Sample records for strong salinity gradient

  1. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity. PMID:26536246

  2. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.

  3. Population ecology of the gulf ribbed mussel across a salinity gradient: recruitment, growth and density

    USGS Publications Warehouse

    Honig, Aaron; Supan, John; LaPeyre, Megan K.

    2015-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and promoting productivity. As such, changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences. Recruitment, growth, mortality, population size structure and density of the gulf coast ribbed mussel, Geukensia granosissima, were examined across a salinity gradient in southeastern Louisiana. Data were collected along 100-m transects at interior and edge marsh plots located at duplicate sites in upper (salinity ~4 psu), central (salinity ~8 psu) and lower (salinity ~15 psu) Barataria Bay, Louisiana, U.S.A. Growth, mortality and recruitment were measured in established plots from April through November 2012. Mussel densities were greatest within the middle bay (salinity ~8) regardless of flooding regime, but strongly associated with highest stem densities of Juncus roemerianus vegetation. Mussel recruitment, growth, size and survival were significantly higher at mid and high salinity marsh edge sites as compared to all interior marsh and low salinity sites. The observed patterns of density, growth and mortality in Barataria Bay may reflect detrital food resource availability, host vegetation community distribution along the salinity gradient, salinity tolerance of the mussel, and reduced predation at higher salinity edge sites.

  4. Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients

    USGS Publications Warehouse

    Thomas, Brenda L.; Doyle, Thomas W.; Krauss, Ken W.

    2015-01-01

    The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a moderately degraded mid-reach site (Middle), and a highly degraded downstream site (Lower). Chronologies were successfully developed for Waccamaw Upper and Middle, and Savannah Middle. Correlations between standardized chronologies and environmental variables showed significant relationships between T. distichum growth and early growing season precipitation, temperature, and Palmer Drought Severity Index (PDSI). Savannah Middle chronology correlated most strongly with August river salinity levels. Both lower sites experienced suppression/release events likely in response to local anthropogenic impacts rather than regional environmental variables. The factors that affect T. distichum growth, including salinity, are strongly synergistic. As sea-level rise pushes the freshwater/saltwater interface inland, salinity becomes more limiting to T. distichum growth in tidal freshwater swamps; however, salinity impacts are exacerbated by locally imposed environmental modifications.

  5. Competitive ability, stress tolerance and plant interactions along stress gradients.

    PubMed

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  6. The Bay of Bengal : an ideal laboratory for studying salinity

    NASA Astrophysics Data System (ADS)

    Vialard, jerome; Lengaigne, Matthieu; Akhil, Valiya; Chaitanya, Akurathi; Krishna-Mohan, Krishna; D'Ovidio, Francesco; Keerthi, Madhavan; Benshila, Rachid; Durand, Fabien; Papa, Fabrice; Suresh, Iyappan; Neetu, Singh

    2017-04-01

    The Bay of Bengal combines several unique features that make it an excellent laboratory to study the variability of salinity and its potential effects on the oceanic circulation and climate. This basin receives very large quantities of freshwater in association to the southwest monsoon, either directly from rain or indirectly through the runoffs of the Ganges-Brahmaputra and Irrawaddy. This large quantity of freshwater in a small, semi enclosed basin results in some of the lowest sea surface salinities (SSS) and strongest near-surface haline stratification in the tropical band. The strong monsoon winds also drive an energetic circulation, which exports the excess water received during the monsoon and results in strong horizontal salinity gradients. In this talk, I will summarize several studies of the Bay of Bengal salinity variability and its impacts undertaken in the context of an Indo-French collaboration. In situ data collected along the coast by fishermen and model results show that the intense, coastally-trapped East India Coastal Current (EICC) transports the very fresh water near the Ganges-Brahmaputra river mouth along the eastern Bay of Bengal rim to create a narrow, very fresh "river in the sea" after the southwest monsoon. The salinity-induced pressure gradient contributes to almost 50% of the EICC intensity and sustains mesoscale eddy generation through its effect on horizontal current shears and baroclinic gradients. Oceanic eddies play a strong role in exporting this fresh water from the coast to the basin interior. This "river in the sea" has a strong interannual variability related to the EICC remote modulation by the Indian Ocean Dipole (a regional climate mode). I will also discuss the potential effect of haline stratification on the regional climate through its influence on the upper ocean budget. Finally, I will briefly discuss the performance of remote-sensing for observing SSS in the Bay of Bengal.

  7. Macroinvertebrates communities associated with the decomposition of Phragmites australis and Fucus vesiculosus in transitional systems

    NASA Astrophysics Data System (ADS)

    Lopes, Marta Lobão; Martins, Patrícia; Rodrigues, Ana Maria; Quintino, Victor

    2013-10-01

    The decomposition rates of a macrophyte (Phragmites australis) and an alga (Fucus vesiculosus) and the associated macrofauna communities were studied along a full salinity gradient, using the leaf-bag technique and four sampling times (days 3, 7, 15 and 30). A control was set up using an artificial substrate. A subsequent study conducted in the mesohaline part of the salinity gradient also included empty bags as procedure control. The decay rates of the alga and the macrophyte were significantly different, the alga decaying faster, and presented an opposite trend along the salinity gradient, with the faster decay rate for reed in the less saline areas and for the alga in the euhaline part of the gradient. The fauna associated with the decaying and the artificial substrate showed equally well the benthic succession from the marine to the freshwater areas, in all sampling times. Arthropods were dominant in all substrates along the estuarine gradient and replaced by annelids in freshwater. No significant differences were found between the benthic communities associated with P. australis and F. vesiculosus, despite the strong differences in the decay rates, suggesting that these do not seem to be primarily related to the benthic colonizers. Although the organic substrates sustained a more abundant fauna, the benthic communities did not show significant differences between the organic and the artificial substrates, especially at the level of the species composition, suggesting that the macroinvertebrates may colonize both substrates to feed on the biofilm and/or to seek shelter. The strongly impoverished benthic community sampled by the empty bags reinforced this idea.

  8. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies

    NASA Astrophysics Data System (ADS)

    Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing

    2017-11-01

    The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.

  9. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    PubMed

    Josefson, Alf B

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more controlled by the environment than less dispersive species.

  10. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    PubMed

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  11. Using a trait-based approach to link microbial community composition and functioning to soil salinity

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Fierer, Noah; Rousk, Johannes

    2017-04-01

    Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.

  12. Submesoscale-selective compensation of fronts in a salinity-stratified ocean

    PubMed Central

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-01-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874

  13. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    PubMed Central

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more controlled by the environment than less dispersive species. PMID:28006014

  14. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea.

    PubMed

    Li, Ran; Jiao, Nianzhi; Warren, Alan; Xu, Dapeng

    2018-04-01

    Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia.

    PubMed

    Boujelben, Ines; Gomariz, María; Martínez-García, Manuel; Santos, Fernando; Peña, Arantxa; López, Cristina; Antón, Josefa; Maalej, Sami

    2012-05-01

    The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of "species" during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.

  16. Estuarine fish communities respond to climate variability over both river and ocean basins

    USGS Publications Warehouse

    Feyrer, Frederick V.; Cloern, James E.; Brown, Larry R.; Fish, Maxfield; Hieb, Kathryn; Baxter, Randall

    2015-01-01

    Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.

  17. Estuarine fish communities respond to climate variability over both river and ocean basins.

    PubMed

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Cover of coastal vegetation as an indicator of eutrophication along environmental gradients.

    PubMed

    Wikström, Sofia A; Carstensen, Jacob; Blomqvist, Mats; Krause-Jensen, Dorte

    2016-01-01

    Coastal vegetation communities are important for primary production, biodiversity, coastal protection, carbon and nutrient cycling which, in combination with their sensitivity to eutrophication, render them potential indicators of environmental status for environmental policies like the EU Water and Marine Strategy Framework Directives. We evaluated one potential indicator for coastal vegetation, the cumulative cover at depths where the vegetation is light limited, by investigating its response to eutrophication along gradients in natural conditions. We used a large data set covering the Swedish coastline, spanning broad gradients in nutrient level, water clarity, seabed substrate, physical exposure and climate in addition to a salinity gradient from 0.5 to 30.5. Macroalgal cover increased significantly along gradients of declining nutrient concentration and increasing water clarity when we had accounted for diver effects, spatio-temporal sampling variability, salinity gradients, wave exposure and latitude. The developed empirical model explained 79% of the variation in algal cover across 130 areas. Based on this, we identified macroalgal cover as a promising indicator across the Baltic Sea, Kattegat and Skagerrak. A parallel analysis of soft-substrate macrophytes similarly identified significant increases in cover with decreasing concentrations of total nitrogen and increasing salinity, but the resulting empirical model explained only 52% of the variation in cover, probably due to the spatially more variable nature of soft-substrate vegetation. The identified general responses of vegetation cover to gradients of eutrophication across wide ranges in environmental settings may be useful for monitoring and management of marine vegetation in areas with strong environmental gradients.

  19. The salinity gradient power generating system integrated into the seawater desalination system

    NASA Astrophysics Data System (ADS)

    Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua

    2017-01-01

    Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.

  20. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    NASA Astrophysics Data System (ADS)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.

  1. Importance of plasticity and local adaptation for coping with changing salinity in coastal areas: a test case with barnacles in the Baltic Sea

    PubMed Central

    2014-01-01

    Background Salinity plays an important role in shaping coastal marine communities. Near-future climate predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation; however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend on species’ capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of a strong salinity gradient (the Baltic Sea system – Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth, shell strength, condition index and reproductive maturity were recorded. Results We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we observed some population-specific responses – notably that populations from high salinity grew stronger shells in their native salinity compared to the other populations, possibly indicating adaptation to differences in local predation pressure. Conclusions Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic responses are more likely than evolutionary tracking in coping with future changes in coastal salinity. PMID:25038588

  2. Recruitment success and growth variability of mugilids in a West African estuary impacted by climate change

    NASA Astrophysics Data System (ADS)

    Trape, S.; Durand, J.-D.; Vigliola, L.; Panfili, J.

    2017-11-01

    With the persistence of a drought since the late 1960s, some West African estuaries became permanently reversed in term of salinity gradient and hypersaline waters are present in their upstream part (salinity >60). To understand the mechanisms regulating fish recruitment intensity in these estuaries and evaluate the consequences of freshwater shortages on juvenile habitat quality, a growth study was conducted in the Saloum hypersaline estuary (Senegal). The Mugilidae fish family, highly representative of estuarine environments, was targeted and several species sampled (Chelon dumerili, Mugil bananensis and M. cf. curema sp. M). Juveniles were sampled monthly all the year round in three areas of the estuary exhibiting strongly contrasted habitat conditions. Otolith sections were used to estimate the ages, reconstruct growth trajectories, estimate the duration of the oceanic larval phase, and evaluate juvenile growth variability along the salinity gradient. Analyses revealed that the temporal recruitment variability of C. dumerili, with 2 annual cohorts, was not mainly induced by growth-selection mechanisms, but probably more by predation pressures. Juveniles exhibited significantly faster growth rates in the lower salinity suggesting that benthic food availability was a strong factor controlling habitat quality of early juveniles. Salinity had also a clear impact when reducing the growth in hypersaline conditions and/or selecting slower growing individuals. Moderate freshwater inputs positively affected the nursery function of the estuary for mugilids by enhancing the productivity of the first trophic levels. In a long term, the global change could have an impact of the mugilid fishery and its management.

  3. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.

    PubMed

    Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty

    2016-11-15

    Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.

  4. Observations and analysis of a stratification-destratification event in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Ong, J. E.; Gong, W. K.

    1990-11-01

    A data set comprising 31 continuous tidal cycles was collected in the Sungai Merbok Estuary, Malaysia, in June 1987 as part of an ecological study of nutrient fluxes from a tropical mangrove estuary. Currents, salinity and salinity stratification at a deep-channel (15 m) station near the mouth of the Merbok Estuary showed a pronounced spring-neap variability. The slow currents and weak vertical mixing at neap tides favoured the formation of a stratified water column and generated a neap-spring cycle of water column stabilization and destabilization. A strong stratification event occurred during the period of observations. This was partly driven by a modest freshwater spate which coincided with neap tides. An eddy viscosity-diffusivity model of the stratification, which assumed a constant, longitudinal salinity gradient, demonstrated a pronounced stratification-destratification cycle due to neap-spring variations in vertical mixing. Larger and more realistic stratification was modelled when the estimated, time-varying longitudinal salinity gradient was incorporated. This gradient maximized in response to the peak in freshwater runoff. The measured and modelled density-driven circulations showed qualitative similarities and were of the order of 10 cm s -1 at neap tides. The circulation was weaker during spring tides. The tidally-filtered salt transport due to vertical shear was directed up-estuary and was an order of magnitude smaller during spring tides. The results are discussed in terms of their relevance to mangrove system oceanography.

  5. Intraguild predation may reinforce a species-environment gradient

    NASA Astrophysics Data System (ADS)

    MacNeil, Calum; Dick, Jaimie T. A.

    2012-05-01

    Species-environment gradients are ubiquitous in nature, with studies often partially explaining the replacement of species along such gradients by autecological factors such as differential physiological tolerances. However, lacking direct evidence, the majority of studies only infer some form of inter-specific interaction, often competition, as reinforcing these gradients. There is usually the further implication that environmental factors mediate asymmetries in the interaction. Recognising the lack of explicit experimental considerations of how key inter-specific interactions are modified by the environment, we chose a study system where we were able to bring the species in question into the laboratory and conduct experiments to test hypotheses about gradient-induced asymmetries in an inter-specific interaction. To this end, we tested the hypothesis that a species-salinity gradient may be reinforced by changes in the asymmetry of intraguild predation between two species of amphipod crustaceans with wide salinity tolerances. River and estuary surveys showed that Gammarus duebeni and Gammarus zaddachi have overlapping distributions, with both surviving and reproducing in salinities ranging from freshwater to fully marine. However, the former species is relatively more abundant in low salinities and the latter in higher salinities. In the laboratory, survival of both species was high in all salinities and cannibalism occurred at low frequencies. However, intraguild predation by males on moulted females was asymmetric in favour of G. duebeni at low salinities, this asymmetry completely reversing to favour G. zaddachi at higher salinities. Thus, we provide evidence that this species-environment gradient occurs due to overlapping physiological tolerances and salinity-driven shifts in the asymmetry of a key inter-specific interaction, intraguild predation.

  6. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  7. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    NASA Astrophysics Data System (ADS)

    Giménez, Luis

    2002-12-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  8. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    NASA Astrophysics Data System (ADS)

    Giménez, Luis

    2003-01-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  9. Hydraulic redistribution: limitations for plants in saline soils.

    PubMed

    Bazihizina, Nadia; Veneklaas, Erik J; Barrett-Lennard, Edward G; Colmer, Timothy D

    2017-10-01

    Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. © 2017 John Wiley & Sons Ltd.

  10. One-dimensional transient finite difference model of an operational salinity gradient solar pond

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Golding, Peter

    1992-01-01

    This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.

  11. Remote Detection of Saline Intrusion in a Coastal Aquifer Using Borehole Measurements of Self-Potential

    NASA Astrophysics Data System (ADS)

    MacAllister, DJ.; Jackson, M. D.; Butler, A. P.; Vinogradov, J.

    2018-03-01

    Two years of self-potential (SP) measurements were made in a monitoring borehole in the coastal UK Chalk aquifer. The borehole SP data showed a persistent gradient with depth, and temporal variations with a tidal power spectrum consistent with ocean tides. No gradient with depth was observed at a second coastal monitoring borehole ca. 1 km further inland, and no gradient or tidal power spectrum were observed at an inland site ca. 80 km from the coast. Numerical modeling suggests that the SP gradient recorded in the coastal monitoring borehole is dominated by the exclusion-diffusion potential, which arises from the concentration gradient across a saline front in close proximity to, but not intersecting, the base of the borehole. No such saline front is present at the two other monitoring sites. Modeling further suggests that the ocean tidal SP response in the borehole, measured prior to breakthrough of saline water, is dominated by the exclusion-diffusion potential across the saline front, and that the SP fluctuations are due to the tidal movement of the remote front. The electrokinetic potential, caused by changes in hydraulic head across the tide, is one order of magnitude too small to explain the observed SP data. The results suggest that in coastal aquifers, the exclusion-diffusion potential plays a dominant role in borehole SP when a saline front is nearby. The SP gradient with depth indicates the close proximity of the saline front to the borehole and changes in SP at the borehole reflect changes in the location of the saline front. Thus, SP monitoring can be used to facilitate more proactive management of abstraction and saline intrusion in coastal aquifers.

  12. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P < 0.01), with the dominant genus shifting from Brocadia in the freshwater region to Scalindua in the open ocean. Anammox bacterial abundance ranged from 3.67 × 105 to 8.22 × 107 copies 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  13. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment.

    PubMed

    Wang, Haitao; Gilbert, Jack A; Zhu, Yongguan; Yang, Xiaoru

    2018-08-01

    Coastal ecosystems are hotspots for nitrogen cycling, and specifically for nitrogen removal from water and sediment through the coupled nitrification-denitrification process. Salinity is globally important in structuring bacterial and archaeal communities, but the association between salinity and microbially-mediated nitrification and denitrification remains unclear. The denitrification activity and composition and structure of microbial nitrifiers and denitrifiers were characterized across a gradient of manipulated salinity (0, 10, 20 and 30ppt) in a mangrove sediment. Salinity negatively correlated with both denitrifying activity and the abundance of nirK and nosZ denitrifying genes. Ammonia-oxidizing bacteria (AOB), which dominated nitrification, had significantly greater abundance at intermediate salinity (10 and 20ppt). However, a positive correlation between ammonia concentration and salinity suggested that nitrifying activity might also be inhibited at higher salinity. The community structure of ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nirK, nirS and nosZ denitrifying communities, were all significantly correlated with salinity. These changes were also associated with structural shifts in phylogeny. These findings provide a strong evidence that salinity is a key factor that influences the nitrogen transformations in coastal wetlands, indicating that salinity intrusion caused by climate change might have a broader impact on the coastal biospheres. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Fish assemblage structure of Koycegiz Lagoon Estuary, Turkey: Spatial and temporal distribution patterns in relation to environmental variation

    NASA Astrophysics Data System (ADS)

    Akin, S.; Buhan, E.; Winemiller, K. O.; Yilmaz, H.

    2005-09-01

    Spatial and temporal variation in fish assemblage structure of Koycegiz Lagoon-Estuarine System (KLES), located on the northwestern Turkish coast of Mediterranean, was investigated along an estuarine gradient where salinity ranged from 5 in upper reaches to 40 in lower reaches during October 1993-September 1994. Throughout the study, 42 species, consisting of marine (25), marine-estuarine-dependent (12), freshwater (3), catadromous (1), and estuarine resident (1) forms, were collected in trammel nets. Although species richness of marine species was greater than that of other groups, numerical contribution by marine species to the total catch was only 16%. Tilapia spp., the most abundant species mostly during summer and early spring at upper reaches, contributed 17% of the total samples. Among the seven species of Mugilidae, which contributed 42% of the total catch, Mugil cephalus, Liza aurata, and Liza salines contributed 10, 13, and 10% of the total catch, respectively. Consistent with findings from other studies, species richness and abundance were highest during late spring and summer and the lowest during winter and early spring. Samples from sites at or near the sea had more marine species. Samples from upper reaches had more freshwater and marine-estuarine-dependent species. Canonical correspondence analysis (CCA) indicated that salinity and turbidity were the most important environmental parameters affecting fishes. Sites near the sea were associated with high salinity and low turbidity, and sites in upper reaches had low salinity and high turbidity. Thus, the pattern observed in fish assemblage structure appears to be strongly influenced by species' responses to dominant salinity and turbidity gradients.

  15. Flow convergence caused by a salinity minimum in a tidal channel

    USGS Publications Warehouse

    Warner, John C.; Schoellhamer, David H.; Burau, Jon R.; Schladow, S. Geoffrey

    2006-01-01

    Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.

  16. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... those organisms that are adapted to freshwater environments. It may also affect municipal water supplies... fresh or salt water may change existing salinity gradients. For example, partial blocking of the...

  17. The carbon dioxide system on the Mississippi River‐dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air‐sea CO2 flux

    PubMed Central

    Huang, Wei‐Jen; Wang, Yongchen; Lohrenz, Steven E.; Murrell, Michael C.

    2015-01-01

    Abstract River‐dominated continental shelf environments are active sites of air‐sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air‐sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low‐salinity zones (0≤S<17) to a strong CO2 sink in the middle‐to‐high‐salinity zones (17≤S<33), and finally was a near‐neutral state in the high‐salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen‐enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air‐sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m−2 yr−1 (1.15 ± 4.4 Tg C yr−1). PMID:27656331

  18. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems

    PubMed Central

    Lallias, Delphine; Hiddink, Jan G; Fonseca, Vera G; Gaspar, John M; Sung, Way; Neill, Simon P; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W Kelley; Creer, Simon

    2015-01-01

    Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype–environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both. PMID:25423027

  19. Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5

    NASA Astrophysics Data System (ADS)

    Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe

    2014-06-01

    The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model's DWPE are generally 1-2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model's ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context of the CMIP5 simulations.

  20. Disentangling diversity patterns in sandy beaches along environmental gradients.

    PubMed

    Barboza, Francisco R; Gómez, Julio; Lercari, Diego; Defeo, Omar

    2012-01-01

    Species richness in sandy beaches is strongly affected by concurrent variations in morphodynamics and salinity. However, as in other ecosystems, different groups of species may exhibit contrasting patterns in response to these environmental variables, which would be obscured if only aggregate richness is considered. Deconstructing biodiversity, i.e. considering richness patterns separately for different groups of species according to their taxonomic affiliation, dispersal mode or mobility, could provide a more complete understanding about factors that drive species richness patterns. This study analyzed macroscale variations in species richness at 16 Uruguayan sandy beaches with different morphodynamics, distributed along the estuarine gradient generated by the Rio de la Plata over a 2 year period. Species richness estimates were deconstructed to discriminate among taxonomic groups, supralittoral and intertidal forms, and groups with different feeding habits and development modes. Species richness was lowest at intermediate salinities, increasing towards oceanic and inner estuarine conditions, mainly following the patterns shown for intertidal forms. Moreover, there was a differential tolerance to salinity changes according to the habitat occupied and development mode, which determines the degree of sensitivity of faunal groups to osmotic stress. Generalized (additive and linear) mixed models showed a clear increase of species richness towards dissipative beaches. All taxonomic categories exhibited the same trend, even though responses to grain size and beach slope were less marked for crustaceans and insects than for molluscs or polychaetes. However, supralittoral crustaceans exhibited the opposite trend. Feeding groups decreased from dissipative to reflective systems, deposit feeders being virtually absent in the latter. This deconstructive approach highlights the relevance of life history strategies in structuring communities, highlighting the relative importance that salinity and morphodynamic gradients have on macroscale diversity patterns in sandy beaches.

  1. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.

    2005-01-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  2. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    NASA Astrophysics Data System (ADS)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  3. Principal processes within the estuarine salinity gradient: a review.

    PubMed

    Telesh, Irena V; Khlebovich, Vladislav V

    2010-01-01

    The salinity gradient is one of the main features characteristic of any estuarine ecosystem. Within this gradient in a critical salinity range of 5-8 PSU the major biotic and abiotic processes demonstrate non-linear dynamics of change in rates and directions. In estuaries, this salinity range acts as both external ecological factor and physiological characteristics of internal environment of aquatic organisms; it divides living conditions appropriate for freshwater and marine faunas, separates invertebrate communities with different osmotic regulation types, and defines the distribution range of high taxa. In this paper, the non-linearity of biotic processes within the estuarine salinity gradient is illustrated by the data on zooplankton from the Baltic estuaries. The non-tidal Baltic Sea provides a good demonstration of the above phenomena due to gradual changes of environmental factors and relatively stable isohalines. The non-linearity concept coupled with the ecosystem approach served the basis for a new definition of an estuary proposed by the authors. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    USGS Publications Warehouse

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  5. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2017-02-01

    Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the MREC, electrical potential generated by the exoelectrogens and the salinity-gradient between salt and fresh water were utilized to drive the high-rate H2O2 production. Operational parameters such as air flow rate, pH, cathodic potential, flow rate of salt and fresh water were investigated. The optimal H2O2 production was observed at salt and fresh water flow rate of 0.5 mL min-1, air flow rate of 12-20 mL min-1, cathode potential of -0.485 ± 0.025 V (vs Ag/AgCl). The maximum H2O2 accumulated concentration of 778 ± 11 mg L-1 was obtained at corresponding production rate of 11.5 ± 0.5 mg L-1 h-1. The overall energy input for the synthesis process was 0.45 ± 0.03 kWh kg-1 H2O2. Cathode potential was the key factor for H2O2 production, which was mainly affected by the air flow rate. This work for the first time proved the potential of MREC as an efficient platform technology for simultaneous electrosynthesis of valuable chemicals and utilization of salinity-gradient energy.

  6. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

    USGS Publications Warehouse

    Ralston, David K.; Geyer, W. Rockwell; Warner, John C.

    2012-01-01

    Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.

  7. Freshwater prokaryote and virus communities can adapt to a controlled increase in salinity through changes in their structure and interactions

    NASA Astrophysics Data System (ADS)

    Marine, Combe; Thierry, Bouvier; Olivier, Pringault; Emma, Rochelle-Newall; Corinne, Bouvier; Martin, Agis; The Thu, Pham; Jean-Pascal, Torreton; Van Thuoc, Chu; Bettarel, Yvan

    2013-11-01

    Little information exists on the ecological adaptive responses of riverine microorganisms to the salinity changes that typically occur in transitional waters. This study examined the precise effects of a gradual increase in salinity (+3 units per day for 12 days) on freshwater virus and prokaryote communities collected in the Red River Delta (northern Vietnam). The abundance, activity, morphology and diversity of both communities were examined along this simulated salinity gradient (0-36). Three main successive ecological stages were observed: (1) a continuous decline in prokaryotic and viral abundance from the start of the salinization process up to salinity 12-15 together with a strong decrease in the proportion of active cells, (2) a shift in both community compositions (salinity 9-15) and (3) a marked prevalence of lysogenic over lytic cycles up to salinity 21 followed by a collapse of both types of viral infection. Finally, after salinity 21, and up to seawater salinities (i.e. 36) the prokaryotic community showed multiple signs of recovery with their abundance and function even reaching initial levels. These results suggest that most of the physiological and phylogenetic changes that occurred within the salinity range 10-20 seemed to favor the installation of osmotically adapted prokaryotes accompanied by a specific cortege of viral parasites which might both be able to survive and even proliferate in saltwater conditions.

  8. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.

    PubMed

    Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E

    2017-02-22

    Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    USGS Publications Warehouse

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  10. Toxicity and accumulation of mercury in three species of crabs with different osmoregulatory capacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, A.; Gilles, R.

    1996-07-01

    Synergism between mercury and salinity has been shown in invertebrates. Two authors have tied to correlate salinity effects with a higher or lower accumulation of mercury. Zauke, demonstrated lower mercury levels in several benthic invertebrates from limnic regions of the Elbe estuary when compared to those from Marine regions. On the other hand, Kendall did not report any significant difference in mercury concentrations in benthic macroinvertebrates throughout a salinity gradient in two estuaries from Georgia. In species hyperosmoregulating in diluted media, it could, however, be considered that the high water turnover would favor mercury accumulation. In this context, one couldmore » also expect a relationship between environmental salinity and mercury toxicity in different euryhaline species depending on their osmoregulatory capacities. We have tested this hypothesis analyzing the toxic effects and accumulation of mercury in three euryhaline crabs presenting different osmoregulatory capacities: Eriocheir sinensis (strong hyperosmoregulator), Carcinus maenas (weak hyperosmoregulator) and Cancer pagurus (osmoconformer). 16 refs., 4 figs., 1 tab.« less

  11. Effects of tidal current phase at the junction of two straits

    USGS Publications Warehouse

    Warner, J.; Schoellhamer, D.; Burau, J.; Schladow, G.

    2002-01-01

    Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Bay has a local salinity minimum created by the phasing of the currents at the junction of Mare Island and Carquinez Straits. The salinity minimum creates converging baroclinic pressure gradients in Mare Island Strait. Equipment was deployed at four stations in the straits for 6 months from September 1997 to March 1998 to measure tidal variability of velocity, conductivity, temperature, depth, and suspended sediment concentration. Analysis of the measured time series shows that on a tidal time scale in Mare Island Strait, the landward and seaward baroclinic pressure gradients in the local salinity minimum interact with the barotropic gradient, creating regions of enhanced shear in the water column during the flood and reduced shear during the ebb. On a tidally averaged time scale, baroclinic pressure gradients converge on the tidally averaged salinity minimum and drive a converging near-bed and diverging surface current circulation pattern, forming a "baroclinic convergence zone" in Mare Island Strait. Historically large sedimentation rates in this area are attributed to the convergence zone. 

  12. The Comparative Osmoregulatory Ability of Two Water Beetle Genera Whose Species Span the Fresh-Hypersaline Gradient in Inland Waters (Coleoptera: Dytiscidae, Hydrophilidae)

    PubMed Central

    Pallarés, Susana; Arribas, Paula; Bilton, David T.; Millán, Andrés; Velasco, Josefa

    2015-01-01

    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh—hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal’s haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg-1). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg-1) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm-1, respectively, and maintained osmotic gradients over 3500 mosmol kg-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient. PMID:25886355

  13. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by measuring the bacterial growth response to added NaCl in a soil suspension. The bacterial community tolerance to salt increased along the salt gradients with higher in situ soil salinity. In samples from the low-saline end of the gradient, bacterial growth rates in the soil suspension showed a clear concentration-response relationship to NaCl resulting in inhibition curves. This relationship gradually changed toward higher salt concentrations. In soil samples from high salinity sites, bacterial growth was no longer inhibited by adding high concentrations of NaCl to the bacterial soil suspension. In fact, adding NaCl even promoted bacterial growth rates. These results show that salinity played an ecologically significant role in shaping communities at the highly saline end of the gradients and provide evidence for a direct salt effect on the microbial community

  14. Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea

    PubMed Central

    Hu, Yue O. O.; Karlson, Bengt; Charvet, Sophie; Andersson, Anders F.

    2016-01-01

    Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample) of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea. PMID:27242706

  15. Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia

    NASA Astrophysics Data System (ADS)

    Abid, Olfa; Sellami-Kammoun, Alya; Ayadi, Habib; Drira, Zaher; Bouain, Abderrahmen; Aleya, Lotfi

    2008-11-01

    The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45-160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO 2- + NO 3- + NH 4+) to DIP (DIP = PO 43-) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.

  16. Borehole geophysical, fluid, and hydraulic properties within and surrounding the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, 2010-11

    USGS Publications Warehouse

    Thomas, Jonathan V.; Stanton, Gregory P.; Lambert, Rebecca B.

    2012-01-01

    Although analyses of daily mean equivalent freshwater heads for the East Uvalde transect indicated that the gradient across the freshwater/saline-water interface varied between into and out of the freshwater zone, the data indicate that there was a slightly longer period during which the gradient was out of the freshwater zone. Analyses of all daily mean equivalent freshwater heads for the Tri-County transect indicated that the lateral-head gradients across the freshwater/saline-water interface were typically mixed (not indicative of flow into or out of freshwater zone). Assessment of the daily mean equivalent freshwater heads indicated that, although the lateral-head gradient at the Kyle transect varied between into and out of the freshwater zone, the lateral-head gradient was typically from the transition zone into the freshwater zone.

  17. Assessing sandy beach macrofaunal patterns along large-scale environmental gradients: A Fuzzy Naïve Bayes approach

    NASA Astrophysics Data System (ADS)

    Bozzeda, Fabio; Zangrilli, Maria Paola; Defeo, Omar

    2016-06-01

    A Fuzzy Naïve Bayes (FNB) classifier was developed to assess large-scale variations in abundance, species richness and diversity of the macrofauna inhabiting fifteen Uruguayan sandy beaches affected by the effects of beach morphodynamics and the estuarine gradient generated by Rio de la Plata. Information from six beaches was used to estimate FNB parameters, while abiotic data of the remaining nine beaches were used to forecast abundance, species richness and diversity. FNB simulations reproduced the general increasing trend of target variables from inner estuarine reflective beaches to marine dissipative ones. The FNB model also identified a threshold value of salinity range beyond which diversity markedly increased towards marine beaches. Salinity range is suggested as an ecological master factor governing distributional patterns in sandy beach macrofauna. However, the model: 1) underestimated abundance and species richness at the innermost estuarine beach, with the lowest salinity, and 2) overestimated species richness in marine beaches with a reflective morphodynamic state, which is strongly linked to low abundance, species richness and diversity. Therefore, future modeling efforts should be refined by giving a dissimilar weigh to the gradients defined by estuarine (estuarine beaches) and morphodynamic (marine beaches) variables, which could improve predictions of target variables. Our modeling approach could be applied to a wide spectrum of issues, ranging from basic ecology to social-ecological systems. This approach seems relevant, given the current challenge to develop predictive methodologies to assess the simultaneous and nonlinear effects of anthropogenic and natural impacts in coastal ecosystems.

  18. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    EPA Science Inventory

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  19. Soil Fertility Gradient in the Restinga Ecosystem

    NASA Astrophysics Data System (ADS)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due to intense washing these soils are exposed and associated with highly sandy texture what favors the leaching of salts throughout the profile. Comprida Island soils presented salinity in some ante dune that can be explained due to the geographical position that determines a system of frequent wetting of the soil by the sea water and thus facilitating the accumulation of salts in the profile.

  20. The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons

    NASA Astrophysics Data System (ADS)

    Simpson, John H.; Burchard, Hans; Fisher, Neil R.; Rippeth, Tom P.

    2002-07-01

    The Liverpool Bay Region of Freshwater Influence in the Irish Sea exhibits strong horizontal gradients which interact with the dominant tidal flow. A 25 h series of measurements of the cycle of turbulent dissipation with the FLY dissipation profiler shows a strong asymmetry between ebb and flood which is associated with a cycle of increasing stratification on the ebb and progressive mixing on the flood which results in vertical homogeneity as high water is approached. At this time strong dissipation extends throughout the water column in contrast to the ebb when there is a near shutdown of dissipation in the upper half of the column. The cycle of stratification and dissipation is closely consistent for the two semi-diurnal tidal cycles observed. We have attempted to simulate this situation, which involves a complex suite of processes including tidal straining and mixing, using a version of the k-ɛ closure scheme in a 1-d dynamical model which is forced by a combination of the observed tidal flow and horizontal temperature and salinity gradients. The latter were measured directly at the end of the observational series but, in order to focus on the cycle of dissipation, the correct reproduction of the temperature and salinity cycle can be assured by a nudging procedure which obliges the model temperature and salinity values to track the observations. With or without this procedure, the model gives a reasonable account of the dissipation and its asymmetric behaviour on ebb and flood although nudging improves the timing of peak dissipation in the upper part of the water column near highwater. The model has also been used to examine the ratio of shear production (P/ɛ) and buoyancy inputs to dissipation (B/ɛ). The variation of these quantities over the tidal cycle confirms the important role of convective motions forced by tidal straining near the end of the flood phase of the tide.

  1. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  2. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  3. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  4. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  5. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern

    NASA Astrophysics Data System (ADS)

    Telesh, Irena; Schubert, Hendrik; Skarlato, Sergei

    2013-12-01

    A recently discovered paradoxical maximum of planktonic protistan species in the salinity gradient of the Baltic Sea revealed an inverse trend of species number/salinity relation in comparison to the previously accepted species-minimum model for macrozoobenthos. Here, we review long-term data on organisms of different size classes and ecological groups to show that eukaryotic and prokaryotic microbes in plankton demonstrate a maximum species richness in the challenging zone of the critical salinity 5-8, where the large-bodied bottom dwellers (macrozoobenthos, macroalgae and aquatic higher plants) experience large-scale salinity stress which leads to an impoverished diversity. We propose a new conceptual model to explain why the diversity of small, fast-developing, rapidly evolving unicellular plankton organisms benefits from relative vacancy of brackish-water ecological niches and impaired competitiveness therein. The ecotone theory, Hutchinson's Ecological Niche Concept, species-area relationships and the Intermediate Disturbance Hypothesis are considered as a theoretical framework for understanding extinctions, speciation and variations in the evolution rates of different aquatic species in ecosystems with the pronounced salinity gradient.

  6. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.

    PubMed

    Reinhart, Bethany L; Kidd, Karen A; Curry, R Allen; O'Driscoll, Nelson J; Pavey, Scott A

    2018-06-01

    Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ 34 S), carbon (δ 13 C), and nitrogen (δ 15 N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ 13 C and δ 34 S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient. Copyright © 2018. Published by Elsevier B.V.

  7. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    USGS Publications Warehouse

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  8. Biophysical Processes at the Boundary between the Arctic and Subarctic in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Drinkwater, K.

    2016-02-01

    The boundary between the Arctic and Subarctic is often in the form of a strong front. Results from field studies on the Polar Front in the Barents Sea separating Arctic and Atlantic waters are presented. The focus is on the physical dynamics of the front and their influence on the structure and function of the associated marine biology from biogeochemistry and nutrient dynamics through plankton ecology up to fish. Data were collected using CTDs, autonomous gliders, microstructure profilers, a Fast Repetition Rate Flourometer (FRRF) and conventional nets for capturing plankton and fish. The Polar Front exhibits strong horizontal gradients in temperature and salinity but weak density gradients owing to density compensation of the water mass characteristics. Intense interleaving of the water masses occurs at the front along isopycnals resulting in large variability in the vertical profiles of the temperature-salinity characteristics. Although there are elevated turbulence levels in the vicinity of the front owing to both current shear and double diffusion, turbulence levels are still relatively weak and not strong enough to create strong vertical mixing. As a result nutrient levels in the near surface layers remain low through the summer following the spring bloom and there is no evidence of greatly enhanced primary production or high phytoplankton biomass in the front. Small zooplankton appear to be more prominent at the front and large zooplankton away from the front. Capelin show a similar distribution with small individuals in the front and larger capelin away from the front, mainly in the Arctic waters. Hypotheses on the relationship between the frontal dynamics and fish distributions are presented. Changes in the frontal position and intensity under climate change will also be discussed.

  9. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    PubMed

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  10. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient

    USGS Publications Warehouse

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L.

    2012-01-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances.

  11. Bacterial diversity across a highly stratified ecosystem: A salt-wedge Mediterranean estuary.

    PubMed

    Korlević, M; Šupraha, L; Ljubešić, Z; Henderiks, J; Ciglenečki, I; Dautović, J; Orlić, S

    2016-09-01

    Highly stratified Mediterranean estuaries are unique environments where the tidal range is low and the tidal currents are almost negligible. The main characteristics of these environments are strong salinity gradients and other environmental parameters. In this study, 454 pyrosequencing of the 16S rRNA gene in combination with catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was used to estimate the bacterial diversity across the Krka estuary in February and July 2013. The comparison of the data derived from these two techniques resulted in a significant but weak positive correlation (R=0.28) indicating a substantial difference in the bacterial community structure, depending on the applied method. The phytoplankton bloom observed in February was identified as one of the main factors shaping the bacterial community structure between the two environmentally contrasting sampling months. Roseobacter, Bacteroidetes and Gammaproteobacteria differed substantially between February and July. Typical freshwater bacterial classes (Actinobacteria and Betaproteobacteria) showed strong vertical distribution patterns depending on the salinity gradient. Cyanobacteria decreased in abundance in February due to competition with phytoplankton, while the SAR11 clade increased its abundance in July as a result of a better adaptation toward more oligotrophic conditions. The results provided the first detailed insight into the bacterial diversity in a highly stratified Mediterranean karstic estuary. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica.

    PubMed

    Bendia, Amanda G; Signori, Camila N; Franco, Diego C; Duarte, Rubens T D; Bohannan, Brendan J M; Pellizari, Vivian H

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

  13. A landscape-scale assessment of above- and belowground primary production in coastal wetlands: Implications for climate change-induced community shifts

    USGS Publications Warehouse

    Stagg, Camille L.; Schoolmaster, Donald R.; Piazza, Sarai C.; Snedden, Gregg; Steyer, Gregory D.; Fischenich, Craig J; McComas, Robert W.

    2017-01-01

    Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e., how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? This is the first study to measure both above- and belowground production in four wetland types that span an entire coastal gradient from fresh to saline wetlands. We hypothesized that increasing salinity would limit rates of primary production, and saline marshes would have lower rates of above- and belowground production than fresher marshes. However, along the Northern Gulf of Mexico Coast in Louisiana, USA, we found that aboveground production was highest in brackish marshes, compared with fresh, intermediate, and saline marshes, and belowground production was similar among all wetland types along the salinity gradient. Multiple regression analysis indicated that salinity was the only significant predictor of production, and its influence was dependent upon wetland type. We concluded that (1) salinity had a negative effect on production within wetland type, and this relationship was strongest in the fresh marsh (0–2 PSU) and (2) along the overall landscape gradient, production was maintained by mechanisms at the scale of wetland type, which were likely related to plant energetics. Regardless of wetland type, we found that belowground production was significantly greater than aboveground production. Additionally, inter-annual variation, associated with severe drought conditions, was observed exclusively for belowground production, which may be a more sensitive indicator of ecosystem health than aboveground production.

  14. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay

    USGS Publications Warehouse

    Monismith, Stephen G.; Kimmerer, W.; Burau, J.R.; Stacey, M.T.

    2002-01-01

    The structure of the salinity field in northern San Francisco Bay and how it is affected by freshwater flow are discussed. Two datasets are examined: the first is 23 years of daily salinity data taken by the U.S. Bureau of Reclamation along the axis of northern San Francisco Bay: the second is a set of salinity transects taken by the U.S. Geological Survey between 1988 and 1993. Central to this paper is a measure of salinity intrusion. X2: the distance from the Golden Gate Bridge to where the bottom salinity is 2 psu. Using X2 to scale distance, the authors find that for most flow conditions, the mean salinity distribution of the estuary is nearly self-similar with a salinity gradient in the center 70% of the region between the Golden Gate and X2 that is proportional to X2-1. Analysis of covariability of Q and X2 showed a characteristics timescale of adjustment of the salinity field of approximately 2 weeks. The steady-state response deduced from the X2 time series implies that X2 is proportional to riverflow to the 1/7 power. This relation, which differs from the standard 1/3 power dependence that is derived theoretically assuming constant exchange coefficients, shows that the upstream salt flux associated with gravitational circulation is more sensitive to the longitudinal salinity gradient than theory supposes. This is attributed to the strengthening of stratification caused by the stronger longitudinal salinity gradient that accompanies larger river flows.

  15. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient

    PubMed Central

    Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A

    2015-01-01

    Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181

  16. Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts

    NASA Astrophysics Data System (ADS)

    Sonnekus, Martinus J.; Bornman, Thomas G.; Campbell, Eileen E.

