Filippone, Michele; Brouwer, Piet W.; Eisert, Jens; von Oppen, Felix
2016-11-01
We numerically investigate the distribution of Drude weights D of many-body states in disordered one-dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-theory prediction P (D ) ∝(γ2+D2) -3 /2 , although the distribution width γ strongly fluctuates between disorder realizations. A crossover is observed towards a distribution with different large-D asymptotics deep in the many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show that the average distribution width <γ >, rescaled by L Δ ,Δ being the average level spacing in the middle of the spectrum and L the systems size, is an efficient probe of the many-body localization transition, as it increases (vanishes) exponentially in the delocalized (localized) phase.
NASA Astrophysics Data System (ADS)
Cui, B.; Song, C.; Li, F.; Zhong, X. Y.; Wang, Z. C.; Werner, P.; Gu, Y. D.; Wu, H. Q.; Saleem, M. S.; Parkin, S. S. P.; Pan, F.
2017-10-01
Manipulation of oxygen vacancies (VO ) in single oxide layers by varying the electric field can result in significant modulation of the ground state. However, in many oxide multilayers with strong application potentials, e.g., ferroelectric tunnel junctions and solid-oxide fuel cells, understanding VO behavior in various layers under an applied electric field remains a challenge, owing to complex VO transport between different layers. By sweeping the external voltage, a reversible manipulation of VO and a corresponding fixed magnetic phase transition sequence in cobaltite/manganite (SrCoO3 -x/La0.45Sr0.55MnO3 -y ) heterostructures are reported. The magnetic phase transition sequence confirms that the priority of electric-field-induced VO formation or annihilation in the complex bilayer system is mainly determined by the VO formation energies and Gibbs free-energy differences, which is supported by theoretical analysis. We not only realize a reversible manipulation of the magnetic phase transition in an oxide bilayer but also provide insight into the electric-field control of VO engineering in heterostructures.
Interphase boundary misorientation in mantle rocks
NASA Astrophysics Data System (ADS)
Morales, L. F.; Mainprice, D.; Boudier, F. I.
2017-12-01
Interphase boundaries are planar defects that separate two different phases, which may have different compositions and/or crystalline structures. Depending on the degree of atomic structure matching between the two adjacent phases, the interphase boundaries can be classified in coherent, semicoherent and incoherent phase boundaries. Here we present the recent developments of interphase misorientation boundary analyses calculated from EBSD data in an olivine-antigorite schist from the Val Malenco (Italy) and a spinel lherzolite from the Horoman peridotite complex (Japan). The antigorite schist is strongly foliated and contains about 78% antigorite and 22% olivine, with minor amounts (<1%) of magnetite and chlorite. The antigorite CPO is characterized by a point maxima of poles to (100) parallel to lineation and poles to (001) to the foliation normal. Phase transformation relationships between olivine and antigorite are evident in phase boundary misorientation analysis, (100)ol||(001)atg being more frequent than [001]ol||[010]atg. From the interphase misorientation analyses, we have described two new phase transformation relationships between olivine and antigorite. The studied lherzolite contain 70% olivine, 15% enstatite, 13% diopside and 2% spinel. It has a porphyroclastic texture materialized by enstatite and olivine in a matrix of olivine. Both enstatite, diopside and spinel occur along discontinuous bands parallel to the foliation of the sample. Olivine bulk CPO can be described as a fibre-[100], while both enstatite and diopside show a (001) fibre texture. Interphase misorientation angle distribution between olivine-enstatite and olivine-diopside follow approximately the distribution expected for uniform texture, with some minor (but important) differences at high angle phase boundaries, particularly for olivine-diopside. The pair angle-misorientation axes for the olivine-enstatite show a relatively uniform distribution for different misorientation angle intervals. On the other hand there is a clear concentration of misorientation axes parallel to [010] of olivine in the case of olivine-diopside phase boundaries, possibly related to melt percolation. These differences demonstrate the potential use of interphase misorientation for the study of material processes in rocks.
DSMC simulation of two-phase plume flow with UV radiation
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model
Ding, Jian; Klein, Stanley A.; Levi, Dennis M.
2013-01-01
We investigated suprathreshold binocular combination, measuring both the perceived phase and perceived contrast of a cyclopean sine wave. We used a paradigm adapted from Ding and Sperling (2006, 2007) to measure the perceived phase by indicating the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and we used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We found that under normal viewing conditions (high contrast and long stimulus duration), perceived contrast is constant, independent of the interocular contrast ratio and the interocular phase difference, while the perceived phase shifts smoothly from one eye to the other eye depending on the contrast ratios. However, at low contrasts and short stimulus durations, binocular combination is more linear and contrast summation is phase-dependent. To account for phase-dependent contrast summation, we incorporated a fusion remapping mechanism into our model, using disparity energy to shift the monocular phases towards the cyclopean phase in order to align the two eyes' images through motor/sensory fusion. The Ding-Sperling model with motor/sensory fusion mechanism gives a reasonable account of the phase dependence of binocular contrast combination and can account for either the perceived phase or the perceived contrast of a cyclopean sine wave separately; however it requires different model parameters for the two. However, when fit to both phase and contrast data simultaneously, the Ding-Sperling model fails. Incorporating interocular gain enhancement into the model results in a significant improvement in fitting both phase and contrast data simultaneously, successfully accounting for both linear summation at low contrast energy and strong nonlinearity at high contrast energy. PMID:23397038
NASA Astrophysics Data System (ADS)
Loan, Trinh Thi; Bang, Ngac An; Huong, Vu Hoang; Long, Nguyen Ngoc
2017-07-01
TiO2 powders doped with different amounts of Cr3+ions (from 0 to 10 mol%) have been prepared by hydrothermal technique. TiO2:Cr3+ powders were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflection, absorption, photoluminescence and photoluminescence excitation spectra. The results showed that the Cr3+ dopant concentrations did not affect on the lattice constants of TiO2 crystal, but affected on shift and broadening of the Raman modes for both anatase and rutile phases. The band gap of both the anatase and rutile TiO2 host lattice was strongly decreased with increasing Cr3+ dopant concentration. The photoluminescence spectra of TiO2:Cr3+ anatase phase exhibited a weak narrow peak (the so-called R-line) at 698 nm, meanwhile those of TiO2:Cr3+ rutile phase consisted of a very intense narrow zero-phonon R-line at 695 nm assigned to the 2E(2G) → 4A2(4F) transition of Cr3+ ions in strong octahedral field and its phonon-sidebands. In particular, in the PL spectrum of TiO2:Cr3+ rutile phase is also observed an abroad emission band centered at 813 nm assigned to the 4T2(4F) → 4A2(4F) transition of ions Cr3+ in weak octahedral field.
Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance
Tao, Jing; Niebieskikwiat, Dario; Jie, Qing; Schofield, Marvin A.; Wu, Lijun; Li, Qiang; Zhu, Yimei
2011-01-01
It is generally accepted that electronic and magnetic phase separation is the origin of many of exotic properties of strongly correlated electron materials, such as colossal magnetoresistance (CMR), an unusually large variation in the electrical resistivity under applied magnetic field. In the simplest picture, the two competing phases are those associated with the material state on either side of the phase transition. Those phases would be paramagnetic insulator and ferromagnetic metal for the CMR effect in doped manganites. It has been speculated that a critical component of the CMR phenomenon is nanoclusters with quite different properties than either of the terminal phases during the transition. However, the role of these nanoclusters in the CMR effect remains elusive because the physical properties of the nanoclusters are hard to measure when embedded in bulk materials. Here we show the unexpected behavior of the nanoclusters in the CMR compound La1-xCaxMnO3 (0.4 ≤ x < 0.5) by directly correlating transmission electron microscopy observations with bulk measurements. The structurally modified nanoclusters at the CMR temperature were found to be ferromagnetic and exhibit much higher electrical conductivity than previously proposed. Only at temperatures much below the CMR transition, the nanoclusters are antiferromagnetic and insulating. These findings substantially alter the current understanding of these nanoclusters on the material’s functionality and would shed light on the microscopic study on the competing spin-lattice-charge orders in strongly correlated systems. PMID:22160678
The observation of negative permittivity in stripe and bubble phases
NASA Astrophysics Data System (ADS)
Smet, Jurgen
The physics of itinerant two-dimensional electrons is by and large governed by repulsive Coulomb forces. However, cases exist where the interplay of attractive and repulsive interaction components may instigate spontaneous symmetry lowering and clustering of charges in geometric patterns such as bubbles and stripes, provided these interactions act on different length scales. The existence of these phases in higher Landau levels has so far been concluded from transport behavior. Here, we report surface acoustic wave experiments. They probe the permittivity at small wave vector. This technique offers true directionality, whereas in transport the current distribution is complex and strongly affected by the inhomogeneous density pattern. Outside the charge density wave regime, the measured permittivity is always positive. However, negative permittivity is observed in the bubble phase irrespective of the propagation direction. For the stripe phase the permittivity takes on both positive as well as negative values depending on the propagation direction. This confirms the stripe phase to be a strongly anisotropic medium. The observation of negative permittivity is considered an immediate consequence of the exchange related attractive interaction. It makes charge clustering favorable in higher Landau levels where the repulsive direct Coulomb interaction acts on a longer length scale and is responsible for a negative compressibility of the electronic system. This work has been carried out with B. Friess, K. von Klitzing (MPI-FKF), Y. Peng, F. von Oppen (FU Berlin), B. Rosenow (Uni Leipzig) and V. Umansky (Weizmann Institute of Science).
Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model
NASA Astrophysics Data System (ADS)
Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck
2016-07-01
We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.
Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C
2013-05-15
Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs to be further processed for particle loaded samples and/or a pretreatment protocol should be developed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of flow in a square mini-channel: Effect of flow oscillation
NASA Astrophysics Data System (ADS)
Lobo, Oswald Jason; Chatterjee, Dhiman
2018-04-01
In this research paper, we present a numerical prediction of steady and fully oscillatory flows in a square mini-channel connected between two plenums. Flow separation occurs at the contraction of the plenum into the channel which causes an asymmetry in the development of flow in the entrance region. The entrance length and recirculation length are found, for both steady and fully oscillatory flows. It is shown that the maximum entrance length decreases with an increase in the oscillating frequency while the maximum recirculation length and recirculation area increase with an increase in oscillating frequency. The phase of a velocity signal is shown to be a strong function of its location. The phase difference between the velocities with respect to the different points along the centerline and those at the middle of the channel show a significant dependence on the driving frequency. There is a significant variation in the phase angles of the velocity signals computed between a point near the wall and that at the centerline. This phase difference decreases along the channel length and does not change beyond the entrance length. This feature can then be used to determine the maximum entrance length, which is otherwise problematic to ascertain in the case of fully oscillatory flows. The entrance length, thus obtained, is compared with that obtained from the velocity profile consideration and shows good similarity. The phase difference between pressure and velocity is also brought out in this work.
The Multiplicity of Wolf-Rayet Stars
NASA Technical Reports Server (NTRS)
Wallace, Debra J.
2004-01-01
The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing
Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-01-01
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.
Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-04-23
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.
NASA Astrophysics Data System (ADS)
Liu, Lei; Liu, Zhuang; Zhang, Xin; Feng, Yanping; Wang, Chunxiao; Sun, Yingli; Lee, Don; Yan, Aru; Wu, Qiong
2017-05-01
Magnetization reversal mechanism is found to vary with cellular structures by a comparative study of the magnetization processes of three (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures. Analysis of domain walls, initial magnetization curves and recoil loops indicates that the morphology of cellular structure has a significant effect on the magnetization process, besides the obvious connection to the difference of domain energy density between cell boundary phase (CBP) and main phase. The magnetization of Sample 2 (with a moderate cell size and uniformly continuous CBPs) behaves as a strong coherence domain-wall pinning effect to the domain wall and lead to a highest coercivity in the magnet. The magnetization of Sample 1 (with thin and discontinuous CBPs) shows an inconsistent pinning effect to the domain wall while that of Sample 3 (with thick and aggregate CBPs) exhibits a two-phase separation magnetization. Both the two cases lead to lower coercivities. A simplified model is given as well to describe the relationships among cellular structure and magnetization behavior.
Interpreting the human phase response curve to multiple bright-light exposures.
Strogatz, S H
1990-01-01
Czeisler and his colleagues have recently reported that bright light can induce strong (Type O) resetting of the human circadian pacemaker. This surprising result shows that the human clock is more responsive to light than has been previously thought. The interpretation of their results is subtle, however, because of an unconventional aspect of their experimental protocol: They measured the phase shift after three cycles of the bright-light stimulus, rather than after the usual single pulse. A natural question is whether the apparent Type O response could reflect the summation of three weaker Type 1 responses to each of the daily light pulses. In this paper I show mathematically that repeated Type 1 resetting cannot account for the observed Type O response. This finding corroborates the strong resetting reported by Czeisler et al., and supports their claim that bright light induces strong resetting by crushing the amplitude of the circadian pacemaker. Furthermore, the results indicate that back-to-back light pulses can have a cooperative effect different from that obtained by simple iteration of a phase response curve (PRC). In this sense the resetting response of humans is similar to that of Drosophila, Kalanchoe, and Culex, and is more complex than that predicted by conventional PRC theory. To describe the way in which light resets the human circadian pacemaker, one needs a theory that includes amplitude resetting, as pioneered by Winfree and developed for humans by Kronauer.