    2017-02-01

    A survey of six seamounts and two transects through the subtropical convergence zone (SCZ) in the South Indian Ocean in November and December 2009 showed a strong latitudinal gradient from the subtropics to the Sub-Antarctic Front. Concentrations of oxygen, nitrate, nitrite, soluble reactive phosphorous as well as phytoplankton biomass (measured as chlorophyll a) increased while salinity and temperature decreased with an increase in latitude. These differences resulted in significant differences between seamounts. The chlorophyll a maximum became shallower at higher latitudes, changing from a depth of 85 m in the subtropics to 35 m over the seamounts and in the SCZ. The mixed layer depth also increased from 50 m in the subtropics to 100 m at higher latitude stations. The N:P and N:Si ratio indicated that NO3- was limiting at all the seamounts except one, at which SiO4 was the limiting nutrient. The phytoplankton community also showed a latitudinal gradient with decreasing diversity and a change in dominance from dinoflagellates in the tropics to diatoms towards the SCZ. The dominant diatom genus of the survey (>50% of the cell counts) was Pseudo-nitzschia. Nutrients exhibited an inverse linear relationship with temperature and salinity. The oligotrophic subtropical areas differed from the mesotrophic seamounts in temperature while waters over seamounts north and south of the Agulhas Return Current (ARC) differed in salinity. The phytoplankton (148 taxa) responded to these differences, showing three communities: subtropical seamount phytoplankton (Atlantis Seamount, Walters Seamount and off-mount samples), phytoplankton of the waters north of the ARC (Melville Bank, Sapmer Bank, Middle of What Seamount) and phytoplankton south of the ARC (Coral Seamount, SCZ1) characterised by a bloom of Phaeocystis antarctica. The environmental drivers most strongly linked to these observed differences were nitrate, temperature and oxygen. These environmental drivers displayed a clear latitudinal gradient unaffected by mesoscale variability of the ARC eddy field and allowing the three phytoplankton communities to persist. Phytoplankton biomass was enhanced in the shallow (< 200 m) seamount waters, although the speed of the currents indicates an allochthonous origin.

  17. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.

  18. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea.

    PubMed

    Yang, Rujun; Su, Han; Qu, Shenglu; Wang, Xuchen

    2017-05-03

    The iron binding capacities (IBC) of fulvic acid (FA) and humic acid (HA) were determined in the salinity range from 5 to 40. The results indicated that IBC decreased while salinity increased. In addition, dissolved iron (dFe), FA and HA were also determined along the Yangtze River estuary's increasing salinity gradient from 0.14 to 33. The loss rates of dFe, FA and HA in the Yangtze River estuary were up to 96%, 74%, and 67%, respectively. The decreases in dFe, FA and HA, as well as the change in IBC of humic substances (HS) along the salinity gradient in the Yangtze River estuary were all well described by a first-order exponential attenuation model: y(dFe/FA/HA, S) = a 0 × exp(kS) + y 0 . These results indicate that flocculation of FA and HA along the salinity gradient resulted in removal of dFe. Furthermore, the exponential attenuation model described in this paper can be applied in the major estuaries of the world where most of the removal of dFe and HS occurs where freshwater and seawater mix.

  19. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    PubMed

    Dupont, Chris L; Larsson, John; Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R; Andersson, Anders F; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A A; Brami, Daniel; Badger, Jonathan H; Allen, Andrew E; Rusch, Douglas B; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J Craig; Bergman, Birgitta

    2014-01-01

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  20. Environmental Drivers of the Canadian Arctic Megabenthic Communities

    PubMed Central

    Roy, Virginie; Iken, Katrin; Archambault, Philippe

    2014-01-01

    Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385

  1. Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity

    NASA Astrophysics Data System (ADS)

    Nche-Fambo, F. A.; Scharler, U. M.; Tirok, K.

    2015-06-01

    In South African estuaries, there is no knowledge on the resilience and variability in phytoplankton communities under conditions of hypersalinity, extended droughts and reverse salinity gradients. Phytoplankton composition, abundance and biomass vary with changes in environmental variables and taxa richness declines specifically under hypersaline conditions. This research thus investigated the phytoplankton community composition, its resilience and variability under highly variable and extreme environmental conditions in an estuarine lake system (Lake St. Lucia, South Africa) over one year. The lake system was characterised by a reverse salinity gradient with hypersalinity furthest from the estuarine inlet during the study period. During this study, 78 taxa were recorded: 56 diatoms, eight green algae, one cryptophyte, seven cyanobacteria and six dinoflagellates. Taxon variability and resilience depended on their ability to tolerate high salinities. Consequently, the phytoplankton communities as well as total abundance and biomass differed along the salinity gradient and over time with salinity as the main determinant. Cyanobacteria were dominant in hypersaline conditions, dinoflagellates in marine-brackish salinities, green algae and cryptophytes in lower salinities (brackish) and diatoms were abundant in marine-brackish salinities but survived in hypersaline conditions. Total abundance and biomass ranged from 3.66 × 103 to 1.11 × 109 Cells/L and 1.21 × 106 to 1.46 × 1010 pgC/L respectively, with the highest values observed under hypersaline conditions. Therefore, even under highly variable, extreme environmental conditions and hypersalinity the phytoplankton community as a whole was resilient enough to maintain a relatively high biomass throughout the study period. The resilience of few dominant taxa, such as Cyanothece, Spirulina, Protoperidinium and Nitzschia and the dominance of other common genera such as Chlamydomonas, Chroomonas, Navicula, Gyrosigma, Oxyrrhis, and Prorocentrum, provided the carbon at the base of the food web in the system and showed that even during the extended period of drought, a foundation for productivity can be provided for once conditions improve.

  2. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-05-10

    Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia experienced a prolonged summer drought. A significant increase in EC was observed in the bores towards the end of the summer, which suggest that the lack of bank recharge from the river resulted in draining of the banks and connection between the regional groundwater and the river. The long-term river salinity dataset showed that when flow events are infrequent and of low magnitude (i.e. drought conditions), salinities increase significantly. Similarly this is thought to be due to draining of the banks and connection with the regional groundwater system. Thus an increase in extended dry periods is expected to result in higher salinities in Australian waterways as the climate changes.

  4. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    NASA Astrophysics Data System (ADS)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only < 10 % in all three soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under higher ionic strength conditions. Contrary to the fourth hypothesis, the fungi : bacteria ratio in the topsoils remained fairly constant along the salinity gradient. A possible explanation for why our hypotheses were not affirmed is that soil moisture covaried with salinity along the transect, i.e., the Solonchaks were generally wetter than the Kastanozems. This might cause comparable water stress conditions for plants and microorganisms, either due to a low osmotic or a low matric potential and resulting in (i) similar plant growth and hence soil OC inputs along the transect, (ii) a comparable persistence of particulate OM, and (iii) unaffected fungi : bacteria ratios. We conclude that salt-affected soils contribute significantly to the OC storage in the semiarid soils of the Kulunda steppe, while most of the OC is associated with minerals and is therefore effectively sequestered in the long term.

  5. Occupancy modeling of autonomously recorded vocalizations to predict distribution of rallids in tidal wetlands

    USGS Publications Warehouse

    Stiffler, Lydia L.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Conservation and management for a species requires reliable information on its status, distribution, and habitat use. We identified occupancy and distributions of king (Rallus elegans) and clapper (R. crepitans) rail populations in marsh complexes along the Pamunkey and Mattaponi Rivers in Virginia, USA by modeling data on vocalizations recorded from autonomous recording units (ARUs). Occupancy probability for both species combined was 0.64 (95% CI: 0.53, 0.75) in marshes along the Pamunkey and 0.59 (0.45, 0.72) in marshes along the Mattaponi. Occupancy probability along the Pamunkey was strongly influenced by salinity, increasing logistically by a factor of 1.62 (0.6, 2.65) per parts per thousand of salinity. In contrast, there was not a strong salinity gradient on the Mattaponi and therefore vegetative community structure determined occupancy probability on that river. Estimated detection probability across both marshes was 0.63 (0.62, 0.65), but detection rates decreased as the season progressed. Monitoring wildlife within wetlands presents unique challenges for conservation managers. Our findings provide insight not only into how rails responded to environmental variation but also into the general utility of ARUs for occupancy modeling of the distribution and habitat associations of rails within tidal marsh systems.

  6. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary.

    PubMed

    Guo, Hongyu; Pennings, Steven C

    2012-01-01

    Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.

  7. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?

    PubMed Central

    Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong

    2011-01-01

    It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616

  8. Spatial and temporal variability of thermohaline properties in the Bay of Koper (northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Soczka Mandac, Rok; Žagar, Dušan; Faganeli, Jadran

    2013-04-01

    In this study influence of fresh water discharge on the spatial and temporal variability of thermohaline (TH) conditions is explored for the Bay of Koper (Bay). The Bay is subject to different driving agents: wind stress (bora, sirocco), tidal and seiches effect, buoyancy fluxes, general circulation of the Adriatic Sea and discharge of the Rizana and Badaševica rivers. These rivers have torrential characteristics that are hard to forecast in relation to meteorological events (precipitation). Therefore, during episodic events the spatial and temporal variability of TH properties in the Bay is difficult to determine [1]. Measurements of temperature, salinity and turbidity were conducted monthly on 35 sampling points in the period: June 2011 - December 2012. The data were processed and spatial interpolated with an objective analysis method. Furthermore, empirical orthogonal function analysis (EOF) [2] was applied to investigate spatial and temporal TH variations. Strong horizontal and vertical stratification was observed in the beginning of June 2011 due to high fresh water discharge of the Rizana (31 m3/s) and Badaševica (2 m3/s) rivers. The horizontal gradient (ΔT = 6°C) was noticed near the mouth of the Rizana river. Similar pattern was identified for salinity field on the boundary of the front where the gradient was ΔS = 20 PSU. Vertical temperature gradient was ΔT = 4°C while salinity gradient was ΔS = 18 PSU in the subsurface layer at depth of 3 m. Spatial analysis of the first principal component (86% of the total variance) shows uniform temperature distribution in the surface layer (1m) during the studied period. Furthermore, temporal variability of temperature shows seasonal variation with a minimum in February and maximum in August. This confirms that episodic events have a negligible effect on spatial and temporal variation of temperature in the subsurface layer. Further analysis will include application of EOF on the salinity, density and total suspended matter. Additionally, we will investigate the cross correlations between the above mentioned parameters with singular value decomposition method. Reference: 1. Faganeli, J., Planinc, R., Pezdic, J., Smodis, B., Stegnar, P., and Ogorelec, B. 1991. Marine geology of Gulf of Trieste (northern Adriatic): Geochemical aspects. Marine Geology, 99: 93-108. 2. Glover, M., Jenkins, J., and Doney, S. C. 2011. Modeling methods for marine science. Cambridge University Press, 571 p.

  9. Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition

    PubMed Central

    Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P.; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J.; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R.; Andersson, Anders F.; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A. A.; Brami, Daniel; Badger, Jonathan H.; Allen, Andrew E.; Rusch, Douglas B.; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J. Craig; Bergman, Birgitta

    2014-01-01

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity. PMID:24586863

  10. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    PubMed Central

    Bendia, Amanda G.; Signori, Camila N.; Franco, Diego C.; Duarte, Rubens T. D.; Bohannan, Brendan J. M.; Pellizari, Vivian H.

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions. PMID:29867810

  11. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively.

    PubMed

    Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A

    2004-03-25

    Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.

  12. Molecular Signature of Organic Carbon Along a Salinity Gradient in Suwannee River Plume

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Bianchi, T. S.; Ward, N. D.; Arellano, A. R.; Paša-Tolić, L.; Tolic, N.; Kuo, L. J.

    2016-12-01

    Humic and fulvic acid isolates from Suwannee River dissolved organic matter (DOM) have served as reference standards for the International Humic Substances Society (IHSS) for many decades. The large database on Suwannee DOM provides an excellent framework to further expand the application of Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS) in characterizing the chemical composition of aquatic DOM. In this study, we examined the DOM signature of the lower Suwannee River and plume region at 5 stations along a salinity gradient (0 to 28) using FT-ICR-MS. The chemical characteristics of DOM show distinct differences across this steep salinity gradient. In general, samples collected from the coastal station have lower carbon number and are less aromatic. Molecular level analysis reveals that the magnitude weighted proportion of lipids increased as salinity increased. Interestingly, a similar trend was observed for lignin-like compounds. Target quantification of lignin-phenols showed that while the concentrations of these compounds were lower at the coastal station, the DOC-normalized concentrations were not significantly different between the river and coastal stations. In addition to traditional DOM moieties, we identified for the first time, halogenated organic compounds (HOC). We observed more chlorinated compounds in DOM and increased Cl/C as salinity increased. A relatively high proportion of halogenated lipids (compared to non-halogenated) were observed in the total pool of HOC across all stations. Although not significant in relative proportion, halogenated lignin-like compounds were the most abundant HOC moieties in our samples. CO2 concentrations decreased and became more 13C-enriched along the salinity gradient, ranging from 3,990 ppm (13CO2 = -17.3‰) at salinity 0 to 520 ppm (13CO2 = -7.5‰) at salinity 28, indicating high levels of DOM degradation in the river and a shift to primary production in the marine receiving waters, which is consistent with trends of lipid and lignin-like compounds observed with FT-ICR-MS.

  13. Ecohydrology of the coastal wetlands of Yucatan Peninsula are related with the submarine groundwater discharges?

    NASA Astrophysics Data System (ADS)

    Herrera Silveira, J. A.; Morales-Ojeda, S. M.; Medina Gomez, I.; Kantun Manzano, C.; Caamal Sosa, J.; Marino-Tapia, I.; Adame, F.; Teutli Hernandez, C.

    2013-05-01

    Submarine groundwater discharge (SGD) contributes significantly in the structure and function of coastal ecosystems favoring nutrients and salinity gradients, and with these spatial variability of wetland types and rates of primary production. However, the connectivity between SGD and coastal wetlands remains largely unexplored, especially in the tropics and karstic regions. On the other hand, coastal wetlands could represents exceptionally large carbon (C) stocks, whose protection and restoration can constitute an effective mitigation strategy for climate change. The Yucatán Peninsula is a low-relief carbonate platform and karst geology that permits fast rainfall infiltration, minimal surface flow, and high SGD., which is characterized by a continuum of freshwater wetland, mangroves, seagrasses meadows and coral reefs. Our studies around the Yucatan coastal wetlands related with the ecohydrology, suggest strong connectivity between SGD and mangrove and seagrasses structure and function. Some of the results indicate that SGD are the main source of nitrate and silicate favoring salinity gradient along the coastal lagoons and bays like estuaries. Mangrove forests show the best structural developments where a spring of groundwater is located, these types of mangroves are called locally "petenes" and show large C stocks. Respect to seagrasses, high shoots density has been observed at sites characterized by low salinity and peak nutrients concentration. Further research on groundwater flows among human activities on inland activities, coastal wetlands and marine ecosystems are required in order to develop management strategies for mitigation and adaptation to global climate change

  14. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    PubMed

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  15. Modified Whole Effluent Toxicity Test to Assess and Decouple Wastewater Effects from Environmental Gradients

    PubMed Central

    Sauco, Sebastián; Gómez, Julio; Barboza, Francisco R.; Lercari, Diego; Defeo, Omar

    2013-01-01

    Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses. PMID:23755304

  16. Towards AEM bathymetry and conductivity estimation in very shallow hypersaline waters of the Coorong, South Australia

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian

    2013-01-01

    The Coorong is a shallow (typically 1.5m) narrow coastal lagoon extending ~110km parallel to the coastline, and forms an extensive wetland area of international significance. It is divided into two lagoons, the North and South lagoons. The northern lagoon section opens into the mouth of the Murray River and the southern lagoon section is essentially closed, being connected to the North Lagoon via a choke point. During periods of extended drought where there is no flooding to flush the lagoon system, hypersalinisation gradually increases, especially in the southern lagoon section where salinity may be in excess of four times that of seawater. A helicopter time-domain EM (TEM) system was flown along the Coorong, as extensive flood waters from Queensland (2010) were reaching the North Lagoon lowering the salinity. The derived bathymetry from TEM data was shown to be in fair agreement with known bathymetry in areas of high salinity. The conductivities of waters ranging from saline to hypersaline in the North Lagoon and upper half of the South Lagoon, and underlying sediment, was estimated from inversion of TEM data using the known water depth as a fixed parameter. The derived conductivity varied from ~1.6S/m in the north of the North Lagoon to ~8-10S/m at its southern end and in the South Lagoon. These values underestimate the known strong salinity gradient (~0.6 to ~13S/m respectively) observed from a sparse distribution of fixed conductivity meters located in the Coorong. The application of AEM in this region is challenging because of the very large range of water conductivities and because the average water depths are comparable to the typical residuals between known depths and depths derived from AEM data in previous studies in Australian coastal waters. These results do however show that AEM has the potential to remotely map shallow water depths, and water conductivity gradients using known bathymetry to monitor hypersalinisation in these significant wetland areas where changes in the ecology have been linked to high salinity.

  17. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    USGS Publications Warehouse

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  18. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by large fresh water inflow due to flooding from the Mississippi river. Model results indicate that the strong salinity gradient can reduce the mean flow in the ML and inhibit the turbulence in the planetary boundary layer. The Langmuir cells are also rotated clockwise by the pressure gradient.

  19. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    NASA Astrophysics Data System (ADS)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  20. Adaptation to Low Salinity Promotes Genomic Divergence in Atlantic Cod (Gadus morhua L.)

    PubMed Central

    Berg, Paul R.; Jentoft, Sissel; Star, Bastiaan; Ring, Kristoffer H.; Knutsen, Halvor; Lien, Sigbjørn; Jakobsen, Kjetill S.; André, Carl

    2015-01-01

    How genomic selection enables species to adapt to divergent environments is a fundamental question in ecology and evolution. We investigated the genomic signatures of local adaptation in Atlantic cod (Gadus morhua L.) along a natural salinity gradient, ranging from 35‰ in the North Sea to 7‰ within the Baltic Sea. By utilizing a 12 K SNPchip, we simultaneously assessed neutral and adaptive genetic divergence across the Atlantic cod genome. Combining outlier analyses with a landscape genomic approach, we identified a set of directionally selected loci that are strongly correlated with habitat differences in salinity, oxygen, and temperature. Our results show that discrete regions within the Atlantic cod genome are subject to directional selection and associated with adaptation to the local environmental conditions in the Baltic- and the North Sea, indicating divergence hitchhiking and the presence of genomic islands of divergence. We report a suite of outlier single nucleotide polymorphisms within or closely located to genes associated with osmoregulation, as well as genes known to play important roles in the hydration and development of oocytes. These genes are likely to have key functions within a general osmoregulatory framework and are important for the survival of eggs and larvae, contributing to the buildup of reproductive isolation between the low-salinity adapted Baltic cod and the adjacent cod populations. Hence, our data suggest that adaptive responses to the environmental conditions in the Baltic Sea may contribute to a strong and effective reproductive barrier, and that Baltic cod can be viewed as an example of ongoing speciation. PMID:25994933

  1. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    NASA Astrophysics Data System (ADS)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  2. Contrasting responses of the extended Gulf Stream to severe winter forcing

    NASA Astrophysics Data System (ADS)

    Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.

    2015-12-01

    Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.

  3. Fine-scale variability of isopycnal salinity in the California Current System

    NASA Astrophysics Data System (ADS)

    Itoh, Sachihiko; Rudnick, Daniel L.

    2017-09-01

    This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

  4. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  5. Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Jessup, Andrew T.; Clark, Dan

    2014-05-01

    Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity.

  6. Late summer zoogeography of the northern Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Mueter, Franz J.; Bluhm, Bodil A.; Busby, Morgan S.; Cokelet, Edward D.; Danielson, Seth L.; Robertis, Alex De; Eisner, Lisa B.; Farley, Edward V.; Iken, Katrin; Kuletz, Kathy J.; Lauth, Robert R.; Logerwell, Elizabeth A.; Pinchuk, Alexei I.

    2017-01-01

    Ocean currents, water masses, and seasonal sea ice formation contribute to determining relationships among the biota of the Bering and Chukchi seas. The Bering Sea communicates with the Chukchi Sea via northward advection of water, nutrients, organic matter, and plankton through Bering Strait. We used data from concurrent surveys of zooplankton, pelagic fishes and jellyfish, epibenthic fishes and invertebrates, and seabirds to identify faunal distribution patterns and environmental factors that are related to these faunal distributions within the US portions of the Chukchi Sea shelf and Bering Sea shelf north of Nunivak Island. Regional differences in late summer (August-September) distributions of biota largely reflected the underlying hydrography. Depth, temperature, salinity, stratification, and chlorophyll a, but less so sediment-related or nutrient-related factors, were related to the distributions of the assemblages (zooplankton: depth, salinity, stratification; pelagic fishes and jellyfish: depth, stratification, chlorophyll a; epibenthic fishes and invertebrates: depth, temperature, salinity; seabirds: temperature, salinity, stratification). These six environmental factors that most influenced distributions of zooplankton, pelagic fishes/jellyfish, epibenthic fishes and invertebrate, and seabird assemblages likely can be simplified to three factors reflecting bottom depth, water mass, and their stratification and productivity (which are tightly linked in the study region). The assemblages were principally structured from nearshore to offshore and from south to north. The nearshore to offshore contrast usually was stronger in the south, where the enormous discharge of the Yukon River is more apparent and extends farther offshore, influencing zooplankton, pelagic fish/jellyfish, and seabird assemblages. Some assemblages overlapped spatially (e.g., seabird and zooplankton), indicating shared influential environmental factors or trophic linkages among assemblages. The gradients in assemblage composition were gradual for epibenthic taxa, abrupt for zooplankton taxa, and intermediate for pelagic fish/jellyfish and seabird taxa, implying that zooplankton assemblage structure is most strongly tied to water mass, epibenthic least, with the other two taxa intermediates. Three communities (i.e., cross-assemblage groupings) emerged based on maps of ordination axes and core use areas by taxa; one associated with Alaska Coastal Water (warmer, fresher, nutrient depauperate), second associated with Chirikov Basin and the southern Chukchi Sea (colder, saltier, nutrient rich), and third associated with the northern Chukchi shelf (colder and saltier but not as nutrient rich). Gradients in species composition occurred both within and between these communities. The Chirikov Basin/southern Chukchi Sea community was characterized by distinct zooplankton and seabird taxa, but was not strongly associated with distinct pelagic or epibenthic fish and invertebrate taxa. Although comprehensive data were only available for a single year and annual variation may affect the generality of our results, our comprehensive ecosystem survey approach yielded new insights into the ecological relationships (specifically, gradients in assemblage composition and identification of communities) of this Arctic region.

  7. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  8. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, NY; Elimelech, M

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less

  9. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    USGS Publications Warehouse

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage. These findings highlight the importance of quantifying carbon loss at multiple temporal scales, not only in coastal wetlands but also in other ecosystems where plant-mediated responses to climate change will have significant impacts on carbon cycling.

  10. Land-ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47-50°S)

    NASA Astrophysics Data System (ADS)

    González, H. E.; Castro, L. R.; Daneri, G.; Iriarte, J. L.; Silva, N.; Tapia, F.; Teca, E.; Vargas, C. A.

    2013-12-01

    Patagonian fjord systems, and in particular the fjords and channels associated with the Baker/Pascua Rivers, are currently under conspicuous natural and anthropogenic perturbations. These systems display very high variability, where limnetic and oceanic features overlap generating strong vertical and horizontal physicochemical gradients. The CIMAR 14-Fiordos cruise was conducted in the Chilean fjords located between 47° and 50°S during the spring (October-November) of 2008. The main objectives were to study vertical and horizontal gradients in physical, chemical and biological characteristics of the water column, and to assess plankton dynamics and trophic carbon fluxes in the fjords and channels of central-south Patagonia. The water column was strongly stratified, with a pycnocline at ca. 20 m depth separating a surface layer of silicic acid-rich freshwater discharged by rivers, from the underlying nitrate- and orthophosphate-rich Subantarctic waters. The outflows from the Baker and Pascua Rivers, which range annually between 500 and 1500 m3 s-1, generate the strong land-ocean gradient in salinity (1-32 psu) and inorganic nutrient concentrations (2-8 and 2-24 μM in nitrate and silicic-acid, respectively) we observed along the Baker Fjord. The POC:chl-a ratio fluctuated from 1087 near the fjord’s head to 175 at its oceanic end in the Penas Gulf. This change was mainly due to an increase in diatom dominance and a concurrent decrease in allochthonous POC towards the ocean. Depth-integrated net primary production (NPP) and bacterial secondary production (BSP) fluctuated between 49 and 1215 and 36 and 150 mg C m-2 d-1, respectively, with higher rates in oceanic waters. At a time series station located close to the Baker River mouth, the average NPP was lower (average 360 mg C m-2 d-1) than at more oceanic stations (average 1063 mg C m-2 d-1), and numerically dominated (45%) by the picoplankton (<2 μm) and nanoplankton (2-20 μm) size fractions. The high average vertical carbon flux (234 mg m-2 d-1) and high export production (65% of the NPP) support the idea that Patagonian fjords may behave as a net sink for CO2 during the productive (spring) season. Trophic fluxes near the head of the fjords, with oligotrophic low-salinity waters, were dominated by heterotrophic nanoflagellates (HNF) and small copepods (52 mg C m-2 d-1, each), suggesting that the microbial food web is the main trophic pathway in these environments.

  11. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  12. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    PubMed

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  13. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  14. From convection rolls to finger convection in double-diffusive turbulence

    PubMed Central

    Verzicco, Roberto; Lohse, Detlef

    2016-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474

  15. Soil Microbial Responses to Increased Moisture and Organic Resources along a Salinity Gradient in a Polar Desert

    PubMed Central

    Van Horn, David J.; Okie, Jordan G.; Buelow, Heather N.; Gooseff, Michael N.; Barrett, John E.

    2014-01-01

    Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region. PMID:24610850

  16. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert.

    PubMed

    Van Horn, David J; Okie, Jordan G; Buelow, Heather N; Gooseff, Michael N; Barrett, John E; Takacs-Vesbach, Cristina D

    2014-05-01

    Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.

  17. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  18. Benthic infaunal community structuring in an acidified tropical estuarine system.

    PubMed

    Hossain, M Belal; Marshall, David J

    2014-01-01

    Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. While most theory and application for OA is based on relatively physically-stable oceanic ecological systems, less is known about the effects of acidification on nearshore and estuarine systems. Here, we investigated the structuring of a benthic infaunal community in a tropical estuarine system, along a steep salinity and pH gradient, arising largely from acid-sulphate groundwater inflows (Sungai Brunei Estuary, Borneo, July 2011- June 2012). Preliminary data indicate that sediment pore-water salinity (range: 8.07 - 29.6 psu) declined towards the mainland in correspondence with the above-sediment estuarine water salinity (range: 3.58 - 31.2 psu), whereas the pore-water pH (range: 6.47- 7.72) was generally lower and less variable than the estuarine water pH (range: 5.78- 8.3), along the estuary. Of the thirty six species (taxa) recorded, the polychaetes Neanthes sp., Onuphis conchylega, Nereididae sp. and the amphipod Corophiidae sp., were numerically dominant. Calcified microcrustaceans (e.g., Cyclopoida sp. and Corophiidae sp.) were abundant at all stations and there was no clear distinction in distribution pattern along the estuarine between calcified and non-calcified groups. Species richness increased seawards, though abundance (density) showed no distinct directional trend. Diversity indices were generally positively correlated (Spearman's rank correlation) with salinity and pH (p <0.05) and negatively with clay and organic matter, except for evenness values (p >0.05). Three faunistic assemblages were distinguished: (1) nereid-cyclopoid-sabellid, (2) corophiid-capitellid and (3) onuphid- nereid-capitellid. These respectively associated with lower salinity/pH and a muddy bottom, low salinity/pH and a sandy bottom, and high salinity/pH and a sandy bottom. However, CCA suggested that species distribution and community structuring is more strongly influenced by sediment particle characteristics than by the chemical properties of the water (pH and salinity). Infaunal estuarine communities, which are typically adapted to survive relatively acidic conditions, may be less exposed, less sensitive, and less vulnerable than epibenthic or pelagic communities to further acidification of above-sediment waters. These data question the extent to which all marine infaunal communities, including oceanic communities, are likely to be affected by future global CO2-driven acidification.

  19. Flood Tide Transport of Blue Crab Postlarvae: Limitations in a Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Cudaback, C.; Eggleston, D.

    2005-05-01

    Blue crabs, an important commercial species, spend much of their life in estuaries along the east coast. The larvae spawn at or near the ocean, but the juveniles mature in the lower salinity waters of the estuary. It is generally believed that blue crab postlarvae migrate into near surface waters on flood, possibly cued by increasing salinity, and return to the bottom on ebb. Over several tidal cycles, the postlarvae travel a significant distance up-estuary. This model applies quite well to Chesapeake Bay, which has a strong along-estuary salinity gradient and large tides, but may not apply as well to Pamlico Sound, where circulation and salinity are more wind-driven than tidal. A recently completed study (N. Reyns, PhD), indicates that postlarval blue crabs use flood tides and wind-driven currents to cross Pamlico Sound. This study was based on observations with good spatial coverage, but limited vertical and temporal resolution. We have recently completed a complementary study, sampling crab larvae around the clock at four depths at a single location. Preliminary results from the new study suggest that the crab postlarvae do swim all the way to the surface, on flood only, and that flood currents are strongest slightly below the surface. These observations suggest the utility of flood tide transport in this system. However, near bottom salinity does not seem to be driven by tides; at this point it is unclear what cue might trigger the vertical migration of the postlarvae.

  20. Relationships between salinity and short-term soil carbon accumulation rates form marsh types across a landscape in the Mississippi River Delta

    USGS Publications Warehouse

    Baustian, Melissa M.; Stagg, Camille L.; Perry, Carey L.; Moss, Leland C; Carruthers, Tim J.B.; Allison, Mead

    2017-01-01

    Salinity alterations will likely change the plant and environmental characteristics in coastal marshes thereby influencing soil carbon accumulation rates. Coastal Louisiana marshes have been historically classified as fresh, intermediate, brackish, or saline based on resident plant community and position along a salinity gradient. Short-term total carbon accumulation rates were assessed by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient. Bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation rates. Despite some significant differences in soil properties among marsh types, the mean total carbon accumulation rates among marsh types were not significantly different (mean ± std. err. of 190 ± 27 g TC m−2 year−1). However, regression analysis indicated that mean annual surface salinity had a significant negative relationship with total carbon accumulation rates. Based on both analyses, the coastal Louisiana total marsh area (1,433,700 ha) accumulates about 2.7 to 3.3 Tg C year−1. Changing salinities due to increasing relative sea level or resulting from restoration activities may alter carbon accumulation rates in the short term and significantly influence the global carbon cycle.

  1. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    PubMed

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal pattern, driven by interactive influences on water quantity and quality of climate, geology, and terrestrial vegetation. Because climatic and vegetation dynamics vary annually in a seasonal, cyclic manner, a periodic function can be used to fit a sinusoidal model to the salinity pattern. The model framework used here is broadly applicable in systems with streamflow-dependent chronic salinity stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi

    PubMed Central

    Jaspers, Cornelia; Møller, Lene Friis; Kiørboe, Thomas

    2011-01-01

    The recent invasion of the comb jelly Mnemiopsis leidyi into northern European waters is of major public and scientific concern. One of the key features making M. leidyi a successful invader is its high fecundity combined with fast growth rates. However, little is known about physiological limitations to its reproduction and consequent possible abiotic restrictions to its dispersal. To evaluate the invasion potential of M. leidyi into the brackish Baltic Sea we studied in situ egg production rates in different regions and at different salinities in the laboratory, representing the salinity gradient of the Baltic Sea. During October 2009 M. leidyi actively reproduced over large areas of the Baltic Sea. Egg production rates scaled with animal size but decreased significantly with decreasing salinity, both in the field (7–29) and in laboratory experiments (6–33). Temperature and zooplankton, i.e. food abundance, could not explain the observed differences. Reproduction rates at conditions representing the Kattegat, south western and central Baltic Sea, respectively, were 2.8 fold higher at the highest salinities (33 and 25) than at intermediate salinities (10 and 15) and 21 times higher compared from intermediate to the lowest salinity tested (6). Higher salinity areas such as the Kattegat, and to a lower extent the south western Baltic, seem to act as source regions for the M. leidyi population in the central Baltic Sea where a self-sustaining population, due to the low salinity, cannot be maintained. PMID:21887373

  3. Vegetation patterns and environmental gradients in coastal meadows on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Kincheloe, Karen L.; Stehn, Robert A.

    1991-01-01

    Tundra vegetation and environmental variables were sampled on the Yukon–Kuskokwim delta in western Alaska. On transects extending from intertidal mudflat to upland tundra, we estimated cover by vascular plant species, soil moisture, salinity, relative elevation, depth to permafrost, and distance upriver from the coast. Two-way indicator species analysis (TWINSPAN) classified 21 communities. Ordination by detrended correspondence analysis (DECORANA) revealed a gradient correlated with the combination of elevation, permafrost depth, and salinity along the first axis for both upriver and downriver transects.

  4. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  5. Opposing environmental gradients govern vegetation zonation in an intermountain playa

    USGS Publications Warehouse

    Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.

    2008-01-01

    Vegetation zonation was investigated at an intermountain playa wetland (Mishak Lakes) in the San Luis Valley (SLV) of southern Colorado. Plant composition and abiotic conditions were quantified in six vegetation zones. Reciprocal transplants were performed to test the importance of abiotic factors in governing zonation. Abiotic conditions differed among several vegetation zones. Prolonged inundation led to anaerobic soils in the Eleocharis palustris and the submerged aquatics zones, on the low end of the site's 1.25 m elevation gradient. On the high end of the gradient, soil salinity and sodicity (a measure of exchangeable sodium) were high in the Distichlis spicata zone (electrical conductivity, EC = 5.3 dS/m, sodium absorption ratio, SAR = 44.0) and extreme in the Sarcobatus vermiculatus zone (EC = 21 dS/m, SAR = 274). Transplanted species produced maximum biomass in the zone where they originated, not in any other higher or lower vegetation zone. The greatest overall transplant effect occurred for E. palustris, which experienced a ??? 77% decline in productivity when transplanted to other zones. This study provides evidence that physical factors are a major determinant of vegetation zone composition and distribution across the entire elevation gradient at Mishak Lakes. Patterns at Mishak Lakes arise from counter-directional stress gradients: a gradient from anaerobic to well-oxygenated from basin bottom to upland and a gradient from extremely high salinity to low salinity in the opposing direction. Because abiotic conditions dominate vegetation zonation, restoration of the altered hydrologic regime of this wetland to a natural hydrologic regime may be sufficient to re-establish many of the natural biodiversity functions provided by these wetlands. ?? 2008 The Society of Wetland Scientists.

  6. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    PubMed

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  7. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau

    PubMed Central

    Zhong, Zhi-Ping; Liu, Ying; Miao, Li-Li; Wang, Fang; Chu, Li-Min; Wang, Jia-Li

    2016-01-01

    The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg2+, K+, Cl−, Na+, SO42−, and Ca2+) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO43− concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole communities along gradients of salinity and ionic concentrations. PMID:26746713

  8. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.

    PubMed

    Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2014-10-01

    Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA

    PubMed Central

    Garland, Hanna G.; Kimbro, David L.

    2015-01-01

    Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary’s salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs. PMID:26275296

  10. Temperature and salinity variability in the exit passages of the Indonesian Throughflow

    NASA Astrophysics Data System (ADS)

    Sprintall, Janet; Potemra, James T.; Hautala, Susan L.; Bray, Nancy A.; Pandoe, Wahyu W.

    2003-07-01

    The Indonesian Throughflow was monitored from December 1995 until May 1999 in the five major exit passages of the Lesser Sunda Islands, as it flows from the Indonesian interior seas into the southeast Indian Ocean. The monitoring array included pairs of shallow pressure gauges at each side of the straits, equipped with temperature and salinity sensors. As in the inferred geostrophic velocity from the cross-strait pressure gauge data, the temperature and salinity data show strong variability over all time scales related to the local regional and remote forcing mechanisms of heat, freshwater and wind. The annual cycle dominates the temperature time series, with warmest temperatures occurring during the austral summer northwest monsoon, except in Lombok Strait where the semi-annual signal is dominant, and related to the Indian Ocean westerly wind-forced Kelvin waves during the monsoon transitions that supply Indian Ocean warmer surface water to the strait. In the salinity data, the annual signal again dominates the time series in all straits, with a distinct freshening occurring in March-May. This is partly related to the rainfall and resultant voluminous river runoff impacting the region, one month after the wetter northwest monsoon ends in March. The fresh, warm water from the monsoon-transition Indian Ocean Kelvin wave also contributes to the freshening observed in May. There is little cross-strait gradient in near-surface temperature and salinity through the outflow straits, except in Lombok Strait, where Lombok is warmer (except during the northwest monsoon) and fresher than the Bali site (especially during March through May). A fortnightly signal in temperature is found in Ombai and Sumba Straits, and is probably related to the proximity of these straits to the interior Banda Sea where the fortnightly tidal signal is strong. The fortnightly signal is also evident at the Bali site, although not at the Lombok site. Numerous ADCP surveys taken during the survey period suggest a western intensification of the flow through Lombok Strait, such that the Bali site also may be more influenced by the internal Indonesian seas. Finally, there is regional variability in temperature and salinity on interannual time scales. From mid-1997 through early 1998, the region is cooler and saltier than normal. These property changes are related to both the strong 1997-1998 El Niño event in the Pacific, and the strong 1997 Dipole Mode in the Indian Ocean, which together can result in lower regional precipitation; lower transport of the fresh, warm Throughflow water; and changes in the upwelling regime along the Lesser Sunda Island chain. From mid-1998 on, warmer conditions returned to the region probably related to the La Niña event.

  11. Biodiversity and abundance patterns of rock encrusting fauna in a temperate fjord.

    PubMed

    Kuklinski, Piotr

    2013-01-01

    Fjords are semi-enclosed systems often with usually strong physical and chemical gradients. These gradients provide the opportunity to test the influence of various physical and chemical factors on biodiversity. However study area of this investigation, Trondheimsfjord, is a large water body where especially salinity gradient along the fjord is not well pronounced. The goal of this study was to establish within a temperate fjord a baseline identifying encrusting fauna on rocks and determine the factors driving changes along the length of the fjord and changing depths. There was no trend in species composition change and increase or decrease in number of species, diversity and number of individuals along the fjord. This was likely due to the relative homogeneity of both substrate (rocks) and environmental parameters. Nevertheless, the influence of fresh water inflow in the vicinity of the river mouth was apparent by the presence of characteristic brackish-water species at these locations. Multidimensional scaling analysis revealed three separate assemblages: intertidal, shallow and deep subtidal (below 50 m). Intertidal assemblages were species poor (one to 11 species) but relatively abundant (six to 2374 indiv./m(2) of rocks). Number of individuals and biomass was highest in the shallow subtidal (2059-13,587 indiv./m(2) of rocks). Overall the highest species number (45) was recorded at 50 m depth which is probably result of low competition pressure yet still relatively high nutrient concentration in comparison to shallower locations. Environmental parameters (i.e., tidal currents, wave action, salinity) change more drastically with depth than along the fjord and these changes are the major driving forces in shaping encrusting assemblages in Trondheimsfjord. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau.

    PubMed

    Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J

    2016-12-01

    Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Predicting Seawater Intrusion in Coastal Groundwater Boreholes Using Self-Potential Data

    NASA Astrophysics Data System (ADS)

    Graham, M.; MacAllister, D. J.; Jackson, M.; Vinogradov, J.; Butler, A. P.

    2017-12-01

    Many coastal groundwater abstraction wells are under threat from seawater intrusion: this is exacerbated in summer by low water tables and increased abstraction. Existing hydrochemistry or geophysical techniques often fail to predict the timing of intrusion events. We investigate whether the presence and transport of seawater can influence self-potentials (SPs) measured within groundwater boreholes, with the aim of using SP monitoring to provide early warning of saline intrusion. SP data collection: SP data were collected from a coastal groundwater borehole and an inland borehole (> 60 km from the coast) in the Seaford Chalk of southern England. The SP gradient in the inland borehole was approximately 0.05 mV/m, while that in the coastal borehole varied from 0.16-0.26 mV/m throughout the monitoring period. Spectral analysis showed that semi-diurnal fluctuations in the SP gradient were several orders of magnitude higher at the coast than inland, indicating a strong influence from oceanic tides. A characteristic decrease in the gradient, or precursor, was observed in the coastal borehole several days prior to seawater intrusion. Modelling results: Hydrodynamic transport and geoelectric modelling suggest that observed pressure changes (associated with the streaming potential) are insufficient to explain either the magnitude of the coastal SP gradient or the semi-diurnal SP fluctuations. By contrast, a model of the exclusion-diffusion potential closely matches these observations and produces a precursor similar to that observed in the field. Sensitivity analysis suggests that both a sharp saline front and spatial variations in the exclusion efficiency arising from aquifer heterogeneities are necessary to explain the SP gradient observed in the coastal borehole. The presence of the precursor in the model depends also on the presence and depth of fractures near the base of the borehole. Conclusions: Our results indicate that SP monitoring, combined with hydrodynamic transport and geoelectric modelling, holds considerable promise as an early warning device for seawater intrusion. We now aim to refine our understanding of the technique by applying it to a range of aquifer types.

  14. Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah.

    PubMed

    Lindsay, M R; Anderson, C; Fox, N; Scofield, G; Allen, J; Anderson, E; Bueter, L; Poudel, S; Sutherland, K; Munson-McGee, J H; Van Nostrand, J D; Zhou, J; Spear, J R; Baxter, B K; Lageson, D R; Boyd, E S

    2017-01-01

    A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%-31% salinity) and a less saline South Arm (SA; 11%-14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL. © 2016 John Wiley & Sons Ltd.

  15. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  16. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-06-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  17. Bistability of mangrove forests and competition with freshwater plants

    USGS Publications Warehouse

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  18. Heat Flux and Fluid Flow in the Terrebonne Basin, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Meazell, K.; Flemings, P. B.

    2016-12-01

    We use a three-dimensional seismic survey to map the gas hydrate stability zone within a mid-slope salt-withdrawal minibasin in the northern Gulf of Mexico and identify anomalous regions within the basin where fluids may modify the hydrate stability zone. A discontinuous bottom-simulating reflector (BSR) marks the base of the hydrate stability zone and suggests an average geothermal gradient of 18.1 C/km based on the calculated temperature at the BSR assuming seawater salinity, hydrostatic pressure, and a seafloor temperature of 4 C. When compared to our model of the predicted base of gas hydrate stability assuming a basin-wide geothermal gradient of 18.1 C, two anomalies are found where the BSR is observed significantly shallower than expected. The southern anomaly has a lateral influence of 1500 m from the salt, and a maximum shoaling of 800 m. This anomaly is likely the result of increased salinity or heat from a rising salt diapir along the flank of the basin. A local geothermal gradient of 67.31 C/km or a salinity of 17.5 wt % can explain the observed position of the BSR at the southern anomaly. The northern anomaly is associated with active cold seep vents. In this area, the pluming BSR is crescent shaped, which we interpret as the result of warm and or salty fluids migrating up through a fault. This anomaly has a lateral influence of 1500 m, and a maximum shoaling of 600 m above the predicted base of gas hydrate stability. A local geothermal gradient of 35.45 C/km or a salinity of 14.7 wt % is required to adjust the position of the BSR to that which is observed at the northern anomaly. Active fluid migration suggests a combination of both heat and salinity is responsible for the altered position of the BSR.

  19. Distribution of macroalgae and sediment chlorophyll A along salinity and elevation gradients in Oregon tidal marshes

    EPA Science Inventory

    Algae contribute to trophic and biogeochemical processes in tidal wetlands. We investigated patterns of sediment pigment content and macroalgal abundance and diversity in marshes in four Oregon estuaries representing a variety of vegetation types, salinity regimes, and tidal ele...

  20. Hydrogeochemical and isotopic evidences of groundwater salinization in coastal aquifers: A case study in Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, D.; Lee, K.; Koh, D.; Lee, S.; Park, W.; Koh, G.; Woo, N.

    2001-12-01

    In order to clearly identify the origin of saline groundwaters in the eastern part of Jeju volcanic island, Korea the hydrogeochemical and isotopic studies have been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid (TDS) contents of groundwater samples are highly variable (77 to 21,782 mg/L). Most of the groundwaters in the study area are classified into Na-Cl type except a few samples showing Ca-Cl type. Hydrochemical characteristics based on bivariate and triangular diagrams of major ions show that the changes of chemical compositions of groundwaters were mainly controlled by the salinization process linked to cation-exchange reactions. The oxygen, hydrogen, sulfur, and strontium isotopic data explicitly show a simple mixing trend of groundwater and seawater. Using two-components fractional mixing model on the basis of 18O contents as well as Br and Cl contents, the proportion of seawater in fresh groundwater was quantitatively determined as high as 60 %. Sr isotopic compositions and Br/Cl ratios strongly suggest that the source of groundwater salinization is present-day seawater intrusion rather than paleoseawater or formation water, which can also be supported by the I/Cl ratios. The highly permeable aquifers in the east coastal region characterized by low hydraulic gradient and recharge rate and high hydraulic conductivity comparing with other regions are advantageous to the groundwater salinization. Based on the Cl, ¥ä18O, and 87Sr/86Sr it was determined that seawater has intruded into inland 2.5 km from coastline.

  1. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient

    USGS Publications Warehouse

    Vasquez, Edward A.; Glenn, Edward P.; Guntenspergen, Glenn R.; Brown, J. Jed; Nelson, Stephen G.

    2006-01-01

    An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na+ for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.

  2. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf

    NASA Astrophysics Data System (ADS)

    Rivas, Andrés L.; Pisoni, Juan Pablo

    2010-01-01

    The location and seasonal variability of surface thermal fronts along the Argentinean Continental Shelf (38-55°S) were studied using 18 years (1985-2002) of sea surface temperature (SST) satellite data. Monthly SST gradients were calculated and a threshold was used to identify frontal pixels. Frontal areas were classified into 4 zones according to their seasonal evolution and the main forcings leading to the front's formation were identified for each group. The shelf break front was easily detected due to the large number of frontal pixels in the region and its high mean gradient values. This front showed a marked annual cycle and relatively constant position associated to the bottom slope; it tended to be located where the core of the Malvinas current is closest to the shelf. Tidal fronts also showed a strong annual cycle, being detected in three well-defined regions during spring and summer. Along the coasts of Tierra del Fuego and Santa Cruz, the combination of strong tidal mixing and low-salinity coastal plumes led to semi-annual seasonal cycles of frontal intensity and persistence that showed a relative maximum in winter. A similar behavior (semi-annual) was found at the coast off the Buenos Aires Province. There, the coastal dilution and the bathymetric gradient generated near-coastal fronts that changed direction seasonally. In the northern mid-shelf, a front linked to the intrusion of warm waters formed in the San Matías Gulf was identified during the winter.

  3. Are there general spatial patterns of mangrove structure and composition along estuarine salinity gradients in Todos os Santos Bay?

    NASA Astrophysics Data System (ADS)

    Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco

    2015-12-01

    Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.

  4. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone rock texture (expressed here by the pore radius r) and salinity.

  5. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    PubMed Central

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  6. Early life history responses of tidal wetland plants to sea-level rise and salinization in the Pacific Northwest

    EPA Science Inventory

    Climate change is likely to alter the spatial distribution of abiotic gradients in estuaries, potentially increasing stress in tidal wetland plants. Using field and lab manipulations, we examined inter-specific variation in responses to elevated salinity and inundation in the Ore...

  7. Atlantic Intracoastal Waterway (AIWW) Maintenance Program Evaluation Study.

    DTIC Science & Technology

    1983-01-01

    offset by rising sea levels. Few plant species can withstand the stress imposed by high salinity and daily inundation by tidal waters, and marsh...related to gradients in salinity and elevation. 7 K-e--.2 The wetlands through which the Atlantic intracoastal Water-day passes are fEeding and nursery...with wetland plant species dominated by salt marsh cotdgra-,s (Spartina alterniflora) in saline areas and giant cordgrass (Spar ti:: cynosurrides) in

  8. Mangrove forests

    Treesearch

    Ariel E. Lugo; Ernesto Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  9. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay

    USGS Publications Warehouse

    Takekawa, John Y.; Miles, A.K.; Tsao-Melcer, D. C.; Schoellhamer, D.H.; Fregien, S.; Athearn, N.D.

    2009-01-01

    Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l-1) to very high salinities (250 g l -1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40-80 g l-1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2-4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. ?? 2009 USGS, US Government.

  10. Interaction of lateral baroclinic forcing and turbulence in an estuary

    USGS Publications Warehouse

    Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.

    2003-01-01

    Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.

  11. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    NASA Astrophysics Data System (ADS)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  12. Numerical modeling of an estuary: A comprehensive skill assessment

    USGS Publications Warehouse

    Warner, J.C.; Geyer, W.R.; Lerczak, J.A.

    2005-01-01

    Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary coindition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-??, k-??, and k-kl. Copyright 2005 by the American Geophysical Union.

  13. Diversity of bacterial communities and dissolved organic matter in a temperate estuary.

    PubMed

    Osterholz, Helena; Kirchman, David L; Niggemann, Jutta; Dittmar, Thorsten

    2018-06-14

    Relationships between bacterial community and dissolved organic matter (DOM) include microbial uptake, transformation and secretion, all of which influence DOM composition. In this study, we explore diversity and similarity metrics of dissolved organic molecules (Fourier-transform ion cyclotron resonance mass spectrometry) and bacterial communities (tag-sequencing of 16S rRNA genes) along the salinity gradient of the Delaware Estuary (USA). We found that even though mixing, discharge and seasonal changes explained most of the variation in DOM and bacterial communities, there was still a relationship, albeit weak, between the composition of DOM and bacterial communities in the estuary. Overall, many DOM molecular formulas (MFs) and bacterial operational taxonomic units (OTUs) reoccurred over years and seasons while the frequency of MF-OTU correlations varied. Diversity based on MFs and OTUs was significantly correlated, decreasing towards the open ocean. However, while the diversity of bacterial OTUs dropped markedly with low salinity, MF diversity decreased strongly only at high salinities. We hypothesize that the different turnover times of DOM and bacteria lead to different abundance distributions of OTUs and MFs. A significant portion of the detected DOM is of a more refractory nature with lifetimes largely exceeding the mixing time of the estuary, while bacterial community turnover times in the Delaware Estuary are estimated at several days.

  14. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    PubMed

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  16. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    USGS Publications Warehouse

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  17. Forcing functions governing salt transport processes in coastal navigation canals and connectivity to surrounding marshes in South Louisiana using Houma Navigation Canal as a surrogate

    USGS Publications Warehouse

    Snedden, Gregg

    2014-01-01

    Understanding how circulation and mixing processes in coastal navigation canals influence the exchange of salt between marshes and coastal ocean, and how those processes are modulated by external physical processes, is critical to anticipating effects of future actions and circumstance. Examples of such circumstances include deepening the channel, placement of locks in the channel, changes in freshwater discharge down the channel, changes in outer continental shelf (OCS) vessel traffic volume, and sea level rise. The study builds on previous BOEM-funded studies by investigating salt flux variability through the Houma Navigation Canal (HNC). It examines how external physical factors, such as buoyancy forcing and mixing from tidal stirring and OCS vessel wakes, influence dispersive and advective fluxes through the HNC and the impact of this salt flux on salinity in nearby marshes. This study quantifies salt transport processes and salinity variability in the HNC and surrounding Terrebonne marshes. Data collected for this study include time-series data of salinity and velocity in the HNC, monthly salinity-depth profiles along the length of the channel, hourly vertical profiles of velocity and salinity over multiple tidal cycles, and salinity time series data at three locations in the surrounding marshes along a transect of increasing distance from the HNC. Two modes of vertical current structure were identified. The first mode, making up 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the longitudinal salinity gradients along the channel’s length. Diffusive process were dominant drivers of upestuary salt transport, except during periods of minimal tidal stirring when gravitational circulation became more important. Salinity in the surrounding marshes was much more responsive to salinity variations in the HNC than it was to variations in the lower Terrebonne marshes, suggesting that the HNC is the primary conduit for saltwater intrusion to the middle Terrebonne marshes. Finally, salt transport to the middle Terrebonne marshes directly associated with vessel wakes was negligible.

  18. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  19. Seasonal Assessment of the Relationship between the Discharge of the Trinity River and the Trinity Bay Ecosystem.

    DTIC Science & Technology

    1973-08-25

    that the shad and anchovy 118 populations are primarily dependent on plankton for food, which means that the higher salinities necessary for increased...therefore, regulating salinity levels for shrimp would increase both the shrimp fishery and other fish populations dependent on shrimp, as well...Bay ecosystem is that the bay is dependent upon the river for nutrients Gnd for maintenance of the salinity gradient. Odum, ’ ;.. (1963), Copeland

  20. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  1. Nanophytoplankton Diversity Across the Oligohaline Lake Pontchartrain Basin Estuary: A Preliminary Investigation Utlizing psbA Sequences

    USDA-ARS?s Scientific Manuscript database

    The Lake Pontchartrain basin estuary is shallow, wind-driven and comprised of two large embayments (1645 km2). Salinities range from freshwater in the west to 8 ppt in the east near the Gulf of Mexico. Phytoplankton investigations spanning this salinity gradient or examining small photoautotrophs ar...

  2. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica.

    PubMed

    Czechowski, Paul; White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I

    2016-12-01

    The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales.

  3. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica

    PubMed Central

    White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I.

    2016-01-01

    The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales. PMID:28083092

  4. Estuarine biodiversity as an indicator of groundwater discharge

    NASA Astrophysics Data System (ADS)

    Silva, A. C. F.; Tavares, P.; Shapouri, M.; Stigter, T. Y.; Monteiro, J. P.; Machado, M.; Cancela da Fonseca, L.; Ribeiro, L.

    2012-01-01

    Communities located in the interface between marine/brackish and freshwater habitats are likely to be early responders to climatic changes as they are exposed to both saline and freshwater conditions, and thus are expected to be sensitive to any change in their environmental conditions. Climatic effects are predicted to reduce the availability of groundwater, altering the hydrological balance on estuarine-aquifer interfaces. Here, we aimed to characterise the estuarine faunal community along a gradient dependent on groundwater input, under a predicted climatic scenario of reduction in groundwater discharge into the estuary. Sediment macrofauna was sampled along a salinity gradient following both the wet and dry seasons in 2009. Results indicated that species abundance varied significantly with the salinity gradient created by the groundwater discharge into the estuarine habitat and with sampling time. The isopode Cyathura carinata (Krøyer, 1847) and the polychaetes Heteromastus filiformis (Claparède, 1864) and Hediste diversicolor O.F. Muller, 1776 were associated with the more saline locations, while oligochaeta and Spionidae were more abundant in areas of lower salinity. The polychaete Alkmaria romijni Horst, 1919 was the dominant species and ubiquitous throughout sampling stations. This study provides evidence for estuarine fauna to be considered as a potentially valuable indicator of variation in the input of groundwater into marine-freshwater interface habitats, expected from climatic pressures on aquifer levels, condition and recharge rates. For instance, a reduction in the abundance of some polychaete species, found here to be more abundant in freshwater conditions, and increasing Oligochaeta found here on higher salinities, can potentially be early warnings of a reduction in the input of groundwater into estuaries. Estuarine benthic species are often the main prey for commercially important fish predators such as in our case study, making it important to monitor the aquatic habitat interfaces taking into consideration the estuarine macrobenthos and groundwater availability in the system.

  5. Effect of salinity on oxygen consumption in fishes: a review.

    PubMed

    Ern, R; Huong, D T T; Cong, N V; Bayley, M; Wang, T

    2014-04-01

    The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism. © 2014 The Fisheries Society of the British Isles.

  6. Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?

    PubMed

    Pons, Raül; Cornejo, María Jesús; Sanz, Amparo

    2013-01-01

    The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na(+), cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H(+) gradients generated by membrane-bound H(+)-pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na(+) extrusion from the cytoplasm. We used rice (Oryza sativa L.) cell lines selected for their different tolerance to salinity to measure the response to ABA of H(+)-pumps and Na(+)/H(+)-antiporters associated to the plasma membrane and the tonoplast. Our results show that ABA generally enhances H(+)-pumping under salt stress but not under control conditions. This effect occurs to a higher extent across the tonoplast in the more tolerant lines (L-T). Na(+)/H(+) antiport activity is practically undetectable in calli under control conditions, pre-treated or not with ABA, but shows a strong activation under salinity across the tonoplast, particularly in L-T lines (cv Bahia) and also across de plasma membrane in cv Bomba. In these lines, prior treatments with ABA tend to reduce the NaCl enhanced activity of both antiporters. Overall, under saline conditions ABA seems to affect synergistically H(+) pumping and antagonistically Na(+) extrusion. A complex network of positive and negative regulatory signals seems involved in restoring ion cell homeostasis under salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Transport of persistent organic pollutants by microplastics in estuarine conditions

    NASA Astrophysics Data System (ADS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-03-01

    Microplastics represent an increasing source of anthropogenic contamination in aquatic environments, where they may also act as scavengers and transporters of persistent organic pollutants. As estuaries are amongst the most productive aquatic systems, it is important to understand sorption behaviour and transport of persistent organic pollutants (POPs) by microplastics along estuarine gradients. The effects of salinity sorption equilibrium kinetics on the distribution coefficients (Kd) of phenanthrene (Phe) and 4,4‧-DDT, onto polyvinyl chloride (PVC) and onto polyethylene (PE) were therefore investigated. A salinity gradient representing freshwater, estuarine and marine conditions, with salinities corresponding to 0 (MilliQ water, 690 μS/cm), 8.8, 17.5, 26.3 and 35 was used. Salinity had no significant effect on the time required to reach equilibrium onto PVC or PE and neither did it affect desorption rates of contaminants from plastics. Although salinity had no effect on sorption capacity of Phe onto plastics, a slight decrease in sorption capacity was observed for DDT with salinity. Salinity had little effect on sorption behaviour and POP/plastic combination was shown to be a more important factor. Transport of Phe and DDT from riverine to brackish and marine waters by plastic is therefore likely to be much more dependent on the aqueous POP concentration than on salinity. The physical characteristics of the polymer and local environmental conditions (e.g. plastic density, particle residence time in estuaries) will affect the physical transport of contaminated plastics. A transport model of POPs by microplastics under estuarine conditions is proposed. Transport of Phe and DDT by PVC and PE from fresh and brackish water toward fully marine conditions was the most likely net direction for contaminant transport and followed the order: Phe-PE >> DDT-PVC = DDT-PE >> Phe-PVC.

  8. Classification of pasture habitats by Hungarian herders in a steppe landscape (Hungary)

    PubMed Central

    2012-01-01

    Background Landscape ethnoecology focuses on the ecological features of the landscape, how the landscape is perceived, and used by people who live in it. Though studying folk classifications of species has a long history, the comparative study of habitat classifications is just beginning. I studied the habitat classification of herders in a Hungarian steppe, and compared it to classifications of botanists and laymen. Methods For a quantitative analysis the picture sort method was used. Twenty-three pictures of 7-11 habitat types were sorted by 25 herders.’Density’ of pictures along the habitat gradient of the Hortobágy salt steppe was set as equal as possible, but pictures differed in their dominant species, wetness, season, etc. Before sorts, herders were asked to describe pictures to assure proper recognition of habitats. Results Herders classified the images into three main groups: (1) fertile habitats at the higher parts of the habitat gradient (partos, lit. on the shore); (2) saline habitats (szík, lit. salt or saline place), and (3) meadows and marshes (lapos, lit. flooded) at the lower end of the habitat gradient. Sharpness of delimitation changed along the gradient. Saline habitats were the most isolated from the rest. Botanists identified 6 groups. Laymen grouped habitats in a less coherent way. As opposed to my expectations, botanical classification was not more structured than that done by herders. I expected and found high correspondence between the classifications by herders, botanists and laymen. All tended to recognize similar main groups: wetlands, ”good grass” and dry/saline habitats. Two main factors could have been responsible for similar classifications: salient features correlated (e.g. salinity recognizable by herders and botanists but not by laymen correlated with the density of grasslands or height of vegetation recognizable also for laymen), or the same salient features were used as a basis for sorting (wetness, and abiotic stress). Conclusions Despite all the difficulties of studying habitat classifications (more implicit, more variable knowledge than knowledge on species), conducting landscape ethnoecological research will inevitably reveal a deeper human understanding of biological organization at a supraspecific level, where natural discontinuities are less sharp than at the species or population level. PMID:22853549

  9. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  10. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem.

    PubMed

    Guo, Xiaohong; Gong, Jun

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.

  11. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments

    PubMed Central

    Webster, Gordon; O'Sullivan, Louise A.; Meng, Yiyu; Williams, Angharad S.; Sass, Andrea M.; Watkins, Andrew J.; Parkes, R. John; Weightman, Andrew J.

    2014-01-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2–8 × 107 16S rRNA gene copies cm−3) than the high-salinity marine sites from BR and AR (2 × 104–2 × 107 and 4 × 106–2 × 107 16S rRNA gene copies cm−3, respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the ‘Bathyarchaeota’ (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only ‘marine’ group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. PMID:25764553

  12. Effects of salinity and hypoxia-induced hyperventilation on oxygen consumption and cost of osmoregulation in the estuarine red drum (Sciaenops ocellatus).

    PubMed

    Ern, Rasmus; Esbaugh, Andrew J

    2018-04-23

    Understanding the physiological responses of fishes to salinity changes and aquatic hypoxia is essential for the conservation of marine species. Salinity changes affect the osmotic gradient across the gill epithelium, while hypoxia increases gill ventilation and the flow of water over the gills. Both processes affect the diffusive movement of ions and water across the gill epithelium, and the rate of active ion transport required for maintaining osmotic homeostasis. Consequently, salinity and hypoxia may affect the energetic cost of osmoregulation, and consequently the energy available for other physiological functions such as migration, growth, and reproduction. Historically, studies have assessed the costs of osmoregulation and ventilation in fishes via standard metabolic rate (SMR); however, few studies have used a multi-stressor approach that fully accounts for the osmorespiratory compromise. Here, we determined the combined effects of salinity and hypoxia on SMR, routine metabolic rate (RMR), and plasma ion concentrations in red drum (Sciaenops ocellatus) acclimated to salinities ranging from freshwater to hypersalinity. Surprisingly, there was no significant change in any parameter as a consequence of salinity or hypoxia, including the relatively extreme scenario of combined hypersalinity and hypoxia exposure. We conclude that changes in the osmotic gradient across the gill epithelium and the flow of water over the gills have a negligible effect on the whole animal energy budget of S. ocellatus, suggesting that the cost of osmoregulation is a minor component of basal metabolism regardless of oxygenation status. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Regulators of coastal wetland methane production and responses to simulated global change

    Treesearch

    Carmella Vizza; William E. West; Stuart E. Jones; Julia A. Hart; Gary A. Lamberti

    2017-01-01

    Wetlands are the largest natural source of methane (CH4) emissions to the atmosphere, which vary along salinity and productivity gradients. Global change has the potential to reshape these gradients and therefore alter future contributions of wetlands to the global CH4 budget. Our study examined CH4...

  14. Nearshore Circulation and Storm Surge Along the Mackenzie Delta Coast

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Mulligan, R. P.; Solomon, S. M.; Hoque, A.; Zhang, L.

    2008-12-01

    The Mackenzie Delta is a 150 km long section of coastline characterized by muddy sediments where the Mackenzie River outflow, dispersed over 20 distributary channels, discharges into the southern Beaufort Sea. The marine environment in this region is an important and integral part of the lives of Canadian Northerners. The area is also undergoing hydrocarbon exploration with potential development within the next decade. Changes to Arctic climate, such as increasing ice-free western Arctic Ocean and intensifying storm activity, may endanger the coastal settlements and marine environment in the Mackenzie Delta region. The low gradient of the delta and the adjacent inner shelf makes it very susceptible to flooding during storms. Field observations in the nearshore zone collected in August of 2007 and 2008 indicate strong gradients in temperature and salinity in shallow water of 2-6 m. The fluctuations are associated with the movements of warm and fresh river plumes and wind-driven upwelling of cold and saline water below the thermocline. The observations are in agreement with 3D model simulations of the nearshore delta region using Delft3D, which includes wind, tidal, storm surge, buoyancy and river forcing. The results validate the model and indicate that it can be used to hindcast the nearshore oceanographic conditions during severe Arctic storms. As a case study we present preliminary model results for an Arctic storm from late 1999 that caused extensive vegetation die-off in the outer delta. This cyclone was a mesoscale Arctic storm that developed over the NE Pacific and western Bering Sea, intensified explosively in the Gulf of Alaska and developed into a meteorological bomb. The storm made landfall at Cape Newenham, Alaska, crossed the Rocky Mountains to the Yukon and Northwest Territories and re-intensified over a zone of high sea surface temperature gradients in the southern Beaufort Sea. Using the Canadian Mesoscale Compressible Community (MC2) atmospheric model, simulations of the storm pattern, track and intensity are in very good agreement with the NCEP re-analysis. This is model coupled to the Princeton Ocean Model (POM) and Hibler Ice Model, which are used to provide basin-scale driver fields and define the boundary conditions of the nearshore Delft3D model for the Mackenzie Delta region. Coastal damage was predominately caused by storm surge, and the high salinity flood waters that flowed over the surface of the outer delta.

  15. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction.

    PubMed

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2018-06-14

    Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Origin of salt giants in abyssal serpentinite systems

    NASA Astrophysics Data System (ADS)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  17. Impact of Salinity Gradients on Ammonia Bioattenuation Processes in a Photosynthetic Wetland Biomat

    NASA Astrophysics Data System (ADS)

    Vega, M.; Jones, Z.; Sharp, J.

    2017-12-01

    Shallow, open water treatment wetlands may be able to offset challenges associated with the reclamation of impaired waters (e.g., membrane fouling, aeration costs, etc.) due to natural biogeochemical fluctuations produced by a benthic, photoactive biomat. This diatomaceous, redox-stratified biomat has demonstrated significant nitrate and trace organic removal from municipal wastewater streams and the microbial community has been thoroughly characterized. However, research is required to predict shifts in community structure and function in response to the excess salinity, ammonia, and metal gradients of impaired waters. Batch microcosm studies inoculating biomat from an active open water treatment wetland with incremental dilutions of hydraulic fracturing produced water were conducted in a light chamber with oscillating twelve-hour light and dark cycles to assess the effect of an impaired water matrix on biomat functionality. Diurnal photosynthetic signatures and ammonia removal kinetics were quantified in various experiments probing the effects of oscillating light conditions, biomat depth, water column isolation, nitrogen source, and salinity gradients in conjunction with phylogenetic profiles and morphological characterization. Diurnal pH and dissolved oxygen fluctuations were present at all produced water permutations, perhaps indicating stabilization of photosynthetic communities. Ammonia attenuation results suggest that the biomat is effective at removing ammonia, although first order rate constants decrease with increasing produced water abundance. Microbial community diversity appears to decrease with increasing salinity, and it is likely that these shifts correspond to variation in ecosystem function and thus treatment effectiveness. The application of shallow, open water treatment wetlands to remediate impaired waters has the potential to address societally relevant problems while discerning fundamental biogeochemical phenomena.

  18. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient

    PubMed Central

    Campbell, Barbara J; Kirchman, David L

    2013-01-01

    Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment. PMID:22895159

  19. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea

    PubMed Central

    Herlemann, Daniel PR; Labrenz, Matthias; Jürgens, Klaus; Bertilsson, Stefan; Waniek, Joanna J; Andersson, Anders F

    2011-01-01

    Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater–freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of world's largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche. PMID:21472016

  20. Sulfur in foraminiferal calcite as a potential proxy for seawater carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    van Dijk, I.; de Nooijer, L. J.; Boer, W.; Reichart, G.-J.

    2017-07-01

    Sulfur (S) incorporation in foraminiferal shells is hypothesized to change with carbonate ion concentration [CO32-], due to substitution of sulfate for carbonate ions in the calcite crystal lattice. Hence S/Ca values of foraminiferal carbonate shells are expected to reflect sea water carbonate chemistry. To generate a proxy calibration linking the incorporation of S into foraminiferal calcite to carbonate chemistry, we cultured juvenile clones of the larger benthic species Amphistegina gibbosa and Sorites marginalis over a 350-1200 ppm range of pCO2 values, corresponding to a range in [CO32-] of 93 to 211 μmol/kg. We also investigated the potential effect of salinity on S incorporation by culturing juvenile Amphistegina lessonii over a large salinity gradient (25-45). Results show S/CaCALCITE is not impacted by salinity, but increases with increasing pCO2 (and thus decreasing [CO32-] and pH), indicating S incorporation may be used as a proxy for [CO32-]. Higher S incorporation in high-Mg species S. marginalis suggests a superimposed biomineralization effect on the incorporation of S. Microprobe imaging reveals co-occurring banding of Mg and S in Amphistegina lessonii, which is in line with a strong biological control and might explain higher S incorporation in high Mg species. Provided a species-specific calibration is available, foraminiferal S/Ca values might add a valuable new tool for reconstructing past ocean carbonate chemistry.

  1. Authigenic apatite and octacalcium phosphate formation due to adsorption-precipitation switching across estuarine salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2015-02-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain largely unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation across salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a low P site. Octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite, CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Gradients in sediment pH strongly affected P fractions across ecosystems and independent of the site-specific total P status. We found a pronounced switch from adsorbed Al/Fe-P to mineral Ca-P with decreasing acidity from land to sea. This switch occurred at near-neutral sediment pH and has possibly been enhanced by redox-driven phosphate desorption from iron oxyhydroxides. The seaward decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. Correspondingly, two location-dependent accumulation mechanisms occurred at the high P site due to the switch, leading to elevated Al/Fe-P at pH < 6.6 (landward; adsorption) and elevated Ca-P at pH > 6.6 (seaward; precipitation). Enhanced Ca-P precipitation by increased P loads was also evident from disproportional accumulation of metastable Ca-P (Ca-Pmeta) at the high P site. Here, sediments contained on average 6-fold higher Ca-Pmeta levels compared with the low P site, although these sediments contained only 2-fold more total Ca-P than the low P sediments. Phosphorus species distributions indicated that these elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP in nearshore areas. Formation of CFAP as well as its precursor, OCP, results in P retention in coastal zones and can thus lead to substantial inorganic P accumulation in response to anthropogenic P input.

  2. Spatial patterns of composition in tidal wetland plant and algal assemblages in Oregon: Implications for wetland vulnerability to sea-level rise

    EPA Science Inventory

    Plants and algae mediate important ecosystem processes in coastal marshes and swamps. These assemblages are structured in part by estuarine environmental gradients such as tidal elevation and salinity. Such gradients are likely to change with sea-level rise (SLR) due to global cl...

  3. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  4. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    NASA Astrophysics Data System (ADS)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients during the Pliocene could have supported deep water formation in the subarctic Pacific and a strong PMOC.

  5. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments.

    PubMed

    Webster, Gordon; O'Sullivan, Louise A; Meng, Yiyu; Williams, Angharad S; Sass, Andrea M; Watkins, Andrew J; Parkes, R John; Weightman, Andrew J

    2015-02-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. © The Author 2014. Published by Oxford University Press on behalf of Federation of European Microbiological Society.

  6. Diatom Cell Size, Coloniality and Motility: Trade-Offs between Temperature, Salinity and Nutrient Supply with Climate Change

    PubMed Central

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how “body size” (cells and colonies) and motility change along temperature (2–26°C) and salinity (0.5–7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels. PMID:25279720

  7. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.

    PubMed

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies) and motility change along temperature (2-26°C) and salinity (0.5-7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.

  8. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes

    USGS Publications Warehouse

    Kulp, T.R.; Han, S.; Saltikov, C.W.; Lanoil, B.D.; Zargar, K.; Oremland, R.S.

    2007-01-01

    Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter-1). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter-1), intermediate (100 to 200 g liter-1), and high (>300 g liter-1) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  9. The influence of double-diffusive processes on the melting of ice in the Arctic Ocean: laboratory analogue experiments and their interpretation

    NASA Astrophysics Data System (ADS)

    Turner, J. S.; Veronis, G.

    2004-03-01

    This study has been motivated by two oceanographic observations: an increased rate of melting of sea ice in the Arctic Ocean, and the advance of an anomalously warm tongue of Atlantic water across the Arctic below the halocline over the last few decades. A series of laboratory experiments has been carried out in order to explore the physical principles underlying these phenomena, and the possibility that the extra heating at depth is responsible for the enhanced melting rate. A tank was filled with salt solution having various constant vertical density gradients. A block of ice one third of the length of the tank was floated on the surface at one end, and the rest of the surface and the walls of the tank were insulated. When no extra heat was supplied the melting rate (loss of weight of the ice in 1 h) systematically decreased as the stratification was changed from homogeneous fluid to increasingly large density gradients, while keeping the salinity of the solution in contact with the ice constant. An analogue of the intruding Atlantic water was produced by heating the lower portion of the vertical end wall at the end of the tank opposite to the ice end, keeping its temperature constant, and using the same range of salinity gradients as in the unheated experiments. Again the melting rate decreased as the density gradient was increased, but for low gradients it was larger than that in the unheated experiments. Above a certain intermediate gradient there was no significant difference in melting rate between the unheated and heated runs. The melting data were supplemented by photographs and vertical temperature and salinity profiles. The upward transfer of heat from the body of the fluid to melt the ice was clearly double-diffusive: overturning layers, separated by 'diffusive' interfaces, were visible on shadowgraphs, and the thickness of the layers decreased as the density gradient increased. The mean thickness of the layers through the depth of the tank also systematically decreased as the density gradient increased. With weak gradients an extra heat flux to the ice came from the intruding heated layer, but at large gradients this tongue of warm water at depth did not add to the flux near the surface. Though they were obtained in a simple, arbitrary and fixed geometry, we believe that the results of these experiments can be used as the basis for a better physical understanding of the melting rates of ice in the Arctic under various conditions.

  10. Photosynthetic tolerance to non-resource stress influences competition importance and intensity in an invaded estuary.

    PubMed

    Tang, Long; Wolf, Amelia A; Gao, Yang; Wang, Cheng Huan

    2018-06-01

    In an attempt to clarify the role of environmental and biotic interactions on plant growth, there has been a long-running ecological debate over whether the intensity and importance of competition stabilizes, increases or decreases across environmental gradients. We conducted an experiment in a Chinese estuary to investigate the effects of a non-resource stress gradient, soil salinity (from 1.4‰ to 19.0‰ salinity), on the competitive interactions between native Phragmites australis and invasive Spartina alterniflora. We linked these effects to measurements of photosynthetic activities to further elucidate the underlying physiological mechanism behind the competitive interactions and the driver of invasion. The experiments revealed that while biomass of both species decreased in the presence of the other, competition did not alter photosynthetic activity of either species over time. P. australis exhibited high photosynthetic activity, including low chlorophyllase activity, high chlorophyll content, high stomatal conductance and high net photosynthetic rate, at low salinity. Under these conditions, P. australis experienced low competitive intensity, leading to high biomass production and competitive exclusion of S. alterniflora. The opposite was observed for S. alterniflora: while competitive intensity experienced by P. australis increased with increasing salinity, and photosynthetic activity, biomass, competitive dominance and the importance of competition for P. australis growth decreased, those of S. alterniflora were stable. These findings demonstrate that S. alterniflora invasion driven by competitive exclusion are likely to occur and expand in high salinity zones. The change in the nature of competition along a non-resource stress gradient differs between competitors likely due to differences in photosynthetic tolerance to salinity. The driver of growth of the less-tolerant species changes from competition to non-resource stress factors with increasing stress levels, whereas competition is constantly important for growth of the more-tolerant species. Incorporating metrics of both competition intensity and importance, as well as linking these competitive outcomes with physiological mechanisms, is crucial to understanding, predicting, and mediating the effects of invasive species in the future. © 2018 by the Ecological Society of America.

  11. Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans).

    PubMed

    Dudaniec, Rachael Y; Yong, Chuan Ji; Lancaster, Lesley T; Svensson, Erik I; Hansson, Bengt

    2018-06-01

    Insect distributions are shifting rapidly in response to climate change and are undergoing rapid evolutionary change. We investigate the molecular signatures underlying local adaptation in the range-expanding damselfly, Ischnura elegans. Using a landscape genomic approach combined with generalized dissimilarity modelling (GDM), we detect selection signatures on loci via allelic frequency change along environmental gradients. We analyse 13,612 single nucleotide polymorphisms (SNPs), derived from restriction site-associated DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans distribution in Sweden, including its expanding northern range edge. Environmental association analysis (EAA) and the magnitude of allele frequency change along the range expansion gradient revealed significant signatures of selection in relation to high maximum summer temperature, high mean annual precipitation and low wind speeds at the range edge. SNP annotations with significant signatures of selection revealed gene functions associated with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion transport (V-ATPase) and visual processes (long-wavelength-sensitive opsin), which have implications for thermal stress response, salinity tolerance and mate discrimination, respectively. We also identified environmental thresholds where climate-mediated selection is likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment during its ongoing range expansion. Our findings empirically validate an integrative approach for detecting spatially explicit signatures of local adaptation along environmental gradients. © 2018 John Wiley & Sons Ltd.

  12. Methane fluxes and their controlling processes in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Rehder, G. J.; Fossing, H.; Lapham, L.; Endler, R.; Spiess, V.; Bruchert, V.; Nguyen, T.; Gülzow, W.; Schneider von Deimling, J.; Conley, D. J.; Jorgensen, B.

    2010-12-01

    The Baltic Sea is an ideal natural laboratory to study the methane cycle in the framework of diagenetic processes. With its brackish character and a gradient from nearly marine to almost limnic conditions, a strong permanent haline stratification leading to large vertical redox gradients in the water column, and a sedimentation history which resulted in the deposition of organic-rich young post-glacial sediments over older glacial and post-glacial strata with very low organic content, the Baltic allows to study the role of a variety of key parameters for early diagenetic processes including the methane cycle. Within the BONUS + Project “Baltic Gas”, a 3.5 week scientific expedition of RV Maria S. Merian in August 2010 was dedicated to study the methane cycle in the various basins of the Baltic Sea, with strong emphasis on the metabolic reactions of early diagenesis and the occurrence of shallow gas deposits. Various subbottom profiling systems were used to map the thickness and structure of organic-rich deposits and build the base for a detailed coring program for biogeochemical analysis, including methane, sulfur compounds, iron, and other compounds. Methane gradients in connection with the information of the areal extend of organic-rich deposits are used to estimate the diffusive flux from the sediments into the water column and the rate of methane oxidation, with changing importance of sulfate as oxidant along the salinity gradient. On selected key stations, rate measurements of methanogenic and methanotrophic reactions were executed. The methane distribution in the water column was comprehensively assessed, revealing amongst other findings a drastic increase in bottom water methane concentration between the post bloom summer situation and the situation in the winter of 2009, in connection to the occurrence of a benthic nepheloid layer. Air-sea flux measurements were executed along the ship’s track comprising all major basins of the Baltic. The talk gives an interdisciplinary overview of the first results of this research campaign.

  13. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    NASA Astrophysics Data System (ADS)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2/hr, respectively. The transitional sites exhibited ranges from 1.2 μmol CH4/m2/hr to 16.8 μmol CH4/m2/hr. For all sites, lowest fluxes were observed during the month of October, suggesting seasonal influence on CH4 emissions. These data will be complimented by sediment analyses at each site providing δC and % organic carbon using isotope-ratio mass spectrometry, as well as bulk density and rates of decomposition using a tea bag index.

  14. Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics

    NASA Astrophysics Data System (ADS)

    Vallaeys, Valentin; Kärnä, Tuomas; Delandmeter, Philippe; Lambrechts, Jonathan; Baptista, António M.; Deleersnijder, Eric; Hanert, Emmanuel

    2018-04-01

    The Columbia River (CR) estuary is characterized by high river discharge and strong tides that generate high velocity flows and sharp density gradients. Its dynamics strongly affects the coastal ocean circulation. Tidal straining in turn modulates the stratification in the estuary. Simulating the hydrodynamics of the CR estuary and plume therefore requires a multi-scale model as both shelf and estuarine circulations are coupled. Such a model has to keep numerical dissipation as low as possible in order to correctly represent the plume propagation and the salinity intrusion in the estuary. Here, we show that the 3D baroclinic discontinuous Galerkin finite element model SLIM 3D is able to reproduce the main features of the CR estuary-to-ocean continuum. We introduce new vertical discretization and mode splitting that allow us to model a region characterized by complex bathymetry and sharp density and velocity gradients. Our model takes into account the major forcings, i.e. tides, surface wind stress and river discharge, on a single multi-scale grid. The simulation period covers the end of spring-early summer of 2006, a period of high river flow and strong changes in the wind regime. SLIM 3D is validated with in-situ data on the shelf and at multiple locations in the estuary and compared with an operational implementation of SELFE. The model skill in the estuary and on the shelf indicate that SLIM 3D is able to reproduce the key processes driving the river plume dynamics, such as the occurrence of bidirectional plumes or reversals of the inner shelf coastal currents.

  15. Geohydrology and potential for upward movement of saline water in the Cocoa well field, East Orange County, Florida

    USGS Publications Warehouse

    Phelps, G.G.; Schiffer, D.M.

    1996-01-01

    The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement of saline water depends on the direction of the vertical hydraulic gradient and on the vertical hydraulic conductivity of the aquifer. A series of aquifer tests was run in 1993-94 and existing water-level and water-quality data were analyzed to evaluate the potential for upward movement of saline water in the well field. The transmissivity of the upper 500 feet of the aquifer is about 100,000 feet squared per day (the horizontal hydraulic conductivity is about 200 feet per day) and the storage coefficient is about 2x10 -4. Horizontal hydraulic conductivities determined from slug tests of the three deepest zones of well C ranged from 20-50 feet per day. Vertical hydraulic conductivities probably do not exceed 0.05 feet per day. The vertical hydraulic gradient is determined by comparing water levels in the various zones, but because of density differences, unadjusted water levels in the deepest zone investigated cannot be directly compared to water levels in the overlying freshwater zones. The difference between environmental-water heads (adjusted for density differences) in the saline-water zone of well C and the overlying freshwater zone were calculated from measured water levels for the period 1966 to 1994. During most of this time period, the gradient was downward, indicating that saline water did not move upward. Upconing of saline water probably is not taking place in the center and western part of the well field, based on the low vertical hydraulic conductivity values estimated for the middle semi-confining unit, the generally downward vertical hydraulic gradient, and the constant chloride concentrations in the intermediate zones of well C. However, there is no information about the extent of the zone of low vertical hydraulic conductivity gradient in the eastern part of the well field. Thus, increased chloride concentrations in supply wells in the eastern part of the well field could be caused either by lateral movement of saline water from the east, or by upwar

  16. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

    PubMed

    Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao

    2017-12-01

    Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spatial patterns of fish communities along two estuarine gradients in southern Florida

    USGS Publications Warehouse

    Green, D.P.J.; Trexler, J.C.; Lorenz, J.J.; McIvor, C.C.; Philippi, T.

    2006-01-01

    In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.

  18. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    USGS Publications Warehouse

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  19. Estuarine Salinity Mapping From Airborne Radiometry

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  20. Bio-physical changes in the coastal ocean triggered by typhoon: A case of Typhoon Meari in summer 2011

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Wang, Houjie; Bi, Naishuang; Song, Zhenjie; Zang, Zhengchen; Kineke, Gail C.

    2016-12-01

    Based on the combination of synchronous satellite and in-situ observations, we here, for the first time, provide the compelling evidence of bio-physical response of coastal environment in the Bohai Sea (China) to the passage of Typhoon Meari over the northern Yellow Sea on June 26, 2011. Strong sustained winds induced a tongue-like intrusion of cool water from the northern Yellow Sea into the Bohai Sea, resulting in significant surface cooling and an anomalous increase in sea surface height along the coast of the western Bohai Sea. This, in return, produced downwelling and transport of the warm and nutrient-rich coastal water from the western coast to the central Bohai Sea, as driven by the barotropic pressure gradient force. In-situ observational data confirmed the cooling of both surface and bottom layers with salinity increase; however, the measured temperature increase by 2-3 °C, concomitant salinity decrease by 0.3 PSU and two-fold increase in chlorophyll-a in the middle layers suggested an influence from coastal downwelling. Ekman transport and typhoon-enhanced mixing redistributed the nutrients and thus resulted in higher chlorophyll-a concentrations in the upper layers.

  1. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA

    USGS Publications Warehouse

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.

    2009-01-01

    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  2. Combined Effect of Ocean Acidification and Seawater Freshening: Response of Pteropod Swimming Behavior

    NASA Astrophysics Data System (ADS)

    Manno, C.; Morata, N.; Primicerio, R.