Altabet, Y Elia; Fenley, Andreia L; Stillinger, Frank H; Debenedetti, Pablo G
2018-03-21
Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρ S . The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρ S in the thermodynamic limit, this interconnected network develops gradually, starting at ρ S , even at infinite system size.
The Effect of Ocean Currents on Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Leeuwenburgh, Olwijn
2000-01-01
We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Fenley, Andreia L.; Stillinger, Frank H.; Debenedetti, Pablo G.
2018-03-01
Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρS. The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρS in the thermodynamic limit, this interconnected network develops gradually, starting at ρS, even at infinite system size.
NASA Astrophysics Data System (ADS)
ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.
2017-12-01
To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.
NASA Astrophysics Data System (ADS)
Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard
2015-04-01
New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.
Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.
1990-01-01
After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.
Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes
2013-11-21
Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.
Reward modulates oculomotor competition between differently valued stimuli.
Bucker, Berno; Silvis, Jeroen D; Donk, Mieke; Theeuwes, Jan
2015-03-01
The present work explored the effects of reward in the well-known global effect paradigm in which two objects appear simultaneously in close spatial proximity. The experiment consisted of three phases (i) a pre-training phase that served as a baseline, (ii) a reward-training phase to associate differently colored stimuli with high, low and no reward value, and (iii) a post-training phase in which rewards were no longer delivered, to examine whether objects previously associated with higher reward value attracted the eyes more strongly than those associated with low or no reward value. Unlike previous reward studies, the differently valued objects directly competed with each other on the same trial. The results showed that initially eye movements were not biased towards any particular stimulus, while in the reward-training phase, eye movements started to land progressively closer towards stimuli that were associated with a high reward value. Even though rewards were no longer delivered, this bias remained robustly present in the post-training phase. A time course analysis showed that the effect of reward was present for the fastest saccades (around 170 ms) and increased with increasing latency. Although strategic effects for slower saccades cannot be ruled out, we suggest that fast oculomotor responses became habituated and were no longer under strategic attentional control. Together the results imply that reward affects oculomotor competition in favor of stimuli previously associated high reward, when multiple reward associated objects compete for selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interaction of anions with lipid cubic phase membranes, an electrochemical impedance study.
Meynaq, Mohammad Yaser Khani; Lindholm-Sethson, Britta; Tesfalidet, Solomon
2018-05-29
Electrochemical impedance spectroscopy is useful to monitor anionic interactions with a Lipid Cubic Phase, as previously demonstrated for cationic interaction (Khani Meynaq et al., 2016). It was expected that the smaller hydrophilic anions, acetate and chloride, would interact differently than the large tryptophan anion with its hydrophobic tail. The impedance measurements enabled estimation of resistances and capacitances of a freestanding lipid cubic phase membrane at exposure to 4 and 40 mM solutions of NaCl, NaOAc and NaTrp. Small-angle X-ray scattering was used for cubic phase identification and to track structural changes within the cubic phase when exposed to the different electrolytes. The membrane resistance increases at exposure to the electrolytes in the order Cl - < OAc - < Trp - . The membrane resistance decreases with time at exposure to the hydrophilic anions and increases with time at Trp - exposure. The membrane capacitances were lower for NaTrp compared to NaCl and NaOAc at the corresponding concentrations which is consistent with the results from SAXRD. It is concluded that Trp - ions do not enter the aqueous channels of the cubic phase but are strongly adsorbed to the membrane/electrolyte interface leading to large alteration of the lipid phase structure and a high membrane resistance. Copyright © 2018 Elsevier Inc. All rights reserved.
Reduced sediment melting at 7.5-12 GPa: phase relations, geochemical signals and diamond nucleation
NASA Astrophysics Data System (ADS)
Brey, G. P.; Girnis, A. V.; Bulatov, V. K.; Höfer, H. E.; Gerdes, A.; Woodland, A. B.
2015-08-01
Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5-12 GPa and 800-1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325-394, 1998) were prepared from oxides, carbonates, hydroxides and graphite. One mixture (Na-gloss) was identical in major element composition to GLOSS, and the other was poorer in Na and richer in K (K-gloss). Both starting mixtures contained ~6 wt% CO2 and 7 wt% H2O and were doped at a ~100 ppm level with a number of trace elements, including REE, LILE and HFSE. The near-solidus mineral assemblage contained a silica polymorph (coesite or stishovite), garnet, kyanite, clinopyroxene, carbonates (aragonite and magnesite-siderite solid solution), zircon, rutile, bearthite and hydrous phases (phengite and lawsonite at <9 GPa and the hydrous aluminosilicates topaz-OH and phase egg at >10 GPa). Hydrous phases disappear at ~900 °C, and carbonates persist up to 1000-1100 °C. At temperatures >1200 °C, the mineral assemblage consists of coesite or stishovite, kyanite and garnet. Clinopyroxene stability depends strongly on the Na content in the starting mixture; it remains in the Na-gloss composition up to 1600 °C at 12 GPa, but was not observed in K-gloss experiments above 1200 °C. The composition of melt or fluid changes gradually with increasing temperature from hydrous carbonate-rich (<10 wt% SiO2) at 800-1000 °C to volatile-rich silicate liquids (up to 40 wt% SiO2) at high temperatures. Trace elements were analyzed in melts and crystalline phases by LA ICP MS. The garnet-melt and clinopyroxene-melt partition coefficients are in general consistent with results from the literature for volatile-free systems and silicocarbonate melts derived by melting carbonated peridotites. Most trace elements are strongly incompatible in kyanite and silica polymorphs ( D < 0.01), except for V, Cr and Ni, which are slightly compatible in kyanite ( D > 1). Aragonite and Fe-Mg carbonate have very different REE partition coefficients ( D Mst-Sd/L ~ 0.01 and D Arg/L ~ 1). Nb, Ta, Zr and Hf are strongly incompatible in both carbonates. The bearthite/melt partition coefficients are very high for LREE (>10) and decrease to ~1 for HREE. All HFSE are strongly incompatible in bearthite. In contrast, Ta, Nb, Zr and Hf are moderately to strongly compatible in ZrSiO4 and TiO2 phases. Based on the obtained partition coefficients, the composition of a mobile phase derived by sediment melting in deep subduction zones was calculated. This phase is strongly enriched in incompatible elements and displays a pronounced negative Ta-Nb anomaly but no Zr-Hf anomaly. Although all experiments were conducted in the diamond stability field, only graphite was observed in low-temperature experiments. Spontaneous diamond nucleation and the complete transformation of graphite to diamond were observed at temperatures above 1200-1300 °C. We speculate that the observed character of graphite-diamond transformation is controlled by relationships between the kinetics of metastable graphite dissolution and diamond nucleation in a hydrous silicocarbonate melt that is oversaturated in C.
High thermoelectric performances of monolayer SnSe allotropes.
Hu, Zi-Yu; Li, Kai-Yue; Lu, Yong; Huang, Yan; Shao, Xiao-Hong
2017-10-26
α-SnSe is one of the most promising thermoelectric materials with low thermal conductivity and a high power factor. Since the thermoelectric properties of a material have a strong dependence on its crystal structure, we study the energetic and thermoelectric properties of four new monolayer phases of SnSe (β, γ, δ and ε) together with α-SnSe using the ab initio density functional theory method. The calculated electronic structures show that all five phases are semiconductors with different band gaps. The α, β, γ, and δ phases have an indirect band gap with the hybridization of sp 2 orbitals, whereas the ε phase has a direct band with the hybridization of sp 3 orbitals. The thermoelectric transport properties and coefficients are obtained from the electronic structure using semi-classical Boltzmann theory, and the results indicate that the four new phases of SnSe (β, γ, δ and ε) all have better thermoelectric properties compared with the reported α phase. The predicted ZT value for the β-SnSe phase is 2.06 at 300 K, suggesting that it has great potential for novel thermoelectric applications.
NASA Astrophysics Data System (ADS)
Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming
2017-05-01
Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.
Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature
NASA Technical Reports Server (NTRS)
Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.
The influence of food consistency on chewing rate and muscular work.
van der Bilt, A; Abbink, J H
2017-11-01
Food properties influence the parameters of the masticatory process, such as jaw movement, muscle activity and chewing rate. Firm foods will require more muscle activity than softer foods. However, the influence of food hardness on chewing rate is ambiguous as both slower and higher chewing rates have been reported for harder foods. Rheological characteristics of the food, such as plasticity and elasticity, may help to explain differences in chewing rate. The aim of our study was to determine the influence of food properties on chewing rate and muscular work in five phases of a chewing sequence. Eighty-four participants chewed on five foods, which strongly differed in consistency. Chewing gum was used as a reference food. The phase in the chewing sequence had a large significant effect on cycle duration for the five foods. A significant decrease in cycle duration at the beginning of chewing was followed by an increase in later phases, leading to U-shaped curves. Food type had a small effect on the average cycle duration. However, large significant differences in cycle duration were observed between the foods at the beginning of a chewing sequence. In that phase, the firm foods were chewed much slower than the soft foods. Muscular work was significantly influenced by both chewing phase and food type. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping
2014-01-01
Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4+, lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor. PMID:24487528
Lima, A R A; Barletta, M; Costa, M F; Ramos, J A A; Dantas, D V; Melo, P A M C; Justino, A K S; Ferreira, G V B
2016-07-01
Lunar influence on the distribution of fish larvae, zooplankton and plastic debris in mangrove creeks of the Goiana Estuary, Brazil, was studied over a lunar cycle. Cetengraulis edentulus, Anchovia clupeoides and Rhinosardinia bahiensis were the most abundant fish larvae (56·6%), independent of the moon phase. The full moon had a positive influence on the abundance of Gobionellus oceanicus, Cynoscion acoupa and Atherinella brasiliensis, and the new moon on Ulaema lefroyi. The full and new moons also influenced the number of zoeae and megalopae of Ucides cordatus, protozoeae and larvae of caridean shrimps, and the number of hard and soft plastic debris, both <5 and >5 mm. Micro and macroplastics were present in samples from all 12 creeks studied, at densities similar to the third most abundant taxon, R. bahiensis. Cetengraulis edentulus and R. bahiensis showed a strong positive correlation with the last quarter moon, when there was less zooplankton available in the creeks and higher abundance of microplastic threads. Anchovia clupeoides, Diapterus rhombeus, U. lefroyi and hard microplastics were positively associated with different moon phases, when calanoid copepods, Caridean larvae and zoeae of U. cordatus were highly available in the creeks. Cynoscion acoupa, G. oceanicus and A. brasiliensis were strongly associated with the full moon, when protozoeae of caridean shrimps and megalopae of U. cordatus were also highly available, as were hard and soft macroplastics, paint chips (<5 mm) and soft microplastics. The results reinforce the role of mangrove creeks as nursery habitats. The moon phases influenced the distribution of fish larvae species, zooplankton and plastic debris by changing their compositions and abundances in the mangrove creeks of the Goiana Estuary when under the influence of different tidal current regimes. © 2015 The Fisheries Society of the British Isles.
Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce
2013-07-15
The prevalence of childhood food allergy and the duration of these allergies, particularly those considered to be transient, like egg and milk allergy, are increasing. The identification of allergic individuals using minimally invasive, non-anaphylaxis-threatening methods is therefore of increasing importance. In this experiment, correlates were sought of an allergic immune response (IR) phenotype in pigs. Using pigs pre-treated with heat-killed bacteria or bacterial components before allergic sensitization with the egg white protein ovomucoid (Ovm), differences were determined in IR phenotype of pigs in the categories treated-allergic, treated-tolerant, control-allergic (CA) and control-tolerant. Phenotype was established by measuring immunoglobulin (Ig)-associated antibody activity (AbA), cytokine profiles and the proportion of blood T-regulatory cells (T-regs) and observing late-phase allergen-specific skin tests (ST). Although 100% of pigs became sensitized to Ovm, only 33% of pigs had clinical signs of allergy after oral challenge with egg white. Pigs without clinical signs were classified as clinically tolerant. Sixty-seven percent of allergic pigs had a positive, late-phase ST classified as very strong or strong, while 84% of clinically tolerant pigs did not have late-phase ST. Treated-allergic pigs and CA pigs had greater total antibody IgG (H+L), IgE and IgG1 AbA than clinically tolerant pigs. Cytokine profiles of allergic pigs and the proportion of circulating T-regs, did not differ significantly between allergic and clinically tolerant pigs. Therefore, measurement of allergen-specific IgG, IgG1 and/or IgE activity and evaluation of late-phase ID ST may be useful in identifying allergic IR phenotypes in swine models of food allergy, which may be extended toward human use. Copyright © 2013 Elsevier B.V. All rights reserved.
Coherent control of strong-field two-pulse ionization of Rydberg atoms.
Fedorov, M; Poluektov, N
2000-02-28
Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.
Frustrated spin chains in strong magnetic field: Dilute two-component Bose gas regime
NASA Astrophysics Data System (ADS)
Kolezhuk, A. K.; Heidrich-Meisner, F.; Greschner, S.; Vekua, T.
2012-02-01
We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta ±Q, and just below the saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around ±Q. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties
NASA Astrophysics Data System (ADS)
Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.
2018-06-01
Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.
Confinement of anomalous liquids in nanoporous matrices.