    2012-12-01

    Increasing anthropogenic carbon dioxide emissions induce ocean acidification. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living Limacina retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient. Survival, shell degradation and swimming behavior were investigated. Mortality was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim where they decreasing the locomotory speed upwards and increasing the wing beats. Results suggest that, the extra energy cost due to maintaining of body fluids and to avoid sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract the dissolution (in high pCO2 scenario), exceeds the available energy budget of this organism and then pteropods change in swimming behavior and begin to collapse. Since Limacina retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

  3. Dissolved Strontium and Barium in Fresh and Saltwater: a 2-year Study in the Calcasieu River to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2016-02-01

    Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88-km long estuary, the Calcasieu River, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to July 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth. Water samples were analyzed for dissolved Sr, Ba, and Ca concentrations. In-situ measurements of salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance were taken. Our preliminary data showed that the Sr and Ca concentrations and the Sr/Ca ratio all increased significantly with decreasing distance to the Gulf of Mexico, while the Ba/Ca ratio decreased with decreasing distance to the Gulf. The spatial variation in Ba concentration was marginal. The Sr and Ca concentrations and ratios were positively related to salinity, while Ba/Ca was negatively related to salinity. All the elemental concentrations and ratios had considerable seasonal and interannual variations. There were significant differences among sampling months for all the elemental concentrations and ratios (p<0.05), and there were significant differences among sampling years for the Sr and Ca concentrations and the Ba/Ca ratio (p<0.05).

  4. Tidally averaged circulation in Puget Sound sub-basins: Comparison of historical data, analytical model, and numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun

    2011-07-20

    Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters,more » but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.« less

  5. Environmental drivers defining linkages among life-history traits: mechanistic insights from a semiterrestrial amphipod subjected to macroscale gradients.

    PubMed

    Gómez, Julio; Barboza, Francisco R; Defeo, Omar

    2013-10-01

    Determining the existence of interconnected responses among life-history traits and identifying underlying environmental drivers are recognized as key goals for understanding the basis of phenotypic variability. We studied potentially interconnected responses among senescence, fecundity, embryos size, weight of brooding females, size at maturity and sex ratio in a semiterrestrial amphipod affected by macroscale gradients in beach morphodynamics and salinity. To this end, multiple modelling processes based on generalized additive mixed models were used to deal with the spatio-temporal structure of the data obtained at 10 beaches during 22 months. Salinity was the only nexus among life-history traits, suggesting that this physiological stressor influences the energy balance of organisms. Different salinity scenarios determined shifts in the weight of brooding females and size at maturity, having consequences in the number and size of embryos which in turn affected sex determination and sex ratio at the population level. Our work highlights the importance of analysing field data to find the variables and potential mechanisms that define concerted responses among traits, therefore defining life-history strategies.

  6. Sediment microbial taxonomic and functional diversity in a natural salinity gradient challenge Remane’s “species minimum” concept

    PubMed Central

    Kristoffersen, Jon B.; Oulas, Anastasis; De Troch, Marleen; Arvanitidis, Christos

    2017-01-01

    Several models have been developed for the description of diversity in estuaries and other brackish habitats, with the most recognized being Remane’s Artenminimum (“species minimum”) concept. It was developed for the Baltic Sea, one of the world’s largest semi-enclosed brackish water body with a unique permanent salinity gradient, and it argues that taxonomic diversity of macrobenthic organisms is lowest within the horohalinicum (5 to 8 psu). The aim of the present study was to investigate the relationship between salinity and sediment microbial diversity at a freshwater-marine transect in Amvrakikos Gulf (Ionian Sea, Western Greece) and assess whether species composition and community function follow a generalized concept such as Remane’s. DNA was extracted from sediment samples from six stations along the aforementioned transect and sequenced for the 16S rRNA gene using high-throughput sequencing. The metabolic functions of the OTUs were predicted and the most abundant metabolic pathways were extracted. Key abiotic variables, i.e., salinity, temperature, chlorophyll-a and oxygen concentration etc., were measured and their relation with diversity and functional patterns was explored. Microbial communities were found to differ in the three habitats examined (river, lagoon and sea) with certain taxonomic groups being more abundant in the freshwater and less in the marine environment, and vice versa. Salinity was the environmental factor with the highest correlation to the microbial community pattern, while oxygen concentration was highly correlated to the metabolic functional pattern. The total number of OTUs showed a negative relationship with increasing salinity, thus the sediment microbial OTUs in this study area do not follow Remane’s concept. PMID:29043106

  7. Features of Red Sea Water Masses

    NASA Astrophysics Data System (ADS)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  8. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures

    PubMed Central

    Dittami, Simon M; Duboscq-Bidot, Laëtitia; Perennou, Morgan; Gobet, Angélique; Corre, Erwan; Boyen, Catherine; Tonon, Thierry

    2016-01-01

    Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host–microbe interactions, both in controlled laboratory and natural conditions. PMID:26114888

  9. Drivers of barotropic and baroclinic exchange through an estuarine navigation channel in the Mississippi River Delta Plain

    USGS Publications Warehouse

    Snedden, Gregg

    2016-01-01

    Estuarine navigation channels have long been recognized as conduits for saltwater intrusion into coastal wetlands. Salt flux decomposition and time series measurements of velocity and salinity were used to examine salt flux components and drivers of baroclinic and barotropic exchange in the Houma Navigation Channel, an estuarine channel located in the Mississippi River delta plain that receives substantial freshwater inputs from the Mississippi-Atchafalaya River system at its inland extent. Two modes of vertical current structure were identified from the time series data. The first mode, accounting for 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the horizontal salinity gradient along the channel’s length. Tidal oscillatory salt flux was more important than gravitational circulation in transporting salt upestuary, except over equatorial phases of the fortnightly tidal cycle during times when river inflows were minimal. During all tidal cycles sampled, the advective flux, driven by a combination of freshwater discharge and wind-driven changes in storage, was the dominant transport term, and net flux of salt was always out of the estuary. These findings indicate that although human-made channels can effectively facilitate inland intrusion of saline water, this intrusion can be minimized or even reversed when they are subject to significant freshwater inputs.

  10. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    NASA Astrophysics Data System (ADS)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  11. Variability of the western Galician upwelling system (NW Spain) during an intensively sampled annual cycle. An EOF analysis approach

    NASA Astrophysics Data System (ADS)

    Herrera, J. L.; Rosón, G.; Varela, R. A.; Piedracoba, S.

    2008-07-01

    The key features of the western Galician shelf hydrography and dynamics are analyzed on a solid statistical and experimental basis. The results allowed us to gather together information dispersed in previous oceanographic works of the region. Empirical orthogonal functions analysis and a canonical correlation analysis were applied to a high-resolution dataset collected from 47 surveys done on a weekly frequency from May 2001 to May 2002. The main results of these analyses are summarized bellow. Salinity, temperature and the meridional component of the residual current are correlated with the relevant local forcings (the meridional coastal wind component and the continental run-off) and with a remote forcing (the meridional temperature gradient at latitude 37°N). About 80% of the salinity and temperature total variability over the shelf, and 37% of the residual meridional current total variability are explained by two EOFs for each variable. Up to 22% of the temperature total variability and 14% of the residual meridional current total variability is devoted to the set up of cross-shore gradients of the thermohaline properties caused by the wind-induced Ekman transport. Up to 11% and 10%, respectively, is related to the variability of the meridional temperature gradient at the Western Iberian Winter Front. About 30% of the temperature total variability can be explained by the development and erosion of the seasonal thermocline and by the seasonal variability of the thermohaline properties of the central waters. This thermocline presented unexpected low salinity values due to the trapping during spring and summer of the high continental inputs from the River Miño recorded in 2001. The low salinity plumes can be traced on the Galician shelf during almost all the annual cycle; they tend to be extended throughout the entire water column under downwelling conditions and concentrate in the surface layer when upwelling favourable winds blow. Our evidences point to the meridional temperature gradient acting as an important controlling factor of the central waters thermohaline properties and in the development and decay of the Iberian Poleward Current.

  12. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p < 0.05), whereas TS showed a positive correlation with EC and cations content (p > 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  13. Tidal pumping as a driver of groundwater discharge to a back barrier salt marsh ecosystem

    NASA Astrophysics Data System (ADS)

    Carter, M. L.; Viso, R. F.; Peterson, R. N.; Hill, J. C.

    2013-12-01

    Submarine groundwater discharge (SGD) typically consists of both terrestrial groundwater and recirculated seawater and has been shown to be a significant pathway of dissolved substances to the coastal zone. The fresh and saline water mixture in the subsurface creates a salinity gradient that can impact biogeochemical processes. Located along the South Atlantic Bight, Georgia's coastline is an approximately 100-mile stretch of complex primary and secondary barrier islands resulting from geologic interactions driven by long-term sea level rise and retreat, accretion, seasonal tidal events, storm overwash, and wave driven erosion. Our study site is located in the Duplin River near Sapelo Island, GA and is part of the Georgia Coastal Ecosystems Long Term Ecosystem Research (GCE-LTER) program. This area is considered mesotidal (2-4m) and tidal pumping may be a dominating process in controlling SGD rates. The Duplin River is connected to the Atlantic Ocean through Doboy Sound to the south. To the north, the river terminates in extensive salt marsh and therefore has no overland freshwater input. Previous studies show a salinity gradient within the Duplin River indicating that SGD must be present as a source of brackish water. To place constraints on SGD processes, we employ a combination of geochemical and geophysical techniques to determine the magnitude of SGD in the Duplin River. Together these techniques permit a more complete understanding of the groundwater system. Three time series stations at the upper, mid and lower reaches of the Duplin River were deployed in June of 2013 to measure groundwater influences during daily and fortnightly tidal cycles. At each station, continuous radon-222 measurements were conducted at 30 minute intervals along with measurements of water level, temperature and conductivity using standard hydrological data loggers. During this period, eight time series resistivity profiles using a 56 electrode (110m long) cable were recorded to provide detailed imagery of fluid interactions at the ground/surface water interface during a tidal cycle. The resistivity profiles are presented as color contoured tomograms representing the shallow aquifer system to depths exceeding 20 meters. Measurements took place during a series of large precipitation events, including immediately before and after a tropical storm, as well as during relatively dry conditions. Taking into account the metrological variability, our initial results indicate that the SGD process is most strongly influenced by tidal pumping. Radon analysis and resistivity measurements reveal strong inverse relationships with water level. Percent difference resistivity models indicate substantial tidally controlled pore fluid flushing and mixing within the shallow aquifer system. These measurements will be further used to construct a water budget within the Duplin River and to delineate the extent of variability in salinity of shallow marsh sediments. In addition, these measurements will provide accurate rates and flow geometries useful as constraints on ongoing reactive transport modeling efforts.

  14. Heating of metallic implants and instruments induced by gradient switching in a 1.5-Tesla whole-body unit.

    PubMed

    Graf, Hansjörg; Steidle, Günter; Schick, Fritz

    2007-11-01

    To examine gradient switching-induced heating of metallic parts. Copper and titanium frames and sheets ( approximately 50 x 50 mm(2), 1.5 mm thick, frame width = 3 mm) surrounded by air were positioned in the scanner perpendicular to the static field horizontally 20 cm off-center. During the execution of a sequence (three-dimensional [3D] true fast imaging with steady precession [True-FISP], TR = 6.4 msec) exploiting the gradient capabilities (maximum gradient = 40 mT/m, maximum slew rate = 200 T/m/second), heating was measured with an infrared camera. Radio frequency (RF) amplitude was set to zero volts. Heating of a copper frame with a narrowing to 1 mm over 20 mm at one side was examined in air and in addition surrounded by several liters of gelled saline using fiber-optic thermography. Further heating studies were performed using an artificial hip made of titanium, and an aluminum replica of the hip prosthesis with the same geometry. For the copper specimens, considerable heating (>10 degrees C) in air and in gelled saline (>1.2 degrees C) could be observed. Heating of the titanium specimens was markedly less ( approximately 1 degrees C in air). For the titanium artificial hip no heating could be detected, while the rise in temperature for the aluminum replica was approximately 2.2 degrees C. Heating of more than 10 degrees C solely due to gradient switching without any RF irradiation was demonstrated in isolated copper wire frames. Under specific conditions (high gradient duty cycle, metallic loop of sufficient inductance and low resistance, power matching) gradient switching-induced heating of conductive specimens must be considered.

  15. Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary

    USGS Publications Warehouse

    Lacy, Jessica R.; Gladding, Steve; Brand, Andreas; Collignon, Audric; Stacey, Mark

    2014-01-01

    We investigate the dynamics governing exchange of sediment between estuarine shallows and the channel based on field measurements at eight stations spanning the interface between the channel and the extensive eastern shoals of South San Francisco Bay. The study site is characterized by longitudinally homogeneous bathymetry and a straight channel, with friction more important than the Coriolis forcing. Data were collected for 3 weeks in the winter and 4 weeks in the late summer of 2009, to capture a range of hydrologic and meteorologic conditions. The greatest sediment transport from shallows to channel occurred during a pair of strong, late-summer wind events, with westerly winds exceeding 10 m/s for more than 24 h. A combination of wind-driven barotropic return flow and lateral baroclinic circulation caused the transport. The lateral density gradient was produced by differences in temperature and suspended sediment concentration (SSC). During the wind events, SSC-induced vertical density stratification limited turbulent mixing at slack tides in the shallows, increasing the potential for two-layer exchange. The temperature- and SSC-induced lateral density gradient was comparable in strength to salinity-induced gradients in South Bay produced by seasonal freshwater inflows, but shorter in duration. In the absence of a lateral density gradient, suspended sediment flux at the channel slope was directed towards the shallows, both in winter and during summer sea breeze conditions, indicating the importance of baroclinically driven exchange to supply of sediment from the shallows to the channel in South San Francisco Bay and systems with similar bathymetry.

  16. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    PubMed

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  17. Net ecosystem calcification and net primary production in two Hawaii back-reef systems

    NASA Astrophysics Data System (ADS)

    Kiili, S.; Colbert, S.; Hart, K.

    2016-02-01

    Back-reef systems have complex carbon cycling, driven by dominant benthic communities that change with environmental conditions and display characteristic patterns of net primary production (NP) and net ecosystem calcification (G). The G/NP ratio provides a fundamental community-level assessment to compare systems spatially and to evaluate temporal changes in carbon cycling. Carbon dynamics were examined at leeward Hōnaunau and windward Waíōpae, Hawaíi Island. Both locations discharge brackish groundwater, including geothermal water at Waíōpae. The change in total CO2 (TCO2) and total alkalinity (TA) between morning and afternoon was measured to calculate the G/NP ratio along a salinity gradient. At both sites, aragonite saturation (ΩAr) was lower than open ocean conditions, and increased with salinity. Between the morning and afternoon, ΩAr increased by at least 1 as photosynthesis consumed CO2. At Waíōpae, water was corrosive to aragonite due to the input of acidic groundwater, but not at Honaunau, demonstrating the importance of local watershed characteristics on ΩAr. Across the salinity gradient, TA and TCO2 decreased between morning and afternoon. At Hōnaunau, G/NP increased from 0.11 to 0.31 with salinity, consistent with an offshore increase in coral cover. But at Waíōpae, G/NP decreased from 0.49 to 0.0 with salinity, despite an increase in coral cover with salinity. Low G may be caused by benthic processes, including coral bleaching or high rates of carbonate dissolution in interstitial waters between tide pools. Broader environmental conditions than just salinity, including pH of fresh groundwater inputs, shape the carbon cycling in the back-reef system. Examining the G/NP ratio of a back-reef system allows for a simple method to establish community level activity, and possibly indicate changes in a dynamic system.

  18. Effects of low and high salinity regimes on seasonal gametogenesis of the ribbed mussel Geukensia granosissima in coastal Louisiana, USA

    USGS Publications Warehouse

    Honig, Aaron; LaPeyre, Megan K.; Supan, John

    2014-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and host vegetation productivity. As such, ecosystem level changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences, making it important to better understand the population ecology of native bivalves. In order to determine potential impacts of shifting salinity and temperature regimes along the northern Gulf of Mexico, the seasonal timing of gametogenesis in the Gulf estuarine ribbed mussel, Geukensia granossisima, was examined across a salinity gradient in southeastern Louisiana, from July 2011 through October 2012. Ten mussels were randomly sampled monthly from low (~ 5) and high (~25) salinity marsh sites in southeastern Louisiana, and histologically processed to determine the seasonal progression of gametogenesis. Peak ripeness occurred at both sites between April and September, was positively correlated with temperature, and coincided with seasonal shifts in salinity. Mussels located in lower salinity waters demonstrated a shorter period of gametogenesis, and lower rates of ripeness indicating that changes in salinity regimes may impact long-term population dynamics.

  19. Development of cost-effective surfactant flooding technology. Quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1994-09-01

    The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less

  20. Salinity and Temperature Tolerance of the Nemertean Worm Carcinonemertes errans, an Egg Predator of the Dungeness Crab.

    PubMed

    Dunn, Paul H; Young, Craig M

    2015-04-01

    Estuaries can be harsh habitats for the marine animals that enter them, but they may also provide these species with sub-saline refuges from their parasites. The nemertean egg predator Carcinonemertes errans is known to occur less frequently and in smaller numbers on its host, the Dungeness crab Metacarcinus magister, when the hosts are found within estuaries. We examined the temperature and salinity tolerances of C. errans to determine if this observed distribution represents a true salinity refuge. We monitored the survival of juvenile and larval worms exposed to ecologically relevant salinities (5-30) and temperatures (8-20 °C) over the course of several days under laboratory conditions. Juvenile worms were unaffected by the experimental temperature levels and exhibited robustness to salinity treatments 25 and 30. However, significant mortality was seen at salinity treatments 20 and below. Larvae were less tolerant than juveniles to lowered salinity and were also somewhat more susceptible to the higher temperatures tested. Given that the Dungeness crab can tolerate forays into mesohaline (salinity 5-18) waters for several days at a time, our findings suggest that salinity gradients play an important role in creating a parasite refuge for this species within the estuaries of the Pacific Northwest. © 2015 Marine Biological Laboratory.

  1. Experimental measurements of thermoelectric and electrochemical potentials in sandstones saturated with NaCl electrolyte

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M.

    2013-12-01

    Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is evident. Moreover, the contribution of the exclusion potential increases as the permeability of the rock samples decreases. Our results demonstrate that the relative contribution of exclusion and diffusion potentials, expressed in terms of the macroscopic Hittorf transport number, is the same regardless of whether ion transport is in response to temperature or concentration gradients. Hence, it is possible to predict the contribution of TE potentials from EC potential measurements, and vice-versa. Moreover, it is often not valid to ignore the contribution of exclusion potentials, as has been assumed in previous studies; the relative contribution of exclusion and diffusion potentials depends upon the surface charge, the mobility contrast between the co- and counter ions, and the thickness of the electrical double layer relative to the pore-radius, and is predicted reasonably well by the simple model of Westermann-Clark and Christoforou [1986]. Finally, EC and TE potentials may be large in magnitude and make a significant contribution to the measured SP in many natural settings. Westermann-Clark, G.B. and C.C. Christoforou, (1986), The exclusion-diffusion potential in charged porous membranes, J. Electroanal. Chem. 198, 213-231.

  2. Estimating cross-slope exchange from drifter tracks and from glider sections

    NASA Astrophysics Data System (ADS)

    Huthnance, John M.

    2017-04-01

    In areas of complex topography, it can be difficult to define "along-slope" or "cross-slope" direction, yet transport estimates are sensitive to these definitions, especially as along-slope flow is favoured by geostrophy. However, if drifter positions and hence underlying water depths are recorded regularly, we know where and when depth contours are crossed by the drifters, and hence by the water assuming that the drifters follow the water. An approach is discussed for deriving statistics of contour-crossing speed, via depth changes experienced by the drifters and an effective slope. The transport equation for (e.g.) salinity S can be reduced to an explicit equation for effective diffusivity K if we assume steady along-slope flow with known total transport Q, a salinity maximum at its "core" and effective diffusion to less saline waters to either side. Salinity gradients along the flow and to either side are needed to calculate K. Gliders provide a means of measuring salinity gradients in this context. Measurements at the continental shelf edge south-west of England and west of Scotland illustrate the calculation. Both approaches give overall rather than process-related estimates. There is limited scope for process discrimination according to (i) how often drifter locations are recorded and (ii) the time-intervals into which estimates are "binned". (i) Frequent recording may record more crossings owing to processes of short time scale, albeit these are less significant for slowly-evolving water contents. (ii) Sufficient samples for statistically significant estimates of exchange entail "bins" spanning some weeks or months for typically-limited numbers of drifters or gliders.

  3. Grounds Conservation Management Plan (1982-1991), Fish and Wildlife Management Plan (1982-1991), Forest Resource Management Plan (1979-1988).

    DTIC Science & Technology

    1985-06-01

    necessary for complete control. The third weed group includes purslane , spotted spurge and knotweed. These weeds may be controlled with dicamba. [j 4...of marsh communities varies with salinity gradients fron brackish to fresh waters. Hideaway Pond has a completely fresh water marsh (no tidal...or pocket marshes convolute the shoreline of Tetotum Flats along Upper Machodoc Creek. Species composition varies with salinity and those pockets

  4. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  5. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    NASA Astrophysics Data System (ADS)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  6. Carbonic anhydrase, a respiratory enzyme in the gills of the shore crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Böttcher, K.; Siebers, D.; Sender, S.

    1995-03-01

    This paper summarizes investigations on the enzyme carbonic anhydrase (CA) in the gills of the osmoregulating shore crab Carcinus maenas. Carbonic anhydrase, an enzyme catalyzing the reversible hydration of CO2 to HCO3 - and H+, is localized with highest activities in the posterior salt-transporting gills of the shore crab- and here CA activity is strongly dependent on salinity. Contrary to the earlier hypothesis established for the blue crab Callinectes sapidus that cytoplasmic branchial CA provides the counter ions HCO3 - and H+ for apical exchange against Na+ and Cl-, the involvement of CA in NaCl uptake mechanisms can be excluded in Carcinus. Differential and density gradient centrifugations indicate that branchial CA is a predominantly membrane-associated protein. Branchial CA was greatly inhibited by the sulfonamide acetazolamide (AZ) Ki=2.4·10-8 mol/l). Using the preparation of the isolated perfused gill, application of 10-4 mol/l AZ resulted in an 80% decrease of CO2/HCO3 - excretion. Thus we conclude that CA is localized in plasma membranes, maintaining the CO2 gradient by accelerating adjustment of the pH-dependent CO2/HCO3 - equilibrium.

  7. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints.

    PubMed

    Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David

    2012-03-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.

  8. Marine and Brackish Ecosystems of South Brittany (Lorient and Vilaine Bays) with Particular Reference to the Effect of the Turbidity Maxima

    NASA Astrophysics Data System (ADS)

    Le Bris, H.; Glémarec, M.

    1996-06-01

    The south Brittany coast of France offers considerable opportunities to study the transition between estuaries and the sea. The sea coast is semi-enclosed, due to the local geomorphology, with sheltered conditions. The infaunal macrobenthic communities have been identified and characterized by species richness (S), abundance (A) and biomass (B), related to environmental factors. The spatial succession of infauna along the estuarine gradient shows the presence of an area with a much reduced fauna, and an oligobiotic area with low values of S, A and B. In these strongly stratified estuaries, concentration of organic matter and sediment can result in oxygen depletion, which is not favourable for survival of the infauna. The oligobiotic area seems to be related to the presence of the turbidity maximum, the location and importance of which are functions of river discharge and hydrodynamic mixing. The turbidity maximum which causes these conditions is shown to be at a higher salinity than has previously been described for this phenomenon, and is shown to break the spatial gradient of marine to brackish communities which has been described in larger estuaries.

  9. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand

    NASA Astrophysics Data System (ADS)

    Wattayakorn, Gullaya; Wolanski, Eric; Kjerfve, Björn

    1990-11-01

    The Klong Ngao estuary in Thailand is a 7·5-km long tidal creek facing the Andaman Sea and drains 11·5 km 2 of mangrove swamps. Physical processes in the estuary differ greatly from the wet season to the dry season. In the dry season, vertical homogeneity prevails and the swamp behaves like an evaporation pond. Salt and water are trapped upstream, longitudinal gradients result and, through tidal dispersion, nutrient outwelling may result for SiO 2, possibly NO 2 and NO 3, but not PO 4. The outflow is trapped in a coastal boundary layer. In the wet season, short-lived local floods generate a strong stratification in salinity and episodical flushing of the estuary and may make measurements of nutrient budgets inconclusive. The Klong Ngao mangrove swamp traps land-derived sediments in the wet season.

  10. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less

  11. Implementation of a Balance Operator in NCOM

    DTIC Science & Technology

    2016-04-07

    the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal

  12. Benthic cyanobacterial mats in the high arctic: multi-layer structure and fluorescence responses to osmotic stress.

    PubMed

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the absence of major biological perturbations, these vertically structured communities will continue to be a prominent feature of polar aquatic ecosystems.

  13. Lithologic and physicochemical properties and hydraulics of flow in and near the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, based on water-level and borehole geophysical log data, 1999-2007

    USGS Publications Warehouse

    Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.

    2010-01-01

    The freshwater zone of the San Antonio segment of the Edwards aquifer in south-central Texas (hereinafter, the Edwards aquifer) is bounded to the south and southeast by a zone of transition from freshwater to saline water (hereinafter, the transition zone). The boundary between the two zones is the freshwater/saline-water interface (hereinafter, the interface), defined as the 1,000-milligrams per liter dissolved solids concentration threshold. This report presents the findings of a study, done by the U.S. Geological Survey in cooperation with the San Antonio Water System, to obtain lithologic properties (rock properties associated with known stratigraphic units) and physicochemical properties (fluid conductivity and temperature) and to analyze the hydraulics of flow in and near the transition zone of the Edwards aquifer on the basis of water-level and borehole geophysical log data collected from 15 monitoring wells in four transects during 1999-2007. No identifiable relation between conductivity values from geophysical logs in monitoring wells in all transects and equivalent freshwater heads in the wells at the times the logs were run is evident; and no identifiable relation between conductivity values and vertical flow in the boreholes concurrent with the times the logs were run is evident. The direction of the lateral equivalent freshwater head gradient and thus the potential lateral flow at the interface in the vicinity of the East Uvalde transect fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. Whether the prevailing direction on average is into or out of the freshwater zone is not clearly indicated. Equivalent freshwater head data do not indicate a prevailing direction of the lateral gradient at the interface in the vicinity of the Tri-County transect. The prevailing direction on average of the lateral gradient and thus potential lateral flow at the interface in the vicinity of the Kyle transect likely is from the transition zone into the freshwater zone. The hypothesis regarding the vertical gradient at the East Uvalde transect, and thus the potential for vertical flow near an interface conceptualized as a surface sloping upward in the direction of the dip of the stratigraphic units, is that the potential for vertical flow fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. At the Tri-County transect, a downward gradient on the fresh-water side of the interface and an upward gradient on the saline-water side are evidence of opposing potentials that appear to have stabilized the position of the interface over the range of hydrologic conditions that occurred at the times the logs were run. At the Fish Hatchery transect, an upward gradient on the saline-water side of the interface, coupled with the assumption of a sloping interface, implies a vertical gradient from the transition zone into the freshwater zone. This potential for vertical movement of the interface apparently was opposed by the potential (head) on the freshwater side of the interface that kept the interface relatively stable over the range of hydrologic conditions during which the logs were run. The five flow logs for Kyle transect freshwater well KY1 all indicate upward flow that originates from the Glen Rose Limestone, the uppermost unit of the Trinity aquifer; and one log for well KY2 shows upward flow entering the borehole from the Trinity aquifer. These flow data constitute evidence of the potential for flow from the Trinity aquifer into the Edwards aquifer in the vicinity of the Kyle transect. Subsurface temperature data indicate that flow on average is more active, or vigorous, on the freshwater side of the interface than on the saline-water side. A hydraulic connection between the transition zone and the freshwater zone is indicated by similar patterns in the hydrographs of the 15 transect monitoring wells in and near the transition zone and three county index wel

  14. Modelling the salinization of a coastal lagoon-aquifer system

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  15. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats.

    PubMed

    Severin, Ina; Confurius-Guns, Veronique; Stal, Lucas J

    2012-06-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.

  16. Temperature Versus Salinity Gradients Below the Ocean Mixed Layer

    DTIC Science & Technology

    2012-05-03

    where salinity controls the depth of the mixed layer are understood to have “barrier” layers [Lukas and Lindstrom , 1991], where the depth of vertically...the horizontal. For example, Rudnick and Martin [2002] have shown that the ocean mixed layer at sub-mesoscales is horizontally well density compensated...Res., 102, 23,063–23,078, doi:10.1029/97JC01443. Barron, C. N., A. B. Kara, P. J. Martin , R. C. Rhodes, and L. F. Smedstad (2006), Formulation

  17. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    NASA Astrophysics Data System (ADS)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  18. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed resistivity probes, compressional wave velocities, and X-ray computed tomography scanning. Modeling of hydrate formation and dissociation for these conditions indicates that the transport of bulk fluid phases (gas and water) plays a crucial role in the overall behavior, and we will explore open-system boundary conditions in the experiments to test this prediction.

  19. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity.

    PubMed

    Courtney, Abigail J; Xu, Jichen; Xu, Yan

    2016-02-01

    Salinity is a major environmental factor limiting the productivity and quality of crop plants. While most cereal crops are salt-sensitive, several halophytic grasses are able to maintain their growth under saline conditions. Elucidating the mechanisms for salinity responses in halophytic grasses would contribute to the breeding of salt-tolerant cereal and turf species belonging to the Poaceae family. Smooth cordgrass (Spartina alterniflora) is a dominant native halophytic grass in the Hackensack Meadowlands, the coastal salt marshes located in northeastern New Jersey. The goals of this study were to examine the growth pattern of S. alterniflora in a salinity gradient and identify an optimal range of salinity for its maximal growth. The regulation of its antioxidant system and gene expression under supraoptimal salinity conditions was also investigated. Our results showed that a salinity of 4 parts per thousand (ppt) (68 mM) was most favorable for the growth of S. alterniflora, followed by a non-salt environment. S. alterniflora responded to salts in the environment by regulating antioxidant enzyme activities and the expression of stress-induced proteins such as ALDH, HVA22 and PEPC. The plant may tolerate salinity up to the concentration of sea water, but any salinity above 12 ppt retarded its growth and altered the expression of genes encoding critical proteins. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Density and distribution of water boatmen and brine shrimp at a major shorebird wintering area in Puerto Rico

    USGS Publications Warehouse

    Tripp, K.J.; Collazo, J.A.

    2003-01-01

    The Cabo Rojo salt flats are an important wintering area for migratory shorebirds. Their quality is intimately related to prey availability, as prey are needed to meet energetic requirements. Understanding prey dynamics is, therefore, a key element of shorebird conservation plans. To this end, we monitored the density and distribution of water-boatmen (Trichocorixa spp.) and brine shrimp (Artemia spp.) in relation to water salinity from September to November of 1994 and 1995. Salinity ranged from 4 to 292 ppt, and gradients were related to hydrological alterations (e.g., salt extraction) and connection to the ocean. Brine shrimp were restricted to areas of highest salinity (??? 106 ppt), whereas water-boatmen to areas of lowest salinity ( 100 ppt. Lowering water salinity did not result in osmolal related mortality. Results underscored the sensitivity of water boatmen to high salinity, particularly when the difference in salinity between the 'source' and 'destination' localities widened. Water boatmen density increased in one lagoon as salinity decreased from 65 to 47 ppt. On the basis of our experiments, local adult survivorship improved and immigration and subsequent survival of adults, if any, was not hindered. The density of nymphs also suggested that hatching occurred concurrently. The foraging value of the salt flats can be enhanced by maintaining salinity at < 65 ppt in selected management units and minimizing differences in salinity concentrations among them.

  1. Modeling lateral circulation and its influence on the along-channel flow in a branched estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; He, Qing; Shen, Jian

    2018-02-01

    A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.

  2. Salinity affects behavioral thermoregulation in a marine decapod crustacean

    NASA Astrophysics Data System (ADS)

    Reiser, Stefan; Mues, Annika; Herrmann, Jens-Peter; Eckhardt, André; Hufnagl, Marc; Temming, Axel

    2017-10-01

    Thermoregulation in aquatic ectotherms is a complex behavioral pattern that is affected by various biotic and abiotic factors with one being salinity. Especially in coastal and estuarine habitats, altering levels of salinity involve osmoregulatory adjustments that affect total energy budgets and may influence behavioral responses towards temperature. To examine the effect of salinity on behavioral thermoregulation in a marine evertebrate ectotherm, we acclimated juvenile and sub-adult common brown shrimp (Crangon crangon, L.) to salinities of 10, 20 and 30 PSU and investigated their thermal preference in an annular chamber system using the gravitational method for temperature preference determination. Thermal preference of individual brown shrimp was considerably variable and brown shrimp selected a wide range of temperatures in each level of salinity as well as within individual experimental trials. However, salinity significantly affected thermal preference with the shrimp selecting higher temperatures at 10 and 20 PSU when compared to 30 PSU of salinity. Body size had no effect on thermal selection and did not interact with salinity. Temperature preference differed by sex and male shrimp selected significantly higher temperatures at 10 PSU when compared to females. The results show that salinity strongly affects thermal selection in brown shrimp and confirms the strong interrelation of temperature and salinity on seasonal migratory movements that has been previously derived from observations in the field. In the field, however, it remains unclear whether salinity drives thermal selection or whether changes in temperature modify salinity preference.

  3. Implementation of a Balance Operator in NCOM

    DTIC Science & Technology

    2016-04-07

    the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions and...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal

  4. Contrasting Inherent Optical Properties and Carbon Metabolism Between Five Northeastern (USA) Estuary-plume Systems

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.

    2004-01-01

    We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.

  5. Effects of imidacloprid on soil microbial communities in different saline soils.

    PubMed

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  6. Sea surface salinity fronts in the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ruiz-Etcheverry, L.; Maximenko, N. A.; Melnichenko, O.

    2016-12-01

    Marine fronts are narrow boundaries that separate water masses of different properties. These fronts are caused by various forcing and believed to be an important component of the coupled ocean-atmosphere system, particularly in the tropical oceans. In this study, we use sea surface salinity (SSS) observations from Aquarius satellite to investigate the spatial structure and temporal variability of SSS fronts in the tropical Atlantic. A number of frontal features have been identified. The mean magnitude of the SSS gradient is maximum near the mouth of the Congo River (0.3-0.4 psu/100km). Relative maxima are also observed in the Inter Tropical Convergence Zone (ITCZ), the Gulf of Guinea, and the mouth of the Amazon River. The pattern of the magnitude of the SSS anomaly gradient revealed that the interaction between river plumes and saltier interior water is complex and highly variable during the three-year observation period. The variability of the magnitude of the density anomaly gradient computed from Aquarius SSS and Reynolds SST is also discussed. Images of the ocean color are utilized to trace the movement of the Congo and Amazon River plumes and compare them with the magnitude of the SSS gradient. Additionally, we analyze de circulation associated with the Amazon plume with altimetry data, and the vertical structure and its changes in time through Argo profiles.

  7. Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador.

    PubMed

    Ryan, Sadie J; Stewart-Ibarra, Anna M; Ordóñez-Enireb, Eunice; Chu, Winnie; Finkelstein, Julia L; King, Christine A; Escobar, Luis E; Lupone, Christina; Heras, Froilan; Tauzer, Erica; Waggoner, Egan; James, Tyler G; Cárdenas, Washington B; Polhemus, Mark

    2018-03-10

    Cholera emergence is strongly linked to local environmental and ecological context. The 1991-2004 pandemic emerged in Perú and spread north into Ecuador's El Oro province, making this a key site for potential re-emergence. Machala, El Oro, is a port city of 250,000 inhabitants, near the Peruvian border. Many livelihoods depend on the estuarine system, from fishing for subsistence and trade, to domestic water use. In 2014, we conducted biweekly sampling for 10 months in five estuarine locations, across a gradient of human use, and ranging from inland to ocean. We measured water-specific environmental variables implicated in cholera growth and persistence: pH, temperature, salinity, and algal concentration, and evaluated samples in five months for pathogenic and non-pathogenic Vibrio cholerae , by polymerase chain reaction (PCR). We found environmental persistence of pandemic strains O1 and O139, but no evidence for toxigenic strains. Vibrio cholerae presence was coupled to algal and salinity concentration, and sites exhibited considerable seasonal and spatial heterogeneity. This study indicates that environmental conditions in Machala are optimal for cholera re-emergence, with risk peaking during September, and higher risk near urban periphery low-income communities. This highlights a need for surveillance of this coupled cholera-estuarine system to anticipate potential future cholera outbreaks.

  8. Changes to Yucatán Peninsula precipitation associated with salinity and temperature extremes of the Caribbean Sea during the Maya civilization collapse.

    PubMed

    Wu, Henry C; Felis, Thomas; Scholz, Denis; Giry, Cyril; Kölling, Martin; Jochum, Klaus P; Scheffers, Sander R

    2017-11-20

    Explanations of the Classic Maya civilization demise on the Yucatán Peninsula during the Terminal Classic Period (TCP; ~CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly-resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. The results indicate pronounced interannual to decadal SST and SSS variability during the TCP, which may be temporally coherent to precipitation anomalies on the Yucatán. Our results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, which are possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes during the TCP that complement the oft-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of Caribbean SST and SSS condition changes and related ocean-atmosphere interactions that notably influenced the propagation and transport of precipitation to the Yucatán Peninsula during the TCP.

  9. Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador

    PubMed Central

    Stewart-Ibarra, Anna M.; Ordóñez-Enireb, Eunice; Chu, Winnie; Finkelstein, Julia L.; King, Christine A.; Escobar, Luis E.; Lupone, Christina; Heras, Froilan; Tauzer, Erica; Waggoner, Egan; Polhemus, Mark

    2018-01-01

    Cholera emergence is strongly linked to local environmental and ecological context. The 1991–2004 pandemic emerged in Perú and spread north into Ecuador’s El Oro province, making this a key site for potential re-emergence. Machala, El Oro, is a port city of 250,000 inhabitants, near the Peruvian border. Many livelihoods depend on the estuarine system, from fishing for subsistence and trade, to domestic water use. In 2014, we conducted biweekly sampling for 10 months in five estuarine locations, across a gradient of human use, and ranging from inland to ocean. We measured water-specific environmental variables implicated in cholera growth and persistence: pH, temperature, salinity, and algal concentration, and evaluated samples in five months for pathogenic and non-pathogenic Vibrio cholerae, by polymerase chain reaction (PCR). We found environmental persistence of pandemic strains O1 and O139, but no evidence for toxigenic strains. Vibrio cholerae presence was coupled to algal and salinity concentration, and sites exhibited considerable seasonal and spatial heterogeneity. This study indicates that environmental conditions in Machala are optimal for cholera re-emergence, with risk peaking during September, and higher risk near urban periphery low-income communities. This highlights a need for surveillance of this coupled cholera–estuarine system to anticipate potential future cholera outbreaks. PMID:29534431

  10. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    PubMed Central

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  11. Genomic population structure of freshwater-resident and anadromous ide (Leuciscus idus) in north-western Europe.

    PubMed

    Skovrind, Mikkel; Olsen, Morten Tange; Vieira, Filipe Garrett; Pacheco, George; Carl, Henrik; Gilbert, M Thomas P; Møller, Peter Rask

    2016-02-01

    Climate change experts largely agree that future climate change and associated rises in oceanic water levels over the upcoming decades, will affect marine salinity levels. The subsequent effects on fish communities in estuarine ecosystems however, are less clear. One species that is likely to become increasingly affected by changes in salinity is the ide (Leuciscus idus). The ide is a stenohaline freshwater fish that primarily inhabits rivers, with frequent anadromous behavior when sea salinity does not exceed 15%. Unlike most other anadromous Baltic Sea fish species, the ide has yet to be subjected to large-scale stocking programs, and thus provides an excellent opportunity for studying the natural population structure across the current salinity gradient in the Danish Belts. To explore this, we used Genotyping-by-Sequencing to determine genomic population structure of both freshwater resident and anadromous ide populations in the western Baltic Sea region, and relate the results to the current salinity gradient and the demographic history of ide in the region. The sample sites separate into four clusters, with all anadromous populations in one cluster and the freshwater resident populations in the remaining three. Results demonstrate high level of differentiation between sites hosting freshwater resident populations, but little differentiation among anadromous populations. Thus ide exhibit the genomic population structure of both a typical freshwater species, and a typical anadromous species. In addition to providing a first insight into the population structure of north-western European ide, our data also (1) provide indications of a single illegal introduction by man; (2) suggest limited genetic effects of heavy pollution in the past; and (3) indicate possible historical anadromous behavior in a now isolated freshwater population.

  12. Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress.

    PubMed

    Sutherland, Ben J G; Jantzen, Stuart G; Yasuike, Motoshige; Sanderson, Dan S; Koop, Ben F; Jones, Simon R M

    2012-12-01

    The salmon louse Lepeophtheirus salmonis is a marine ectoparasite of wild and farmed salmon in the Northern Hemisphere. Infections of farmed salmon are of economic and ecological concern. Nauplius and copepodid salmon lice larvae are free-swimming and disperse in the water column until they encounter a host. In this study, we characterized the sublethal stress responses of L. salmonis copepodid larvae by applying a 38K oligonucleotide microarray to profile transcriptomes following 24 h exposures to suboptimal salinity (30-10 parts per thousand (‰)) or temperature (16-4 °C) environments. Hyposalinity exposure resulted in large-scale gene expression changes relative to those elicited by a thermal gradient. Subsequently, transcriptome responses to a more finely resolved salinity gradient between 30 ‰ and 25 ‰ were profiled. Minimal changes occurred at 29 ‰ or 28 ‰, a threshold of response was identified at 27 ‰, and the largest response was at 25 ‰. Differentially expressed genes were clustered by pattern of expression, and clusters were characterized by functional enrichment analysis. Results indicate larval copepods adopt two distinct coping strategies in response to short-term hyposaline stress: a primary response using molecular chaperones and catabolic processes at 27 ‰; and a secondary response up-regulating ion pumps, transporters, a different suite of chaperones and apoptosis-related transcripts at 26 ‰ and 25 ‰. The results further our understanding of the tolerances of L. salmonis copepodids to salinity and temperature gradients and may assist in the development of salmon louse management strategies. © 2012 Blackwell Publishing Ltd.

  13. How Phytoplankton Membranes Cope With Steep Ionic Strength (Salinity) Gradient?

    NASA Astrophysics Data System (ADS)

    Gasparovic, B.; Sesar, T.; Cankovic, M.; Ljubešić, Z.; Hrustić, E.; Zhu, Z.; Zhang, R.; Du, J.

    2016-02-01

    We report on phytoplankton accommodation on stressful conditions being steep ionic strength, i.e. salinity, changes, the conditions regularly found in the estuaries. We aimed defining how lipid composition of phytoplankton membrane structure is accommodated to prevent spontaneous osmosis. Salinity-dependent lipid profiles for particulate lipid extracts from blooming periods of the two opposing estuaries: eutrophic and polluted Wenchang River Estuary and pristine oligotrophic/mesotrophic Krka River Estuary were characterized by thin layer chromatography (TLC). The composition of phytoplankton pigments which was analyzed by high performance liquid chromatography. Domination of pigment Fucoxanthin in both estuaries indicates diatoms were major blooming group. While total particulate lipid concentration was almost an order of magnitude higher in the Wenchang River estuary (on average 238 µg/L) than in the Krka River Estuary (on average 36 µg/L), the lipid composition was similar. This implies that salinity stress is the main influential factor on phytoplankton lipid composition rather than availability of nutrients. Details on the lipid composition that follow salinity changes will be discussed.

  14. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.

    PubMed

    Lagerström, Maria; Lindgren, J Fredrik; Holmqvist, Albin; Dahlström, Mia; Ytreberg, Erik

    2018-02-01

    Antifouling paints are environmentally risk assessed based on their biocidal release rates to the water phase. In situ release rates of copper (Cu) and zinc (Zn) were derived for five commercial paints in two recreational marinas with different salinities (5 and 14 PSU) using an X-Ray Fluorescence spectrometer (XRF). Salinity was found to significantly affect the Cu release, with twice the amount of Cu released at the higher salinity, while its influence on the Zn release was paint-specific. Site-specific release rates for water bodies with salinity gradients, e.g. the Baltic Sea, are therefore necessary for more realistic risk assessments of antifouling paints. Furthermore, the in situ release rates were up to 8 times higher than those generated using standardized laboratory or calculation methods. The environmental risk assessment repeated with the field release rates concludes that it is questionable whether the studied products should be allowed on the Swedish market. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. SEASONAL DOMINANCE OF CYANOBACTERIA IN PENSACOLA BAY, FLORIDA

    EPA Science Inventory

    A study was conducted during 1999-2000 in Pensacola Bay, Florida, USA to characterize the seasonal dynamics of nutrients, phytoplankton, and bacterioplankton. Monthly samples were collected from 5 sites spanning the salinity gradient. Abundances of non-heterocystous chroococcoid...

  16. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya

    2004-06-01

    Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.

  17. Ecophysiological Changes in Microbial Mats Incubated in a Greenhouse Collaboratory

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; DesMarais, David J.; GarciaPichel, Ferran; Hogan, Mary; Jahnke, Linda; Keller, Richard M.; Miller, Scott R.

    2001-01-01

    Microbial mats are modern examples of the earliest microbial communities known. Among the best studied are microbial mats growing in hypersaline ponds managed for the production of salt by Exportadora de Sal, S.A. de C.V., Guerrero Negro, Baja California Sur, Mexico. In May, 2001, we collected mats from Ponds 4 and 5 in this system and returned them to Ames Research Center, where they have been maintained for a period of over nine months. We report here on both the ecophysiological changes occurring in the mats over that period of time as well as the facility in which they were incubated. Mats (approximately 1 sq. meter total area) were incubated in a greenhouse facility modified to provide the mats with natural levels of visible and ultraviolet radiation as well as constantly flowing, temperature-controlled water. Two replicated treatments were maintained, a 'high salinity' treatment (about 120 ppt) and a 'low salinity' treatment (about 90 ppt). Rates of net biological activity (e.g., photosynthesis, respiration, trace gas production) in the mats were relatively constant over the several months, and were similar to rates of activity measured in the field. However, over the course of the incubation, mats in both treatments changed in physical appearance. The most obvious change was that mats in the higher salinity treatments developed a higher proportion of carotenoid pigments (relative to chlorophyll), resulting in a noticeably orange color in the high salinity mats. This trend is also seen in the natural salinity gradient present at the field site. Changes in the community composition of the mats, as assayed by denaturing gradient gel electrophoresis (DGGE), as well as biomarker compounds produced in the mats were also monitored. The degree to which the mats kept in the greenhouse changed from the originally collected mats, as well as differences between high and low salinity mats will be discussed. Additional information is contained in the original extended abstract.

  18. Total Hg, methyl Hg and other toxic heavy metals in a northern Gulf of Mexico estuary: Louisiana Pontchartrain basin.

    PubMed

    Delaune, R D; Gambrell, R P; Jugsujinda, Aroon; Devai, Istavan; Hou, Aixin

    2008-07-15

    Concentration of total Hg, methyl Hg, and other heavy metals were determined in sediment collected along a salinity gradient in a Louisiana Gulf Coast estuary. Surface sediment was collected at established coordinates (n = 292) along a salinity gradient covering Lake Maurepas, Lake Pontchartrain, Lake Borgne and the Chandeleur Sound located in the 12,170 km(2) Pontchartrain basin estuary southeastern coastal Louisiana. Lake Maurepas sediment with lower salinity contained higher levels of methyl Hg (0.80 microg/kg) than Lake Pontchartrain (0.55 microg/kg). Lake Maurepas sediment also had higher levels of total Hg (98.0 microg/kg) as compared to Lake Pontchartrain (67.0 microg/kg). Average total Hg content of Lake Borgne and the Chandeleur Sound sediment was 24.0 microg/kg dry sediment and methyl Hg content averaged 0.21 microg/kg dry sediment. Methyl Hg content of sediment was positively correlated with total Hg, organic matter and clay content of sediment. Methyl Hg was inversely correlated with salinity, sediment Eh and sand content. Total Hg and methyl Hg decreased with increase in salinity in the order of Lake Maurepas > Lake Pontchartrain > Lake Borgne/ the Chandeleur Sound. Lake Maurepas containing several times higher amount of methyl Hg in sediment as compared to Lake Pontchartrain and Lake Borgne and the Chandeleur Sound is an area that could serve as potential source of mercury to the aquatic food chain. Methyl Hg content of sediment in the estuary could be predicted by the equation: Methyl Hg = 0.11670-0.0625 x Salinity + 0.05349 x O.M. + 0.00513 x Total Hg - 0.00250 x Clay. Concentrations of other toxic heavy metals (Pb, Cd, Ni, Cu and Zn) in sediment were not elevated and was statistically correlated with sediment texture and iron and aluminum content of sediment.

  19. The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments.

    PubMed

    Wyness, Adam J; Paterson, David M; Defew, Emma C; Stutter, Marc I; Avery, Lisa M

    2018-05-29

    The extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments. Phenotypic characteristics of three E. coli strains, and the zeta potential (surface charge) of the E. coli strains and 3 physically different types of intertidal sediments was measured over a salinity gradient from 0 to 5 Practical Salinity Units (PSU). A batch adhesion microcosm experiment was constructed with each combination of E. coli strain, intertidal sediment and 0, 2, 3.5 and 5 PSU. The zeta potential profile of one E. coli strain had a low negative charge and did not change in response to an increase in salinity, and the remaining E. coli strains and the sediments exhibited a more negative charge that decreased with an increase in salinity. Strain type was the most important factor in explaining cell-particle adhesion, however adhesion was also dependant on sediment type and salinity (2, 3.5 PSU > 0, 5 PSU). Contrary to traditional colloidal (Derjaguin, Landau, Vervey, and Overbeek (DLVO)) theory, zeta potential of strain or sediment did not correlate with cell-particle adhesion. E. coli strain characteristics were the defining factor in cell-particle adhesion, implying that diverse strain-specific transport and exposure pathways may exist. Further research applying these findings on a catchment scale is necessary to elucidate these pathways in order to improve accuracy of FIO fate and transport models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Silver behaviour along the salinity gradient of the Gironde Estuary.

    PubMed

    Lanceleur, Laurent; Schäfer, Jörg; Blanc, Gérard; Coynel, Alexandra; Bossy, Cécile; Baudrimont, Magalie; Glé, Corine; Larrose, Aurélie; Renault, Sophie; Strady, Emilie

    2013-03-01

    Dissolved and particulate Ag concentrations (Ag(D) and Ag(P), respectively) were measured in surface water and suspended particulate matter (SPM) along the salinity gradient of the Gironde Estuary, South West France, during three cruises (2008-2009) covering contrasting hydrological conditions, i.e. two cruises during intermediate and one during high freshwater discharge (~740 and ~2,300 m(3)/s). Silver distribution reflected non-conservative behaviour with 60-70 % of Ag(P) in freshwater particles being desorbed by chlorocomplexation. The amount of Ag(P) desorbed was similar to the so-called reactive, potentially bioavailable Ag(P) fraction (60 ± 4 %) extracted from river SPM by 1 M HCl. Both Ag(P) (0.22 ± 0.05 mg/kg) and Ag(P)/Th(P) (0.025-0.028) in the residual fraction of fluvial and estuarine SPM were similar to those in SPM from the estuary mouth and in coastal sediments from the shelf off the Gironde Estuary, indicating that chlorocomplexation desorbs the reactive Ag(P). The data show that desorption of reactive Ag(P) mainly occurs inside the estuary during low and intermediate discharge, whereas expulsion of partially Ag(P)-depleted SPM (Ag(P)/Th(P) ~0.040) during the flood implies ongoing desorption in the coastal ocean, e.g. in the nearby oyster production areas (Marennes-Oléron Bay). The highest Ag(D) levels (6-8 ng/L) occurred in the mid-salinity range (15-20) of the Gironde Estuary and were decoupled from freshwater discharge. In the maximum turbidity zone, Ag(D) were at minimum, showing that high SPM concentrations (a) induce Ag(D) adsorption in estuarine freshwater and (b) counterbalance Ag(P) desorption in the low salinity range (1-3). Accordingly, Ag behaviour in turbid estuaries appears to be controlled by the balance between salinity and SPM levels. The first estimates of daily Ag(D) net fluxes for the Gironde Estuary (Boyle's method) showed relatively stable theoretical Ag(D) at zero salinity (Ag (D) (0) = 25-30 ng/L) for the contrasting hydrological situations. Accordingly, Ag(D) net fluxes were very similar for the situations with intermediate discharge (1.7 and 1.6 g/day) and clearly higher during the flood (5.0 g/day) despite incomplete desorption. Applying Ag (D) (0) to the annual freshwater inputs provided an annual net Ag(D) flux (0.64-0.89 t/year in 2008 and 0.56-0.77 t/year in 2009) that was 12-50 times greater than the Ag(D) gross flux. This estimate was consistent with net Ag(D) flux estimates obtained from gross Ag(P) flux considering 60 % desorption in the estuarine salinity gradient.

  1. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels.

    PubMed

    López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D

    2007-01-01

    We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.

  2. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  3. Tidal Marshes as Pulsing Systems: New Estimates of Marsh-Carbon Export and Fate

    NASA Astrophysics Data System (ADS)

    Logozzo, L. A.; Neale, P.; Tzortziou, M.; Nelson, N.; Megonigal, P.

    2016-02-01

    We investigated wetland-estuarine exchanges of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM), dissolved inorganic carbon (DIC), and chlorophyll a (chl a) in the Chesapeake Bay Kirkpatrick wetlands, an ecosystem that is representative of brackish marshes with organic-rich soils in North America. 1 L water samples were collected every hour over multiple semidiurnal tidal cycles (24 h deployments) and the flow was continuously measured every minute over the course of the study. DIC samples were collected and filtered on site. Fluxes were estimated using the measured flow and concentrations of biogeochemical variables (DOC, DIC, and chl a as a measure of algal biomass). aCDOM(300) was used as a proxy for CDOM amount to observe variations over two semidiurnal tidal cycles. Relative to high tide water, low tide water was consistently enriched in DOC, DIC, and CDOM, whereas it was consistently depleted in chl a. Initial estimates of fluxes over the tidal cycle showed net export of DIC and DOC from the marsh, and net import of chl a into the marsh. These results are consistent with DOC flux estimates from previous studies, but our method utilizes high temporal resolution flow measurements, improving flux estimate accuracy. Transect sampling from the marsh into the sub-estuary during ebbing tide indicated a strong negative gradient in a­CDOM­(300) and non-conservative mixing with salinity. The observed gradients in CDOM absorption spectral shape (slope and slope ratios) and the relative changes in the major fluorescence components identified in 3D fluorescence excitation-emission-matrices, indicated strong photochemical degradation in the estuary and a shift from higher to lower molecular-weight organic compounds. The weaker gradients observed for DOC and DIC compared to aCDOM(300) indicate that while microbial degradation does occur, photobleaching is the dominant degradation mechanism for CDOM in the estuary.

  4. Passive Microwave Measurements of Salinity: The Gulf Stream Experiment

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Koblinsky, C.; Haken, M.; Howden, S.; Bingham, F.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (I psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approximately 0.2 psu) required of global maps to be scientifically viable. The development of a satellite microwave instrument to make global measurements of SSS (Sea Surface Salinity) is the focus of a joint JPL/GSFC/NASA ocean research program called Aquarius. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of airborne microwave instruments together with ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer (for surface temperature). These instruments were mounted on the NASA P-3 Orion aircraft. Sea surface measurements consisted of thermosalinograph data provided by the R/V Cape Henlopen and the MN Oleander, and data from salinity and temperature sensors on three surface drifters deployed from the R/V Cape Henlopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made with the airborne sensors on August 28 and 29 and on September 2 flights were made over the surface drifters to look for effects due to a change in surface roughness resulting from the passage of Hurricane Dennis. Results show a good agreement between the microwave measurements and ship measurements of salinity. The features of the brightness temperature maps correspond well with the features of the salinity field measured by the ship and drifters and a preliminary retrieval of salinity compares well with the ship data.

  5. The hydrogeochemistry of argillaceous rock formations at the Horonobe URL site, Japan

    NASA Astrophysics Data System (ADS)

    Hama, K.; Kunimaru, T.; Metcalfe, R.; Martin, A. J.

    A hydrogeochemical investigation is being carried out as part of the Horonobe underground research laboratory (URL) project in Japan. The main aims are to: (1) investigate an actual example of a geological environment in a sedimentary rock formation in Japan; and (2) to confirm the reliability of generic technologies that may in future be applied during the geological disposal of high level radioactive waste. The main rock formations being characterized are the marine Wakkanai and Koetoi Formations (Miocene to Pliocene), consisting dominantly of siliceous shales (porcelanites) and diatomaceous shales respectively. These formations are located within the Tempoku Basin, within a back-arc tectonic setting. Rock sequences of this kind occur widely in Japan and throughout the northern Pacific region. However, prior to the present study, there was relatively little information concerning the processes controlling in situ chemical conditions and groundwater flow in such settings. Chemical data was obtained for both pumped waters and squeezed porewaters in order to characterize the hydrogeochemistry of these argillaceous rock formations. The in situ chemical conditions, residence time of the groundwaters and the evolution processes of the groundwaters were investigated. Generally, at each locality studied, shallower groundwaters are fresh and have Na-HCO 3 dominated chemistry. Deeper groundwaters are saline (TDS up to about 22,000 mg/l) and have Na-Cl dominated chemistry. However, lateral gradients in salinity are also recognized, with salinity contours in the Na-Cl dominated saline water (having TDS > 10,000 mg/l) probably varying in elevation by at least 250 m. Further investigations are required to confirm the origins of the groundwater salinity, but the Na-Cl dominated groundwater chemistry is provisionally explained as a consequence of the dilution of fossil seawater, accompanied by diagenetic water-rock reactions. The vertical and lateral salinity gradients can potentially be used to test the validity of coupled groundwater flow models. A conceptual model is tentatively suggested in which the spatial distribution and frequency of fractures helps to control the spatial distribution of groundwater salinity. Future investigations will clarify the timing of flow, the flow directions and the characteristics of the flow paths.

  6. δ18O and salinity variability from the Last Glacial Maximum to Recent in the Bay of Bengal and Andaman Sea

    NASA Astrophysics Data System (ADS)

    Sijinkumar, A. V.; Clemens, Steven; Nath, B. Nagender; Prell, Warren; Benshila, Rachid; Lengaigne, Matthieu

    2016-03-01

    Oxygen isotopes of surface, thermocline and bottom dwelling foraminifera were analysed from two well-dated Andaman Sea cores and combined with nine previously published records from the Bay of Bengal (BoB) and Andaman Sea to create a transect spanning 20°N to 5°N. Combined with temperature estimates and the observed seawater δ18O-salinity relationship, these data are used to estimate past changes in BoB salinity structure. Compared to modern, mid-Holocene (9-6 cal ka BP) surface waters in the northern BoB were 2.5 psμ (8%) fresher, Andaman Sea were 3.8 psμ (12%) fresher, and southern BoB were 1.2 psμ (3.5%) fresher. Conversely, during the last glacial maximum (LGM), surface waters in the northern BoB were 2.9 psμ (9%) more saline while Andaman Sea were essentially unchanged and southern BoB were 1.7 psμ (4.9%) more saline compared to modern. The relative freshness of the Andaman during the last glacial maximum is likely the result of basin morphology during sea level low stand, resulting in reduced surface water mixing with the open BoB as well as shelf emergence, causing increased proximity of the core locations to river outflow. Sensitivity experiments using a regional ocean model indicate that the increased mid-Holocene north to south (20°N to 5°N) salinity gradient can be achieved with a ∼50% increase in precipitation/runoff while the decreased glacial age gradient can be achieved with a ∼50% reduction in precipitation/runoff. During the deglaciation, both surface and thermocline-dwelling species in the Andaman and northern BoB exhibit depleted δ18O within the Younger Dryas (YD), indicating colder and/or more saline conditions. None of the records from the southern BoB site have clear YD structure, possibly due to the combined effects of bioturbation and low sedimentation rates.

  7. Pore fluids and the LGM ocean salinity-Reconsidered

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-03-01

    Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum of the last glacial maximum (LGM) are analyzed using estimation methods deriving from linear control theory. With conventional diffusion coefficient values and no vertical advection, results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core data. None of the present results show statistically significant abyssal salinity values above the global average, and results remain consistent, apart from a general increase owing to diminished sea level, with a more conventional salinity distribution having deep values lower than the global mean. The Southern Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will only increase the resulting uncertainties, unless considerably more data can be obtained. Results are consistent with complex regional variations in abyssal salinity during deglaciation, but none are statistically significant.

  8. Salt Power: Is Neptune's Ole Salt a Tiger in the Tank?

    ERIC Educational Resources Information Center

    Wick, Gerry Shishin

    1979-01-01

    Discussed is the utilization of salinity-gradient energy as a potential source of power. Detailed are the scientific principles, potential sources, latest research, and environmental effects associated with this alternative energy source. The future prospects are addressed. (BT)

  9. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.

    2017-06-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  10. Insertion sequences enrichment in extreme Red sea brine pool vent.

    PubMed

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2017-03-01

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  11. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  12. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  13. Time-lapse electric resistivity in a stressed mangrove forest to image the role of the root zone in porewater salt distribution

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Krauss, K.; Kruse, S.

    2017-12-01

    The movement and storage of porewater salts is poorly understood in mangrove forests with limited surface water exchange between the forest and neighboring lagoon. These mangroves are often the most stressed, and have the most unfavorable salinity balance that often transition to mortality during extreme drought. A time-lapse resistivity survey was conducted in a stressed mangrove forest over a diel period. Resistivity is sensitive to the entire soil volume, including fine roots. The objective was to image changes in porewater salinity structures around both mangrove trees, where roots can be a prolific contributor to soil volume, and a salt pan with little or no vegetation. Throughout the diel period, salt pan conductivities remained relatively constant. The most significant temporal changes occur in the root zone around mangrove trees. Particularly interesting is a drop in resistivity (increased conductivity) at sunset when transpiration from individual trees decreases (or even ceases), potentially identifying a cumulative concentration of salts around the mangrove root zone after a full day of transpiration. The resistivity gradient decreases immediately after its peak at sunset, potentially identifying the consequences of hydraulic redistribution in diluting soils surrounding trees immediately after transpiration ceases. This is quicker than expected, and may imply a very strong and rapid eco-hydrological connection in the tree-facilitated salinity balance essential to their survival under the most salinity-stressed environments. At sunrise, resistivity increases, further suggesting dilution of salts via hydraulic redistribution of fresh water from the tree into the upper soil layers, or suggests an accumulation of salts within roots when presumably less water is moving through the trees. Repeated electric resistivity arrays provide spatial and temporal information about these salts and contribute to an overall understanding of how stressed mangrove forests behave. The mangrove ecophysiology literature has suggested that such a balance should exist between tree water use and soil salinity concentration. Here, we document the diel pattern from the perspective of the soil for the first time, but need more surveys to develop conclusive ecosystem level impacts.

  14. Large-scale forcing of the European Slope Current and associated inflows to the North Sea

    NASA Astrophysics Data System (ADS)

    Marsh, Robert; Haigh, Ivan D.; Cunningham, Stuart A.; Inall, Mark E.; Porter, Marie; Moat, Ben I.

    2017-04-01

    The European Slope Current provides a shelf-edge conduit for Atlantic Water, a substantial fraction of which is destined for the northern North Sea, with implications for regional hydrography and ecosystems. Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988-2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely recruited from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25-50 % reductions of these density gradients over 1996-1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10-40 % of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a general decline in this percentage over 1988-2007. Salinities in the Slope Current correspondingly decreased, evidenced in ocean analysis data. Further to the north, in the Atlantic Water conveyed by the Slope Current through the Faroe-Shetland Channel (FSC), salinity is observed to increase over this period while declining in the hindcast. The observed trend may have broadly compensated for a decline in the Atlantic inflow, limiting salinity changes in the northern North Sea during this period. Proxies for both Slope Current transport and Atlantic inflow to the North Sea are sought in sea level height differences across the FSC and between Shetland and the Scottish mainland (Wick). Variability of Slope Current transport on a wide range of timescales, from seasonal to multi-decadal, is implicit in sea level differences between Lerwick (Shetland) and Tórshavn (Faroes), in both tide gauge records from 1957 and a longer model hindcast spanning 1958-2012. Wick-Lerwick sea level differences in tide gauge records from 1965 indicate considerable decadal variability in the Fair Isle Current transport that dominates Atlantic inflow to the northwest North Sea, while sea level differences in the hindcast are dominated by strong seasonal variability. Uncertainties in the Wick tide gauge record limit confidence in this proxy.

  15. Limacina retroversa's response to combined effects of ocean acidification and sea water freshening

    NASA Astrophysics Data System (ADS)

    Manno, C.; Morata, N.; Primicerio, R.

    2012-11-01

    Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

  16. Observations of currents and density structure across a buoyant plume front

    USGS Publications Warehouse

    Gelfenbaum, G.; Stumpf, R.P.

    1993-01-01

    Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.

  17. On the freshwater budget in the eastern tropical Atlantic during the development of the cold tongue

    NASA Astrophysics Data System (ADS)

    Schlundt, Michael; Krahmann, Gerd; Brandt, Peter; Karstensen, Johannes

    2013-04-01

    The most striking sea surface temperature (SST) phenomenon in the tropical Atlantic is the seasonal appearance of the Atlantic Cold Tongue (ACT). Onset, duration, spatial extent and strength of cooling are subject to significant interannual variability. The ACT onset is also associated with remarkable changes in upper ocean salinity. To examine the different contributions to these changes we here focus on and present a mixed layer freshwater budget in the eastern tropical Atlantic. Our investigation is based on an exceptionally large set of observations during the onset of the ACT in late boreal spring/ early boreal summer 2011: more than 5400 CTD-profiles acquired by seven gliders running simultaneously to two research cruises, 180 ship based CTD-profiles, time series data from the PIRATA buoy array as well as measurements from the Argo float program are used to derive mixed layer depth, lateral and vertical salinity gradients. To derive turbulent mixing and inferred diapycnal salt flux, microstructure observations are taken into account. Furthermore satellite measurements of sea surface salinity (SSS) by the SMOS mission and of SST by the TMI radiometer as well as atmospheric reanalysis data and the OSCAR project products are implemented. Freshwater budget terms were calculated for different sub-regions. These sub-regions are chosen using pre-defined thresholds in SSS, SST or mixed layer depth. Overall the freshwater budget is dominated by the net surface freshwater flux and horizontal advection by strong zonal currents. Other terms, like entrainment and diapycnal mixing are found to be regionally important. In particular, the observed increase in salinity in the near-equatorial region during ACT onset is found to be the result of the northward migration of the ITCZ associated with reduced net surface freshwater flux at the equator as well as mixing of salty subsurface waters into the surface mixed layer.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, R.W.; Oberdorfer, J.A.

    A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of theirmore » effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.« less

  19. Meta-omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation.

    PubMed

    Celepli, Narin; Sundh, John; Ekman, Martin; Dupont, Chris L; Yooseph, Shibu; Bergman, Birgitta; Ininbergs, Karolina

    2017-02-01

    Cyanobacteria are important phytoplankton in the Baltic Sea, an estuarine-like environment with pronounced north to south gradients in salinity and nutrient concentrations. Here, we present a metagenomic and -transcriptomic survey, with subsequent analyses targeting the genetic identity, phylogenetic diversity, and spatial distribution of Baltic Sea cyanobacteria. The cyanobacterial community constituted close to 12% of the microbial population sampled during a pre-bloom period (June-July 2009). The community was dominated by unicellular picocyanobacteria, specifically a few highly abundant taxa (Synechococcus and Cyanobium) with a long tail of low abundance representatives, and local peaks of bloom-forming heterocystous taxa. Cyanobacteria in the Baltic Sea differed genetically from those in adjacent limnic and marine waters as well as from cultivated and sequenced picocyanobacterial strains. Diversity peaked at brackish salinities 3.5-16 psu, with low N:P ratios. A shift in community composition from brackish to marine strains was accompanied by a change in the repertoire and expression of genes involved in salt acclimation. Overall, the pre-bloom cyanobacterial population was more genetically diverse, widespread and abundant than previously documented, with unicellular picocyanobacteria being the most abundant clade along the entire Baltic Sea salinity gradient. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  1. Geochemical modeling of trivalent chromium migration in saline-sodic soil during Lasagna process: impact on soil physicochemical properties.

    PubMed

    Lukman, Salihu; Bukhari, Alaadin; Al-Malack, Muhammad H; Mu'azu, Nuhu D; Essa, Mohammed H

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75%.

  2. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    PubMed Central

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  3. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes

    PubMed Central

    Tene Fossog, Billy; Ayala, Diego; Acevedo, Pelayo; Kengne, Pierre; Ngomo Abeso Mebuy, Ignacio; Makanga, Boris; Magnus, Julie; Awono-Ambene, Parfait; Njiokou, Flobert; Pombi, Marco; Antonio-Nkondjio, Christophe; Paupy, Christophe; Besansky, Nora J; Costantini, Carlo

    2015-01-01

    Understanding how divergent selection generates adaptive phenotypic and population diversification provides a mechanistic explanation of speciation in recently separated species pairs. Towards this goal, we sought ecological gradients of divergence between the cryptic malaria vectors Anopheles coluzzii and An. gambiae and then looked for a physiological trait that may underlie such divergence. Using a large set of occurrence records and eco-geographic information, we built a distribution model to predict the predominance of the two species across their range of sympatry. Our model predicts two novel gradients along which the species segregate: distance from the coastline and altitude. Anopheles coluzzii showed a ‘bimodal’ distribution, predominating in xeric West African savannas and along the western coastal fringe of Africa. To test whether differences in salinity tolerance underlie this habitat segregation, we assessed the acute dose–mortality response to salinity of thirty-two larval populations from Central Africa. In agreement with its coastal predominance, Anopheles coluzzii was overall more tolerant than An. gambiae. Salinity tolerance of both species, however, converged in urban localities, presumably reflecting an adaptive response to osmotic stress from anthropogenic pollutants. When comparing degree of tolerance in conjunction with levels of syntopy, we found evidence of character displacement in this trait. PMID:25926878

  4. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.

  5. Concentrations and ratios of Sr, Ba and Ca along an estuarine river to the Gulf of Mexico - implication for sea level rise effects on trace metal distribution

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2015-11-01

    Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers in the world face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88 km long estuary, the Calcasieu River in South Louisiana, USA, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to August 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth, with a salinity range from 0.02 to 29.50 ppt. Water samples were analyzed for Sr, Ba, and Ca concentrations. In-situ measurements were made on salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance. We found that the Sr and Ca concentrations and the Sr / Ca ratio all increased significantly with increasing salinity. The average Sr concentration at the site closest to the Gulf of Mexico (site 6) was 46.21 μmol L-1, which was about 130 times higher than that of the site furthest upstream (site 1, 0.35 μmol L-1). The average Ca concentration at site 6 was 8.19 mmol L-1, which was about 60 times higher than that of site 1 (0.13 mmol L-1). The average Sr / Ca ratio at site 6 (8.41 mmol mol-1) was about 3 times the average Sr / Ca ratio at site 1 (2.89 mmol mol-1). However, the spatial variation in Ba concentration was marginal, varying from 0.36 μmol L-1 at site 6 to 0.47 at site 5. The average Ba / Ca ratio at site 1 (4.82 mmol mol-1) was about 54 times the average Ba / Ca ratio at site 6 (0.09 mmol mol-1), showing a clear negative relation between the Ba / Ca ratio and increasing salinity. All the elemental concentrations and ratios had considerable seasonal variations, with significant differences among sampling months for the Sr, Ba concentrations and the Ba / Ca ratio (p < 0.01). The results from this study suggest that concentrations of Sr and Ca in the world's estuaries will very likely increase in the future as sea level rise continues. For low-gradient estuarine rivers such as the Calcasieu River in South Louisiana, USA, water chemistry upstream would experience substantial Sr and Ca enrichment, which could affect aquatic environments and biological communities.

  6. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    NASA Astrophysics Data System (ADS)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  7. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NASA Astrophysics Data System (ADS)

    Smekens, Marret J.; van Tienderen, Peter H.

    2001-08-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions. Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.

  8. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2012-05-01

    The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society

  9. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    PubMed

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    NASA Astrophysics Data System (ADS)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  11. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  12. Bioaccumulation of perfluorochemicals in Pacific oyster under different salinity gradients.

    PubMed

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Han Kyu; Moon, Hyo Bang; Ra, Jin Sung; Kim, Sang Don

    2010-04-01

    Despite the reports of widespread occurrence of perfluorinated compounds (PFCs) in estuarine and coastal waters and open seas, little is known on the effect of salinity on bioaccumulation. In this study, effects of salinity on bioaccumulation of PFCs in Pacific oysters (Crassostrea gigas) were investigated. Furthermore, partitioning of PFCs between water and particles (oysters' food) was examined at different salinities. The distribution coefficients (K(d); partitioning between water and particles) for selected PFCs, that is, PFOS, PFOA, PFDA, and PFUnDA, increased by 2.1- to 2.7-fold with the increase in water salinity from 10 to 34 psu, suggesting "salting-out" effect, and the salting constant (delta) was estimated to range from 0.80 to 1.11. The nonlinear regression analysis of bioaccumulation suggested increase in aqueous and dietary uptake rates (K(w) and K(f)), with the increase in salinity, which resulted in elevated bioaccumulation, although the depuration rates (K(e)) also increased. The relative abundance of long carbon chain length PFCs (i.e., PFDA and PFUnDA) increased as salinity increased, while the proportion of PFOS and PFOA decreased, which is explained by the positive relationship between delta and carbon chain length. The contribution of diet to bioaccumulation in oysters ranged from 18 to 92%. Overall, salinity not only affected the chemistry of PFCs, but also the physiology of oysters, contributing to sorption and bioaccumulation of perfluorochemicals in oysters.

  13. Time-lapse resistivity investigation of salinity changes at an ex-promontory land: a case study of Carey Island, Selangor, Malaysia.

    PubMed

    Tajul Baharuddin, Mohamad Faizal; Taib, Samsudin; Hashim, Roslan; Zainal Abidin, Mohd Hazreek; Ishak, Mohd Fakhrurrazi

    2011-09-01

    Time-lapse resistivity measurements and groundwater geochemistry were used to study salinity effect on groundwater aquifer at the ex-promontory-land of Carey Island in Malaysia. Resistivity was measured by ABEM Terrameter SAS4000 and ES10-64 electrode selector. Relationship between earth resistivity and total dissolved solids (TDS) was derived, and with resistivity images, used to identify water types: fresh (ρ ( e ) > 6.5 Ω m), brackish (3 Ω m < ρ ( e ) < 6.5 Ω m), or saline (ρ ( e ) < 3 Ω m). Long-term monitoring of the studied area's groundwater quality via measurements of its time-lapse resistivity showed salinity changes in the island's groundwater aquifers not conforming to seawater-freshwater hydraulic gradient. In some aquifers far from the coast, saline water was dominant, while in some others, freshwater 30 m thick showed groundwater potential. Land transformation is believed to have changed the island's hydrogeology, which receives saltwater pressure all the time, limiting freshwater recharge to the groundwater system. The time-lapse resistivity measurements showed active salinity changes at resistivity-image bottom moving up the image for two seasons' (wet and dry) conditions. The salinity changes are believed to have been caused by incremental tide passing through highly porous material in the active-salinity-change area. The study's results were used to plan a strategy for sustainable groundwater exploration of the island.

  14. A time-dependent, three-dimensional model of the Delaware Bay and River system. Part 2: Three-dimensional flow fields and residual circulation

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Mellor, George L.

    1990-09-01

    The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.

  15. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  16. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.

  17. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density gradient from intruded salinity and local sediment suspension. Meanwhile, tripods' monitoring identified a significant cross-channel component of residual current, which could produce potential bottom sediment accumulation in the channel region within the North Passage.

  18. MICROBIAL DIVERSITY IN SURFACE SEDIMENTS: A COMPARISON OF TWO ESTUARINE CONTINUUMS

    EPA Science Inventory

    The microbial diversity in estuarine sediments of the Altamaha and Savannah Rivers in Georgia were compared temporally and spatially using phospholipid fatty acid (PLFA) analysis. Surface sediment samples collected along a salinity gradient were also analyzed for ATP, TOC, and C ...

  19. PHYTOPLANKTON PRODUCTION AND NUTRIENT DISTRIBUTIONS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF FRESHWATER FLOW

    EPA Science Inventory

    The relationships between phytoplankton productivity, nutrient distributions, and freshwater flow were examined in a seasonal study conducted in Escambia Bay, Florida, USA, located in the northeastern Gulf of Mexico. Five sites oriented along the salinity gradient were sampled 24...

  20. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  1. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    PubMed

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  2. Salinity tolerance ecophysiology of Equisetum giganteum in South America: a study of 11 sites providing a natural gradient of salinity stress

    PubMed Central

    Husby, Chad E.; Delatorre, José; Oreste, Vittorio; Oberbauer, Steven F.; Palow, Danielle T.; Novara, Lázaro; Grau, Alfredo

    2011-01-01

    Background and aims The basic set of adaptations necessary for salinity tolerance in vascular plants remains unknown. Although much has been published on salinity stress, almost all studies deal with spermatophytes. Studies of salinity tolerance in pteridophytes are relatively rare but hold promise for revealing the fundamental adaptations that all salt-tolerant vascular plants may share. The most basal pteridophytes to exhibit salinity tolerance are members of the genus Equisetum, including the giant horsetail, Equisetum giganteum, the only pteridophyte to occur in salinity-affected regions of the Atacama Desert valleys of northern Chile. Here it can constitute a significant vegetation component, forming dense stands of shoots >4 m high. Methodology Physiological parameters (stomatal conductances; efficiency of photosystem II; sap osmotic potential) were measured in E. giganteum populations in northern Chile across a range of groundwater salinities at 11 sites. In addition, Na, K, electrical conductivity and total plant water potential were measured in the plants and groundwater from each site. Principal results Equisetum giganteum exhibits similar stomatal conductances and photochemical efficiencies of photosystem II across a wide range of groundwater salinities. It lowers cell sap osmotic potential with increasing salinity and produces positive root pressure, as evidenced by guttation, at the full range of salinities experienced in the Atacama Desert. Equisetum giganteum maintains low Na concentrations in its xylem fluid and cell sap when soil water Na is high. It also maintains high K/Na ratios in xylem fluid and cell sap when soil water has low K/Na ratios. Conclusions Equisetum giganteum is well adapted to salinity stress. Efficient K uptake and Na exclusion are important adaptations and closely similar to those of the facultative halophyte fern Acrostichum aureum. PMID:22476492

  3. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  4. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    NASA Astrophysics Data System (ADS)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  5. Population specific sperm production in European flounder Platichthys flesus: adaptation to salinity at spawning.

    PubMed

    Nissling, A; Larsson, R

    2018-06-07

    Marine teleosts inhabiting the brackish Baltic Sea have adapted to the less saline water with activation of spermatozoa at low salinity hypo-osmotic conditions but with shorter longevity and lower swimming speed that affect the fertilization capacity. Aiming to elucidate if the fertilization capacity may be maintained by increasing the number of spermatozoa produced, testis size for the euryhaline flounder Platichthys flesus with external fertilization was assessed along a salinity gradient; with spawning at a salinity of c. 7, 10-18 and 30-35. Fulton's condition factor K = 0.881 ± 0.085 (mean ± S.D.), 0.833 ± 0.096 and 0.851 ± 0.086, for fish spawning at salinities of c. 7, 10-18 and 30-35, respectively, with no difference between areas, i.e. analysed fish were in similar nutritional condition. A general linear model, with testes dry mass as the dependent variable and somatic mass as covariate resulted in a significant difference between areas-populations with larger testes for P. flesus spawning at a salinity of c. 7 but no difference between fish spawning at a salinity of 10-18 and 30-35. The result suggests that adaptation by increasing the number of spermatozoa produced may be a key mechanism for marine teleosts spawning in areas with low salinities to sustain the fertilization capacity as shown here for the euryhaline P. flesus. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach.

    PubMed

    Laabidi, Ezzeddine; Bouhlila, Rachida

    2015-07-01

    In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity and permeability distributions.

  7. Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil.

    PubMed

    Costa, Luiza Dy Fonseca; Wallner-Kersanach, Mônica

    2013-08-01

    The dissolved labile and labile particulate fractions (LPF) of Cu and Zn were analyzed during different seasons and salinity conditions in estuarine waters of marina, port, and shipyard areas in the southern region of the Patos Lagoon (RS, Brazil). The dissolved labile concentration was determined using the diffusive gradients in thin films technique (DGT). DGT devices were deployed in seven locations of the estuary for 72 h and the physicochemical parameters were also measured. The LPF of Cu and Zn was determined by daily filtering of water samples. Seasonal variation of DGT-Cu concentrations was only significant (p < 0.05) at one shipyard area, while DGT-Zn was significant (p < 0.05) in every locations. The LPF of Cu and Zn concentrations demonstrated seasonal and spatial variability in all locations, mainly at shipyard areas during high salinity conditions. In general, except the control location, the sampling locations showed mean variations of 0.11-0.45 μg L(-1) for DGT-Cu, 0.89-9.96 μg L(-1) for DGT-Zn, 0.65-3.69 μg g(-1) for LPF-Cu, and 1.35-10.87 μg g(-1) for LPF-Zn. Shipyard areas demonstrated the most expressive values of labile Cu and Zn in both fractions. Strong relationship between DGT-Zn and LPF-Zn was found suggesting that the DGT-Zn fraction originates from the suspended particulate matter. Water salinity and suspended particulate matter content indicated their importance for the control of the labile concentrations of Cu and Zn in the water column. These parameters must be taken into consideration for comparison among labile metals in estuaries.

  8. Carbon isotope variations in a solar pond microbial mat: Role of environmental gradients as steering variables

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred; Gorzawski, Hendrik; Dor, Inka

    1994-05-01

    A biogeochemical traverse is presented for a juvenile benthic mat covering the depth profile of an artificially stratified and eutrophicated hypersaline heliothermal pond with known gradients of temperature, salinity, pH, and light transmission. It can be shown that visual mat development depends primarily on temperature and salinity as main environmental steering variables whose increase with depth goes along with the attenuation and final disappearance of a visible microbial film in the pond's hypolimnic compartment. Recorded biogeochemical parameters (C org content, cell numbers, chlorophyll-a content) evidently reflect, as either biomass- or productivity-related index functions, the visually perceptible growth gradient of the microbial ecosystem along the pond slope. The observed coincidence of maxima in these index functions with maxima in δ13Corg clearly identifies high rates of primary productivity as the agent ultimately responsible for the generation of isotopically heavy ( 13C-enriched) biomass in these and related environments. Extreme demands placed on the local feeder pool of dissolved inorganic carbon by high rates of primary productivity entertained by the mat-forming microbenthos obviously give rise to severe CO 2 limitation, enforcing the operation of a diffusion-(supply-)limited assimilatory pathway with an isotopically indiscriminate metabolization of the available CO 2 resources.

  9. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos)

    PubMed

    Swanson

    1998-12-01

    The euryhaline milkfish (Chanos chanos) is an excellent subject for studies of the physiological and behavioral processes involved in salinity adaptation. In this study, energy partitioning for metabolism, activity and growth, maximal activity performance and blood osmotic concentrations were assessed at two activity levels in juvenile milkfish fed equal rations and maintained at a relatively constant temperature (262 C) and at salinities (15, 35 and 55 ?) that represented a wide range of osmoregulatory challenges. Changes in the measured parameters were not consistently related to the magnitude of the trans-integumentary osmotic gradients. Routine oxygen consumption rates were high in 35 ? salinity (mean 1 s.e.m. 1678 mg O2 kg-1 h-1) and comparably low in 15 and 55 ? salinity (1336 and 1273 mg O2 kg-1 h-1, respectively). Routine activity levels (relative swimming velocity) were highest in 35 ? salinity (0. 960.04 L s-1), where L is standard length, intermediate in 15 ? salinity (0.770.03 L s-1) and lowest in 55 ? salinity (0.670.03 L s-1). Growth was significantly higher in 55 ? salinity (3.40.2 % increase in wet body mass per day) than in 35 ? salinity (2.40.2 % increase per day) and intermediate in 15 ? salinity (2.90.5 % increase per day). Maximum swimming velocities decreased with increases in salinity, from 9.90.7 L s-1 in 15 ? salinity to 6.60. 5 L s-1 in 55 ? salinity. Sustained swimming activity above routine levels for 2 h resulted in an increase in blood osmotic concentrations in milkfish in 55 ? salinity, but osmoregulation was re-established during the second 2 h of activity. Thus, patterns of variation in metabolic rate and growth were largely parallel to variations in routine activity although, comparing 15 and 55 ? salinity, elevated maintenance costs for osmoregulation at the high salinity were detectable. Reduced osmoregulatory abilities and reductions in maximal swimming performance suggest that high salinity may constrain activity. The results demonstrate that investigations of salinity adaptation in euryhaline fishes should take into account the interactive effects of salinity on physiology and behavior.

  10. Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging

    PubMed Central

    Pumphrey, Ashley; Yang, Zhengshi; Ye, Shaojing; Powell, David K.; Thalman, Scott; Watt, David S.; Abdel-Latif, Ahmed; Unrine, Jason; Thompson, Katherine; Fornwalt, Brandon; Ferrauto, Giuseppe; Vandsburger, Moriel

    2016-01-01

    An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20mM Eu-HPDO3A, 20mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10−3 ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10−5 ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine. PMID:26684053

  11. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    PubMed

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  12. Impacts of Low Salinity on Growth and Calcification in Baltic Sea Mytilus edulis x trossulus

    NASA Astrophysics Data System (ADS)

    Sanders, T.; Melzner, F.