Strekalova, Elena G; Luo, Jiayuan; Stanley, H Eugene; Franzese, Giancarlo; Buldyrev, Sergey V
2012-09-07
Using molecular dynamics simulations, we investigate the effects of different nanoconfinements on complex liquids-e.g., colloids or protein solutions-with density anomalies and a liquid-liquid phase transition (LLPT). In all the confinements, we find a strong depletion effect with a large increase in liquid density near the confining surface. If the nanoconfinement is modeled by an ordered matrix of nanoparticles, we find that the anomalies are preserved. On the contrary, if the confinement is modeled by a disordered matrix of nanoparticles, we find a drastically different phase diagram: the LLPT shifts to lower pressures and temperatures, and the anomalies become weaker, as the disorder increases. We find that the density heterogeneities induced by the disordered matrix are responsible for the weakening of the LLPT and the disappearance of the anomalies.
Chimera states in bipartite networks of FitzHugh-Nagumo oscillators
NASA Astrophysics Data System (ADS)
Wu, Zhi-Min; Cheng, Hong-Yan; Feng, Yuee; Li, Hai-Hong; Dai, Qiong-Lin; Yang, Jun-Zhong
2018-04-01
Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh-Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength-coupling radius plane, which show strong multistability of chimera states, are explored.
Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties
NASA Astrophysics Data System (ADS)
Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.
2018-03-01
Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.
Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors
NASA Astrophysics Data System (ADS)
Díaz-Durán, Adelaida; Serrano, Encarna; Ayarzagüena, Blanca; Abalos, Marta; de la Cámara, Alvaro
2017-11-01
The dynamical variability of the boreal stratospheric polar vortex has been usually analysed considering the extended winter as a whole or only focusing on December, January and February. Yet recent studies have found intra-seasonal differences in the boreal stratospheric dynamics. In this study, the intra-seasonal variability of anomalous wave activity preceding polar vortex extremes in the Northern Hemisphere is examined using ERA-Interim reanalysis data. Weak (WPV) and strong (SPV) polar vortex events are grouped into early, mid- or late winter sub-periods depending on the onset date. Overall, the strongest (weakest) wave-activity anomalies preceding polar vortex extremes are found in mid- (early) winter. Most of WPV (SPV) events in early winter occur under the influence of east (west) phase of the Quasi-Biennial Oscillation (QBO) and an enhancement (inhibition) of wavenumber-1 wave activity (WN1). Mid- and late winter WPV events are preceded by a strong vortex and an enhancement of WN1 and WN2, but the spatial structure of the anomalous wave activity and the phase of the QBO are different. Prior to mid-winter WPVs the enhancement of WN2 is related to the predominance of La Niña and linked to blockings over Siberia. Mid-winter SPV events show a negative phase of the Pacific-North America pattern that inhibits WN1 injected into the stratosphere. This study suggests that dynamical features preceding extreme polar vortex events in mid-winter should not be generalized to other winter sub-periods.
Strong-field and attosecond physics in solids
Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...
2014-10-08
We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less
Stability Formulation for Integrated Opto-mechanic Phase Shifters.
Ozer, Yigit; Kocaman, Serdar
2018-01-31
Stability of opto-mechanical phase shifters consisting of waveguides and non-signal carrying control beams is investigated thoroughly and a formula determining the physical limitations has been proposed. Suggested formulation is not only beneficial to determine physical strength of the system but also advantageous to guess the response of the output to the fabrication errors. In the iterative analysis of cantilever and double-clamped beam geometrical configurations, the stability condition is revealed under the strong inter-dependence of the system parameters such as input power, device length and waveguide separation. Numerical calculations involving effective index modifications and opto-mechanic movements show that well-known cantilever beams are unstable and inadequate to generate φ = 180° phase difference, while double-clamped beam structures can be utilized to build functional devices. Ideal operation conditions are also presented in terms of both the device durability and the controllability of phase evolution.
Edge states and phase diagram for graphene under polarized light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi -Xiang; Li, Fuxiang
2016-03-22
In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less
Competing role of Interactions in Synchronization of Exciton-Polariton condensates
NASA Astrophysics Data System (ADS)
Khan, Saeed; Tureci, Hakan E.
We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled traps. Our analysis is based on an expansion in non-Hermitian modes that take into account the trapping potential and the pump-induced complex-valued potential. We find that polariton-polariton and reservoir-polariton interactions play competing roles in the emergence of a synchronized phase as pumping power is increased, leading to qualitatively different synchronized phases. Crucially, these interactions can also act against each other to hinder synchronization. We present a phase diagram and explain the general characteristics of these phases using a generalized Adler equation. Our work sheds light on dynamics strongly influenced by competing interactions particular to incoherently pumped exciton-polariton condensates, which can lead to interesting features in recently engineered polariton lattices. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film
NASA Astrophysics Data System (ADS)
Kumar, S. Vinodh; Raja, M. Manivel; Pandi, R. Senthur; Pandyan, R. Kodi; Mahendran, M.
2016-05-01
Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L12 cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.
Entropy of level-cut random Gaussian structures at different volume fractions
NASA Astrophysics Data System (ADS)
Marčelja, Stjepan
2017-10-01
Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingting; Kirchhoff, Helmut; Gargouri, Mahmoud
Mixotrophic growth of microalgae offers great potential as an efficient strategy for biofuel production. In this study, photosynthetic regulation of mixotrophically cultured Chlorella sorokiniana cells was systematically evaluated. Mixotrophic cells in the exponential growth phase showed the highest photosynthetic activity, where maximum photosynthetic O 2 evolution was approximately 3- and 4-fold higher than cells in the same phase grown photoautotrophically in 1% CO 2 (in air) and air, respectively. Additionally, characteristic chlorophyll fluorescence parameters demonstrated that no limitation in electron transport downstream of PSII was detected in mixotrophic cells. Up-regulation of photosynthetic activity was associated with high total ribulose-1, 5-bisphosphatemore » carboxylase/oxygenase (Rubisco) carboxylase activity and expression level of phosphoribulokinase (PRK). After 3 days, photosynthetic O 2 evolution of mixotrophic cells that went to the stationary phase, was strongly reduced, with reduced photochemical efficiency and reorganization of the PSII complex. Simultaneously, enzymatic activity for Rubisco carboxylase and mRNA levels of Rubisco and PRK diminished. Importantly, there was almost no non-photochemical quenching for mixotrophic cells, whether grown in log or stationary phase. A decline in the quantum efficiency of PSII and an oxidized plastoquinone pool (PQ pool) was observed under N-depleted conditions during mixotrophic growth. Finally, these results demonstrate that photosynthesis is regulated differently in mixotrophically cultured C. sorokiniana cells than in cells grown under photoautotrophic conditions, with a particularly strong impact by nitrogen levels in the cells.« less
Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures
NASA Astrophysics Data System (ADS)
Stishov, Sergei; Sidorov, Vladimir; Petrova, Alla; Berdonosov, Peter; Dolgikh, Valery
2014-03-01
The heat capacity of helical magnets Cu2OSeO3 and MnSi has been investigated at high pressures by the ac-calorimetric technique. Despite the differing nature of their magnetic moments, Cu2OSeO3 and MnSi demonstrate a surprising similarity in behavior of their magnetic and thermodynamic properties at the phase transition. Two characteristic features of the heat capacity at the phase transitions of both substances (peak and shoulder) behave also in a similar way at high pressures if analyzed as a function of temperature. This probably implies that the longitudinal spin fluctuations typical of weak itinerant magnets like MnSi contribute little to the phase transition. The shoulders of the heat capacity curves shrink with decreasing temperature suggesting that they arise from classical fluctuations. In case of MnSi the sharp peak and shoulder at the heat capacity disappear simultaneously probably signifying the existence of a tricritical point and confirming the fluctuation nature of the first order phase transition in MnSi as well as in Cu2OSeO3. This work was supported by the Russian Foundation for Basic Research (grant 12-02-00376-a, 12-03-92604), Program of the Physics Department of RAS on Strongly Correlated Electron Systems and Program of the Presidium of RAS on Strongly Compressed Matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, R.B.; Bach, H.T.; Harms, U.
We used a resonant-ultrasound-spectroscopy technique to measure the three independent elastic constants of PdH{sub x}, PdD{sub x}, and PdT{sub x} single crystals at 300 K. For 0.1x0.62 our PdH{sub x} crystals are two-phase mixtures of coherent {alpha} and {beta} hydride phases. For increasing x in this range, C{sub 44} decreases monotonically whereas C'=12(C11-C12) has a concave parabolic dependence. This difference is because C' is softened by an anelastic relaxation resulting from acoustic-stress-induced changes in the shape of the coherent lenticular-shape precipitates ({beta}-hydride precipitates in {alpha}-hydride matrix and {alpha}-hydride precipitates in {beta}-hydride matrix). In the {beta}-phase C' and C{sub 44} decreasemore » with increasing hydrogen (or deuterium or tritium) content. Furthermore, C' exhibits a strong isotope effect whereas C{sub 44} does not. This effect is attributed to differences in the excitation of optical phonons in Pd-H, Pd-D and Pd-T.« less
Kameche, Farid; Ngo, Anh-Tu; Salzemann, Caroline; Cordeiro, Marco; Sutter, Eli; Petit, Christophe
2015-11-14
Co(x)Pt(100-x) nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of the different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. This in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.
2013-03-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
Howald, Ludovic; Stilp, Evelyn; de Réotier, Pierre Dalmas; Yaouanc, Alain; Raymond, Stéphane; Piamonteze, Cinthia; Lapertot, Gérard; Baines, Christopher; Keller, Hugo
2015-01-01
In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature—tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1−xCdx)5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure. PMID:26224422
Water-soluble CdTe nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng
2015-02-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurin, Péter; Varga, Szabolcs
2015-06-14
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less
Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)
NASA Astrophysics Data System (ADS)
Lin, Tsung-Hsien
2015-10-01
Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.
Wave Tank Studies of Phase Velocities of Short Wind Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Fermion masses through four-fermion condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyar, Venkitesh; Chandrasekharan, Shailesh
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less
Surface chemistry in photodissociation regions
NASA Astrophysics Data System (ADS)
Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.
2016-06-01
Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.
The rotational phase dependence of magnetar bursts
NASA Astrophysics Data System (ADS)
Elenbaas, C.; Watts, A. L.; Huppenkothen, D.
2018-05-01
The trigger for the short bursts observed in γ-rays from many magnetar sources remains unknown. One particular open question in this context is the localization of burst emission to a singular active region or a larger area across the neutron star. While several observational studies have attempted to investigate this question by looking at the phase dependence of burst properties, results have been mixed. At the same time, it is not obvious a priori that bursts from a localized active region would actually give rise to a detectable phase dependence, taking into account issues such as geometry, relativistic effects, and intrinsic burst properties such brightness and duration. In this paper, we build a simple theoretical model to investigate the circumstances under which the latter effects could affect detectability of dependence of burst emission on rotational phase. We find that even for strongly phase-dependent emission, inferred burst properties may not show a rotational phase dependence, depending on the geometry of the system and the observer. Furthermore, the observed properties of bursts with durations short as 10-20 per cent of the spin period can vary strongly depending on the rotational phase at which the burst was emitted. We also show that detectability of a rotational phase dependence depends strongly on the minimum number of bursts observed, and find that existing burst samples may simply be too small to rule out a phase dependence.
Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.
Zhang, Liwen; Petersen, Elijah J; Zhang, Wen; Chen, Yongsheng; Cabrera, Miguel; Huang, Qingguo
2012-07-01
Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. (14)C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals' surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly. Copyright © 2012 Elsevier Ltd. All rights reserved.
No-Go Theorem for Nonstandard Explanations of the τ → K S π ν τ C P Asymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirigliano, Vincenzo; Crivellin, Andreas; Hoferichter, Martin
Tmore » he C P asymmetry in τ → K S π ν τ C P , as measured by the BABAR collaboration, differs from the standard model prediction by 2.8 σ . Most nonstandard interactions do not allow for the required strong phase needed to produce a nonvanishing C P asymmetry, leaving only new tensor interactions as a possible mechanism. We demonstrate that, contrary to previous assumptions in the literature, the crucial interference between vector and tensor phases is suppressed by at least 2 orders of magnitude due to Watson’s final-state-interaction theorem. Furthermore, we find that the strength of the relevant C P -violating tensor interaction is strongly constrained by bounds from the neutron electric dipole moment and D – ¯ D mixing. hese observations together imply that it is extremely difficult to explain the current τ → K S π ν τ C P measurement in terms of physics beyond the standard model originating in the ultraviolet.« less
No-Go Theorem for Nonstandard Explanations of the τ → K S π ν τ C P Asymmetry
Cirigliano, Vincenzo; Crivellin, Andreas; Hoferichter, Martin
2018-04-06
Tmore » he C P asymmetry in τ → K S π ν τ C P , as measured by the BABAR collaboration, differs from the standard model prediction by 2.8 σ . Most nonstandard interactions do not allow for the required strong phase needed to produce a nonvanishing C P asymmetry, leaving only new tensor interactions as a possible mechanism. We demonstrate that, contrary to previous assumptions in the literature, the crucial interference between vector and tensor phases is suppressed by at least 2 orders of magnitude due to Watson’s final-state-interaction theorem. Furthermore, we find that the strength of the relevant C P -violating tensor interaction is strongly constrained by bounds from the neutron electric dipole moment and D – ¯ D mixing. hese observations together imply that it is extremely difficult to explain the current τ → K S π ν τ C P measurement in terms of physics beyond the standard model originating in the ultraviolet.« less
The horn, kink and step, dale: from few GeV to few TeV
NASA Astrophysics Data System (ADS)
Rustamov, Anar
2012-12-01
Rich experimental data have been collected in heavy-ion collisions at high energies to study the properties of strongly interacting matter. As the theory of strong interactions, QCD, predicts asymptotic freedom, the created matter at sufficiently high temperature and density will be dominated by a state of quasi-free quarks and gluons referred to as the Quark-Qluon Plasma (QGP). Experimental signals for the onset of the QGP creation (the onset of the deconfinement) have been predicted within the statistical model for the early stage of nucleus-nucleus collisions. In this model the existence of two different phases is assumed: confined mater and the QGP, as well as a first order phase transition between them. Until recently, these predictions were confirmed only by the NA49 experiment at the CERN SPS. In this report recent results from STAR at RHIC/BNL and from ALICE at LHC/CERN, related to the onset of deconfinement, will be compared to published results from NA49.