    2016-02-01

    The Baltic Sea is characterized by a steep salinity gradient (25 psu - <5 psu) which is predicted to increase in the future due to increased precipitation. This provides an excellent biological system to study the effects of salinity and inorganic carbon supply on animal physiology. Mytilus edulis x trossulus is adapted to the low saline Baltic Sea, at the cost of slow body growth and reduced shell thickness. The explanation for the small size of Baltic mytilids has been attributed to tradeoffs in energy partitioning due to high energetic costs associated with osmoregulation. However, salinity may effect calcification mechanisms and reduce calcification and thus, body size and growth. To understand the mechanistic effects salinity has on calcification, energy budgets were quantified in larvae, juveniles and adults from 3 populations of Baltic Sea Mytilus spp. at different salinities (6, 11 and 16 psu). Net CaCO3 production at varying salinities and bicarbonate concentrations was also measured. Larvae from low salinity adapted populations (6 psu) had a 3-fold higher respiration rate compared to higher salinity populations. This was also accompanied by a delay of 48 hours in early shell formation. Reductions in growth and increases in metabolism were largest between 11 psu and 6 psu indicating that the predicted desalination of the Baltic will go along with huge energetic costs for mussel populations, potentially leading to loss of reefs in the Eastern Baltic. To investigate the mechanisms behind increased metabolic cost and decreased allocation to growth, energy budgets are presently being constrained in our three populations using modulations in food supply and temperature.

  13. Decadal trends in deep ocean salinity and regional effects on steric sea level

    NASA Astrophysics Data System (ADS)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  14. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes

    PubMed Central

    2012-01-01

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes. PMID:23186395

  15. BACTERIOPLANKTON DYNAMICS IN NORTHERN SAN FRANCISCO BAY: ROLE OF PARTICLE ASSOCIATION AND SEASONAL FRESHWATER FLOW

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were observed in northern San Francisco Bay, California, during spring and summer 1996 at three sites: Central Bay, Suisun Bay, and the Sacramento River. These sites spanned a salinity gradient from marine to freshwater, an...

  16. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna: Evidence from Kongsfjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Jernas, Patrycja; Klitgaard-Kristensen, Dorthe; Husum, Katrine; Koç, Nalan; Tverberg, Vigdis; Loubere, Paul; Prins, Maarten; Dijkstra, Noortje; Gluchowska, Marta

    2018-04-01

    The relationships between modern Arctic benthic foraminifera and their ecological controls, along with their sensitivity to rapid environmental changes, is still poorly understood. This study examines how modern benthic foraminifera respond to annual environmental changes in the glaciated Arctic fjord Kongsfjorden, western Svalbard. Large environmental gradients due to the inflow of warm and saline Atlantic Water and the influence of tidewater glaciers characterise the fjord hydrography. A transect of six multi-corer stations, from the inner to the outer fjord, was sampled in the late summers of 2005 to 2008 to study the distribution of living (rose Bengal stained) benthic foraminifera. Physical properties of the water masses were measured concurrently. In general, nearly the entire Kongsfjorden region was dominated by ubiquitous N. labradorica foraminiferal assemblage that successfully exploited the local food resources and thrived particularly well in the presence of Atlantic-derived Transformed Atlantic Water (TAW). Further, the annual investigation revealed that Kongsfjorden underwent large interannual hydrological changes during the studied years related to variable inflow of warm and saline Atlantic Water. This led to a strong fauna variability particularly at the two marginal sites: the glacially influenced inner fjord and marine influenced shelf region. We also observed significant species shift from the 'cold' to 'warm' years and an expansion of widespread and sub-arctic to boreal species into the fjord.

  17. Seasonal and interpopulational variability in fecundity, egg size, and elemental composition (CHN) of eggs and larvae in a grapsoid crab, Chasmagnathus granulatus

    NASA Astrophysics Data System (ADS)

    Bas, Claudia C.; Spivak, Eduardo D.; Anger, Klaus

    2007-12-01

    Reproductive traits at the beginning and the end of the annual reproductive season were compared between two populations of the intertidal crab Chasmagnathus granulatus living in ecologically contrasting habitats: (1) Mar Chiquita (MC) (37°45'S, 57°19'W), a highly productive estuarine coastal lagoon with strong salinity fluctuations. (2) San Antonio Bay (SA) (40°46'S, 64°50'), a physically stable but less productive coastal marine environment. Number, size, and elemental composition (CHN) of eggs and larvae differed significantly between populations. Regardless of the season, more but smaller eggs and larvae were produced in MC, while eggs and larvae from SA revealed higher dry mass and C/N ratios indicating higher lipid content. A latitudinal temperature gradient cannot explain these patterns, suggesting that other environmental factors including salinity, quality or quantity of benthic food sources and productivity may be responsible. In both populations, fecundity and biomass per egg were higher at the beginning as compared to the end of the reproductive season. As a consequence, the reproductive effort was consistently maximal at the beginning of the season. At MC, also variability was found between two successive years. Intraspecific (both interpopulational and seasonal) variations in reproductive and developmental traits may be important for the formation of physiologically different metapopulations along the wide geographic range of C. granulatus.

  18. Benthic biodiversity and ecological gradients in the Seno Magdalena (Puyuhuapi Fjord, Chile)

    NASA Astrophysics Data System (ADS)

    Betti, F.; Bavestrello, G.; Bo, M.; Enrichetti, F.; Loi, A.; Wanderlingh, A.; Pérez-Santos, I.; Daneri, G.

    2017-11-01

    Due to its complex hydrological, geomorphological and climatic features, the Chilean fjords region is considered among the most productive areas of the world. The benthic fauna of this region accounts for more than 1600 species showing marked latitudinal biogeographic differences characterizing this as one of the most important hotspot of biodiversity of cold-temperate environments. Despite numerous studies have been conducted to depict the biological characteristics of the fjords, the present situation is strongly unbalanced towards specific taxa. Hence, this study takes into consideration a community approach, highlighting the distribution of six benthic assemblages thriving on vertical walls along the Seno Magdalena fjord (Aysen region). Underwater pictures were used to characterize the trends in abundance and diversity of the main taxa showing distinct responses to salinity and turbidity. Among the less tolerant taxa to high fresh water inputs there are encrusting algae, mainly found in the most external sites lashed by outer currents, far from the estuarine plume. The bathymetric zonation of the assemblages, instead, is characterized by a dense mussel belt in the first 10 m, within a thick layer of low-salinity, nutrient-enriched waters. Rich assemblages of sponges, brachiopods, gorgonians and scleractinians thrive in deeper, marine, clear waters. The evaluation of the ecological role of benthic species leads both to the definition of potential bioindicator taxa responding to anthropic disturbances and to the promotion of protected areas.

  19. Differential impact of lytic viruses on prokaryotic morphopopulations in a tropical estuarine system (Cochin estuary, India).

    PubMed

    Jasna, Vijayan; Pradeep Ram, Angia Sriram; Parvathi, Ammini; Sime-Ngando, Telesphore

    2018-01-01

    Our understanding on the importance of viral lysis in the functioning of tropical estuarine ecosystem is limited. This study examines viral infection of prokaryotes and subsequent lysis of cells belonging to different morphotypes across a salinity gradient in monsoon driven estuarine ecosystem (Cochin estuary, India). High standing stock of viruses and prokaryotes accompanied by lytic infection rates in the euryhaline/mesohaline region of the estuary suggests salinity to have an influential role in driving interactions between prokaryotes and viruses. High prokaryotic mortality rates, up to 42% of prokaryote population in the pre-monsoon season is further substantiated by a high virus to prokaryote ratio (VPR), suggesting that maintenance of a high number of viruses is dependent on the most active fraction of bacterioplankton. Although myoviruses were the dominant viral morphotype (mean = 43%) throughout the study period, there was significant variation among prokaryotic morphotypes susceptible to viral infection. Among them, the viral infected short rod prokaryote morphotype with lower burst estimates (mean = 18 viruses prokaryote-1) was dominant (35%) in the dry seasons whereas a substantial increase in cocci forms (30%) infected by viruses with high burst size (mean = 31 viruses prokaryote-1) was evident during the monsoon season. Such preferential infections of prokaryotic morphopopulations with respect to seasons can have a strong and variable impact on the carbon and energy flow in this tropical ecosystem.

  20. Differential impact of lytic viruses on prokaryotic morphopopulations in a tropical estuarine system (Cochin estuary, India)

    PubMed Central

    Jasna, Vijayan; Pradeep Ram, Angia Sriram; Sime-Ngando, Telesphore

    2018-01-01

    Our understanding on the importance of viral lysis in the functioning of tropical estuarine ecosystem is limited. This study examines viral infection of prokaryotes and subsequent lysis of cells belonging to different morphotypes across a salinity gradient in monsoon driven estuarine ecosystem (Cochin estuary, India). High standing stock of viruses and prokaryotes accompanied by lytic infection rates in the euryhaline/mesohaline region of the estuary suggests salinity to have an influential role in driving interactions between prokaryotes and viruses. High prokaryotic mortality rates, up to 42% of prokaryote population in the pre-monsoon season is further substantiated by a high virus to prokaryote ratio (VPR), suggesting that maintenance of a high number of viruses is dependent on the most active fraction of bacterioplankton. Although myoviruses were the dominant viral morphotype (mean = 43%) throughout the study period, there was significant variation among prokaryotic morphotypes susceptible to viral infection. Among them, the viral infected short rod prokaryote morphotype with lower burst estimates (mean = 18 viruses prokaryote-1) was dominant (35%) in the dry seasons whereas a substantial increase in cocci forms (30%) infected by viruses with high burst size (mean = 31 viruses prokaryote-1) was evident during the monsoon season. Such preferential infections of prokaryotic morphopopulations with respect to seasons can have a strong and variable impact on the carbon and energy flow in this tropical ecosystem. PMID:29534102

  1. The Salt Overly Sensitive (SOS) pathway: established and emerging roles.

    PubMed

    Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia

    2013-03-01

    Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.

  2. Organic geochemical studies of modern microbial mats from Shark Bay: Part I: Influence of depth and salinity on lipid biomarkers and their isotopic signatures.

    PubMed

    Pagès, A; Grice, K; Ertefai, T; Skrzypek, G; Jahnert, R; Greenwood, P

    2014-09-01

    The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n-C17 and n-C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C-depleted long-chain n-alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C-enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA-pathway by sulphate-reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways. © 2014 John Wiley & Sons Ltd.

  3. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.

    PubMed

    Pillans, Richard D; Franklin, Craig E

    2004-07-01

    Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.

  4. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed Central

    Buchwalter, David; Davis, Jenny

    2016-01-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680

  5. The interest of combining micropaleontological and geochemical data for understanding the climate system: the example of the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Fernanda Sanchez Goñi, Maria; Bard, Edouard; Landais, Amaelle; Rossignol, Linda

    2014-05-01

    Theoretical and numerical models predict that rapid ice sheet growth in the North Atlantic high latitudes was the consequence of a) a decrease in summer insolation, b) a strong thermal gradient between ocean and landmasses, and c) moisture generated by persisting warmth and salinity in the subpolar and northern subtropical Atlantic. So far, however, no data have demonstrated the strong land-sea thermal gradient, and how this process was affected by the sub-orbital climatic variability. To fine tune our understanding of this process we examined the MIS 5a/4 transition, between ~80 and 70 thousand years before present (ka), a period marked by decrease in summer insolation and a succession of cooling events, C20 to C19, affecting large parts of the subpolar and central North Atlantic, and Greenland (GS21 to 19). We combined high resolution pollen-based vegetation and foraminifera-based sea surface temperature (SST) data for the interval 85-50 ka, MIS5a-MIS3, from core MD04-2845 located in the Bay of Biscay (northern subtropical gyre, 45°21'N, 5°13'W, 4100 m water depth) with Ice Rafted Debris (IRD), N. pachyderma (s) and benthic foraminifera δ18O records from the same core. This approach allows the identification, without chronological ambiguity, of offsets between eastern North Atlantic Ocean surface hydrology (temperatures and iceberg melting) and atmospherically-driven changes in western European vegetation. The Bay of Biscay palaeoclimatic records were compared with foraminifera and Uk'37-based SST and pollen-based vegetation records from another core, MD99-2331, located in the northwestern Iberian margin. Data from these two cores located in the northern subtropical gyre reveal for the first time a decoupling between atmospheric and oceanic responses to orbital and sub-orbital climatic variability during the last interglacial-glacial transition. We have identified a long-term increase in the thermal gradient (cold land-warm sea) along the western European margin punctuated by three phases of highly pronounced land-sea thermal gradients. We argue that this composite trend was responsible for the production of moisture that continued to feed, via northward tracking storms, northern European, Greenland and Arctic ice sheets during the C20, onset C19 and C18' cold events.

  6. Distribution of vascular plants and macroalgae along salinity and elevation gradients in Oregon tidal marshes

    EPA Science Inventory

    Sea level rise due to global climate change may affect the spatial distribution of plants and macroalgae within tidal estuaries. We present preliminary results from on-going research in Oregon to determine how these potential abiotic drives correlate with the presence or absence...

  7. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  8. EFFECTS OF TIDAL CURRENT PHASE AT THE JUNCTION OF TWO STRAITS. (R826940)

    EPA Science Inventory

    Abstract

    Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Ba...

  9. The Importance of Allochthonous Subsidies to an Estuarine Food Web along a Salinity Gradient

    EPA Science Inventory

    Estuarine food webs function within a heterogeneous mosaic and are supported by a mix of primary producers from both local and distant sources. Processes governing the exchange and consumption of organic matter (OM), however, are poorly understood. To study the contribution of ...

  10. Simulated changes in salinity in the York and Chickahominy Rivers from projected sea-level rise in Chesapeake Bay

    USGS Publications Warehouse

    Rice, Karen C.; Bennett, Mark; Shen, Jian

    2011-01-01

    As a result of climate change and variability, sea level is rising throughout the world, but the rate along the east coast of the United States is higher than the global mean rate. The U.S. Geological Survey, in cooperation with the City of Newport News, Virginia, conducted a study to evaluate the effects of possible future sea-level rise on the salinity front in two tributaries to Chesapeake Bay, the York River, and the Chickahominy/James River estuaries. Numerical modeling was used to represent sea-level rise and the resulting hydrologic effects. Estuarine models for the two tributaries were developed and model simulations were made by use of the Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D), developed by the Virginia Institute of Marine Science. HEM-3D was used to simulate tides, tidal currents, and salinity for Chesapeake Bay, the York River and the Chickahominy/James River. The three sea-level rise scenarios that were evaluated showed an increase of 30, 50, and 100 centimeters (cm). Model results for both estuaries indicated that high freshwater river flow was effective in pushing the salinity back toward Chesapeake Bay. Model results indicated that increases in mean salinity will greatly alter the existing water-quality gradients between brackish water and freshwater. This will be particularly important for the freshwater part of the Chickahominy River, where a drinking-water-supply intake for the City of Newport News is located. Significant changes in the salinity gradients for the York River and Chickahominy/James River estuaries were predicted for the three sea-level rise scenarios. When a 50-cm sea-level rise scenario on the York River during a typical year (2005) was used, the model simulation showed a salinity of 15 parts per thousand (ppt) at river kilometer (km) 39. During a dry year (2002), the same salinity (15 ppt) was simulated at river km 45, which means that saltwater was shown to migrate 6 km farther upstream during a dry year than a typical year. The same was true of the Chickahominy River for a 50-cm sea-level rise scenario but to a greater extent; a salinity of 4 ppt was simulated at river km 13 during a typical year and at river km 28 during a dry year, indicating that saltwater migrated 15 km farther upstream during a dry year. Near a drinking-water intake on the Chickahominy River, for a dry year, salinity is predicted to more than double for all three sea-level rise scenarios, relative to a typical year. During a typical year at this location, salinity is predicted to increase to 0.006, 0.07, and more than 2 ppt for the 30-, 50-, and 100-cm rise scenarios, respectively.

  11. Influence of salinity on prevalence of the parasite Loxothylacus panopaei in the xanthid Panopeus obesus in SW Florida.

    PubMed

    Tolley, S Gregory; Winstead, James T; Haynes, Lesli; Volety, Aswani K

    2006-06-23

    This study was conducted to examine the potential influence of salinity, a proxy for freshwater inflow, on the prevalence of the castrator parasite Loxothylacus panopaei on saltmarsh mud crabs Panopeus obesus on SW Florida oyster reefs. Spatial and seasonal patterns of the presence of potential host crabs and the prevalence of the parasite were assessed in the Caloosahatchee, Estero, and Faka Union estuaries. Lift nets (1 m2) containing 5 1 of oyster clusters were deployed on intertidal reefs at 3 sites along the salinity gradient of each estuary. Nets were deployed during 3 seasonally dry and 3 seasonally wet months for a period of 30 d. P. obesus densities tended to increase downstream in higher salinity waters, with crabs being absent from the upper station in the Caloosahatchee during both seasons and absent from the upper station of the Faka Union during wet months. Parasite prevalence was reduced upstream in each estuary during wet months compared to dry months, and for those estuaries that experienced higher relative levels of freshwater inflow. Furthermore, parasite prevalence was positively correlated with the mean salinity of capture of host crabs. Based on the distribution of P. obesus and the above patterns related to salinity, it appears that freshwater inflow and seasonal rains might regulate the prevalence of this parasite in SW Florida by creating spatiotemporal, low salinity refuges for its host.

  12. Salinity as a constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    1999-01-01

    The effects of increased salinity on plant growth were examined in a greenhouse experiment with four species common to oligohaline marshes of the northern Gulf of Mexico: Eleocharis palustris, Panicum hemitomon, Sagittaria lancifolia, and Scirpus americanus. Effects of final salinity reached (6 or 12 g/L), salinity influx rate (3 d or 3 wk), and duration of exposure (1, 2, or 3 mo) were investigated. Sagittaria lancifolia was the first species to show visible signs of stress, with browning and curling of older leaf edges. The salt effect was delayed for 6-8 wk in P. hemitomon, but this species had the highest aboveground tissue mortality rate at 12 g/L as exposure continued. Final salt concentration affected all species to a greater degree than did salinity influx rate. No aboveground mortality occurred at 6 g/L, but growth suppression was apparent and varied with species. The magnitude of growth suppression in response to salinity increased for all species as the duration of exposure increased. Overall, we ranked the species as follows, in order from least to most salt tolerant: Panicum hemitomon < Sagittaria lancifolia < Eleocharis palustris < Scirpus americanus. This ranking reflects the field occurrence of these species along a gradient of increasing salinity in northern Gulf of Mexico coastal habitats from freshwater wetlands through oligohaline areas to mesohaline wetlands.

  13. Near-surface salinity and temperature structure observed with dual-sensor drifters in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.

    2017-07-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  14. Near-surface Salinity and Temperature structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.

    2017-12-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  15. Phytoplankton Diversity and Community Composition along the Estuarine Gradient of a Temperate Macrotidal Ecosystem: Combined Morphological and Molecular Approaches

    PubMed Central

    Bazin, Pauline; Jouenne, Fabien; Friedl, Thomas; Deton-Cabanillas, Anne-Flore; Le Roy, Bertrand; Véron, Benoît

    2014-01-01

    Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description. PMID:24718653

  16. Three-dimensional hydrodynamic modelling study of reverse estuarine circulation: Kuwait Bay.

    PubMed

    Alosairi, Y; Pokavanich, T; Alsulaiman, N

    2018-02-01

    Hydrodynamics and associated environmental processes have always been of major concern to coastal-dependent countries, such as Kuwait. This is due to the environmental impact that accompanies the economic and commercial activities along the coastal areas. In the current study, a three-dimensional numerical model is utilized to unveil the main dynamic and physical properties of Kuwait Bay during the critical season. The model performance over the summer months (June, July and August 2012) is assessed against comprehensive field measurements of water levels, velocity, temperature and salinity data before using the model to describe the circulation as driven by tides, gravitational convection and winds. The results showed that the baroclinic conditions in the Bay are mainly determined by the horizontal salinity gradient and to much less extent temperature gradient. The gradients stretched over the southern coast of the Bay where dense water is found at the inner and enclosed areas, while relatively lighter waters are found near the mouth of the Bay. This gradient imposed a reversed estuarine circulation at the main axis of the Bay, particularly during neap tides when landward flow near the surface and seaward flow near the bed are most evident. The results also revealed that the shallow areas, including Sulaibikhat and Jahra Bays, are well mixed and generally flow in the counter-clockwise direction. Clockwise circulations dominated the northern portion of the Bay, forming a sort of large eddy, while turbulent fields associated with tidal currents were localized near the headlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    NASA Astrophysics Data System (ADS)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  18. Maximizing the value of pressure data in saline aquifer characterization

    NASA Astrophysics Data System (ADS)

    Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.

    2017-11-01

    The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.

  19. Fully integrated physically-based numerical modelling of impacts of groundwater extraction on surface and irrigation-induced groundwater interactions: case study Lower River Murray, Australia

    NASA Astrophysics Data System (ADS)

    Alaghmand, S.; Beecham, S.; Hassanli, A.

    2013-07-01

    Combination of reduction in the frequency, duration and magnitude of natural floods, rising saline water-table in floodplains and excessive evapotranspiration have led to an irrigation-induced groundwater mound forced the naturally saline groundwater onto the floodplain in the Lower River Murray. It is during the attenuation phase of floods that these large salt accumulations are likely to be mobilised and will discharge into the river. The Independent Audit Group for Salinity highlighted this as the most significant risk in the Murray-Darling Basin. South Australian government and catchment management authorities have developed salt interception schemes (SIS). This is to pump the highly saline groundwater from the floodplain aquifer to evaporation basins in order to reduce the hydraulic gradient that drives the regional saline groundwater towards the River Murray. This paper investigates the interactions between a river (River Murray in South Australia) and a saline semi-arid floodplain (Clarks Floodplain) significantly influenced by groundwater lowering (Bookpurnong SIS). Results confirm that groundwater extraction maintain a lower water-table and more fresh river water flux to the saline floodplain aquifer. In term of salinity, this may lead to less amount of solute stored in the floodplain aquifer. This occurs through two mechanisms; extracting some of the solute mass from the system and changing the floodplain groundwater regime from a losing to gaining one. Finally, it is shown that groundwater extraction is able to remove some amount of solute stored in the unsaturated zone and mitigate the floodplain salinity risk.

  20. Environmental tolerances of rare and common mangroves along light and salinity gradients.

    PubMed

    Dangremond, Emily M; Feller, Ilka C; Sousa, Wayne P

    2015-12-01

    Although mangroves possess a variety of morphological and physiological adaptations for life in a stressful habitat, interspecific differences in survival and growth under different environmental conditions can shape their local and geographic distributions. Soil salinity and light are known to affect mangrove performance, often in an interactive fashion. It has also been hypothesized that mangroves are intrinsically shade intolerant due to the high physiological cost of coping with saline flooded soils. To evaluate the relationship between stress tolerance and species distributions, we compared responses of seedlings of three widespread mangrove species and one narrow endemic mangrove species in a factorial array of light levels and soil salinities in an outdoor laboratory experiment. The more narrowly distributed species was expected to exhibit a lower tolerance of potentially stressful conditions. Two of the widespread species, Avicennia germinans and Lumnitzera racemosa, survived and grew well at low-medium salinity, regardless of light level, but performed poorly at high salinity, particularly under high light. The third widespread species, Rhizophora mangle, responded less to variation in light and salinity. However, at high salinity, its relative growth rate was low at every light level and none of these plants flushed leaves. As predicted, the rare species, Pelliciera rhizophorae, was the most sensitive to environmental stressors, suffering especially high mortality and reduced growth and quantum yield under the combined conditions of high light and medium-high salinity. That it only thrives under shaded conditions represents an important exception to the prevailing belief that halophytes are intrinsically constrained to be shade intolerant.

  1. Kuroshio variation near Taiwan during the past 6,000 years

    NASA Astrophysics Data System (ADS)

    Wei, K.; Lai, Y.; Lin, Y.; Shen, C.; Mii, H.

    2013-12-01

    The Holocene thermal optimum at about 6 ka is considered to be warmer and wetter than the present in northern subtropical regions, and the late Holocene is expected to show a generally cooling trend ever since, however, the exact pattern is not yet clear for the Taiwan region. New and published data of hydrological proxies of the Late Holocene collected from two marine sedimentary cores adjacent to Taiwan were compiled in an attempt to reconstruct hydrological conditions of the Kuroshio over the past 6000 years. Sea surface temperatures, salinities and potential densities were estimated from paired measurements of Mg/Ca ratio and δ18O of planktonic foraminfera Globigerinoides ruber. The SSTs from Core ORI715-21 (22.7°N, 121.5°E, water depth 760 m) varied between 26.0 and 29.0°C, showing three short cool intervals during 5.6 - 5.0, ~3,5 and 0.8-0.2 ka intercalated in generally warm late Holocene. Salinity shows a generally decreasing trend, decreasing particularly in the last 3000 years. Reconstructed water density follows mainly with salinity change, showing a clear decreasing trend over the past 3000 years. The SSTs from Core MD01-2403 (25.3°N, 123.2°E, water depth 1420 m) in the southern Okinawa Trough varied between 26.5 and 29.5°C, exhibiting a stable, mild warm period between 5.0 and 2.6 ka, The SSTs in 6.0 - 5.5 ka, as well as in 2.5-1.0 ka are relatively cooler than the rest of time in the late Holocene. The SSS shows a decreasing trend since 2.0 ka. The SSTs and SSSs reconstructed from the southern Okinawa site (MD01-2403) are in general higher than that from the southern site ORI-715-21 near Green Island, somewhat counter-intuitive. In viewing the high-speed flow of the Kuroshio, mixture pattern of waters and the life cycle length of G. ruber, we regard that the record of the southern site reflects sea-surface conditions of the tropical Pacific east of Luzon and that of the South China Sea, while the northern site record reflects the condition of the Kuroshio near Taiwan eastern coast. The hydrological gradients reflect the strength of the Upstream Kuroshio as well the degree to which it mixed with the South China Sea water masses. Three intervals, marked by strong negative S-N SST gradients, 5.6-5.1, 3.7-3.5 and 2.4-1.9 Ka, are interpreted as having strong winter monsoons and weak Upstream Kuroshio such that the Kuroshio intruded into SCS and formed prolonged Loop Currents, bringing out more cool and fresh surface sea waters. No systematic relationships can be found among the Upstream Kuroshio strength, Greenland atmospheric temperature (GISP II δ18O), Asian monsoon (Dongge cave carbonate δ18O) and ENSO activity (Moy et al.2002).

  2. Review of factors affecting recovery of freshwater stored in saline aquifers

    USGS Publications Warehouse

    Merritt, Michael L.

    1989-01-01

    A simulation analysis reported previously, and summarized herein, identified the effects of various geohydrologic and operational factors on recoverability of the injected water. Buoyancy stratification, downgradient advection, and hydrodynamic dispersion are the principal natural processes that reduce the amount of injected water that can be recovered. Buoyancy stratification is shown to depend on injection-zone permeability and the density contrast between injected and saline native water. Downgradient advection occurs as a result of natural or induced hydraulic gradients in the aquifer. Hydrodynamic dispersion reduces recovery efficiency by mixing some of the injected water with native saline aquifer water. In computer simulations, the relation of recovery efficiency to volume injected and its improvement during successive injection-recovery cycles was shown to depend on changes in the degree of hydrodynamic dispersion that occurs. Additional aspects of the subject are discussed.

  3. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less

  4. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    DOE PAGES

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.; ...

    2016-07-28

    Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less

  5. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    NASA Astrophysics Data System (ADS)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and <3 μm) and picophytoplankton community structure were characterized in the monsoonal Zuari estuary, along the west coast of India, from October 2010 to September 2011 across the salinity gradient (0-35). On an annual scale, >3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of <3 μm size-fraction. During monsoon season, freshwater runoff and shorter water residence time resulted in a size-independent response. The lowest annual chlorophyll a biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of <3 μm chlorophyll a biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  6. Thermographic visualization of the superficial vein and extravasation using the temperature gradient produced by the injected materials

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi

    2014-11-01

    There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.

  7. Highly variable nutrient concentrations in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cardona, Yuley; Bracco, Annalisa; Villareal, Tracy A.; Subramaniam, Ajit; Weber, Sarah C.; Montoya, Joseph P.

    2016-07-01

    The distribution of surface nutrients along the salinity gradient in the Mississippi-Atchafalaya River outflow region was examined during four cruises, including two simultaneous cruises, conducted in the northern Gulf during the summer of 2010 and 2011, and in late spring of 2012. The new, extensive data set covers the salinity gradient from 11 to 37 psu (practical salinity unit) in a year of extraordinarily high river discharge (2011), with few samples from a year of average (2010) and below average (2012) river outflow. The overall surface concentrations of nitrate+nitrite, orthophosphate and silicate are compared to those recorded in cruises spanning the 1985 - 2009 interval. Using Monte Carlo simulations to test the statistical significance, we found that surface orthophosphate and nitrate+nitrite concentrations are approximately three and two fold smaller, respectively, in the 2010-2012 period compared to the previous years. Changes in silicate concentrations were, in most cases, not significant, and their assessment complicated by different measurement techniques and potential preservation artifacts. The weighted river loading of these nutrients was, on the other hand, very high in the latest period when samples mostly covered 2011. The well-known negative correlation between nutrient concentrations and salinity at the ocean surface is confirmed in the most recent data. The area surrounding the Mississippi River mouth is characterized by inorganic N:P ratios greater than 30:1 that decrease to values typically less than 10:1 at about 100 km from of the mouth. Overall our analysis suggests that surface nutrient concentrations in the northern Gulf of Mexico cannot be described with any good accuracy by a linear model based on river discharge alone.

  8. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  9. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    PubMed

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Water flow and solute transport in floating fen root mats

    NASA Astrophysics Data System (ADS)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  11. How tides and river flows determine estuarine bathymetries [review article

    NASA Astrophysics Data System (ADS)

    Prandle, D.

    2004-04-01

    For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios. Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ζ̂), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of ζ̂ and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of ζ̂ and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times. Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on D 2/f ÛU o ( Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against ζ̂ and D, the conditions LI/ L<1, EX/ L<1 ( EX is the tidal excursion) alongside the Simpson-Hunter criteria D/ U3<50 m -2 s 3. This zone encompasses 24 out of 25 `randomly' selected UK estuaries. However, the length of saline intrusion in a funnel-shaped estuary is also sensitive to axial location. Observations suggest that this location corresponds to a minimum in landward intrusion of salt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s -1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients). These dynamical solutions are coupled with further generalised theory related to depth and time-mean, suspended sediment concentrations (as functions of ζ̂ and D). Then, by assuming the transport of fine marine sediments approximates that of a dissolved tracer, the rate of estuarine supply can be determined by combining these derived mean concentrations with estimates of flushing time, FT, based on LI. By further assuming that all such sediments are deposited, minimum times for these deposition rates to in-fill estuaries are determined. These times range from a decade for the shortest, shallowest estuaries to upwards of millennia in longer, deeper estuaries with smaller tidal ranges.

  12. Sea Surface Salinity signatures of tropical instability waves: New evidences from SMOS

    NASA Astrophysics Data System (ADS)

    Yin, Xiaobin; Boutin, Jacqueline; Reverdin, Gilles; Lee, Tong; Martin, Nicolas

    2014-05-01

    The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, has been providing global maps of sea surface salinity (SSS) since 2010. SSS measurements from the SMOS satellite during June 2010 and December 2012 provide an unprecedented space-borne observation of the salinity structure of tropical instability waves (TIWs) including strong La Niña conditions during recent years. We use SMOS level 3 SSS maps averaged over 100 x 100 km2 with a 10-day running window and sampled daily over a 0.25 x 0.25° grid generated at Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (http://catds.ifremer.fr/Products/Available-products-from-CEC-OS/Locean-v2013) [Boutin et al., 2013; Yin et al., 2012]. We also analyze daily SST from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) produced on an operational basis at the UK Met Office using optimal interpolation [Donlon et al., 2011]. From a time-longitude section in the eastern Pacific ocean, westward propagations of SSS and SST anomalies along 2° N became apparent west of 90° W during June 2010 - March 2011 and June 2011 - March 2012, coincident with negative indexes in the NINO3 and NINO3.4 regions. The 33-day SSS anomaly and SST anomaly appeared together approximately in the same time and regions. The 17-day SSS anomaly is less clear than the 17-day SST anomaly. The SSS anomaly has approximate amplitude of 0.5 practical salinity scale (pss) and the SST anomaly has approximate amplitude of 2 ° C. Then, we focus on analysis of SSS and SST anomalies during June to December 2010. During this period the tropical Pacific was characterized by a strong La Niña, providing favorable conditions for the occurrence of TIWs. The high anomalies and meridional gradients of both SSS and SST appear north of the equator west of 100° W. Near 100W, they straddle the equator where South Pacific water and eastern edge upwelling water with high salinity meets the fresher Inter-tropical Convergence Zone water. SSS anomaly and SST anomaly vary in opposite phase and the amplitude of SSS anomaly is approximately 1/5 of SST anomaly. The westward propagation speed of SSS is approximately between 0.6 m/s and 1.5 m/s depending on latitude and dominant period of TIWs. Poleward propagations of waves are also observed at around 100° W. The results demonstrate the important value of SMOS SSS in studying TIWs. Reference Boutin, J., N. Martin, G. Reverdin, X. Yin and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9, 183-192, doi:10.5194/os-9-183-2013. Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer (2012), The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA), Remote Sensing of the Environment, 116, 140-158, doi: 10.1016/j.rse.2010.10.017. Yin, X., J. Boutin, and P. Spurgeon (2012), First assessment of SMOS data over open ocean: part I Pacific Ocean, IEEE Trans. Geosci. Remote Sens. 50(5), 1648-1661.

  13. Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity

    USGS Publications Warehouse

    Cardona-Olarte, P.; Twilley, R.R.; Krauss, K.W.; Rivera-Monroy, V.

    2006-01-01

    We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase. ?? Springer 2006.

  14. Membraneless seawater desalination

    DOEpatents

    Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.

    2018-04-03

    Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.

  15. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    PubMed

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial among-population differences in body size, ignoring allometric effects when investigating divergent natural selection's role in phenotypic diversification might not be warranted.

  16. Increased Precipitation over the Yucatan Peninsula Inferred from the Spatial and Temporal Distribution of Late Holocene Foram Assemblages

    NASA Astrophysics Data System (ADS)

    Rachmallu, M.; Broach, K.; Paytan, A.; Street, J. H.

    2014-12-01

    As global climate warms, IPCC predictions suggest dry and seasonally dry regions will become dryer, increasing stress on water resources by growing urban populations (e.g. Southern California; Yucatan, Mexico). This study aims to reconstruct paleohydrologic trends during the late Holocene using foraminifera assemblages in Yucatan, Mexico to determine drought susceptibility in a region affected by migration of the Intertropical Convergence Zone (ITCZ). The ITCZ affects precipitation over the Yucatan Peninsula, potentially decreasing groundwater infiltration and thus reducing discharge in submarine springs at the peninsula margins. The field site Celestun Lagoon near Merida, Yucatan, Mexico, is dominated by spring and groundwater inputs at the northern terminus and opens to the Gulf of Mexico at the southern end resulting in a strong salinity gradient dependent on freshwater influx. We analyzed the foram assemblage in the top 6 cm of a set of 7 cores collected along a lagoonal transect (from the mouth to the head) and plotted the relative abundances of Ammonia beccarii, Elphidium sp., Quinqueloculina sp., and the ostracod Hemicyprideis cf. nichuptensis against site location. A. beccarii abundance increases from 40% near the head to 70% near the middle of the lagoon before dropping to <10% toward the saline lagoon mouth (high abundance in brackish salinity). Quinqueloculina sp. increases from 0% at the upper lagoon to nearly 40% near the mouth showing an opposite trend along the same transect. Elphidium sp. showed no clear trend (abundance range 10-28% throughout), and lowest H. nichuptensis abundance occurred at the middle of the lagoon (10%) increasing to the north and south (up to 60%). The inversely correlated spatial distribution between A. beccarii and Quinqueloculina sp. occurs vertically in an upper lagoon long core from 125-96 cm below sediment-water interface (14C age dates 3968-2820 ka), implying a decreasing salinity over ~1000 yrs and increased precipitation over the peninsula feeding the springs. The relationship between decreasing Elphidium sp. abundance and salinity over the same time interval is unclear; ostracod trends are being measured. This assemblage data corresponds to low δ18O values in Yucatan lakes suggesting low evaporation and increased wet conditions during the same time period.

  17. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Willis, Jonathan M; Day, Richard H.; Krauss, Ken W.; Hester, Mark W.

    2016-01-01

    Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above-ground effects of mangrove expansion are consistently large, below-ground influences of mangrove expansion appear to be greatest along low-rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.

  18. SMAP Salinity Artifacts Associated With Presence of Rain

    NASA Astrophysics Data System (ADS)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  19. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah

    USGS Publications Warehouse

    Boyd, Eric S.; Yu, Ri-Qing; Barkay, Tamar; Hamilton, Trinity L.; Baxter, Bonnie K.; Naftz, David L.; Marvin-DiPasquale, Mark

    2017-01-01

    Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.

  20. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of dissolved and particulate organic matter was studied in northern San Francisco Bay on seven dates during declining flow conditions from April to October 1996. Measurements were made at 3 to 11 stations (usually 8) along the salinity gradient from the Sacrament...

  1. Quantifying Relationships between Water Quality and Aquatic Life Use Attainment using Sediment Profile Imagery (SPI)

    EPA Science Inventory

    We present results from a monthly SPI and water quality survey of nine stations along a transect in the Pensacola Bay estuary spanning the salinity gradient from Escambia River to the Gulf of Mexico. We evaluated Benthic Habitat Quality (Nilsson and Rosenberg 1997) derived from s...

  2. ABUNDANCE OF SEAGRASS (ZOSTERA MARINA L.) AND MACROALGAE IN RELATION TO THE SALINITY-TEMPERATURE GRADIENT IN YAQUINA BAY, OREGON, USA

    EPA Science Inventory

    The distribution and abundance of the seagrass, Zostera marina, and the associated macroalgae are described for Yaquina Bay, Oregon, U.S.A. Possible relationships between plant abundance and physical-chemical characteristics of the water column were also explored. Study sites w...

  3. Quantifying Relationships between Water Quality and Aquatic Life Use Attainment using Sediment Profile Imagery (SPI) in Pensacola Bay

    EPA Science Inventory

    We present results from a monthly sediment and water quality survey of nine stations along a transect in the Pensacola Bay estuary spanning the salinity gradient from Escambia River to the Gulf of Mexico. We evaluated Benthic Habitat Quality (Nilsson and Rosenberg 1997) derived f...

  4. Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot

    NASA Astrophysics Data System (ADS)

    Rumbold, Darren G.; Lange, Ted R.; Richard, Doug; DelPizzo, Gina; Hass, Nicole

    2018-01-01

    To examine down-estuary effects and how differences in food webs along a salinity gradient might influence mercury (Hg) biomagnification, we conducted a study from 2010 to 2015 in an estuary with a known biological hotspot at its headwaters. Over 907 samples of biota, representing 92 different taxa of fish and invertebrates, seston and sediments were collected from the upper, middle and lower reach for Hg determination and for stable nitrogen and carbon isotope analyses. Trophic magnification slopes (TMS; log Hg versus δ15N), as a measure of biomagnification efficiency, ranged from 0.23 to 0.241 but did not differ statistically among reaches. Hg concentrations were consistently highest, ranging as high as 4.9 mg/kg in top predatory fish, in the upper-reach of the estuary where basal Hg entering the food web was also highest, as evidenced by methylmercury concentrations in suspension feeders. Top predatory fish at the mouth of the estuary contained relatively low [THg], likely due to lower basal Hg. This was nonetheless surprising given the potential for down-estuary biotransport.

  5. Egg buoyancy variability in local populations of Atlantic cod (Gadus morhua).

    PubMed

    Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Agnalt, Ann Lisbeth; Thorsen, Anders; Sundby, Svein

    2012-01-01

    Previous studies have found strong evidences for Atlantic cod ( Gadus morhua ) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.

  6. SMOS sea surface salinity maps of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) is also a key ingredient of the thermohaline circulation. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, has the objective measuring soil moisture over the continents and sea surface salinity over the oceans. Although the mission was originally conceived for hydrological and oceanographic studies [1], SMOS is also making inroads in the cryospheric monitoring. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but a more frequent one at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, this is rather low, , i.e.,: 90% of ocean SSS values span a range of brightness temperatures of only 5K at L-band. This sensitivity is particularly low in cold waters. This implies that the SSS retrieval requires high radiometric performance. Since the SMOS launch, SSS Level 3 maps have been distributed by several expert laboratories including the Barcelona Expert Centre (BEC). However, since the TB sensitivity to SSS decreases with decreasing sea surface temperature (SST), large retrieval errors had been reported when retrieving salinity values at latitudes above 50⁰N. Two new processing algorithms, recently developed at BEC, have led to a considerable improvement of the SMOS data, allowing for the first time to derive SSS maps in cold waters. The first one is to empirically characterize and correct the systematic biases with six years of SMOS data acquisitions. The second is the modification of the filtering criterion to account for the statistical distributions of SSS at each ocean grid point. This allows retrieving a value of SSS which is less affected by outliers originated from RFI and other effects. We will provide an assessment of the quality of these new SSS products in the Arctic, as well as illustrate the potential of these maps to monitor the main river discharges to the Arctic Ocean. [1] Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.; Hahne, A. & Mecklenburg, S. SMOS: The Challenging Sea Surface Salinity Measurement From Space Proceedings of the IEEE, 2010, 98, 649 -665

  7. Avian predator buffers against variability in marine habitats with flexible foraging behavior

    USGS Publications Warehouse

    Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.

    2018-01-01

    How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.

  8. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  9. Nutrient enrichment increases mortality of mangroves.

    PubMed

    Lovelock, Catherine E; Ball, Marilyn C; Martin, Katherine C; C Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  10. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    USGS Publications Warehouse

    Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee

    2017-01-01

    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.

  11. Alkaline Phosphatase Activity : an overlooked player on the phosphate behavior in macrotidal estuaries

    NASA Astrophysics Data System (ADS)

    Delmas, Daniel; Labry, Claire; Youenou, Agnes; Quere, Julien; Auguet, Jean Christophe; Montanie, Helene

    2014-05-01

    The non-conservative behavior of phosphate within the estuarine salinity gradient is essentially assigned to physico-chemical processes, such as desorption at low salinity and to benthic exchanges. Microbial phosphatase activity (APA), generally related to phosphate deficiency, is seldom studied in phosphate rich estuarine waters. In order to address the impact of microbial activity (bacterial abundance, production BSP, APA) on phosphate behavior, we studied these activities on a seasonal basis within the salinity gradient of two macrotidal estuaries presenting different levels of suspended solids. Whatever the season the Charente estuary is characterized by high levels of Suspended Particulate Matter (SPM > 1g.L-1), particularly in the Maximum Turbidity Zone (MTZ) located at the 5-10 psu. In this area characterized by high BSP and APA there is a significant increase of PO4 levels especially during summer. In the Aulne estuary the particle load is significantly lower (1/10) but high BSP and APA are equally recorded. In the highly turbid waters of the Charente estuary, active phytoplankton is virtually absent as pheopigments constitute up to 80% of the total pigments, particularly in the MTZ, therefore APA may essentially have a bacterial origin. In the Aulne estuary attached bacteria are dominant, both in numbers and production, and their distribution along the haline gradient perfectly follows those of APA and phosphate levels. These observations, associated with the very close relationships observed between APA, SPM and BSP, suggest that APA derive mainly from bacterial (attached) origin and operate at the expense of particulate phosphorus and hence contribute to PO4 regeneration, especially in spring and summer. Finally, as APA increased as PO4, whereas the reverse is observed in both fresh and marine waters, an original scheme for APA regulation, related to the large dominance of attached bacteria can be described for the estuarine waters.

  12. Morphological and structural plasticity of grassland species in response to a gradient in saline-sodic soils.

    PubMed

    Huang, Y; Song, Y; Li, G; Drake, P L; Zheng, W; Li, Z; Zhou, D

    2015-11-01

    The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline-sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline-sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline-sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline-sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline-sodic conditions than their paired congeners, which may manifest as an inability to compete with co-occurring species in locations where saline-sodic soils are absent. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Isotopic Composition of Methane and Inferred Methanogenic Substrates Along a Salinity Gradient in a Hypersaline Microbial Mat System

    NASA Astrophysics Data System (ADS)

    Potter, Elyn G.; Bebout, Brad M.; Kelley, Cheryl A.

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC δ13C values ranged from -6.7 to -13.5%, and DIC δ13C values ranged from -1.4 to -9.6%. These values were similar to previously reported values. The δ13C values of methane ranged from -49.6 to -74.1%; the methane most enriched in 13C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  14. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    USGS Publications Warehouse

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  15. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    USGS Publications Warehouse

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  16. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    PubMed

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  17. Hydrologic exchanges and baldcypress water use on deltaic hummocks, Louisiana, USA

    USGS Publications Warehouse

    Hsueh, Yu-Hsin; Chambers, Jim L.; Krauss, Ken W.; Allen, Scott T.; Keim, Richard F.

    2016-01-01

    Coastal forested hummocks support clusters of trees in the saltwater–freshwater transition zone. To examine how hummocks support trees in mesohaline sites that are beyond physiological limits of the trees, we used salinity and stable isotopes (2H and 18O) of water as tracers to understand water fluxes in hummocks and uptake by baldcypress (Taxodium distichum (L.) Rich.), which is the most abundant tree species in coastal freshwater forests of the southeastern U.S. Hummocks were always partially submerged and were completely submerged 1 to 8% of the time during the two studied growing seasons, in association with high water in the estuary. Salinity, δ18O, and δ2H varied more in the shallow open water than in groundwater. Surface water and shallow groundwater were similar to throughfall in isotopic composition, which suggested dominance by rainfall. Salinity of groundwater in hummocks increased with depth, was higher than in swales, and fluctuated little over time. Isotopic composition of xylem water in baldcypress was similar to the vadose zone and unlike other measured sources, indicating that trees preferentially use unsaturated hummock tops as refugia from higher salinity and saturated soil in swales and the lower portions of hummocks. Sustained upward gradients of salinity from groundwater to surface water and vadose water, and low variation in groundwater salinity and isotopic composition, suggested long residence time, limited exchange with surface water, and that the shallow subsurface of hummocks is characterized by episodic salinization and slow dilution.

  18. Toward an integrated view of ionospheric plasma instabilities: Altitudinal transitions and strong gradient case

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.

    2016-04-01

    A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.

  19. High-Frequency Response of the Atmospheric Electric Potential Gradient Under Strong and Dry Boundary-Layer Convection

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Silva, Hugo Gonçalves; Bennett, Alec; Salgado, Rui; Bortoli, Daniele; Costa, Maria João; Collares Pereira, Manuel

    2018-01-01

    The spectral response of atmospheric electric potential gradient gives important information about phenomena affecting this gradient at characteristic time scales ranging from years (e.g., solar modulation) to fractions of a second (e.g., turbulence). While long-term time scales have been exhaustively explored, short-term scales have received less attention. At such frequencies, space-charge transport inside the planetary boundary layer becomes a sizeable contribution to the potential gradient variability. For the first time, co-located (Évora, Portugal) measurements of boundary-layer backscatter profiles and the 100-Hz potential gradient are reported. Five campaign days are analyzed, providing evidence for a relation between high-frequency response of the potential gradient and strong dry convection.

  20. Hydrodynamic framework of Saharan Triassic aquifers in South Tunisia and Algeria

    NASA Astrophysics Data System (ADS)

    Dhia, H. Ben; Chiarelli, A.

    The main characteristics of the lower Triassic in the Saharan part of Tunisia are presented. This first study of the aquifer is made possible because of data available from numerous petroleum wells that exist in the region. The results show that the reservoir is of importance for either geothermal energy recovering or human water needs; especially since its salinity lies in the range 2 g/l to 60 g/l. Along the Tunisian-Llibyan frontier, because of its pressure and salinity (<3 g/l), the aquifer can be used for regional needs. The study also shows that the salinity gradient (SE-NW) increases orthogonally to the runoff direction (SW-NE). This phenomenon was unexpected and it is necessary to consider the aquifer in its regional North African framework and to include its Algerian part to understand it; when the salinity and potentiometric maps include both countries, a regional pattern is evident. Furthermore, a correspondence is noted between the salinity variations and the percentage of detritic elements in the reservoir. Salinity increases toward the NW, while the detritic elements decrease in that direction. Zones with salt content lower than 5 g/l seem to be related to good reservoirs and shales, that are rich in sands, and carbonates. The aquifer water supply is primarily linked to gravity flow and secondarily to compaction flow.

  1. Reactive iron and manganese in estuarine sediments of the Baltic Sea: Impacts of flocculation and redox shuttling

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Asmala, Eero; Hietanen, Susanna

    2016-04-01

    Iron (Fe) and manganese (Mn) play important roles in sedimentary carbon cycling in both freshwater and marine systems. Dissimilatory reduction of Fe and Mn oxides is known to be a major pathway of suboxic organic matter remineralization in surface sediments, while recent studies have shown that Fe and Mn oxides may be involved in the anaerobic oxidation of methane deeper in the sediment column (e.g., Egger et al., 2015). Estuaries are transitional environments, characterized by gradients of salinity and redox conditions which impact on the mobility of Fe and Mn. In turn, the distribution of Fe and Mn in estuarine sediments, and the role of the two metals in carbon cycling, is expected to be spatially heterogeneous. However, few studies have attempted to describe the sedimentary distribution of Fe and Mn in the context of processes occurring in the estuarine water column. In particular, salinity-driven flocculation and redox shuttling are two key processes whose relative impacts on sedimentary Fe and Mn have not been clearly demonstrated. In this study we investigated the coupled water column and sedimentary cycling of Fe and Mn along a 60km non-tidal estuarine transect in the Gulf of Finland, Baltic Sea. We show that riverine Fe entering the estuary as colloidal oxides associated with dissolved organic matter (DOM) is quickly flocculated and sedimented within 5 km of the river mouth, despite the shallow lateral salinity gradient. Sediments within this range are enriched in Fe (up to twice the regional average), principally in the form of crystalline Fe oxides as determined by sequential extractions. The high crystallinity implies relative maturity of the oxide mineralogy, likely due to sustained oxic conditions and long residence time in the river catchment. Despite the reducing conditions below the sediment-water interface, Fe is largely retained in the sediments close to the river mouth. In contrast, sedimentary Mn concentrations are highest in a deep silled basin more than 10km downstream. Throughout the estuary, Mn oxides are reductively dissolved shallower in the sediment column than Fe oxides, resulting in strong effluxes of dissolved Mn from the sediments. Subsequent oxidation of bottom water dissolved Mn to particulate oxides and lateral transport ("redox shuttling") account for the sedimentary Mn enrichments in the deep silled basin. Porewater data suggest that the heterogeneity of Fe and Mn availability in the estuarine sediments may influence the relative importance of the two metals for anaerobic oxidation of methane. Egger, M. et al., Environmental Science and Technology 49(1), 277-283, 2015.

  2. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    PubMed Central

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  3. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  4. A new record of Atlantic sea surface salinity from 1896-2013 reveals the signatures of climate variability and long-term trends

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Reverdin, G. P.; Khodri, M.; Gastineau, G.

    2017-12-01

    In the North Atlantic, sea surface salinity is both an indicator of the hydrological cycle and an active component of the ocean circulation. As an indirect "ocean rain gauge", surface salinity reflects the net surface fluxes of evaporation - precipitation + runoff, along with advection and vertical mixing. Subpolar surface salinity also may influence the strength of deep convection and the Atlantic Meridional Overturning Circulation (AMOC). However, continuous surface salinity time series beginning before the 1950s are rare, limiting our ability to resolve modes of variability and long-term trends. Here, we present a new gridded surface salinity record in the Atlantic from 1896-2013, compiled from a variety of historical sources. The compilation covers most of the Atlantic from 20°S-70°N, at 100-1000 km length scale and interannual temporal resolution, allowing us to resolve major modes of variability and linkages with large-scale Atlantic climate variations. We find that the low-latitude (tropical and subtropical) Atlantic and the subpolar Atlantic surface salinity are negatively correlated, with subpolar anomalies leading low-latitude anomalies by about a decade. Subpolar surface salinity varies in phase with the Atlantic Multidecadal Oscillation (AMO), whereas low-latitude surface salinity lags the AMO and varies in phase with the low-frequency North Atlantic Oscillation (NAO). Additionally, northern tropical surface salinity is anticorrelated with the AMO and with Sahel rainfall, suggesting that it reflects the latitude of the Intertropical Convergence Zone. The 1896-2013 long-term trend features an amplification of the mean Atlantic surface salinity gradient pattern, with freshening in the subpolar Atlantic and salinification in the tropical and subtropical Atlantic. We find that regressing out the AMO and the low-frequency NAO has little effect on the long-term residual trend. The spatial trend structure is consistent with the "rich-get-richer" hydrological cycle intensification response to global warming, and may also indicate increased Arctic cryosphere melting and surface runoff.

  5. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    NASA Astrophysics Data System (ADS)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry model to examine the effects of salinity intrusion on carbon cycling processes in dynamic coastal wetlands.

  6. Reconstructing Past Ocean Salinity ((delta)18Owater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local'more » changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.« less

  7. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  8. Site Suitability Analysis for Dissemination of Salt-tolerant Rice Varieties in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Sinha, D. D.; Singh, A. N.; Singh, U. S.

    2014-11-01

    Bangladesh is a country of 14.4 million ha geographical area and has a population density of more than 1100 persons per sq. km. Rice is the staple food crop, growing on about 72 % of the total cultivated land and continues to be the most important crop for food security of the country. A project "Sustainable Rice Seed Production and Delivery Systems for Southern Bangladesh" has been executed by the International Rice Research Institute (IRRI) in twenty southern districts of Bangladesh. These districts grow rice in about 2.9 million ha out of the country's total rice area of 11.3 million ha. The project aims at contributing to the Government of Bangladesh's efforts in improving national and household food security through enhanced and sustained productivity by using salinity-, submergence- and drought- tolerant and high yielding rice varieties. Out of the 20 project districts, 12 coastal districts are affected by the problem of soil salinity. The salt-affected area in Bangladesh has increased from about 0.83 million ha in 1973 to 1.02 million ha in 2000, and 1.05 million ha in 2009 due to the influence of cyclonic storms like "Sidr", "Laila" and others, leading to salt water intrusion in croplands. Three salinity-tolerant rice varieties have recently been bred by IRRI and field tested and released by the Bangladesh Rice Research Institute (BRRI) and Bangladesh Institute of Nuclear Agriculture (BINA). These varieties are BRRI dhan- 47 and Bina dhan-8 and - 10. However, they can tolerate soil salinity level up to EC 8-10 dSm-1, whereas the EC of soils in several areas are much higher. Therefore, a large scale dissemination of these varieties can be done only when a site suitability analysis of the area is carried out. The present study was taken up with the objective of preparing the site suitability of the salt-tolerant varieties for the salinity-affected districts of southern Bangladesh. Soil salinity map prepared by Soil Resources Development Institute of Bangladesh shows five classes of salinity. viz., non-saline with some very slight saline soil, very slightly saline with some slight saline soil, slightly saline with some moderately saline soil, strongly saline with some moderately saline soil, and very strongly saline with some strongly saline soil. The soil EC level of different classes range from 2 dSm-1 to >16 dSm-1. The soil map was geo-referenced and digitized using Arc GIS. Salinity tolerance characteristics of the rice varieties were matched with the soil characteristics shown on the map. Three suitability classes were made; soils suitable for salt-tolerant varieties, not suitable for salt-tolerant varieties due to high soil salinity, and suitable for other high yielding varieties due to slight salinity. The mauza (smallest revenue unit) boundary provided by the Bangladesh Agriculture Research Council was also geo-referenced and digitized in the same projection. Overlaying and intersecting the mauza boundary on the soil suitability map provided the suitable and not suitable mauza. A total of 4070 mauzas in the 12 salinity-affected districts were listed and maps showing suitability of mauza prepared. About 0.6 million ha out of total 0.87 million ha salinity affected area were found suitable for growing the salinity-tolerant BRRI dhan-47, Bina dhan-8 and -10 in these districts. The maps and other generated information have helped the Dept. of Agriculture Extension (DAE) of Bangladesh in large scale dissemination of seeds of the salinity-tolerant rice varieties in different districts during the past two years.

  9. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  10. Pre-stack full-waveform inversion of multichannel seismic data to retrieve thermohaline ocean structure. Application to the Gulf of Cadiz (SW Iberia).

    NASA Astrophysics Data System (ADS)

    Dagnino, Daniel; Jiménez Tejero, Clara-Estela; Meléndez, Adrià; Gras, Clàudia; Sallarès, Valentí; Ranero, César R.

    2016-04-01

    This work demonstrates the feasibility to retrieve high-resolution models of oceanic physical parameters by means of 2D adjoint-state full-waveform inversion (FWI). The proposed method is applied to pre-stack multi-channel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in the framework of the EU GO (Geophysical Oceanography) project in 2006. We first design and apply a specific data processing flow that allows reducing data noise without modifying trace amplitudes. This step is shown to be essential to obtain accurate results due to the low signal-to-noise ratio (SNR) of water layer reflections, which are typically three-to-four orders of magnitude weaker than those in solid earth. Second, we propose new techniques to improve the inversion results by reducing the artefacts appearing in the gradient and misfit as a consequence of the low SNR. We use a weight and filter operator to focus in the regions where the gradient is reliable. The source wavelet is then inverted together with the sound speed. We demonstrate the efficiency of the proposed method and inversion strategy retrieving a 2D sound speed model along a 50 km-long MCS profile collected in the Gulf of Cadiz during the GO experiment. In this region, the Mediterranean outflow entrains the Atlantic waters, creating a salinity complex thermohaline structure that can be measured by a difference in acoustic impedance. The inverted sound speed model have a resolution of 75m for the horizontal direction, which is two orders of magnitude better than the models obtained using conventional, probe-based oceanographic techniques. In a second step, temperature and salinity are derived from the sound speed by minimizing the difference between the inverted and the theoretical sound speed estimated using the thermodynamic equation of seawater (TEOS-10 software). To apply the TEOS-10 we first calculate a linear-fitting between temperature and salinity using regional data from the National Oceanic and Atmospheric Administration (NOAA) compilation. Pressure is calculated from latitude and depth. In the final step, salinity is calculated using the Temperature-Salinity relation and the previously estimated temperature. The comparison of the inverted temperature, salinity model with measures from XBT and CTD probes deployed simultaneously to the MCS data acquisition shows that the accuracy of the inverted models is ˜0.15°C for temperature and ˜0.1psu for salinity.

  11. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley

    2015-11-01

    Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  12. Effects of Irradiance on Benthic and Water Column Processes in a Gulf of Mexico Estuary: Pensacola Bay, Florida, USA

    EPA Science Inventory

    We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during summer 2003 and 2004 on 16 dates at along depth and salinity gradients. Dissolved oxygen flu...

  13. Structure of the Helminth Assemblage of and Endemic Madtom Catfish (Noturus Lachneri)

    Treesearch

    Riccardo A. Fiorillo; R. Brent Thomas; Melvin L. Warren; Christopher M. Taylor

    1999-01-01

    The Ouachita madtom, Noturus lachneri, is a small, uniformly-colored catfish endemic to the upper Saline and Ouachita river drainages in central Arkansas (Robison and Buchanan, 1988), where it is often found in shallow pools associated with clear, high gradient, rock-bottomed streams (Robison and Harp, 1985). Distribution, habitat, diet, and conservation status of...

  14. Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers

    NASA Astrophysics Data System (ADS)

    Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf

    2014-08-01

    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity < 10) tidal zone of upper estuaries has been suggested to be more complex and locally influenced by geomorphological and hydrological features, the environmental dynamics of dissolved organic matter (DOM) and the environmental drivers controlling its source, transport, and fate have scarcely been evaluated. Here, we investigated the distribution patterns of DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity < 10) of the oligo/meso-haline zone for three distinct wetland-influenced rivers; namely the Bekanbeushi River, a cool-temperate river with estuarine lake in Hokkaido, Japan, the Harney River, a subtropical river with tidally-submerged mangrove fringe in Florida, USA, and the Judan River, a small, acidic, tropical rainforest river in Borneo, Malaysia. For the first two rivers, a clear decoupling between DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here indicate that upper estuarine oligo/meso-haline regions of coastal wetland rivers are highly dynamic with regard to the biogeochemical behavior of DOM.

  15. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI.

    PubMed

    Jones, D K; Alexander, D C; Bowtell, R; Cercignani, M; Dell'Acqua, F; McHugh, D J; Miller, K L; Palombo, M; Parker, G J M; Rudrapatna, U S; Tax, C M W

    2018-05-22

    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'. Copyright © 2018. Published by Elsevier Inc.

  16. Seasonality of major redox constituents in a shallow subterranean estuary

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison E.; Krask, Julie L.; Canuel, Elizabeth A.; Beck, Aaron J.

    2018-03-01

    The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (<5 m depth) in Gloucester Point, VA (USA) over two years to determine seasonal variations in dissolved organic carbon (DOC) and the reduced metabolites Fe, Mn, and sulfide. An additional aim of this study was to investigate the relative importance of salinity gradients (which have great geochemical influence in surface estuaries) versus redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume (100-140 cm). We attribute the contrasting seasonal patterns of dissolved Fe, Mn, and sulfide to differences in microbial response to temperature changes and organic matter availability, and to competition at the ferrous-sulfidic transition zone between dissimilatory metal reduction and sulfate reduction, leading to sulfate/sulfur reducing bacteria (SRB) being more active in summer and metal reducers being more active in winter. Throughout the STE, seasonal temperature and DOC variations determined the spatial distribution and geochemical cycling of Fe, Mn, and sulfur.

  17. Productivity of functional guilds of fishes in managed wetlands in coastal South Carolina

    USGS Publications Warehouse

    Robinson, Kelly F.; Jennings, Cecil A.

    2014-01-01

    In coastal South Carolina, many wetlands are impounded and managed as migratory waterfowl habitat. Impoundment effects on fish production and habitat quality largely are unknown. We used the size-frequency method to estimate summer production of fish guilds in three impoundments along the Combahee River, South Carolina. We predicted that guild-specific production would vary with impoundment salinity, which ranged from 3 to 21 practical salinity units. We expected that marine species that use the estuary as nursery habitat would have greatest production in the impoundment with the highest salinity regime, and that species that inhabit the upper reaches of the estuary would have greatest production in the impoundment with the lowest salinity regime. Finally, we expected that estuarine species would be highly productive in all study impoundments, because these species can reproduce within these structures. We found that guild-specific productivity varied both among years and among impoundments, generally following salinity gradients, though to a lesser extent than expected. Our guild-specific estimates of fish productivity fell on the low end of the range of previously published estuarine fish production estimates. Additionally, we observed large mortality events in the study impoundments each summer. The results of our study indicate that during the summer, the study impoundments provided poor-quality fish habitat to all guilds.

  18. Effects of hydrologic connectivity and environmental nariables on nekton assemblage in a coastal marsh system

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).

  19. Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.

    2005-01-01

    Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits. 

  20. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    PubMed

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  1. Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season

    NASA Astrophysics Data System (ADS)

    Sasaki, Hiroaki; Siswanto, Eko; Nishiuchi, Kou; Tanaka, Katsuhisa; Hasegawa, Toru; Ishizaka, Joji

    2008-02-01

    Absorption coefficients of colored dissolved organic matter (CDOM) [a g(λ)] were measured and relationship with salinity was derived in the East China Sea (ECS) during summer when amount of the Changjiang River discharge is large. Low salinity Changjiang Diluted Water (CDW) was observed widely in the shelf region and was considered to be the main origin of CDOM, resulting in a strong relationship between salinity and a g(λ). Error of satellite a g(λ) estimated by the present ocean color algorithm could be corrected by satellite-retrieved chlorophyll data. Satellite-retrieved salinity could be predicted with about +/-1.0 accuracy from satellite a g(λ) and the relation between salinity and a g(λ). Our study suggests that satellite-derived a g(λ) can be an indicator of the low salinity CDW during summer.

  2. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube.

    PubMed

    Siria, Alessandro; Poncharal, Philippe; Biance, Anne-Laure; Fulcrand, Rémy; Blase, Xavier; Purcell, Stephen T; Bocquet, Lydéric

    2013-02-28

    New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultrafiltration, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube's internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients.

  3. Florida Current surface temperature and salinity variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Lund, David C.; Curry, William

    2006-06-01

    The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial timescales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA) (˜1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (˜0.1‰) of this shift may be an artifact of anthropogenically driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4-1 increase in salinity after 200 years B.P. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Variable atmospheric 14C paralleled Dry Tortugas δ18Ow, suggesting that solar irradiance paced centennial-scale migration of the Inter-Tropical Convergence Zone and changes in Florida Current salinity during the last millennium.

  4. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions

    PubMed Central

    Nguyen, Hoa T.; Stanton, Daniel E.; Schmitz, Nele; Farquhar, Graham D.; Ball, Marilyn C.

    2015-01-01

    Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems needed to sustain water use and carbon gain. PMID:25600273

  5. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus).

    PubMed

    Berg, Florian; Almeland, Oda W; Skadal, Julie; Slotte, Aril; Andersson, Leif; Folkvord, Arild

    2018-01-01

    Atlantic herring, Clupea harengus, have complex population structures. Mixing of populations is known, but the extent of connectivity is still unclear. Phenotypic plasticity results in divergent phenotypes in response to environmental factors. A marked salinity gradient occurs from Atlantic Ocean (salinity 35) into the Baltic Sea (salinity range 2-12). Herring from both habitats display phenotypic and genetic variability. To explore how genetic factors and salinity influence phenotypic traits like growth, number of vertebrae and otolith shape an experimental population consisting of Atlantic purebreds and Atlantic/Baltic F1 hybrids were incubated and co-reared at two different salinities, 16 and 35, for three years. The F1-generation was repeatedly sampled to evaluate temporal variation. A von Bertalanffy growth model indicated that reared Atlantic purebreds had a higher maximum length (26.2 cm) than Atlantic/Baltic hybrids (24.8 cm) at salinity 35, but not at salinity 16 (25.0 and 24.8 cm, respectively). In contrast, Atlantic/Baltic hybrids achieved larger size-at-age than the wild caught Baltic parental group. Mean vertebral counts and otolith aspect ratios were higher for reared Atlantic purebreds than Atlantic/Baltic hybrids, consistent with the differences between parental groups. There were no significant differences in vertebral counts and otolith aspect ratios between herring with the same genotype but raised in different salinities. A Canonical Analysis of Principal Coordinates was applied to analyze the variation in wavelet coefficients that described otolith shape. The first discriminating axis identified the differences between Atlantic purebreds and Atlantic/Baltic hybrids, while the second axis represented salinity differences. Assigning otoliths based on genetic groups (Atlantic purebreds vs. Atlantic/Baltic hybrids) yielded higher classification success (~90%) than based on salinities (16 vs. 35; ~60%). Our results demonstrate that otolith shape and vertebral counts have a significant genetic component and are therefore useful for studies on population dynamics and connectivity.

  6. Salinity Responses of Benthic Microbial Communities in a Solar Saltern (Eilat, Israel)

    PubMed Central

    Sørensen, Ketil Bernt; Canfield, Donald E.; Oren, Aharon

    2004-01-01

    The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120‰, and sulfate reduction was strongly inhibited at an in situ salinity of 215‰. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180‰ or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120‰. PMID:15006785

  7. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  8. Response of Holobiont Compartments to Salinity Changes Indicates Osmoregulation of Scleractinian Corals

    NASA Astrophysics Data System (ADS)

    Roethig, T.; Ochsenkuehn, M. A.; van der Merwe, R.; Roik, A.; Voolstra, C. R.

    2016-02-01

    Environmental change is expected to render the oceans more saline, but scleractinian corals are assumed to be stenohaline osmoconformers. Yet, some corals are able to tolerate salinities up to 50 PSU, but we know little about the mechanisms involved. Previous studies have exclusively addressed the coral host and their algal symbionts (Symbiodinium) in hospite. To disentangle the role of all compartments of the coral holobiont we assessed the response of the coral host, its symbiont algae in the genus Symbiodinium (in hospite and in culture), and the associated bacterial community to strongly increased salinities. In a short-term incubation (4h) we could measure decreases in the calcification rate of the coral host and the photosynthetic performance of its algal symbiont in hospite. In a long-term (29 days) setup we found no differences in the photosynthetic efficiency but a major restructuring of the bacterial communities. In four Symbiodinium cultures we identified changes in photosynthetic yields and osmolytes composition upon short-term salinity exposure (≤24h). Our results show a short-term reaction of coral host and Symbiodinium to strongly increased salinities. However, lack of an apparent physiological long-term response indicates an acclimation process that is accompanied by a microbiome community shift towards a microbiome that potentially supports increased osmolyte production. Furthermore, changes in osmolytes composition in the Symbiodinium cultures display conserved osmoregulatory processes that may translate to osmoregulation for the coral holobiont.

  9. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality

    USGS Publications Warehouse

    LaPeyre, Megan K.; Rybovich, Molly; Hall, Steven G.; La Peyre, Jerome F.

    2016-01-01

    Changes in the timing and interaction of seasonal high temperatures and low salinities as predicted by climate change models could dramatically alter oyster population dynamics. Little is known explicitly about how low salinity and high temperature combinations affect spat (<25mm), seed (25–75mm), andmarket (>75mm) oyster growth and mortality. Using field and laboratory studies, this project quantified the combined effects of extremely low salinities (<5) and high temperatures (>30°C) on growth and survival of spat, seed, andmarket-sized oysters. In 2012 and 2013, hatchery-produced oysters were placed in open and closed cages at three sites in Breton Sound, LA, along a salinity gradient that typically ranged from 5 to 20. Growth and mortality were recorded monthly. Regardless of size class, oysters at the lowest salinity site (annualmean = 4.8) experienced significantly highermortality and lower growth than oysters located in higher salinity sites (annual means = 11.1 and 13.0, respectively); furthermore, all oysters in open cages at the two higher salinity sites experienced higher mortality than in closed cages, likely due to predation. To explicitly examine oyster responses to extreme low salinity and high temperature combinations, a series of laboratory studies were conducted. Oysters were placed in 18 tanks in a fully crossed temperature (25°C, 32°C) by salinity (1, 5, and 15) study with three replicates, and repeated at least twice for each oyster size class. Regardless of temperature, seed and market oysters held in low salinity tanks (salinity 1) experienced 100% mortality within 7 days. In contrast, at salinity 5, temperature significantly affected mortality; oysters in all size classes experienced greater than 50%mortality at 32°C and less than 40%mortality at 25°C. At the highest salinity tested (15), only market-sized oysters held at 32°C experienced significant mortality (>60%). These studies demonstrate that high water temperatures (>30°C) and low salinities (<5) negatively impact oyster growth and survival differentially and that high temperatures alone may negatively impact market-sized oysters. It is critical to understand the potential impacts of climate and anthropogenic changes on oyster resources to better adapt and manage for long-term sustainability.

  10. Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic

    NASA Astrophysics Data System (ADS)

    Goes, Joaquim I.; Gomes, Helga do Rosario; Chekalyuk, Alexander M.; Carpenter, Edward J.; Montoya, Joseph P.; Coles, Victoria J.; Yager, Patricia L.; Berelson, William M.; Capone, Douglas G.; Foster, Rachel A.; Steinberg, Deborah K.; Subramaniam, Ajit; Hafez, Mark A.

    2014-01-01

    An Advanced Laser Fluorometer (ALF) capable of discriminating several phytoplankton pigment types was utilized in conjunction with microscopic data to map the distribution of phytoplankton communities in the Amazon River plume in May-June-2010, when discharge from the river was at its peak. Cluster analysis and Non-metric Multi-Dimensional Scaling (NMDS) helped distinguish three distinct biological communities that separated largely on the basis of salinity gradients across the plume. These three communities included an "estuarine type" comprised of a high biomass mixed population of diatoms, cryptophytes and green-water Synechococcus spp. located upstream of the plume, a "mesohaline type" made up largely of communities of Diatom-Diazotroph Associations (DDAs) and located in the northwestern region of the plume and an "oceanic type" in the oligotrophic waters outside of the plume made up of Trichodesmium and Synechococcus spp. Although salinity appeared to have a substantial influence on the distribution of different phytoplankton groups, ALF and microscopic measurements examined in the context of the hydro-chemical environment of the river plume, helped establish that the phytoplankton community structure and distribution were strongly controlled by inorganic nitrate plus nitrite (NO3 + NO2) availability whose concentrations were low throughout the plume. Towards the southern, low-salinity region of the plume, NO3 + NO2 supplied by the onshore flow of subsurface (∼80 m depth) water, ensured the continuous sustenance of the mixed phytoplankton bloom. The large drawdown of SiO3 and PO4 associated with this "estuarine type" mixed bloom at a magnitude comparable to that observed for DDAs in the mesohaline waters, leads us to contend that, diatoms, cryptophytes and Synechococcus spp., fueled by the offshore influx of nutrients also play an important role in the cycling of nutrients in the Amazon River plume.

  11. Spatial and temporal patterns in the hyperbenthic community structure in a warm temperate southern African permanently open estuary

    NASA Astrophysics Data System (ADS)

    Heyns, Elodie; Froneman, William

    2010-06-01

    The spatial and temporal patterns in the hyperbenthic community structure (>500 μm) in the warm temperate, permanently open Kariega Estuary situated along the south-eastern coastline of South Africa was investigated monthly over a period of twelve months. Data were collected using a modified hyperbenthic sledge at six stations along the length of the estuary. Physico-chemical data indicate the presence of a constant reverse salinity gradient, with highest salinities measured in the upper reaches and lowest at the mouth of the estuary. Strong seasonal patterns in temperature, dissolved oxygen and total chlorophyll- a (chl- a) concentration were evident. Total average hyperbenthic densities ranged between 0.4 and 166 ind.m -3 in the lower net and between 0.2 and 225 ind.m -3 in the upper net. Hyperbenthic biomass values ranged between 0.02 and 11.9 mg.dry weight.m -3 in the lower net and between 0.02 and 17.4 mg.dry weight.m -3 in the upper net. Both the lower and upper nets were numerically dominated by decapods (mainly brachyuran crab zoea) with the exception of June and July 2008 when mysids (mainly Mesopodopsis wooldridgei) dominated, comprising up to 72.4 ± 58.14% of the total abundance in the lower net. A redundancy analysis (RDA) indicated that 99.2% of the variance in the hyperbenthic community structure could be explained by the first two canonical axes. Axis one, which accounted for 96.8% of the total variation detected in the ordination plot was highly correlated with sedimentary organic content and to a lesser extent the chl- a concentration within the Kariega Estuary. The correlations with the second canonical axis (2.4%) were less obvious, however, salinity and seston concentration were weakly correlated with this axis.

  12. Utilization by fishes of the Alviso Island ponds and adjacent waters in south san francisco bay following restoration to tidal influence

    USGS Publications Warehouse

    Saiki, M.K.; Mejia, F.H.

    2009-01-01

    Earthen levees of three isolated salt ponds known locally as the Alviso Island Ponds were intentionally breached in March 2006 to allow tidal exchange of the ponds with water from Coyote Creek. The water exchange transformed the previously fishless hypersaline ponds into lower salinity habitats suitable for fish life. This study documented fish utilization of the ponds, adjacent reaches of Coyote Creek, and an upstream reach in nearby Artesian Slough during May-July 2006. By the time the study was initiated, water quality conditions in the ponds were similar to conditions in adjacent reaches of Coyote Creek. The only variable exhibiting a strong gradient within the study area was salinity, which increased progressively from upstream to downstream in Coyote Creek. A total of 4,034 fish represented by 18 species from 14 families was caught during the study. Judging from cluster analysis of presence-absence data that excluded rare fish species, the 10 sampling units (3 ponds, 6 reaches in Coyote Creek, and 1 reach in Artesian Slough) formed two clusters or groups, suggesting two species assemblages. The existence of two groups was also suggested by ordination with non-metric multidimensional scaling (NMS). One group, which was composed of the three ponds and four of the lowermost reaches of Coyote Creek, was characterized by mostly estuarine or marine species (e.g., topsmelt, Atherinops affinis; northern anchovy, Engraulis mordax; and longjaw mudsucker, Gillichthys mirabilis). The second group, which was composed of the two uppermost reaches of Coyote Creek and the one reach of Artesian Slough, was characterized by freshwater species (e.g., Sacramento sucker, Catostomus occidentalis) and by an absence of the estuarine/marine species noted in the first assemblage. Judging from a joint plot of selected water quality variables overlaying the ordination results, salinity was the only important variable associated with spatial distribution of fish species. Water temperature, dissolved oxygen, and pH had little influence on fish distribution during this study.

  13. The estuarine geochemical reactivity of Zn isotopes and its relevance for the biomonitoring of anthropogenic Zn and Cd contaminations from metallurgical activities: Example of the Gironde fluvial-estuarine system, France

    NASA Astrophysics Data System (ADS)

    Petit, Jérôme C. J.; Schäfer, Jörg; Coynel, Alexandra; Blanc, Gérard; Chiffoleau, Jean-François; Auger, Dominique; Bossy, Cécile; Derriennic, Hervé; Mikolaczyk, Mathilde; Dutruch, Lionel; Mattielli, Nadine

    2015-12-01

    Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02‰ at 2 mg/L to +0.90‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43‰ in 1983 to 1.18‰ in 2010 and were offset by δ66Zn = 0.6-0.7‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03‰; 1SD, n = 15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.

  14. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity-nutrient interactions, and on underlying mechanisms and controls. The magnitude/frequency of salt pulses may increase in the future due to the interactive effect of climate change and urbanization. An improved understanding of the salinization-nutrients interactions is necessary to better manage aquatic resources.

  15. Decadal variability on the Northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin

    2018-02-01

    Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.

  16. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales

    USGS Publications Warehouse

    Knowles, Noah

    2002-01-01

    Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.

  17. A three-term conjugate gradient method under the strong-Wolfe line search

    NASA Astrophysics Data System (ADS)

    Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa

    2017-08-01

    Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.

  18. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    DTIC Science & Technology

    2014-01-01

    monitoring wind -driven re-suspension events (Chen 2006), a predictive factor for patho- gens such as E. coli (Nevers and Whitman 2005), and a...properties where HICO imagery could be acquired as well as along the major salinity gradients of each estuary (Figure 2). A Sea- Bird 25 CTD (Sea- Bird

  19. Use of fiber-optic DTS to investigate physical processes in thermohaline environments

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Sarabia, A.; Silva, C.

    2014-12-01

    Salt-gradient solar ponds are artificial thermohaline environments that collect and store thermal energy for long time-periods. A solar pond consists of three distinctive zones: the upper convective zone, which is a thin layer of cooler, less salty water; the non-convective zone that has gradients in temperature and salinity; and the lower convective zone, a layer of high salinity brine where temperatures are the highest. The solar radiation that penetrates the upper layers of the pond reaches the lower convective zone and heats the high salinity brine, which does not rise beyond the lower convective zone because the effect of salinity on density is greater than the effect of temperature. The sediments beneath the pond are also heated due to the temperature increase in the lower convective zone, providing an additional volume for energy storage. To study the different physical processes occurring within a solar pond and its surroundings, we deployed a helicoidally wrapped distributed-temperature-sensing (DTS) system in a small-scale solar pond (1-m deep, 2.5-m long and 1.5-m width). In this installation, the pond is surrounded by a sandy soil that serves as an additional energy storage volume. The thermal profile is observed at a spatial sampling resolution of 1.1 cm (spatial resolution of 2.2. cm), a temporal resolution ranging from 15 s to 5 min, and a thermal resolution ranging from 0.05 to 0.5°C. These resolutions allow closing the energy balance and inferring physical processes such as double-diffusive convection, solar radiation absorption, and heat conduction through the sediments or through the non-convective zone. Independent thermal measurements are also being made to evaluate strengths and limitations of DTS systems in thermohaline environments, and to assess different calibration algorithms that have been proposed in the past.

  20. Population dynamics and antimicrobial susceptibility of Aeromonas spp. along a salinity gradient in an urban estuary in Northeastern Brazil.

    PubMed

    Silva, Camila Magalhães; Evangelista-Barreto, Norma Suely; Vieira, Regine Helena Silva Dos Fernandes; Mendonça, Kamila Vieira; Sousa, Oscarina Viana de

    2014-12-15

    The main objective of this study was to quantify population and identify culturable species of Aeromonas in sediment and surface water collected along a salinity gradient in an urban estuary in Northeastern Brazil. Thirty sediment samples and 30 water samples were collected from 3 sampling locations (A, B and C) between October 2007 and April 2008. The Aeromonas count was 10-7050CFU/mL (A), 25-38,500CFU/mL (B) and<10CFU/mL (C) for water samples, and ∼100-37,500CFU/g (A), 1200-43,500CFU/g (B) and<10CFU/g (C) for sediment samples. Five species (Aeromonas caviae, A. sobria, A. trota, A. salmonicida and A. allosaccharophila) were identified among 41 isolates. All strains were sensitive to chloramphenicol and ceftriaxone, whereas 33 (80, 4%) strains were resistant to at least 2 of the 9 antibiotics tested. Resistance to erythromycin was mostly plasmidial. In conclusion, due to pollution, the Cocó River is contaminated by pathogenic strains of Aeromonas spp. with a high incidence of antibacterial resistance, posing a serious risk to human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evaluation of the stability of gas hydrates in Northern Alaska

    USGS Publications Warehouse

    Kamath, A.; Godbole, S.P.; Ostermann, R.D.; Collett, T.S.

    1987-01-01

    The factors which control the distribution of in situ gas hydrate deposits in colder regions such as Northern Alaska include; mean annual surface temperatures (MAST), geothermal gradients above and below the base of permafrost, subsurface pressures, gas composition, pore-fluid salinity and the soil condition. Currently existing data on the above parameters for the forty-six wells located in Northern Alaska were critically examined and used in calculations of depths and thicknesses of gas hydrate stability zones. To illustrate the effect of gas hydrate stability zones, calculations were done for a variable gas composition using the thermodynamic model of Holder and John (1982). The hydrostatic pressure gradient of 9.84 kPa/m (0.435 lbf/in2ft), the salinity of 10 parts per thousand (ppt) and the coarse-grained soil conditions were assumed. An error analysis was performed for the above parameters and the effect of these parameters on hydrate stability zone calculations were determined. After projecting the hydrate stability zones for the forty-six wells, well logs were used to identify and to obtain values for the depth and thickness of hydrate zones. Of the forty-six wells, only ten wells showed definite evidence of the presence of gas hydrates. ?? 1987.

  2. The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Sheldon, Heather A.; Florio, Brendan; Trefry, Michael G.; Reid, Lynn B.; Ricard, Ludovic P.; Ghori, K. Ameed R.

    2012-11-01

    Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.

  3. Impact of climate variability on ichthyoplankton communities: An example of a small temperate estuary

    NASA Astrophysics Data System (ADS)

    Primo, Ana Lígia; Azeiteiro, Ulisses Miranda; Marques, Sónia Cotrim; Pardal, Miguel Ângelo

    2011-03-01

    Recent variations in the precipitation regime across southern Europe have led to changes in river fluxes and salinity gradients affecting biological communities in most rivers and estuaries. A sampling programme was developed in the Mondego estuary, Portugal, from January 2003 to December 2008 at five distinct sampling stations to evaluate spatial, seasonal and inter-annual distributions of fish larvae. Gobiidae was the most abundant family representing 80% of total catch and Pomatoschistus spp. was the most important taxon. The fish larval community presented a clear seasonality with higher abundances and diversities during spring and summer seasons. Multivariate analysis reinforced differences among seasons but not between years or sampling stations. The taxa Atherina presbyter, Solea solea, Syngnathus abaster, Crystallogobius linearis and Platichthys flesus were more abundant during spring/summer period while Ammodytes tobianus, Callionymus sp., Echiichthys vipera and Liza ramada were more abundant in autumn/winter. Temperature, chlorophyll a and river flow were the main variation drivers observed although extreme drought events (year 2005) seemed not to affect ichthyoplankton community structure. Main changes were related to a spatial displacement of salinity gradient along the estuarine system which produced changes in marine species distribution.

  4. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice.

    PubMed

    Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C

    2018-05-01

    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.

  5. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae.

    PubMed

    Nagel, Frank-Jan; Van As, Henk; Tramper, Johannes; Rinzema, Arjen

    2002-09-20

    Gradients inside substrate particles cannot be prevented in solid-state fermentation. These gradients can have a strong effect on the physiology of the microorganisms but have hitherto received little attention in experimental studies. We report gradients in moisture and glucose content during cultivation of Aspergillus oryzae on membrane-covered wheat-dough slices that were calculated from (1)H-NMR images. We found that moisture gradients in the solid substrate remain small when evaporation is minimized. This is corroborated by predictions of a diffusion model. In contrast, strong glucose gradients developed. Glucose concentrations just below the fungal mat remained low due to high glucose uptake rates, but deeper in the matrix glucose accumulated to very high levels. Integration of the glucose profile gave an average concentration close to the measured average content. On the basis of published data, we expect that the glucose levels in the matrix cause a strong decrease in water activity. The results demonstrate that NMR can play an important role in quantitative analysis of water and glucose gradients at the particle level during solid-state fermentation, which is needed to improve our understanding of the response of fungi to this nonconventional fermentation environment. Copyright 2002 Wiley Periodicals, Inc.