NASA Astrophysics Data System (ADS)
Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.
2018-05-01
Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode nonclassical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its output depend on the phase, dispersion, and the parametric gain in a nontrivial way, thereby providing additional insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs as the parametric gain increases.
First-principles study of the amorphous In3SbTe2 phase change compound
NASA Astrophysics Data System (ADS)
Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco
2013-11-01
Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.
Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina
2014-02-01
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids.
Burchianti, A; Scazza, F; Amico, A; Valtolina, G; Seman, J A; Fort, C; Zaccanti, M; Inguscio, M; Roati, G
2018-01-12
We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.
NASA Astrophysics Data System (ADS)
Rodríguez Castillo, Guillermo A.; Israel, Gian Luca; Tiengo, Andrea; Salvetti, David; Turolla, Roberto; Zane, Silvia; Rea, Nanda; Esposito, Paolo; Mereghetti, Sandro; Perna, Rosalba; Stella, Luigi; Pons, José A.; Campana, Sergio; Götz, Diego; Motta, Sara
2016-03-01
We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3-1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ˜500 d since the discovery of SWIFT J1822.3-1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (˜3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.
Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya
2008-03-01
Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.
Moving heavy quarkonium entropy, effective string tension, and the QCD phase diagram
NASA Astrophysics Data System (ADS)
Chen, Xun; Feng, Sheng-Qin; Shi, Ya-Fei; Zhong, Yang
2018-03-01
The entropy and effective string tension of the moving heavy quark-antiquark pair in the strongly coupled plasmas are calculated by using a deformed an anti-de Sitter/Reissner-Nordström black hole metric. A sharp peak of the heavy-quarkonium entropy around the deconfinement transition can be realized in our model, which is consistent with the lattice QCD result. The effective string tension of the heavy quark-antiquark pair is related to the deconfinement phase transition. Thus, we investigate the deconfinement phase transition by analyzing the characteristics of the effective string tension with different temperatures, chemical potentials, and rapidities. It is found that the results of phase diagram calculated through effective string tension are in agreement with results calculated through a Polyakov loop. We argue that a moving system will reach the phase transition point at a lower temperature and chemical potential than a stationary system. It means that the lifetime of the moving quark-gluon plasma become longer than the static one.
Phase coexistence and pinning of charge density waves by interfaces in chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, A.; Patel, S. K. K.; Uhlíř, V.
We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDWperiods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that themore » phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface.« less
Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids
NASA Astrophysics Data System (ADS)
Burchianti, A.; Scazza, F.; Amico, A.; Valtolina, G.; Seman, J. A.; Fort, C.; Zaccanti, M.; Inguscio, M.; Roati, G.
2018-01-01
We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.
Models of Uranium continuum radio emission
NASA Technical Reports Server (NTRS)
Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.
1987-01-01
Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.
Dynamic diffraction artefacts in Bragg coherent diffractive imaging
Hu, Wen; Huang, Xiaojing; Yan, Hanfei
2018-02-01
This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditionsmore » under which they are negligible.« less
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Dynamic diffraction artefacts in Bragg coherent diffractive imaging.
Hu, Wen; Huang, Xiaojing; Yan, Hanfei
2018-02-01
This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible.
Dynamic diffraction artefacts in Bragg coherent diffractive imaging
Yan, Hanfei
2018-01-01
This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible. PMID:29507549
Topological transitions for lattice bosons in a magnetic field
Huber, Sebastian D.; Lindner, Netanel H.
2011-01-01
The Hall response provides an important characterization of strongly correlated phases of matter. We study the Hall conductivity of interacting bosons on a lattice subjected to a magnetic field. We show that for any density or interaction strength, the Hall conductivity is characterized by an integer. We find that the phase diagram is intersected by topological transitions between different values of this integer. These transitions lead to surprising effects, including sign reversal of the Hall conductivity and extensive regions in the phase diagram where it acquires a negative sign, which implies that flux flow is reversed in these regions—vortices there flow upstream. Our findings have immediate applications to a wide range of phenomena in condensed matter physics, which are effectively described in terms of lattice bosons. PMID:22109548
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
Compact and highly stable quantum dots through optimized aqueous phase transfer
NASA Astrophysics Data System (ADS)
Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter
2011-03-01
A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.
New Treatment of Strongly Anisotropic Scattering Phase Functions: The Delta-M+ Method
NASA Astrophysics Data System (ADS)
Stamnes, K. H.; Lin, Z.; Chen, N.; Fan, Y.; Li, W.; Stamnes, S.
2017-12-01
The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new Delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely-used Delta-M method that truncates the forward scattering cone into a Dirac-delta-function (a direct beam), where the + symbol indicates that it essentially matches moments above the first 2M terms. Compared with the original Delta-M method, Delta-M+ has the same computational efficiency, but the accuracy has been increased dramatically. Tests show that the errors for strongly forward-peaked scattering phase functions are greatly reduced. Furthermore, the accuracy and stability of radiance computations are also significantly improved by applying the new Delta-M+ method.
Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.
Samin, Sela; Tsori, Yoav; Holm, Christian
2013-05-01
We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.
Wall, Anders; Olsson, Ulf; Marteinsdottir, Ina; Holstad, Maria; Ågren, Hans; Långström, Bengt; Naessén, Tord
2016-01-01
Study Objective To investigate potential quantitative and qualitative differences in brain serotonergic activity between women with Premenstrual Dysphoria (PMD) and asymptomatic controls. Background Serotonin-augmenting drugs alleviate premenstrual mood symptoms in the majority of women with PMD while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women. Methods Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP), radiolabelled by 11C in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity–a proxy for serotonin precursor uptake and synthesis–was measured in 9 regions of interest (ROIs): the right and left sides of the medial prefrontal cortex, dorsolateral prefrontal cortex, putamen and caudate nucleus, and the single “whole brain”. Results There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001). Menstrual phase changes in this asymmetry (premenstrual—follicular) correlated with changes in self ratings of ‘irritability’ for the entire group (rs = -0.595, p = 0.006). The PMD group showed a strong inverse correlation between phase changes (premenstrual—follicular) in plasma levels of estradiol and phase changes in the laterality (dx/sin) of radiotracer activity in the dorsolateral prefrontal ROI (rs = -0.635; 0.027). The control group showed no such correlation. Conclusion Absence of increased premenstrual right-sided relative 5-HTP-derived activity of the dorsolateral prefrontal cortices was found to strongly correlate to premenstrual irritability. A causal relationship here seems plausible, and the findings give further support to an underlying frontal brain disturbance in hormonally influenced serotonergic activity in women with PMD. Because of the small number of subjects in the study, these results should be considered preliminary, requiring verification in larger studies. PMID:27617751
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D
2013-03-15
Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be best explained by the establishment of POB with low affinities (high K(s)) for propionate. Achieving low levels of propionate with either thermophilic or short HRT digesters is challenging and a relatively long HRT mesophilic digester should be employed for this purpose. Copyright © 2012 Elsevier Ltd. All rights reserved.
Karra, Vijay K; Chowdhury, Soumya J; Ruttala, Rajesh; Polipalli, Sunil K; Kar, Premashis
2016-09-01
Quantification of serum hepatitis B antigen (HBsAg) is an important test that marks active infection with hepatitis B and helps in the prediction of the clinical outcome and management of hepatitis B virus (HBV) infection. Correlation with HBV DNA quantitative levels may help in developing strategies for antiviral treatment. This study is aimed to evaluate HBsAg titres in various phase of HBV infection in HBsAg positive patients, and its correlation with HBV DNA viral load levels. 976 HBV related patients were analysed in this retrospective cross-sectional study. Patients were categorised on the basis of the phase of HBV infection: immune tolerant phase (IT, n = 123), immune clearance phase (IC, n = 192), low-replicative phase (LR, n = 476), and HBeAg-negative hepatitis (ENH, n = 185). HBsAg titres were quantified and correlated with HBV-DNA levels and clinical parameters. Median HBsAg titres were different between each phases of HBV infection ( P < 0.001): (4.62 log10 IU/ml), IC (3.88 log10 IU/ml), LR (2.76 log10 IU/ml) and ENH (2.94 log10 IU/ml). HBsAg and HBV DNA levels showed significant correlation in the whole group ( r = 0.694, P < 0.001), and this was also observed in different phases of HBV infection. Strong correlation in IT phase ( r = 0.603, P < 0.001) and IC phase ( r = 0.523, P < 0.001), moderate in LR phase ( r = 0.362, P < 0.001) and weak in ENH ( r = 0.110, P = 0.04). No correlation was observed between serum HBsAg levels and biochemical parameters. The study demonstrated significant difference in the median baseline values of serum HBsAg titres in different phases of HBV infection and provides additional information in understanding the natural history of HBV-infection.
NASA Astrophysics Data System (ADS)
Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming
2014-03-01
A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.
Mössbauer study of Cu1-xZnxFe2O4 catalytic materials
NASA Astrophysics Data System (ADS)
Koleva, K.; Velinov, N.; Tsoncheva, T.; Mitov, I.
2014-04-01
Copper zinc ferrites (Cu1-xZnxFe2O4) with different composition (x = 1; 0.2; 0.5; 0.8) were prepared by conventional thermal method. Formation of well crystallized ferrite phase with cubic structure and crystallites size of about 19.08-24.39 nm was observed by Powder X-ray diffraction and Mössbauer spectroscopy. The ferrite materials were tested as catalysts in methanol decomposition to CO and H2. A strong dependence of the catalytic behaviour of Cu1-xZnxFe2O4 ferrites of their composition and the phase transformations which occurred under the reaction medium was established.
Shape-memory properties in Ni-Ti sputter-deposited film
NASA Technical Reports Server (NTRS)
Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.
1990-01-01
A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.
Performance of planar single cell lanthanum gallate based solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Maffei, N.; Kuriakose, A. K.
A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Hua-Xin; Duan, Li; Fan, Ji-Bin; Ni, Lei; Ji, Vincent
2018-07-01
Using density-functional perturbation theory, we systematically investigate the Born effective charges and dielectric properties of cubic, tetragonal, monoclinic, ortho-I (Pbca), ortho-II (Pnma) and ortho-III (Pca21) phases of ZrO2. The magnitudes of the Born effective charges of the Zr and oxygen atoms are greater than their nominal ionic valences (+4 for Zr and -2 for oxygen), indicating a strong dynamic charge transfer from Zr atoms to O atoms and a mixed covalent-ionic bonding in six phases of ZrO2. For all six phases of ZrO2, the electronic contributions εij∞ to the static dielectric constant are rather small (range from 5 to 6.5) and neither strongly anisotropic nor strongly dependent on the structural phase, while the ionic contributions εijion to the static dielectric constant are large and not only anisotropic but also dependent on the structural phase. The average dielectric constant εbar0 of the six ZrO2 phases decreases in the sequence of tetragonal, cubic, ortho-II (Pnma), ortho-I (Pbca), ortho-III (Pca21) and monoclinic. So among six phases of ZrO2, the tetragonal and cubic phases are two suitable phases to replace SiO2 as the gate dielectric material in modern integrated-circuit technology. Furthermore, for the tetragonal ZrO2 the best orientation is [100].
Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.
Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V
2008-12-22
A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.
Li, R; Di, Z M; Chen, G L
2001-09-01
The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3 concentration. The interaction between the metal chelate ligand and proteins and the selectivity of metal chelate chromatography can be changed through changing chromatographic conditions.
A Subtropical Cyclone in the Canary Islands: the October 2014 event
NASA Astrophysics Data System (ADS)
Quitian, Lara; Martin, Maria Luisa; Jesús González-Alemán, Juan; Santos-Muñoz, Daniel; Valero Rodríguez, Francisco
2016-04-01
Depending on the thermal structure and dynamics, there are different types of cyclones in the troposphere. Subtropical cyclones (STC) are low pressure systems that share tropical and extratropical characteristics, having hybrid thermal structures. In October 2014, a cyclonic system landfall the Canary Islands, causing widespread damages. The system began to develop in October 18 and its effects lasted until October 21. Here, the diagnosis and identification of such cyclone as STC is carried out, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. The cyclone evolved from a typical extratropical cyclone, detached from the atmospheric circulation which was highly meridional and became a stationary cut-off low. The meridional intrusion of the trough as well as a low-level baroclinic zone favored the formation of a STC northwestern of the Canary Islands. Several cyclone phase space diagrams are used to classify the cyclone as a STC, highlighting a deep cold core in its early stages that develops into a shallow warm core. High potential vorticity areas associated with the cyclone promoted strong winds and precipitation over the Islands. Throughout the event, an increased conditional instability is observed in the different soundings, leading to strong vertical wind shear. Moreover, relatively warm sea surface temperature is obtained, establishing the conditions to favor the organization of long-lived convective structures.
NASA Astrophysics Data System (ADS)
Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel
2018-02-01
Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes ( Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice ( Apodemus sylvaticus) . We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their behavioural and physiological stress responses.
Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel
2018-01-31
Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes (Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice (Apodemus sylvaticus). We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their behavioural and physiological stress responses.
NASA Astrophysics Data System (ADS)
Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.
2013-12-01
In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result suggests one may measure the zonal irregularity drift at scintillation monitoring stations equipped with only a single channel receiver, so that the spaced-antenna technique cannot be employed. We noted that the scintillation index (S4) at L-band commonly exceeded that at VHF early in the evening when the irregularities were most intense, followed by one or more reversals of this trend at later local times as aging irregularities decayed and newly formed bubbles drifted over the station. We use the strong scatter theory to explain this perhaps counter-intuitive situation (one would normally expect a higher S4 at the lower frequency) in terms of strong refractive focusing.
Waddling on the Dark Side: Ambient Light Affects Attendance Behavior of Little Penguins.
Rodríguez, Airam; Chiaradia, André; Wasiak, Paula; Renwick, Leanne; Dann, Peter
2016-04-01
Visible light on Earth largely comes from the sun, including light reflected from the moon. Predation risk is strongly determined by light conditions, and some animals are nocturnal to reduce predation. Artificial lights and its consequent light pollution may disrupt this natural behavior. Here, we used 13 years of attendance data to study the effects of sun, moon, and artificial light on the attendance pattern of a nocturnal seabird, the little penguin Eudyptula minor at Phillip Island, Australia. The little penguin is the smallest and the only penguin species whose activity on land is strictly nocturnal. Automated monitoring systems recorded individually marked penguins every time they arrived (after sunset) at or departed (before sunrise) from 2 colonies under different lighting conditions: natural night skylight and artificial lights (around 3 lux) used to enhance penguin viewing for ecotourism around sunset. Sunlight had a strong effect on attendance as penguins arrived on average around 81 min after sunset and departed around 92 min before sunrise. The effect of moonlight was also strong, varying according to moon phase. Fewer penguins came ashore during full moon nights. Moon phase effect was stronger on departure than arrival times. Thus, during nights between full moon and last quarter, arrival times (after sunset) were delayed, even though moonlight levels were low, while departure times (before sunrise) were earlier, coinciding with high moonlight levels. Cyclic patterns of moon effect were slightly out of phase but significantly between 2 colonies, which could be due to site-specific differences or presence/absence of artificial lights. Moonlight could be overridden by artificial light at our artificially lit colony, but the similar amplitude of attendance patterns between colonies suggests that artificial light did not mask the moonlight effect. Further research is indeed necessary to understand how seabirds respond to the increasing artificial night light levels. © 2016 The Author(s).
Novel Quantum Phases at Interfaces
2014-12-12
89.085122 Mehdi Kargarian, Gregory A. Fiete. Multiorbital effects on thermoelectric properties of strongly correlated materials , Physical Review B...Multi-orbital Effects on Thermoelectric Properties of Strongly Correlated Materials , ArXiv e-prints (08 2013) Joseph Maciejko, Victor Chua...Lei Wang , Gregory A. Fiete. Finite- size and interaction effects on topological phase transitions via numerically exact quantum Monte Carlo
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
NASA Astrophysics Data System (ADS)
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Iverson, Chad D; Zhang, Ya; Lucy, Charles A
2015-11-27
Porous graphitic carbon (PGC) is an increasingly popular and attractive phase for HPLC on account of its chemical and thermal stability, and its unique separation mechanism. However, native PGC is strongly hydrophobic and in some instances excessively retentive. As part of our effort to build a library of hydrophilic covalently modified PGC phases, we functionalized PGC with catechol and amide groups by means of aryl diazonium chemistry to produce two new phases. Successful grafting was confirmed by X-ray photoelectron spectroscopy (XPS). Under HILIC conditions, the Catechol-PGC showed up to 5-fold increased retention relative to unmodified PGC and selectivity that differed from four other HILIC phases. Under reversed phase conditions, the Amide-PGC reduced the retentivity of PGC by almost 90%. The chromatographic performance of Catechol-PGC and Amide-PGC is demonstrated by separations of nucleobases, nucleosides, phenols, alkaline pharmaceuticals, and performance enhancing stimulants. These compounds had retention factors (k) ranging from 0.5 to 13. Copyright © 2015 Elsevier B.V. All rights reserved.
Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2014-03-01
Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
Sign phase transition in the problem of interfering directed paths
NASA Astrophysics Data System (ADS)
Baldwin, C. L.; Laumann, C. R.; Spivak, B.
2018-01-01
We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign disordered) or remain finite (sign ordered) depending on dimensionality and the concentration of negative scattering sites x . We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small x by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite xc>0 . These results have consequences for several different physical systems. In two-dimensional insulators at low temperature, the variable-range-hopping magnetoresistance is always negative, while in three dimensions, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D -wave superconducting grains embedded in a metallic matrix. Finally, the existence of the sign phase transition in three dimensions implies new features in the spin-glass phase diagram at high temperature.
Systematic approaches to layered materials with strong electron correlations
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou
I present systematic large-N approaches to study the ground state magnetic orderings and charge transport of layered materials with strong electron correlations, including the organic material kappa-(BEDT-TTF)2X, and the antiferromagnetic insulators Cs2CuCl4 and SrCu2(BO3) 2. I model the electronic properties of the organic materials kappa-(BEDT-TTF) 2X with a fermionic SU(N) Hubbard-Heisenberg model on an anisotropic triangular lattice. The ground state phase diagram shows a metal-insulator transition and a depression of the density of states in the metallic phase which are consistent with the experiments. The magnetic properties of kappa-(BEDT-TTF) 2X are modeled by a bosonic Sp(N) quantum Heisenberg antiferromagnet on the same lattice. The phase diagram consists of five different phases as a function of the size of the spin and the degree of frustration: the Neel ordered phase, a (pi, pi) short-range-order (SRO) phase, an incommensurate (q, q) long-range-order (LRO) phase, a (q, q) SRO phase, and a decoupled chain phase. I apply the same Sp(N) approach on the same triangular lattice to model the magnetic properties of Cs2CuCl 4 both with and without a magnetic field. At zero field, I find the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The Sp(N) calculation of spin excitation spectrum shows a large upward quantum renormalization consistent with that seen in experiments. For fields perpendicular to the plane of spin rotation, I find that the spins form an incommensurate "cone" of polarization up to a saturation field where all spins are fully polarized. There is a large quantum renormalization of the zero-field incommensuration. The results are in apparent agreement with neutron scattering experiments. Finally, the magnetic properties of the insulator SrCu2(BO 3)2 is modeled by the Sp(N) quantum antiferromagnet on the Shastry-Sutherland lattice. In addition to the familiar Neel and dimer phases, I find a confining phase with plaquette order, and a topologically ordered phase with deconfined S = 1/2 spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase, and in a regime of couplings close to those appropriate for the material.
Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.
2015-04-08
In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak
In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; ...
2016-06-08
Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less
Effects of intergranular phase on the coercivity for MnBi magnets prepared by spark plasma sintering
NASA Astrophysics Data System (ADS)
Cao, J.; Huang, Y. L.; Hou, Y. H.; Zhang, G. Q.; Shi, Z. Q.; Zhong, Z. C.; Liu, Z. W.
2018-05-01
MnBi magnets with a high content of low temperature phase (LTP) and excellent magnetic properties were prepared by spark plasma sintering (SPS) using ball milling powders as precursors without magnetic purification. A complicated intergranular phase, which contains Mn phase, Bi phase, MnO phase, and even amorphous phase in MnBi magnets, was characterized and reported systematically. It was found that the formation of intergranular phase which was contributed by ball milling precursors and sintering mechanism, jointly, had important influence on the magnetic properties. The appropriate content of intergranular phase was beneficial in improving the coercivity due to the strong magnetic isolation effects. The optimum magnetic properties with Mr=26.0 emu/g, Hci= 7.11 kOe and (BH)max=1.53 MGOe at room temperature, and a maximum value Hci= 25.37 kOe at 550 K can be obtained. Strongly favorable magnetic properties make SPSed MnBi magnets an attractive candidate material for small permanent magnets used in high-temperature applications.
NASA Astrophysics Data System (ADS)
Hubert, Olivier; Lazreg, Said
2017-02-01
A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.
Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E
2011-01-01
A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping
NASA Astrophysics Data System (ADS)
Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.
2018-05-01
We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.
Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.
Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.
NASA Astrophysics Data System (ADS)
Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.
2018-02-01
A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.
Low temperature phase of the trigonal RbIn(MoO4)2 crystal
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.; Schranz, W.; Reinecker, M.
2013-02-01
The present article is devoted to a new low-temperature phase transition found at about T pt = 84 K in the layered RbIn(MoO4)2 crystal. This phase transition is well proved by dynamical mechanical analysis through anomalies in the temperature behaviour of both real and imaginary parts of the Young's modulus. From the polarizing microscope observations it was found that below T pt the ferroelastic phase disappears. This transition has also been seen through strong changes in the shape of the electron paramagnetic resonance lines. EPR studies, performed in the liquid nitrogen temperature, yield evidence of strong rebuilding of the crystal unit cell in comparison with that of the high temperature paraelastic phase.
Pyragas, Kestutis; Novičenko, Viktor
2015-07-01
The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.
Peak distortion effects in analytical ion chromatography.
Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A
2014-01-07
The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.
NASA Astrophysics Data System (ADS)
Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru
2018-05-01
By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C = ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C = ‑1 for 0 < U < U c and increases linearly with C = 0 for U > U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.
NASA Astrophysics Data System (ADS)
Lam, Hing-Lan
2017-01-01
A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.
Shi, Yu; Chen, Mao-xue; Yu, Zhen-wen; Xu, Zhen-zhu
2011-10-01
Taking three wheat cultivars Jimai 20 (strong gluten), Taishan 23 (medium gluten), and Ningmai 9 (weak gluten) as test materials, a field experiment was conducted to examine the effects of shading at different phases of grain-filling on the grain protein components contents and processing quality. Four treatments were installed, i. e., no shading (S0), shading at early grain-filling phase (from 0 day after anthesis (DAA) to 11 DAA; S1), shading at medium grain-filling phase (from 12 DAA to 23 DAA; S2), and shading at late grain-filling phase (from 24 DAA to 35 DAA; S3). No significant differences were observed in the grain albumin+globulin contents of the three cultivars among the four treatments. Shading increased the grain HMW-GS, LMW-GS, gluten, glutenin, and total protein contents of Jimai 20 and Taishan 23 significantly, and the increments were higher in treatment S2 than in other shading treatments. Treatments S2 and S3 increased the grain protein components contents of Ningmai 9 significantly. Comparing with the control, shading decreased the grain yield significantly, but increased the dough development time, dough stability time, and sedimentation volume, especially for treatment S2, which suggested that the wheat grain quality had a close relationship with the light intensity at medium phase of grain-filling. Overall, the regulation effect of shading at grain-filling stage on the wheat grain yield, grain protein components contents, and indices values of grain processing quality for the test cultivars was in the order of Jimai 20 > Taishan 23 > Ningmai 9.
NASA Astrophysics Data System (ADS)
Nam, Hui; Guinan, John J.
2011-11-01
Apical auditory nerve (AN) fibers show two click-response regions that are both strongly inhibited by medial olivocochlear (MOC) efferents: (1) ringing responses from low- level (LL) clicks that are thought to be enhanced by a "cochlear amplifier," and (2) AN initial peak (ANIPr) responses from moderate-to-high level (˜70-100 dB pSPL) rarefaction clicks. Since MOC fibers synapse and act on outer hair cells (OHCs), the MOC inhibition of these responses indicates that OHC processes are heavily involved in the production of both LL and ANIPr responses. Using AN recordings in anesthetized cats, we explored the role of OHC stereocilia position in the production of these click-response regions by presenting rarefaction clicks at different phases of 50 Hz, 70-110 dB SPL bias tones. Bias effects on LL responses followed the traditional biasing pattern of twice-a-bias-tone-cycle suppression with more suppression at one phase than the other. This suppression is attributable to the bias tone moving the OHC stereocilia toward low-slope, saturation regions of the mechano-electric transduction function with the rest position being closer to one saturation region. A somewhat similar pattern was found for ANIPr responses except that the bias phases of the largest suppressions were different in ANIPr versus LL responses, usually by ˜180 degrees. The data are consistent with the LL and ANIPr responses both being due to active processes in OHCs that are controlled by OHC stereocilia position. The different phases of the LL and ANIPr suppressions indicate that different mechanisms, and perhaps different vibration patterns in the organ of Corti, are involved in the production of LL and ANIPr responses.
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2013-03-01
Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier
NASA Astrophysics Data System (ADS)
Kotwal, Ashutosh V.; Ramsey-Musolf, Michael J.; No, Jose Miguel; Winslow, Peter
2016-08-01
We study the prospects for probing a gauge singlet scalar-driven strong first-order electroweak phase transition with a future proton-proton collider in the 100 TeV range. Singlet-Higgs mixing enables resonantly enhanced di-Higgs production, potentially aiding discovery prospects. We perform Monte Carlo scans of the parameter space to identify regions associated with a strong first-order electroweak phase transition, analyze the corresponding di-Higgs signal, and select a set of benchmark points that span the range of di-Higgs signal strengths. For the b b ¯γ γ and 4 τ final states, we investigate discovery prospects for each benchmark point for the high-luminosity phase of the Large Hadron Collider and for a future p p collider with √{s }=50 , 100, or 200 TeV. We find that any of these future collider scenarios could significantly extend the reach beyond that of the high-luminosity LHC, and that with √{s }=100 TeV (200 TeV) and 30 ab-1 , the full region of parameter space favorable to strong first-order electroweak phase transitions is almost fully (fully) discoverable.
Broken Time-Reversal Symmetry in Strongly Correlated Ladder Structures
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2004-03-01
A decade after the first detailed numerical investigations of strongly correlated ladder models, exotic and interesting phases are still being discovered. Besides charge and spin density wave states with broken translational symmetry, and resonating valence bond (RVB) type superconductivity, a time reversal symmetry borken phase was recently found at half filling [J.B. Marston et al., Phys. Rev. Lett 89, 056404 (2002)]. In this talk I will present our recent results of density matrix renormalization group (DMRG) calculations [Phys. Rev. Lett. 90, 186401 (2003)], where we provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of this state in which long-range ordered orbital currents are arranged in a staggered pattern. This phase, which we found to coexist with a charge density wave, is known in the literature under the names ``staggered flux phase'', ``orbital antiferromagnetism'' or ``d-density wave (DDW)''. This brings us closer to recent proposals that this order might be realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.
Multiplexing topologies and time scales: The gains and losses of synchrony
NASA Astrophysics Data System (ADS)
Makovkin, Sergey; Kumar, Anil; Zaikin, Alexey; Jalan, Sarika; Ivanchenko, Mikhail
2017-11-01
Inspired by the recent interest in collective dynamics of biological neural networks immersed in the glial cell medium, we investigate the frequency and phase order, i.e., Kuramoto type of synchronization in a multiplex two-layer network of phase oscillators of different time scales and topologies. One of them has a long-range connectivity, exemplified by the Erdős-Rényi random network, and supports both kinds of synchrony. The other is a locally coupled two-dimensional lattice that can reach frequency synchronization but lacks phase order. Drastically different layer frequencies disentangle intra- and interlayer synchronization. We find that an indirect but sufficiently strong coupling through the regular layer can induce both phase order in the originally nonsynchronized random layer and global order, even when an isolated regular layer does not manifest it in principle. At the same time, the route to global synchronization is complex: an initial onset of (partial) synchrony in the regular layer, when its intra- and interlayer coupling is increased, provokes the loss of synchrony even in the originally synchronized random layer. Ultimately, a developed asynchronous dynamics in both layers is abruptly taken over by the global synchrony of both kinds.
NASA Astrophysics Data System (ADS)
Yadav, Poonam Lata; Singh, Hukum
2018-05-01
To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.
NASA Astrophysics Data System (ADS)
Yang, Yinhui; Qian, Hao
2018-05-01
The influence of Mn addition on σ-phase precipitation kinetics and pitting corrosion of Fe-22Cr-1.9Ni-2.3Mo-0.2N-xMn low nickel type duplex stainless steel was investigated by medium- and high-temperature aging treatments of 600 °C and 800 °C. The microstructure analysis showed that the fine rod-shaped and coarsening dendritelike σ-phase precipitates formed at 600 °C and 800 °C, respectively, and the precipitate growth with the higher temperature was accelerated due to the partition of Mn, but Mn is not a strong σ-phase forming element like Cr, Mo during aging treatment at these two temperatures. At an early aging time of 800 °C, more precipitated nuclei with more Mn addition promote refinement of σ precipitates in later aging time. The kinetic behavior at 600 °C and 800 °C is related to diffusion-controlled growth of σ phase, and the σ-phase nucleation and growth are enhanced with more Mn addition and higher aging temperature due to a faster Mn diffusion rate. The difference in precipitation morphology for two aging temperatures was attributed to the different nucleation modes caused by kinetics parameter n variation. Increasing the aging temperature from 600 °C to 800 °C increased the susceptibility to pitting with higher Mn addition due to faster σ-phase precipitation kinetics.
NASA Astrophysics Data System (ADS)
Morabito, David D.; D'Addario, Larry; Finley, Susan
2016-02-01
Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.
Studies on Normal and Microgravity Annular Two Phase Flows
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.
1999-01-01
Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.
NASA Astrophysics Data System (ADS)
Zhang, Guanghong; Li, Wenjian; Huang, Wen; Cao, Zhiqun; Shao, Kang; Li, Fengjiao; Tang, Chaoyun; Li, Cuihua; He, Chuanxin; Zhang, Qianling; Fan, Liangdong
2018-05-01
Highly conductive ceria-carbonate composite represents one type of most promising electrolyte materials for low temperature solid oxide fuel cells (SOFCs). Composites with large oxide-carbonate interface and homogeneous element/phase distribution are desirable to further enhance electrical properties and to study the ionic conduction mechanism. In this work, we report the successful synthesis of element/phase well-distributed, interfacial strongly coupled Sm0.2Ce0.8O2-Na2CO3 (NSDC) nanocomposite with different residual carbonate contents by an in-situ one-pot one-step citric acid-nitrate combustion method. Interestingly, NSDC shows distinct properties over those prepared by conventional methods and improved ionic conductivity. In particular, NSDC9010 nanocomposite displays a proton conductivity of 0.044 S cm-1 at 650 °C, which is 3-5 times higher than the oxide proton conductors. Electrolyte supported SOFCs based on the resultant nanocomposite electrolyte, NSDC9010, give the best power output of 281.5 mW cm-2 at 600 °C with LiNiO2 symmetric electro-catalysts. The excellent ionic conductivity and fuel cell performance are correlated with the unique core-shell structure, good phase distribution and large interfacial area induced by the one-step fabrication method, the strong coupling between oxide and carbonate as verified by the differential thermal and Raman spectroscopy characterization results and the optimal interfacial carbonate layer thickness by intentionally adjusting of carbonate contents.
NASA Astrophysics Data System (ADS)
Ghosh, A.; Yarlagadda, S.
2017-09-01
Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521; CREST
2011-10-15
We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined T-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of states (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature T{sub c}, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures T{sup *} and T{sup **} at which the pseudogap structures in these quantities completely disappear. Determining T{supmore » *} and T{sup **} over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by the JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal-state properties of this strongly interacting Fermi system.« less
Hurt, Christopher P.; Brown, David A.
2018-01-01
Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
Stock, C.; Rodriguez, E. E.; Bourges, P.; ...
2017-04-07
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.
2009-01-01
Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, C.; Rodriguez, E. E.; Bourges, P.
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.
2017-04-01
The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.
Demixing in simple dipolar mixtures: Integral equation versus density functional results
NASA Astrophysics Data System (ADS)
Range, Gabriel M.; Klapp, Sabine H. L.
2004-09-01
Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.
Countercurrent distribution of biological cells
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1982-01-01
Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.
Jiang, Ping; Lucy, Charles A
2016-03-11
Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Swimming against the current: genetic vaccination against Trypanosoma cruzi infection in mice.
Rodrigues, Mauricio M; de Alencar, Bruna C; Claser, Carla; Tzelepis, Fanny; Silveira, Eduardo L; Haolla, Filipe A; Dominguez, Mariana R; Vasconcelos, José Ronnie
2009-07-01
Vaccines have had an unquestionable impact on public health during the last century. The most likely reason for the success of vaccines is the robust protective properties of specific antibodies. However, antibodies exert a strong selective pressure and many microorganisms, such as the obligatory intracellular parasite Trypanosoma cruzi, have been selected to survive in their presence. Although the host develops a strong immune response to T. cruzi, they do not clear the infection and instead progress to the chronic phase of the disease. Parasite persistence during the chronic phase of infection is now considered the main factor contributing to the chronic symptoms of the disease. Based on this finding, containment of parasite growth and survival may be one method to avoid the immunopathology of the chronic phase. In this context, vaccinologists have looked over the past 20 years for other immune effector mechanisms that could eliminate these antibody-resistant pathogens. We and others have tested the hypothesis that non-antibody-mediated cellular immune responses (CD4+ Th1 and CD8+ Tc1 cells) to specific parasite antigens/genes expressed by T. cruzi could indeed be used for the purpose of vaccination. This hypothesis was confirmed in different mouse models, indicating a possible path for vaccine development.
On the relationship between income, fertility rates and the state of democracy in society
NASA Astrophysics Data System (ADS)
Hutzler, S.; Sommer, C.; Richmond, P.
2016-06-01
Empirical data for 145 countries shows a strong correlation between the gross national income per capita and the political form of their governance, as specified by the so-called democracy index. We interpret this relationship in analogy to phase transitions between different states of matter, using concepts of statistical physics. Fertility rates play the role of binding energy in solid state physics.
Mercer, Sterett H; McIntosh, Kent; Strickland-Cohen, M Kathleen; Horner, Robert H
2014-06-01
The purpose of the study was to examine the extent to which the School-Wide Universal Behavior Sustainability Index: School Teams (SUBSIST; McIntosh, Doolittle, Vincent, Horner, & Ervin, 2009), a measure of school and district contextual factors that promote the sustainability of school practices, demonstrated measurement invariance across groups of schools that differed in length of time implementing school-wide Positive Behavioral Interventions and Supports (PBIS; Sugai & Horner, 2009), student ethnic composition, and student socioeconomic status (SES). School PBIS team members and district coaches representing 860 schools in 14 U.S. states completed the SUBSIST. Findings supported strong measurement invariance, for all items except 1, of a model with two school-level factors (School Priority and Team Use of Data) and 2 district-level factors (District Priority and Capacity Building) across groups of schools at initial implementation, institutionalization, and sustainability phases of PBIS implementation. Schools in the sustainability phase were rated significantly higher on School Priority and Team Use of Data than schools in initial implementation. Strong measurement invariance held across groups of schools that differed in student ethnicity and SES. The findings regarding measurement invariance are important for future longitudinal investigations of factors that may promote the sustained implementation of school practices. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Libby, J.; Malde, S.; Powell, A.; Wilkinson, G.; Asner, D. M.; Bonvicini, G.; Briere, R. A.; Gershon, T.; Naik, P.; Pedlar, T. K.; Rademacker, J.; Ricciardi, S.; Thomas, C.
2014-04-01
Measurements of the coherence factors (R and R) and the average strong-phase differences (δDKππ0 and δDK3π) for the decays D0→K-π+π0 and D0→K-π+π+π- are presented. These parameters are important inputs to the determination of the unitarity triangle angle γ in B∓→DK∓ decays, where D designates a D0 or D meson decaying to a common final state. The measurements are made using quantum correlated DDbar decays collected by the CLEO-c experiment at the ψ(3770) resonance, and augment a previously published analysis by the inclusion of new events in which the signal decay is tagged by the mode D→KS0π+π-. The measurements also benefit from improved knowledge of external inputs, namely the D0D mixing parameters, rDKπ and several D-meson branching fractions. The measured values are R=0.82±0.07, δDKππ0=(164-14+20)°, R=0.32-0.28+0.20 and δDK3π=(225-78+21)°. Consideration is given to how these measurements can be improved further by using the larger quantum-correlated data set collected by BESIII.
Insights on the Cuprate High Energy Anomaly Observed in ARPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritz, Brian
2011-08-16
Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA.more » Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.« less
User Experience Evaluation Methods in Product Development (UXEM'09)
NASA Astrophysics Data System (ADS)
Roto, Virpi; Väänänen-Vainio-Mattila, Kaisa; Law, Effie; Vermeeren, Arnold
High quality user experience (UX) has become a central competitive factor of product development in mature consumer markets [1]. Although the term UX originated from industry and is a widely used term also in academia, the tools for managing UX in product development are still inadequate. A prerequisite for designing delightful UX in an industrial setting is to understand both the requirements tied to the pragmatic level of functionality and interaction and the requirements pertaining to the hedonic level of personal human needs, which motivate product use [2]. Understanding these requirements helps managers set UX targets for product development. The next phase in a good user-centered design process is to iteratively design and evaluate prototypes [3]. Evaluation is critical for systematically improving UX. In many approaches to UX, evaluation basically needs to be postponed until the product is fully or at least almost fully functional. However, in an industrial setting, it is very expensive to find the UX failures only at this phase of product development. Thus, product development managers and developers have a strong need to conduct UX evaluation as early as possible, well before all the parts affecting the holistic experience are available. Different types of products require evaluation on different granularity and maturity levels of a prototype. For example, due to its multi-user characteristic, a community service or an enterprise resource planning system requires a broader scope of UX evaluation than a microwave oven or a word processor that is meant for a single user at a time. Before systematic UX evaluation can be taken into practice, practical, lightweight UX evaluation methods suitable for different types of products and different phases of product readiness are needed. A considerable amount of UX research is still about the conceptual frameworks and models for user experience [4]. Besides, applying existing usability evaluation methods (UEMs) without adaptation to evaluate UX may lead to some scoping issues. Consequently, there is a strong need to put UX evaluation from research into practice.
El Niño-Southern Oscillation is linked to decreased energetic condition in long-distance migrants
Paxton, Kristina L.; Cohen, Emily B.; Paxton, Eben H.; Németh, Zoltan; Moore, Frank R.
2014-01-01
Predicting how migratory animals respond to changing climatic conditions requires knowledge of how climatic events affect each phase of the annual cycle and how those effects carry-over to subsequent phases. We utilized a 17-year migration dataset to examine how El Niño-Southern Oscillation climatic events in geographically different regions of the Western hemisphere carry-over to impact the stopover biology of several intercontinental migratory bird species. We found that migratory birds that over-wintered in South America experienced significantly drier environments during El Niño years, as reflected by reduced Normalized Difference Vegetation Index (NDVI) values, and arrived at stopover sites in reduced energetic condition during spring migration. During El Niño years migrants were also more likely to stopover immediately along the northern Gulf coast of the southeastern U.S. after crossing the Gulf of Mexico in small suboptimal forest patches where food resources are lower and migrant density often greater than larger more contiguous forests further inland. In contrast, NDVI values did not differ between El Niño and La Niña years in Caribbean-Central America, and we found no difference in energetic condition or use of coastal habitats for migrants en route from Caribbean-Central America wintering areas. Birds over-wintering in both regions had consistent median arrival dates along the northern Gulf coast, suggesting that there is a strong drive for birds to maintain their time program regardless of their overall condition. We provide strong evidence that not only is the stopover biology of migratory landbirds influenced by events during the previous phase of their life-cycle, but where migratory birds over-winter determines how vulnerable they are to global climatic cycles. Increased frequency and intensity of ENSO events over the coming decades, as predicted by climatic models, may disproportionately influence long-distance migrants over-wintering in South America.
Amplitude analysis of the B+/--->phiK*(892)+/- decay.
Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Ronan, M T; Tackmann, K; Wenzel, W A; del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H
2007-11-16
We perform an amplitude analysis of B+/--->phi(1020)K*(892)+/- decay with a sample of about 384 x 10(6) BB[over ] pairs recorded with the BABAR detector. Overall, twelve parameters are measured, including the fractions of longitudinal fL and parity-odd transverse f perpendicular amplitudes, branching fraction, strong phases, and six parameters sensitive to CP violation. We use the dependence on the Kpi invariant mass of the interference between the JP=1(-) and 0+ Kpi components to resolve the discrete ambiguity in the determination of the strong and weak phases. Our measurements of fL=0.49+/-0.05+/-0.03, f perpendicular=0.21+/-0.05+/-0.02, and the strong phases point to the presence of a substantial helicity-plus amplitude from a presently unknown source.
Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate
NASA Technical Reports Server (NTRS)
Chandra, P.
1989-01-01
Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.
NASA Astrophysics Data System (ADS)
Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.
2013-10-01
Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.
Phthalimide Copolymer Solar Cells
NASA Astrophysics Data System (ADS)
Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson
2010-03-01
Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.
Active locking and entanglement in type II optical parametric oscillators
NASA Astrophysics Data System (ADS)
Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos
2018-02-01
Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.
Morphological study of polymethyl methacrylate microcapsules filled with self-healing agents
NASA Astrophysics Data System (ADS)
Ahangaran, Fatemeh; Hayaty, Mehran; Navarchian, Amir H.
2017-03-01
Polymethyl methacrylate (PMMA) microcapsules filled with epoxy prepolymer, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, and pentaerythritol tetrakis (3-mercaptopropionate) as healing agents have been prepared separately through internal phase separation method for self-healing purposes. PMMA with two different molecular weights (M bar1 = 36,000 g/mol and M bar2 = 550,000 g/mol) were used with two types of different emulsifiers (ionic and polymeric) to prepare microcapsules. The morphology of healing agent microcapsules was investigated using field emission scanning electron microscopy (FESEM). It was found that PMMA microcapsules separately filled with epoxy and amine had core-shell morphologies with smooth surfaces. The mercaptan/PMMA particles exhibited core-shell and acorn-shape morphologies. The surface morphology of mercaptan microcapsules changed from holed to plain in different emulsion systems. The spreading coefficient (S) of phases in the prepared emulsion systems were calculated from interfacial tension (σ) and contact angle (θ) measurements. The theoretical equilibrium morphology of PMMA microcapsules was predicted according to spreading coefficient values of phases in emulsion systems. It was also found that the surface morphology of PMMA microcapsules depended strongly on the nature of the core, molecular weight of PMMA, type and concentration of emulsifier.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-03-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.
Lunar cycles at mating do not influence sex ratio at birth in horses.
Aguilar, J J; Cuervo-Arango, J; Santa Juliana, L
2015-02-01
It is scientifically demonstrated that lunar cycles have important effects on several biological events. Controversy exists about the lunar influence on human and animal parturition. In addition, in the horse industry, especially in Polo Horse breeders of Argentina and around the world there is a higher demand for female offspring than for males. The objective of this study was to determine whether there is a significant association between the lunar phase at the time of mating and the sex ratio at birth in horses. The Argentinean Stud Book provided information related to all matings registered for Thoroughbred and Arab horses between 2003 and 2011. Statistical associations were tested between dates of matings at different lunar phases or days and sex ratio at birth. A total of 65.535 gestations were studied. Overall, sex ratio at birth resulted in 33.396 fillies (50.96%) and 32.139 colts (49.04%). The percentages of males and females at birth were not statistically different amongst the different lunar phases or days. We can strongly conclude that managing the breeding dates in relation to lunar cycles in order to manipulate the sex ratio of the offspring is not a viable option in horses.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-01-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545
False recognition depends on depth of prior word processing: a magnetoencephalographic (MEG) study.
Walla, P; Hufnagl, B; Lindinger, G; Deecke, L; Imhof, H; Lang, W
2001-04-01
Brain activity was measured with a whole head magnetoencephalograph (MEG) during the test phases of word recognition experiments. Healthy young subjects had to discriminate between previously presented and new words. During prior study phases two different levels of word processing were provided according to two different kinds of instructions (shallow and deep encoding). Event-related fields (ERFs) associated with falsely recognized words (false alarms) were found to depend on the depth of processing during the prior study phase. False alarms elicited higher brain activity (as reflected by dipole strength) in case of prior deep encoding as compared to shallow encoding between 300 and 500 ms after stimulus onset at temporal brain areas. Between 500 and 700 ms we found evidence for differences in the involvement of neural structures related to both conditions of false alarms. Furthermore, the number of false alarms was found to depend on depth of processing. Shallow encoding led to a higher number of false alarms than deep encoding. All data are discussed as strong support for the ideas that a certain level of word processing is performed by a distinct set of neural systems and that the same neural systems which encode information are reactivated during the retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiroz, Heiddy P., E-mail: hpquirozg@unal.edu.co; Dussan, A., E-mail: adussanc@unal.edu.co
2016-08-07
In this work, titanium dioxide nanotubes were prepared by using titanium foils via electrochemical anodization in ethylene glycol solutions containing different amounts of water and fluoride in the ranges of 1%–3% and 0.15%–0.5%, respectively, to determine their effects on morphology, optical, and crystalline structure properties. Annealing processes were performed on all samples in the range between 273 and 723 K. Morphology and structure properties of the samples were studied by scanning electron microscopy, X-ray diffraction (XRD), and transmission electron microscopy. Titanium dioxide (TiO{sub 2}) nanotubes, through anodization method, are strongly influenced by conditions, like fluoride concentration and applied voltages. Tube lengthsmore » between 2 and 7 μm were obtained, exhibiting different diameters and wall thicknesses. When alternating voltage was applied, the outer surface of the nanotubes exhibited evenly spaced ring-shaped regions, while smooth tubes were observed when constant voltage was applied. Reflection peaks, corresponding to Brookite, Anatase, and Rutile, of TiO{sub 2} phases, were observed from the XRD pattern. These phases were corroborated via μXRD measurements, and the Ti{sub 3}O{sub 5} phase was also observed in detail. Absorption coefficient (α), optical band gap (Eg), and extinction coefficient (ε) of TiO{sub 2} nanotubes were calculated by transmittance spectra in the UV–Vis range. Strong absorption was noted in the UV region from reflectance and absorbance measurements. A correlation between synthesis parameters and physical properties is presented.« less
Transmutation of a trans-series: the Gross-Witten-Wadia phase transition
NASA Astrophysics Data System (ADS)
Ahmed, Anees; Dunne, Gerald V.
2017-11-01
We study the change in the resurgent asymptotic properties of a trans-series in two parameters, a coupling g 2 and a gauge index N, as a system passes through a large N phase transition, using the universal example of the Gross-Witten-Wadia third-order phase transition in the unitary matrix model. This transition is well-studied in the immediate vicinity of the transition point, where it is characterized by a double-scaling limit Painlevé II equation, and also away from the transition point using the pre-string difference equation. Here we present a complementary analysis of the transition at all coupling and all finite N, in terms of a differential equation, using the explicit Tracy-Widom mapping of the Gross-Witten-Wadia partition function to a solution of a Painlevé III equation. This mapping provides a simple method to generate trans-series expansions in all parameter regimes, and to study their transmutation as the parameters are varied. For example, at any finite N the weak coupling expansion is divergent, with a non-perturbative trans-series completion; on the other hand, the strong coupling expansion is convergent, and yet there is still a non-perturbative trans-series completion. We show how the different instanton terms `condense' at the transition point to match with the double-scaling limit trans-series. We also define a uniform large N strong-coupling expansion (a non-linear analogue of uniform WKB), which is much more precise than the conventional large N expansion through the transition region, and apply it to the evaluation of Wilson loops.
Soft particles at fluid interfaces: wetting, structure, and rheology
NASA Astrophysics Data System (ADS)
Isa, Lucio
Most of our current knowledge concerning the behavior of colloidal particles at fluid interfaces is limited to model spherical, hard and uniform objects. Introducing additional complexity, in terms of shape, composition or surface chemistry or by introducing particle softness, opens up a vast range of possibilities to address new fundamental and applied questions in soft matter systems at fluid interfaces. In this talk I will focus on the role of particle softness, taking the case of core-shell microgels as a paradigmatic example. Microgels are highly swollen and cross-linked hydrogel particles that, in parallel with their practical applications, e.g. for emulsion stabilization and surface patterning, are increasingly used as model systems to capture fundamental properties of bulk materials. Most microgel particles develop a core-shell morphology during synthesis, with a more cross-linked core surrounded by a corona of loosely linked and dangling polymer chains. I will first discuss the difference between the wetting of a hard spherical colloid and a core-shell microgel at an oil-water interface, pinpointing the interplay between adsorption at the interface and particle deformation. I will then move on to discuss the interplay between particle morphology and the microstructure and rheological properties of the interface. In particular, I will demonstrate that synchronizing the compression of a core-shell microgel-laden fluid interface with the deposition of the interfacial monolayer makes it possible to transfer the 2D phase diagram of the particles onto a solid substrate, where different positions correspond to different values of the surface pressure and the specific area. Using atomic force microscopy, we analyzed the microstructure of the monolayer and discovered a phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases correspond to shell-shell or core-core inter-particle contacts, respectively, where with increasing surface pressure the former mechanically fail enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore extended our analysis to measure the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer; the interfaces always show a strong elastic response, with a dip in the elastic modulus in correspondence of the melting of the shell-shell phase, followed by a steep increase upon formation of a percolating network of the core-core contacts. The presented results highlight the complex interplay between the wetting and deformation of individual soft particles at fluid interfaces and the overall interface microstructure and mechanics. They show strong connections to fundamental studies on phase transitions in two-dimensional systems and pave the way for novel nanoscale surface patterning routes. The author acknowledges financial support from the Swiss National Science Foundation Grant PP00P2-144646/1.
Liu, Yong-Qiang; Tay, Joo-Hwa
2015-09-01
The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain results and guide the operation with this fast strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-06-01
We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.
Weyl-Kondo semimetal in heavy-fermion systems
NASA Astrophysics Data System (ADS)
Lai, Hsin-Hua; Grefe, Sarah E.; Paschen, Silke; Si, Qimiao
2018-01-01
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
Assessment of photosynthesis regulation in mixotrophically cultured microalga Chlorella sorokiniana
Li, Tingting; Kirchhoff, Helmut; Gargouri, Mahmoud; ...
2016-07-19
Mixotrophic growth of microalgae offers great potential as an efficient strategy for biofuel production. In this study, photosynthetic regulation of mixotrophically cultured Chlorella sorokiniana cells was systematically evaluated. Mixotrophic cells in the exponential growth phase showed the highest photosynthetic activity, where maximum photosynthetic O 2 evolution was approximately 3- and 4-fold higher than cells in the same phase grown photoautotrophically in 1% CO 2 (in air) and air, respectively. Additionally, characteristic chlorophyll fluorescence parameters demonstrated that no limitation in electron transport downstream of PSII was detected in mixotrophic cells. Up-regulation of photosynthetic activity was associated with high total ribulose-1, 5-bisphosphatemore » carboxylase/oxygenase (Rubisco) carboxylase activity and expression level of phosphoribulokinase (PRK). After 3 days, photosynthetic O 2 evolution of mixotrophic cells that went to the stationary phase, was strongly reduced, with reduced photochemical efficiency and reorganization of the PSII complex. Simultaneously, enzymatic activity for Rubisco carboxylase and mRNA levels of Rubisco and PRK diminished. Importantly, there was almost no non-photochemical quenching for mixotrophic cells, whether grown in log or stationary phase. A decline in the quantum efficiency of PSII and an oxidized plastoquinone pool (PQ pool) was observed under N-depleted conditions during mixotrophic growth. Finally, these results demonstrate that photosynthesis is regulated differently in mixotrophically cultured C. sorokiniana cells than in cells grown under photoautotrophic conditions, with a particularly strong impact by nitrogen levels in the cells.« less
[Financing healthcare in low-income countries: recurring questions, new challenges].
Audibert, M; Mathonnat, J; de Roodenbeke, E
2004-01-01
Healthcare financing policies in low-income countries have gone through three successive phases. In the first phase the dominant approach was based on free access to healthcare and focused first on development of vertical programs and then on the necessity of providing primary care to all. While maintaining the emphasis on accessibility to primary care, the second policy phase introduced user fees and attempted to integrate healthcare programs into district-based healthcare structures. The third phase has been strongly influenced by the relationship between healthcare and development and the Millenium Objectives and places strong emphasis on necessity of developing insurance schemes. Recent studies on the relationship between healthcare spending and health status indicate that the efficiency and effectiveness of healthcare spending plays a more determinant role than the amount. At the same time an effort is being made to develop synergy between the different players in the health care systems and to clarify the role of each player by hinging financing decisions on operating criteria such as "public welfare", externalities, catastrophic costs, and equity. Although many countries have made significant progress, there are still several lagging areas, i.e., coverage for the poorest segment of the population (despite the rhetoric), follow-up of financing, and governance. Increasing external aid already initiated by several states may have a non-negligible impact on the macroeconomic balance. Since these changes could lead to adverse effects on health, there is a need to implement careful non-dogmatic policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdani, Ahmad, E-mail: Yazdania@modares.ac.ir; Shadrokh, Zohreh; Department of Physics, University of Shahrood, P.O. Box 316-36155, Shahrood
Highlights: • Opto-crystalline character of the composition of Cu{sub 2}S and S{sub 2}Sn was considered. • The formation Cu{sub 2}SnS{sub 3} is strongly related to phase separation at interface. • The entanglement of phases is strongly due to the chemical bond competition. • The suggested fluctuation region is approved by PL spectra. • Reconstruction and cluster formation is evident by formation of flat-spiral flowers. - Abstract: Optical character of crystal structure of the composition of two different semiconducting metallic sulfides, Cu{sub 2}S and S{sub 2}Sn, in pure phase formation of the ternary chalcogenide Cu{sub 2}SnS{sub 3} was considered. Because ofmore » the difficulties related to the phase separation at the definite Eutectic temperature for the composite formation, which is evident in optical absorption fluctuations, solvothermal synthesis in the intermediate temperature range 180–220 °C seems convenient where tetragonal crystal structure is investigated by XRD. Absorption fluctuations below E = E{sub g} were more pronounced for the lower limit case (180 °C) reflected in a sharp peak located at 1.48 eV on S1 as seen in UV-PL measurement. The characteristic behavior of the interface, resulting in the reconstruction and cluster formation due to the offset of bond rupturing displacement of atomic positions, is in favor of aggregation instead of agglomeration, which is evident by formation of small flat-spiral flowers in SEM images.« less
Sarkar, Sujit
2017-05-12
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).
Evolution of electronic structure across the rare-earth RNiO 3 series
Freeland, John W.; van Veenendaal, Michel; Chakhalian, Jak
2015-07-31
Here, the perovksite rare-earth nickelates, RNiO 3 (R = La… Lu), are a class of materials displaying a rich phase-diagram of metallic and insulating phases associated with charge and magnetic order. Being in the charge transfer regime, Ni 3+ in octahedral coordination displays a strong hybridization with oxygen to form 3d-2p mixed states, which results in a strong admixture of 3d 8L_ into 3d 7, where L_ denotes a hole on the oxygen. To understand the nature of this strongly hybridized ground state, we present a detailed study of the Ni and O electronic structure using high-resolution soft X-ray absorptionmore » spectroscopy (XAS). Through a comparison of the evolution of the XAS line-shape at Ni L- and O K-edges across the phase diagram, we explore the changes in the electronic signatures in connection with the insulating and metallic phases that support the idea of hybridization playing a fundamental role.« less
Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins
NASA Astrophysics Data System (ADS)
Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim
2016-05-01
The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be more attractive for larger sized nanoparticles. The nanoparticle aggregates are characterized by mass fractal.
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd 2Re 2O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harter, J. W.; Zhao, Z. Y.; Yan, J. -Q.
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd 2Re 2O 7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of themore » multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd 2Re 2O 7 and induces a parity-breaking lattice distortion as a secondary order.« less
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7
NASA Astrophysics Data System (ADS)
Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.
2017-04-01
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order.
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd 2Re 2O 7
Harter, J. W.; Zhao, Z. Y.; Yan, J. -Q.; ...
2017-04-21
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd 2Re 2O 7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of themore » multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd 2Re 2O 7 and induces a parity-breaking lattice distortion as a secondary order.« less
Phase Imaging using Focusing Polycapillary Optics
NASA Astrophysics Data System (ADS)
Bashir, Sajid
The interaction of X rays in diagnostic energy range with soft tissues can be described by Compton scattering and by the complex refractive index, which together characterize the attenuation properties of the tissue and the phase imparted to X rays passing through it. Many soft tissues exhibit extremely similar attenuation, so that their discrimination using conventional radiography, which generates contrast in an image through differential attenuation, is challenging. However, these tissues will impart phase differences significantly greater than attenuation differences to the X rays passing through them, so that phase-contrast imaging techniques can enable their discrimination. A major limitation to the widespread adoption of phase-contrast techniques is that phase contrast requires significant spatial coherence of the X-ray beam, which in turn requires specialized sources. For tabletop sources, this often requires a small (usually in the range of 10-50 micron) X-ray source. In this work, polycapillary optics were employed to create a small secondary source from a large spot rotating anode. Polycapillary optics consist of arrays of small hollow glass tubes through which X rays can be guided by total internal reflection from the tube walls. By tapering the tubes to guide the X rays to a point, they can be focused to a small spot which can be used as a secondary source. The polycapillary optic was first aligned with the X-ray source. The spot size was measured using a computed radiography image plate. Images were taken at a variety of optic-to-object and object-to-detector distances and phase-contrast edge enhancement was observed. Conventional absorption images were also acquired at a small object-to detector distances for comparison. Background division was performed to remove strong non-uniformity due to the optics. Differential phase contrast reconstruction demonstrates promising preliminary results. This manuscript is divided into six chapters. The second chapter describes the limitations of conventional imaging methods and benefits of the phase imaging. Chapter three covers different types of X-ray photon interactions with matter. Chapter four describes the experimental set-up and different types of images acquired along with their analysis. Chapter five summarizes the findings in this project and describes future work as well.
Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentrationmore » retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations of mixed-phase cloud simulations by CAM5 were performed. Measurement results indicate that ice concentrations control stratiform mixed-phase cloud properties. The improvement of ice concentration parameterization in the CAM5 was done in close collaboration with Dr. Xiaohong Liu, PNNL (now at University of Wyoming).« less
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.
Farajollahpour, T; Jafari, S A
2018-01-10
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator
NASA Astrophysics Data System (ADS)
Farajollahpour, T.; Jafari, S. A.
2018-01-01
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Rezaei, Mohammad N; Dornez, Emmie; Jacobs, Pieter; Parsi, Anali; Verstrepen, Kevin J; Courtin, Christophe M
2014-05-01
Fermentation of sugars into CO2, ethanol and secondary metabolites by baker's yeast (Saccharomyces cerevisiae) during bread making leads to leavening of dough and changes in dough rheology. The aim of this study was to increase our understanding of the impact of yeast on dough related aspects by investigating the effect of harvesting yeast at seven different points of the growth profile on its fermentation performance, metabolite production, and the effect on critical dough fermentation parameters, such as gas retention potential. The yeast cells harvested during the diauxic shift and post-diauxic growth phase showed a higher fermentation rate and, consequently, higher maximum dough height than yeast cells harvested in the exponential or stationary growth phase. The results further demonstrate that the onset of CO2 loss from fermenting dough is correlated with the fermentation rate of yeast, but not with the amount of CO2 that accumulated up to the onset point. Analysis of the yeast metabolites produced in dough yielded a possible explanation for this observation, as they are produced in different levels depending on physiological phase and in concentrations that can influence dough matrix properties. Together, our results demonstrate a strong effect of yeast physiology at the time of harvest on subsequent dough fermentation performance, and hint at an important role of yeast metabolites on the subsequent gas holding capacity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco
2016-09-01
HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Physical Department, Voronezh State University, Voronezh 394006
We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.
Phase Separation from Electron Confinement at Oxide Interfaces
NASA Astrophysics Data System (ADS)
Scopigno, N.; Bucheli, D.; Caprara, S.; Biscaras, J.; Bergeal, N.; Lesueur, J.; Grilli, M.
2016-01-01
Oxide heterostructures are of great interest for both fundamental and applicative reasons. In particular, the two-dimensional electron gas at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces displays many different properties and functionalities. However, there are clear experimental indications that the interface electronic state is strongly inhomogeneous and therefore it is crucial to investigate possible intrinsic mechanisms underlying this inhomogeneity. Here, the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that such confinement may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a robust mechanism for the inhomogeneous character of these interfaces.
Mott transition in the π -flux S U (4 ) Hubbard model on a square lattice
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Wu, Congjun; Wang, Yu
2018-05-01
With increasing repulsive interaction, we show that a Mott transition occurs from the semimetal to the valence bond solid, accompanied by the Z4 discrete symmetry breaking. Our simulations demonstrate the existence of a second-order phase transition, which confirms the Ginzburg-Landau analysis. The phase transition point and the critical exponent η are also estimated. To account for the effect of a π flux on the ordering in the strong-coupling regime, we analytically derive by the perturbation theory the ring-exchange term, which is the leading-order term that can reflect the difference between the π -flux and zero-flux S U (4 ) Hubbard models.
Electronic structure of BaNi2As2
NASA Astrophysics Data System (ADS)
Zhou, Bo; Xu, Min; Zhang, Yan; Xu, Gang; He, Cheng; Yang, L. X.; Chen, Fei; Xie, B. P.; Cui, Xiao-Yu; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Dai, X.; Feng, D. L.
2011-01-01
BaNi2As2, with a first-order phase transition around 131 K, is studied by the angle-resolved photoemission spectroscopy. The measured electronic structure is compared to the local-density approximation calculations, revealing similar large electronlike bands around M¯ and differences along Γ¯-X¯. We further show that the electronic structure of BaNi2As2 is distinct from that of the sibling iron pnictides. Particularly, there is no signature of band folding, indicating no collinear spin-density-wave-related magnetic ordering. Moreover, across the strong first-order phase transition, the band shift exhibits a hysteresis, which is directly related to the significant lattice distortion in BaNi2As2.
Márquez, Andrés; Gallego, Sergi; Méndez, David; Alvarez, Mariela L; Fernández, Elena; Ortuño, Manuel; Neipp, Cristian; Beléndez, Augusto; Pascual, Inmaculada
2007-09-01
We show an accurate procedure to obtain a Fourier transform (FT) with no dc term using a commercial twisted-nematic liquid-crystal display. We focus on the application to holographic storage of binary data pages, where a drastic decrease of the dc term in the FT is highly desirable. Two different codification schemes are considered: binary pi radians phase modulation and hybrid ternary modulation. Any deviation in the values of the amplitude and phase shift generates the appearance of a strong dc term. Experimental results confirm that the calculated configurations provide a FT with no dc term, thus showing the effectiveness of the proposal.
NASA Astrophysics Data System (ADS)
Morkel, M.; Unterhalt, H.; Klüner, T.; Rupprechter, G.; Freund, H.-J.
2005-07-01
The lineshape and intensity of SFG signals of CO adsorbed on supported Pd nanoparticles and Pd(1 1 1) are analyzed. For CO/Pd(1 1 1) nearly symmetric lorentzian lineshapes were observed. Applying two different visible wavelengths for excitation, asymmetric lineshapes observed for the CO/Pd/Al 2O 3/NiAl(1 1 0) system are explained by a lower resonant and a higher non-resonant SFG signal and a change in the phase between resonant and non-resonant signals, most likely originating from an interband transition in the NiAl substrate. The relative intensity of different CO species (hollow, bridge, on-top) was modeled by DFT calculations of IR transition moments and Raman activities. While the (experimental) sensitivity of SFG towards different CO species strongly varies, the calculated IR and Raman activities are rather similar. The inability to exactly reproduce experimental SFG intensities suggests a strong coverage dependence of Raman activities or that non-linear effects occur that can currently not be properly accounted for.
NASA Astrophysics Data System (ADS)
Mandal, Ipsita; Nandkishore, Rahul M.
2018-03-01
Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.
Mated Drosophila melanogaster females consume more amino acids during the dark phase
Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.
2017-01-01
To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073
Mated Drosophila melanogaster females consume more amino acids during the dark phase.
Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q
2017-01-01
To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.
Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material
Lantz, G.; Mansart, B.; Grieger, D.; ...
2017-01-09
Photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. We present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V 2O 3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configurationmore » is triggered by the excitation of electrons into the bonding a 1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A 1g coherent phonon. Furthermore, this configuration is in stark contrast with the thermally accessible ones - the A 1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned.« less