  6. Brackish marsh zones as a waterfowl habitat resource in submerged aquatic vegetation beds in the northern Gulf of Mexico

    USGS Publications Warehouse

    DeMarco, Kristin; Hillmann, Eva R.; Brasher, Michael G.; LaPeyre, Megan K.

    2016-01-01

    Submerged aquatic vegetation (SAV) beds are shallow coastal habitats that are increasingly exposed to the effects of sea-level rise (SLR). In the northern Gulf of Mexico (nGoM), an area especially vulnerable to SLR, the abundance and distribution of SAV food resources (seeds, rhizomes, and tissue) can influence the carrying capacity of coastal marshes to support wintering waterfowl. Despite the known importance of SAV little is known about their distribution across coastal landscapes and salinity zones or how they may be impacted by SLR. We estimated SAV cover and seed biomass in coastal marshes from Texas to Alabama from 1 June – 15 September 2013 to assess variation in SAV and seed resource distribution and abundance across the salinity gradient. Percent cover of SAV was similar among salinity zones (10%–20%) although patterns of distribution differed. Specifically, SAV occurred less frequently in saline zones, but when present the percent coverage was greater than in fresh, intermediate and brackish. Mean seed biomass varied greatly and did not differ significantly among salinity zones. However, when considering only seed species identified as waterfowl foods, the mean seed biomass was lower in saline zones (1.2 g m–2). Alteration of nGoM marshes due to SLR will likely shift the distribution and abundance of SAV resources, and these shifts may affect carrying capacity of coastal marshes for waterfowl and other associated species.

  7. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  8. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation.

    PubMed

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-06-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina , along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km 2 eelgrass (maximum >2100 km 2 ), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m -2 d -1 ) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3-10 g dw m -2 d -1 ) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.

  9. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing results from a field experiment conducted in a very saline soil. This research was funded by the Dutch Technology Foundation (STW).

  10. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  11. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) are also a key ingredient of the thermohaline circulation. Recent observational studies have documented changes in upper Arctic Ocean hydrography [1, 2]. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, have the objective to measure soil moisture over the continents and sea surface salinity over the oceans [3]. However, SMOS is also making inroads in Cryospheric science, as the measurements of thin ice thickness and sea ice concentration. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, such sensitivity is rather low, even lower at cold waters [4]: 90% of ocean SSS values span a range of brightness temperatures of just 5K. This implies that the SMOS SSS retrieval requires a high performance of the MIRAS interferometric radiometer [5]. New algorithms, recently developed at the Barcelona Expert Center (BEC) to improve the quality of SMOS measurements [6], allow for the first time to derive cold-water SSS maps from SMOS data, and to observe the variability of the SSS in the higher north Atlantic and the Arctic Ocean. In this work, we will provide an assessment of the quality of these new SSS Arctic maps, and we will illustrate their potential to monitor the impact on ocean state of the discharges from the main rivers to the Arctic Ocean. Moreover, results make you think that assimilating SMOS Arctic SSS data could be beneficial for the TOPAZ Arctic Ocean Prediction system. Therefore, SMOS shows great potential to routinely monitor the extension of the surface freshwater fluxes also in the Arctic Ocean. The new SMOS Arctic products can therefore substantially contribute to increase our knowledge of the critical processes that are taking place in the Arctic. [1] Haine, T. et al. (2015), 'Arctic freshwater export: Status, mechanisms, and prospects', Global and Planetary Change, 125, 2015. [2] Peterson, B., et al. (2002), 'Increasing river discharge to the arctic ocean', Science, 298, 21712173. [3] Font, J. et al. (2010), 'The Challenging Sea Surface Salinity Measurement From Space'. Proceed. IEEE, 98, 649 -665 [4] Swift, C. (1980). Boundary-layer Meteorology, 18:25-54. [5] McMullan, K. et al. (2008), 'SMOS: The payload', IEEE T. Geosci. Remote, 46. [6] Olmedo, E., et al. (2017) 'Debiased Non-Bayesian retrieval: a novel approach to SMOS Sea Surface Salinity', Remote Sensing of Environment, under review.

  12. Inhibitors of second messenger pathways and Ca(2+)-induced exposure of phosphatidylserine in red blood cells of patients with sickle cell disease.

    PubMed

    Gbotosho, O T; Cytlak, U M; Hannemann, A; Rees, D C; Tewari, S; Gibson, J S

    2014-07-01

    The present work investigates the contribution of various second messenger systems to Ca(2+)-induced phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients. The Ca(2+) dependence of PS exposure was confirmed using the Ca(2+) ionophore bromo-A23187 to clamp intracellular Ca(2+) over 4 orders of magnitude in high or low potassium-containing (HK or LK) saline. The percentage of RBCs showing PS exposure was significantly increased in LK over HK saline. This effect was reduced by the Gardos channel inhibitors, clotrimazole and charybdotoxin. Nevertheless, although Ca(2+) loading in the presence of an outwardly directed electrochemical gradient for K(+) stimulated PS exposure, substantial exposure still occurred in HK saline. Under the conditions used inhibitors of other second messenger systems (ABT491, quinacrine, acetylsalicylic acid, 3,4-dichloroisocoumarin, GW4869 and zVAD-fmk) did not inhibit the relationship between [Ca(2+)] and PS exposure. Inhibitors of phospholipase A2, cyclooxygenase, platelet-activating factor, sphingomyelinase and caspases, therefore, were without effect on Ca(2+)-induced PS exposure in RBCs, incubated in either HK or LK saline.

  13. Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland

    USGS Publications Warehouse

    Kozlowski, A.; Leach, D.L.; Viets, J.G.

    1996-01-01

    Fluid inclusion studies in sphalerite from early-stage Zn-Pb mineralization in the Silesian-Cracow region (southern Poland), yielded homogenization temperatures (Th) from 80 to 158??C. Vertical thermal gradient of the parent fluids was 6 to 10??C, and the ore crystallization temperature ranges varied from <10??C at deep levels to 25??C at shallow levels. The peculiarities of formation of primary and secondary fluid inclusions from organic-matter-bearing water-dominated medium, position of the inclusions in crystals, features of secondary inclusions, the inclusion refilling phenomena, their formation on recrystallization of ores, and Th distribution in single fissure fillings were considered. The ore-forming fluids were liquid-hydrocarbon-bearing aqueous solutions of Na-Ca-Cl type with lower Ca contents in the south and higher Ca contents in the north of the region. The ore-forming fluids had salinities from nul to about 23 weight percent of NaCl equivalent. Three types of fluids were recognized, that mixed during ore precipitation: a) ascending fluids of low-to-moderate salinity and high, b) formation brines of high salinity and moderate Th, and c) descending waters of low salinity and low-to-moderate Th.

  14. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  15. Purification of white spot syndrome virus by iodixanol density gradient centrifugation.

    PubMed

    Dantas-Lima, J J; Corteel, M; Cornelissen, M; Bossier, P; Sorgeloos, P; Nauwynck, H J

    2013-10-01

    Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60,000 g) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80,000 g) through a discontinuous iodixanol gradient (phosphate-buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1,000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures. © 2013 John Wiley & Sons Ltd.

  16. Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences.

    PubMed

    Ahualli, S; Jiménez, M L; Fernández, M M; Iglesias, G; Brogioli, D; Delgado, A V

    2014-12-14

    In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.

  17. Behavior of suspended particles in the Changjiang Estuary: Size distribution and trace metal contamination.

    PubMed

    Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang

    2016-02-15

    Suspended particulate matter (SPM) samples were collected along a salinity gradient in the Changjiang Estuary in June 2011. A custom-built water elutriation apparatus was used to separate the suspended sediments into five size fractions. The results indicated that Cr and Pb originated from natural weathering processes, whereas Cu, Zn, and Cd originated from other sources. The distribution of most trace metals in different particle sizes increased with decreasing particle size. The contents of Fe/Mn and organic matter were confirmed to play an important role in increasing the level of heavy metal contents. The Cu, Pb, Zn, and Cd contents varied significantly with increasing salinity in the medium-low salinity region, thus indicating the release of Cu, Pb, Zn, and Cd particles. Thus, the transfer of polluted fine particles into the open sea is probably accompanied by release of pollutants into the dissolved compartment, thereby amplifying the potential harmful effects to marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA

    NASA Astrophysics Data System (ADS)

    La Peyre, Megan K.; Eberline, Benjamin S.; Soniat, Thomas M.; La Peyre, Jerome F.

    2013-12-01

    Understanding how different life history stages are impacted by extreme or stochastic environmental variation is critical for predicting and modeling organism population dynamics. This project examined recruitment, growth, and mortality of seed (25-75 mm) and market (>75 mm) sized oysters along a salinity gradient over two years in Breton Sound, LA. In April 2010, management responses to the Deepwater Horizon oil spill resulted in extreme low salinity (<5) at all sites through August 2010; in 2011, a 100-year Mississippi River flood event resulted in low salinity in late spring. Extended low salinity (<5) during hot summer months (>25 °C) significantly and negatively impacted oyster recruitment, survival and growth in 2010, while low salinity (<5) for a shorter period that did not extend into July (<25 °C) in 2011 had minimal impacts on oyster growth and mortality. In 2011, recruitment was limited, which may be due to a combination of low spring time salinities, high 2010 oyster mortality, minimal 2010 recruitment, cumulative effects from 10 years of declining oyster stock in the area, and poor cultch quality. In both 2010 and 2011, Perkinsus marinus infection prevalence remained low throughout the year at all sites and almost all infection intensities were light. Oyster plasma osmolality failed to match surrounding low salinity waters in 2010, while oysters appeared to osmoconform throughout 2011 indicating that the high mortality in 2010 may be due to extended valve closing and resulting starvation or asphyxiation in response to the combination of low salinity during high temperatures (>25 °C). With increasing management of our freshwater inputs to estuaries combined with predicted climate changes, how extreme events affect different life history stages is key to understanding variation in population demographics of commercially important species and predicting future populations.

  19. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean.

    PubMed

    Kruk, Carla; Segura, Angel M; Nogueira, Lucía; Alcántara, Ignacio; Calliari, Danilo; Martínez de la Escalera, Gabriela; Carballo, Carmela; Cabrera, Carolina; Sarthou, Florencia; Scavone, Paola; Piccini, Claudia

    2017-12-01

    The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.e. a trait-based approach) were analyzed. MAC responses from the intracellular (e.g. respiratory activity) to the ecosystem level (e.g. blooms) were evaluated in wide environmental gradients. Experimental results on buoyancy and respiratory activity in response to increased salinity (0-35) and a literature review of maximum growth rates under different temperatures and salinities were combined with field sampling from headwaters (800km upstream) to the marine end of the Rio de la Plata estuary (Uruguay-South America). Salinity and temperature were the major variables affecting MAC responses. Experimentally, freshwater MAC cells remained active for 24h in brackish waters (salinity=15) while colonies increased their flotation velocity. At the population level, maximum growth rate decreased with salinity and presented a unimodal exponential response with temperature, showing an optimum at 27.5°C and a rapid decrease thereafter. At the community and ecosystem levels, MAC occurred from fresh to marine waters (salinity 30) with a sustained relative increase of large mucilaginous colonies biovolume with respect to individual cells. Similarly, total biomass and, specific and morphological richness decreased with salinity while blooms were only detected in freshwater both at high (33°C) and low (11°C) temperatures. In brackish waters, large mucilaginous colonies presented advantages under osmotic restrictive conditions. These traits values have also been associated with higher toxicity potential. This suggest salinity or low temperatures would not represent effective barriers for the survival and transport of potentially toxic MAC under likely near future scenarios of increasing human impacts (i.e. eutrophication, dam construction and climate change). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reduced Salinity Improves Marine Food Availability With Positive Feedbacks on pH in a Tidally-Dominated Estuary

    NASA Astrophysics Data System (ADS)

    Lowe, A. T.; Roberts, E. A.; Galloway, A. W. E.

    2016-02-01

    Coastal regions around the world are changing rapidly, generating many physiological stressors for marine organisms. Food availability, a major factor determining physiological condition of marine organisms, in these systems reflects the influence of biological and environmental factors, and will likely respond dramatically to long-term changes. Using observations of phytoplankton, detritus, and their corresponding fatty acids and stable isotopes of carbon, nitrogen and sulfur, we identified environmental drivers of pelagic food availability and quality along a salinity gradient in a large tidally influenced estuary (San Juan Archipelago, Salish Sea, USA). Variation in chlorophyll a (Chl a), biomarkers and environmental conditions exhibited a similar range at both tidal and seasonal scales, highlighting a tide-related mechanism controlling productivity that is important to consider for long-term monitoring. Multiple parameters of food availability were inversely and non-linearly correlated to salinity, such that availability of high-quality (based on abundance, essential fatty acid concentration and C:N) seston increased below a salinity threshold of 30. The increased marine productivity was associated with increased pH and dissolved oxygen (DO) at lower salinity. Based on this observation we predicted that a decrease of salinity to below the threshold would result in higher Chl a, temperature, DO and pH across a range of temporal and spatial scales, and tested the prediction with a meta-analysis of available data. At all scales, these variables showed significant and consistent increases related to the salinity threshold. This finding provides important context to the increased frequency of below-threshold salinity over the last 71 years in this region, suggesting greater food availability with positive feedbacks on DO and pH. Together, these findings indicate that many of the environmental factors predicted to increase physiological stress to benthic suspension feeders (e.g. decreased salinity) may simultaneously and paradoxically improve conditions for benthic organisms.

  1. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA

    USGS Publications Warehouse

    LaPeyre, Megan K.; Eberline, Benjamin S.; Soniat, Thomas M.; La Peyre, Jerome F.

    2013-01-01

    Understanding how different life history stages are impacted by extreme or stochastic environmental variation is critical for predicting and modeling organism population dynamics. This project examined recruitment, growth, and mortality of seed (25–75 mm) and market (>75 mm) sized oysters along a salinity gradient over two years in Breton Sound, LA. In April 2010, management responses to the Deepwater Horizon oil spill resulted in extreme low salinity (<5) at all sites through August 2010; in 2011, a 100-year Mississippi River flood event resulted in low salinity in late spring. Extended low salinity (<5) during hot summer months (>25 °C) significantly and negatively impacted oyster recruitment, survival and growth in 2010, while low salinity (<5) for a shorter period that did not extend into July (<25 °C) in 2011 had minimal impacts on oyster growth and mortality. In 2011, recruitment was limited, which may be due to a combination of low spring time salinities, high 2010 oyster mortality, minimal 2010 recruitment, cumulative effects from 10 years of declining oyster stock in the area, and poor cultch quality. In both 2010 and 2011, Perkinsus marinusinfection prevalence remained low throughout the year at all sites and almost all infection intensities were light. Oyster plasma osmolality failed to match surrounding low salinity waters in 2010, while oysters appeared to osmoconform throughout 2011 indicating that the high mortality in 2010 may be due to extended valve closing and resulting starvation or asphyxiation in response to the combination of low salinity during high temperatures (>25 °C). With increasing management of our freshwater inputs to estuaries combined with predicted climate changes, how extreme events affect different life history stages is key to understanding variation in population demographics of commercially important species and predicting future populations.

  2. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    PubMed

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  3. Socioeconomic Position, Health, and Possible Explanations: A Tale of Two Cohorts

    PubMed Central

    Fuhrer, R.; Shipley, M. J.; Chastang, J. F.; Schmaus, A.; Niedhammer, I.; Stansfeld, S. A.; Goldberg, M.; Marmot, M. G.

    2002-01-01

    Objectives. We examined whether the social gradient for measures of morbidity is comparable in English and French public employees and investigated risk factors that may explain this gradient. Methods. This longitudinal study of 2 occupational cohorts—5825 London civil servants and 6818 French office-based employees—used 2 health outcomes: long spells of sickness absence during a 4-year follow-up and self-reported health. Results. Strong social gradients in health were observed in both cohorts. Health behaviors showed different relations with socioeconomic position in the 2 samples. Psychosocial work characteristics showed strong gradients in both cohorts. Cohort-specific significant risk factors explained between 12% and 56% of the gradient in sickness absence and self-reported health. Conclusions. Our cross-cultural comparison suggests that some common susceptibility may underlie the social gradient in health and disease, which explains why inequalities occur in cultures with different patterns of morbidity and mortality. PMID:12144986

  4. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  5. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  6. Salinity Improves Performance and Alters Distribution of Soybean Aphids.

    PubMed

    Eichele-Nelson, Jaclyn; DeSutter, Thomas; Wick, Abbey F; Harmon, Erin L; Harmon, Jason P

    2018-05-24

    We know numerous abiotic factors strongly influence crop plants. Yet we often know much less about abiotic effects on closely interacting organisms including herbivorous insects. This lack of a whole-system perspective may lead to underestimating the threats from changing factors. High soil salinity is a specific example that we know threatens crop plants in many places, but we need to know much more about how other organisms are also affected. We investigated how salinity affects the soybean aphid (SBA; Aphis glycines Matsumura; Hemiptera: Aphididae) on soybean plants (Glycine max [L.] Merr.; Fabales: Fabaceae) grown across a range of saline conditions. We performed four complementary greenhouse experiments to understand different aspects of how salinity might affect SBA. We found that as salinity increased both population size and fecundity of SBA increased across electrical conductivity values ranging from 0.84 to 8.07 dS m-1. Tracking individual aphids we also found they lived longer and produced more offspring in high saline conditions compared to the control. Moreover, we found that salinity influenced aphid distribution such that when given the chance aphids accumulated more on high-salinity plants. These results suggest that SBA could become a larger problem in areas with higher salinity and that those aphids may exacerbate the negative effects of salinity for soybean production.

  7. [Study on the polarized reflectance hyperspectral characteristics and models of typical saline soil in the west of Jilin Province, China].

    PubMed

    Han, Yang; Qin, Wei-chao; Wang, Ye-qiao

    2014-06-01

    In recent years, the area of saline soil in the west of Jilin Province expands increasingly, and soil quality is becoming more and more worsening, which not only caused great damage to the land resources, but also posed a huge threat to agricultural production and ecological environment. We combined with polarized and hyperspectral information to establish the general model and scientifically validated it. The results show that there is a strong relationship between the saline soil hyperspectral polarized information and its physicochemical property parameters, and with regularity. This paper has important theoretical significance for the mechanism of saline soil surface reflection, recognition and classification of saline soil and background, the utilization of soil polarization sensor and the development of quantitative remote sensing.

  8. The formation of thermohaline staircases for large salt concentration differences in double diffusive convection

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2016-11-01

    In the upper layers of the tropical and subtropical ocean, step-like mean profiles for both temperature and salinity are often observed, a phenomenon referred to as thermohaline staircase. It consists of alternatively stacked mixing layers, and finger layers with sharp gradients in both mean temperature and salinity. It is believed that thermohaline staircases are caused by double diffusive convection (DDC), i.e. the convection flow with fluid density affected by two different scalars. Here we conducted direct numerical simulations of DDC bounded by two parallel plates and aimed to realise the multi-layer state similar to the oceanic thermohaline staircase. We applied an unstable salinity difference and a stable temperature difference across the two plates. We gradually increased the salinity Rayleigh number RaS , i.e. the strength of salinity difference, and fixed the relative strength of temperature difference. When RaS is high enough the flow undergoes a transition from a single finger layer to a triple layer state, where one mixing layer emerges between two finger layers. Such triple layer state is stable up to the turbulent diffusive time scale. The finger-layer height is larger for higher RaS . The dependences of the scalar fluxes on RaS were also investigated. Supported by Dutch FOM Foundation and NWO rpogramme MCEC; Computing resources from SURFSara and PRACE project 2015133124.

  9. The Sensitivity of Atlantic Meridional Overturning Circulation to Dynamical Framework in an Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Yu, Y.

    2016-12-01

    The horizontal coordinate systems commonly used in most global ocean models are the sphere latitude-longitude grid and displaced poles such as tripolar grid. The effect of the horizontal coordinate system on Atlantic Meridional Overturning Circulation (AMOC) is evaluated using an oceanic general circulation model (OGCM). Two experiments are conducted with the model using latitude-longitude grid (Lat_1) and tripolar grid (Tri). Results show that Tri simulates a stronger NADW than Lat_1, as more saline water masses enter into the GIN Seas in Tri. Two reasons can be attributed to the stronger NADW. One is the removal of zonal filter in Tri, which leads to an increasing of zonal gradient of temperature and salinity, thus strengthens the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because the realistic topography is applied in tripolar grid and the longitude-latitude grid employs an artificial island around the North Pole. In order to evaluate the effect of filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, enhanced filter can also increase the NADW, for more saline water is suppressed to go north and accumulated in the Labrador Sea, especially in the experiment with enhanced filter on salinity (Lat_2_S).

  10. Application of a coupled vegetation competition and groundwater simulation model to study effects of sea level rise and storm surges on coastal vegetation

    USGS Publications Warehouse

    Teh, Su Yean; Turtora, Michael; DeAngelis, Donald L.; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye

    2015-01-01

    Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  11. Dynamics of harmful dinoflagellates driven by temperature and salinity in a northeastern Mediterranean lagoon.

    PubMed

    Dhib, Amel; Frossard, Victor; Turki, Souad; Aleya, Lotfi

    2013-04-01

    To attempt to determine the effects of temperature and salinity on the dynamics of the dinoflagellate community, a monthly sampling was carried out from October 2008 to March 2009 at eight sampling stations in Ghar El Melh Lagoon (GML; Mediterranean Sea, Northern Tunisia). Dinoflagellates were dominant among plankton, accounting for 73.9 % of the lagoon's overall plankton community, and were comprised of 25 different species among which 17 were reported in the literature as harmful. While no significant difference was found in the distribution of dinoflagellates among the stations, a strong monthly difference was observed. This temporal variability was due to an increase in the abundance of Prorocentrum micans from December to February, leading to a strong decrease in the Shannon diversity index from station to station. At the onset of P. micans development, dinoflagellate abundances reached 1.26.10(5) cells l(-1). A redundance analysis indicates that both temperature and salinity have a significant effect on the dynamics of the dinoflagellate community. Using a generalized additive model, both temperature and salinity appear to have significant nonlinear relationships with P. micans abundances. Model predictions indicate that outbreaks of P. micans may occur at a temperature below 22.5 °C and with salinity above 32.5. We discuss our results against a backdrop of climate change which, by affecting temperature and salinity, is likely to have an antagonistic impact on P. micans development and subsequently on the dinoflagellate dynamics in GML.

  12. Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle

    NASA Astrophysics Data System (ADS)

    Rogachev, K. A.; Shlyk, N. V.

    2018-01-01

    New oceanographic observations in the period 1990-2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.

  13. Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall

    NASA Astrophysics Data System (ADS)

    Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.

    2016-12-01

    Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses on the fresh bias in satellite retrievals of salinity. Results will be presented of comparisons of RIM measurements at depth of a few meters with measurements from in-situ salinity instruments. Also, analytical results will be shown, which assess the accuracy of RIM salinity profiles under a variety of rain rate, wind/wave conditions.

  14. Response of biotic communities to salinity changes in a Mediterranean hypersaline stream

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Hernández, Juan; Gutiérrez, Cayetano; Abellán, Pedro; Sánchez, David; Ruiz, Mar

    2006-01-01

    Background This study investigates the relationship between salinity and biotic communities (primary producers and macroinvertebrates) in Rambla Salada, a Mediterranean hypersaline stream in SE Spain. Since the 1980's, the mean salinity of the stream has fallen from about 100 g L-1 to 35.5 g L-1, due to intensive irrigated agriculture in the watershed. Furthermore, large dilutions occur occasionally when the water irrigation channel suffers cracks. Results Along the salinity gradient studied (3.5 – 76.4 g L-1) Cladophora glomerata and Ruppia maritima biomass decreased with increasing salinity, while the biomass of epipelic algae increased. Diptera and Coleoptera species dominated the community both in disturbed as in re-established conditions. Most macroinvertebrates species found in Rambla Salada stream are euryhaline species with a broad range of salinity tolerance. Eight of them were recorded in natural hypersaline conditions (~100 g L-1) prior to important change in land use of the watershed: Ephydra flavipes, Stratyomis longicornis, Nebrioporus ceresyi, N. baeticus, Berosus hispanicus, Enochrus falcarius, Ochthebius cuprescens and Sigara selecta. However, other species recorded in the past, such as Ochthebius glaber, O. notabilis and Enochrus politus, were restricted to a hypersaline source or absent from Rambla Salada. The dilution of salinity to 3.5 – 6.8 gL-1 allowed the colonization of species with low salininty tolerance, such as Melanopsis praemorsa, Anax sp., Simulidae, Ceratopogonidae and Tanypodinae. The abundance of Ephydra flavipes and Ochthebius corrugatus showed a positive significant response to salinity, while Anax sp., Simulidae, S. selecta, N. ceresyi, N. baeticus, and B. hispanicus showed significant negative correlations. The number of total macroinvertebrate taxa, Diptera and Coleoptera species, number of families, Margalef's index and Shannon's diversity index decreased with increasing salinity. However, the rest of community parameters, such as the abundance of individuals, evenness and Simpson's index, showed no significant response to changes in salinity. Classification and ordination analysis revealed major differences in macroinvertebrate community structure between hypersaline conditions (76.4 g L-1) and the rest of the communities observed at the lower salinity levels, and revealed that below ~75 g L-1, dissimilarities in the communities were greater between the two habitats studied (runs and pools) than between salinity levels. Conclusion Salinity was the first factor determining community composition and structure in Rambla Salada stream followed by the type of habitat. PMID:17014701

  15. Results of Sustained Observations from SABSOON

    NASA Astrophysics Data System (ADS)

    Seim, H.; Nelson, J.

    2001-12-01

    A variety of meteorological and oceanographic data being collected on the continental shelf off Georgia by the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) permit an examination of episodic and seasonal phenomena operative on the shelf. Data are collected at offshore platforms and transmitted to shore in near-real time and made available on the project website. Examples of data collected since 1999 are presented that illustrate some of processes being addressed using the network. Maximum winds occur during remarkably energetic downbursts observed in spring and summer, associated with the passage of squalls over the coastal ocean. Peak wind speed at 50 m height exceed 40 ms and air temperature drops by 4 oC or more in less than 6 minutes, often accompanied by large changes in humidity and heavy rainfall, suggesting down draft of air from aloft. These events may play an important role in the offshore transport of continentally-derived material. Continuous ADCP measurements are being used to examine the seasonality of cross-shelf exchange and its relationship to the cross-shelf density gradient. The low-frequency cross-shelf circulation changes sign when the cross-shelf density gradient changes sign. Vertical stratification is surprisingly episodic, and maximum stratification has occurred in the winter and spring associated with appearance of long-salinity surface lens and may be associated with baroclinic instabilities. Strong stratification has also been observed in summer during Gulf Stream-derived intrusions onto the shelf, during which time the upper and lower layers become largely decoupled. Continuous optical measurements of above-water and in-water irradiance (PAR) show the mid-shelf surface sediments are often in the euphotic zone. Chlorophyll fluorescence (stimulated) shows strong light-dependent diurnal variability in near-surface waters and evidence of resuspension of benthic diatoms during storm events, particularly in the early fall. >http://www.skio.peachnet.edu/projects/sabsoon.html

  16. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

    PubMed

    Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G

    2016-01-01

    Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France)

    NASA Astrophysics Data System (ADS)

    Dur, Gaël; Souissi, Sami

    2018-01-01

    Temperature and salinity are important factors shaping the habitats of estuarine ectotherms. Their respective effect varies along the life history moments of species with a complex life cycle. Estuarine species, particularly those living in the salinity gradient, are concerned by habitat changes that can reduce their fitness. Consequently, efforts to define the importance of those two environmental variables on developmental stages are required to enable forecasting estuarine species' future distributions. The present study focuses on the main component of the Seine estuary's zooplankton, i.e. the calanoid copepod Eurytemora affinis, and aims: (i) to establish the role of temperature and salinity in designing the habitat of E. affinis within the Seine estuary; and (ii) to model the habitat of three groups of E. affinis defined through the life cycle as follows: all larval instars (N1-N6), the first to fourth juvenile instars (C1-C4), and the pre-adult and adults instars (C5-Adults). For this purpose, data from intensive field studies of zooplankton sampling during 2002-2010 were used. The fine-scale data, i.e., every 10-20 min, on density and abiotic conditions (salinity, temperature) provided inputs for the computation. We established regions in salinity-temperature space where the three groups of developmental instars exhibit higher densities. The computed habitats differ between developmental groups. In general, the preferendum of salinity increases with ontogeny. The optima of temperature are rather constant between developmental stages (∼14 °C). Our model can be used to determine E. affinis functional habitat (i.e., the spatial relation with structuring factors), to carry out retrospective analysis, and to test future distributions. The present study also emphasizes the need of data from appropriate sampling strategies to conduct habitat definition.

  18. Osmoregulation in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers.

    PubMed

    Havird, Justin C; Santos, Scott R; Henry, Raymond P

    2014-07-01

    Studies of euryhaline crustaceans have identified conserved osmoregulatory adaptions allowing hyper-osmoregulation in dilute waters. However, previous studies have mainly examined decapod brachyurans with marine ancestries inhabiting estuaries or tidal creeks on a seasonal basis. Here, we describe osmoregulation in the atyid Halocaridina rubra, an endemic Hawaiian shrimp of freshwater ancestry from the islands' anchialine ecosystem (coastal ponds with subsurface freshwater and seawater connections) that encounters near-continuous spatial and temporal salinity changes. Given this, survival and osmoregulatory responses were examined over a wide salinity range. In the laboratory, H. rubra tolerated salinities of ~0-56‰, acting as both a hyper- and hypo-osmoregulator and maintaining a maximum osmotic gradient of ~868 mOsm kg(-1) H2O in freshwater. Furthermore, hemolymph osmolality was more stable during salinity transfers relative to other crustaceans. Silver nitrate and vital mitochondria-rich cell staining suggest all gills are osmoregulatory, with a large proportion of each individual gill functioning in ion transport (including when H. rubra acts as an osmoconformer in seawater). Additionally, expression of ion transporters and supporting enzymes that typically undergo upregulation during salinity transfer in osmoregulatory gills (i.e. Na(+)/K(+)-ATPase, carbonic anhydrase, Na(+)/K(+)/2Cl(-) cotransporter, V-type H(+)-ATPase and arginine kinase) were generally unaltered in H. rubra during similar transfers. These results suggest H. rubra (and possibly other anchialine species) maintains high, constitutive levels of gene expression and ion transport capability in the gills as a means of potentially coping with the fluctuating salinities that are encountered in anchialine habitats. Thus, anchialine taxa represent an interesting avenue for future physiological research. © 2014. Published by The Company of Biologists Ltd.

  19. Seasonal and interannual variability of mesozooplankton in two contrasting estuaries of the Bay of Biscay: Relationship to environmental factors

    NASA Astrophysics Data System (ADS)

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide

    2017-12-01

    Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.

  20. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  1. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  2. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope.

    PubMed

    Brennan, Reid S; Hwang, Ruth; Tse, Michelle; Fangue, Nann A; Whitehead, Andrew

    2016-06-01

    Regulation of internal ion homeostasis is essential for fishes inhabiting environments where salinities differ from their internal concentrations. It is hypothesized that selection will reduce energetic costs of osmoregulation in a population's native osmotic habitat, producing patterns of local adaptation. Killifish, Fundulus heteroclitus, occupy estuarine habitats where salinities range from fresh to seawater. Populations inhabiting an environmental salinity gradient differ in physiological traits associated with acclimation to acute salinity stress, consistent with local adaptation. Similarly, metabolic rates differ in populations adapted to different temperatures, but have not been studied in regard to salinity. We investigated evidence for local adaptation between populations of killifish native to fresh and brackish water habitats. Aerobic scope (the difference between minimum and maximum metabolic rates), excess post-exercise oxygen consumption, and swimming performance (time and distance to reach exhaustion) were used as proxies for fitness in fresh and brackish water treatments. Swimming performance results supported local adaptation; fish native to brackish water habitats performed significantly better than freshwater-native fish at high salinity while low salinity performance was similar between populations. However, results from metabolic measures did not support this conclusion; both populations showed an increase in resting metabolic rate and a decrease of aerobic scope in fresh water. Similarly, excess post-exercise oxygen consumption was higher for both populations in fresh than in brackish water. While swimming results suggest that environmentally dependent performance differences may be a result of selection in divergent osmotic environments, the differences between populations are not coupled with divergence in metabolic performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Clipperton, a possible future for atoll lagoons

    NASA Astrophysics Data System (ADS)

    Charpy, L.; Rodier, M.; Couté, A.; Perrette-Gallet, C.; Bley-Loëz, C.

    2010-09-01

    Closure of the Clipperton Island atoll (10°17' N 109°13' W), now a meromictic lake, is estimated to have occurred between 1839 and 1849. It was still closed in 2005. Brackish waters in the upper layer (0-10 m) were oxygenated, while saline waters in the deep layer (>20 m) were anoxic. Allowing for the methodological difficulties of earlier measurements, the physical characteristics of the lagoon did not seem to have changed significantly since the last expedition (1980). The intermediate layer between brackish and saline waters was characterized by a strong density gradient and a temperature inversion of up to 1.6°C. Microbial activity, water exchange between the deep layer and surrounding oceanic waters and the geothermal flux hypothesis are discussed. The low DIN and SRP concentrations observed in the upper layer, despite high nutrient input by seabird droppings, reflect the high nutrient uptake by primary producers as attested by the elevated overall gross primary production (6.6 g C m-2 day-1), and high suspended photosynthetic biomass (2.23 ± 0.23 μg Chl a l-1) and production (263 ± 27 μg C l-1 day-1). Phytoplankton composition changed in 67 years with the advent of new taxa and the disappearance of previously recorded species. The freshwater phytoplanktonic community comprised 43 taxa: 37 newly identified during the expedition and 6 previously noted; 16 species previously found were not seen in 2005. The closure of the lagoon, combined with the positive precipitation-evaporation budget characteristic of the region, has induced drastic changes in lagoon functioning compared with other closed atolls.

  4. Astaxanthin dynamics in Baltic Sea mesozooplankton communities

    NASA Astrophysics Data System (ADS)

    Snoeijs, Pauline; Häubner, Norbert

    2014-01-01

    The red pigment astaxanthin is a powerful antioxidant, which occurs in eggs and body tissues of crustaceans and fish. It is produced by crustaceans from algal carotenoids. In a two-year field study we assessed natural concentrations and dynamics of astaxanthin in mesozooplankton communities in the brackish Baltic Sea area. Astaxanthin levels varied between 0.37 and 36 ng L- 1. They increased with salinity along the Baltic Sea gradient and were linked to zooplankton biomass and phytoplankton community composition. Astaxanthin concentrations showed typical seasonal patterns and varied from 0.2 to 5.1 ng ind- 1, 0.2 to 3.4 ng (μg C)- 1 and 6 to 100 ng mm- 3. These concentrations were inversely related to water temperature and strongly linked to zooplankton community composition. Communities dominated by the calanoid copepods Temora longicornis, Pseudocalanus acuspes and Eurytemora spp. generally held the highest concentrations. With increasing cladocerans:copepods biomass ratios community astaxanthin concentrations decreased and with higher relative biomass of Acartia spp. the proportion of astaxanthin diesters decreased. Diesters prevailed in the cold season and they are thought to improve the antioxidant protection of storage lipids during winter. Climate change causes higher temperature and lower salinity in the Baltic Sea proper. This modifies zooplankton community composition, but not necessarily into a community with lower concentrations of astaxanthin since T. longicornis (high concentrations) has been reported to increase with higher temperature. However, decreased astaxanthin production in the ecosystem is expected if a basin-wide increase in the cladocerans:copepods biomass ratios would occur with further climate change.

  5. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon

    PubMed Central

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 (“La Niña”) which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system’s salinity gradient and external nutrients supply from the coastal wetland. PMID:27736904

  6. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon.

    PubMed

    Medina-Gómez, Israel; Madden, Christopher J; Herrera-Silveira, Jorge; Kjerfve, Björn

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 ("La Niña") which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system's salinity gradient and external nutrients supply from the coastal wetland.

  7. Ecophysiology of a Mangrove Forest in Jobos Bay, Puerto Rico

    Treesearch

    ARIEL E. LUGO; ERNESTO MEDINA; ELVIRA CUEVAs; CINTR& #211; GILBERTO N; EDDIE N. LABOY NIEVES; SCH& #196; YARA EFFER NOVELLI

    2007-01-01

    We studied gas exchange, leaf dimensions, litter production, leaf and litterfall chemistry, nutrient flux to the forest floor, retranslocation rates, and nutrient use efficiency of mangroves in Jobos Bay, Puerto Rico. The fringe forest had a salinity gradient from the ocean (35‰) to a salt flat (100‰) and a basin (about 80‰). Red (Rhizophora mangle), white (...

  8. Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten

    2016-11-01

    Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware River. We demonstrate that in addition to bulk DOC quantification, detailed information on molecular composition is essential for constraining sources of DOM and to identify the processes that impact estuarine DOM, thereby controlling amount and composition of DOM eventually discharged to the ocean through estuaries.

  9. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    NASA Astrophysics Data System (ADS)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  10. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  11. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.

  12. New threats of an old enemy: the distribution of the shipworm Teredo navalis L. (Bivalvia: Teredinidae) related to climate change in the Port of Rotterdam area, the Netherlands.

    PubMed

    Paalvast, Peter; van der Velde, Gerard

    2011-08-01

    The effects of four climate change scenarios for the Netherlands on the distribution of the shipworm upstream of the Rhine-Meuse estuary are described. Global warming will cause dry and warmer summers and decreased river discharges. This will extend the salinity gradient upstream in summer and fall and may lead to attacks on wooden structures by the shipworm. Scenarios including one or two degree temperature increases by 2050 compared to 1990 with a weak change in the air circulation over Europe will lead to an increased chance of shipworm damage upstream from once in 36 years to once in 27 or 22 years, respectively; however, under a strong change in air circulation, the chance of shipworm damage increases to once in 6 or 3 years, respectively. The upstream expansion of the distribution of the shipworm will also be manifested in other northwest European estuaries and will be even stronger in southern Europe. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Field observations of hypersaline runoff through a shallow estuary

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Taleb; Siadatmousavi, Seyed Mostafa

    2018-03-01

    This study investigates a rare situation at the Mond River Estuary in the Persian Gulf, in which the classical estuarine density gradient coincides with hypersaline runoff entering from saline soils upstream of the estuary after severe precipitation. This builds a unique estuarine setting, where two salt water masses, one originating from the coastal ocean and the other being discharged from upstream confine a range of almost freshwater in the middle of estuary. This "freshwater lens estuary" (FLE) situation includes two saltwater sources with opposing senses of estuarine circulation. Therefore, the tidal damping by the strong river flood can occur, especially during neap tide when high Unsteadiness number (∼0.04) signified ebb oriented condition which was induced by straining residual lateral circulation near the FLE mouth. Transition from well-mixed to weak strain induced periodic stratification regimes indicated the importance of the spring-neap tidal variations. Close to the mouth, a 13.66-day periodic tidal asymmetry from the triad K1-O1-M2 (ebb-dominance during spring tide and flood-dominance in neap tide) was overcome by higher harmonics.

  14. Remote sensing of drought and salinity stressed turfgrass

    NASA Astrophysics Data System (ADS)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as drought stress increased, there was no increase in hue values at the onset of salinity stress. Thus, changes in hue could be a key to distinguish drought and salinity stress. Both digital image analysis and spectroradiometry effectively detected drought and salinity stress and may have applications in turfgrass management as rapid and quantitative methods to determine drought and salinity stress in turf.

  15. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  16. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    PubMed Central

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  17. The Influence of Physical Factors on Kelp and Sea Urchin Distribution in Previously and Still Grazed Areas in the NE Atlantic

    PubMed Central

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W.; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø.

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45–60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas. PMID:24949954

  18. The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic.

    PubMed

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas.

  19. Groundwater/Seawater Exchange over Multiple Time Scales: Two Years of High-Frequency Data from the Coastal Seabed

    NASA Astrophysics Data System (ADS)

    Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.

    2013-12-01

    We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.

  20. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) Larvae exposed to subsequent salinity stress.

    PubMed

    Miller, Seth H; Zarate, Sonia; Smith, Edmund H; Gaylord, Brian; Hosfelt, Jessica D; Hill, Tessa M

    2014-01-01

    Future climate change is predicted to alter the physical characteristics of oceans and estuaries, including pH, temperature, oxygen, and salinity. Investigating how species react to the influence of such multiple stressors is crucial for assessing how future environmental change will alter marine ecosystems. The timing of multiple stressors can also be important, since in some cases stressors arise simultaneously, while in others they occur in rapid succession. In this study, we investigated the effects of elevated pCO2 on oxygen consumption by larvae of the intertidal porcelain crab Petrolisthes cinctipes when exposed to subsequent salinity stress. Such an exposure mimics how larvae under future acidified conditions will likely experience sudden runoff events such as those that occur seasonally along portions of the west coast of the U.S. and in other temperate systems, or how larvae encounter hypersaline waters when crossing density gradients via directed swimming. We raised larvae in the laboratory under ambient and predicted future pCO2 levels (385 and 1000 µatm) for 10 days, and then moved them to seawater at ambient pCO2 but with decreased, ambient, or elevated salinity, to monitor their respiration. While larvae raised under elevated pCO2 or exposed to stressful salinity conditions alone did not exhibit higher respiration rates than larvae held in ambient conditions, larvae exposed to elevated pCO2 followed by stressful salinity conditions consumed more oxygen. These results show that even when multiple stressors act sequentially rather than simultaneously, they can retain their capacity to detrimentally affect organisms.

  1. Effect of Elevated pCO2 on Metabolic Responses of Porcelain Crab (Petrolisthes cinctipes) Larvae Exposed to Subsequent Salinity Stress

    PubMed Central

    Miller, Seth H.; Zarate, Sonia; Smith, Edmund H.; Gaylord, Brian; Hosfelt, Jessica D.; Hill, Tessa M.

    2014-01-01

    Future climate change is predicted to alter the physical characteristics of oceans and estuaries, including pH, temperature, oxygen, and salinity. Investigating how species react to the influence of such multiple stressors is crucial for assessing how future environmental change will alter marine ecosystems. The timing of multiple stressors can also be important, since in some cases stressors arise simultaneously, while in others they occur in rapid succession. In this study, we investigated the effects of elevated pCO2 on oxygen consumption by larvae of the intertidal porcelain crab Petrolisthes cinctipes when exposed to subsequent salinity stress. Such an exposure mimics how larvae under future acidified conditions will likely experience sudden runoff events such as those that occur seasonally along portions of the west coast of the U.S. and in other temperate systems, or how larvae encounter hypersaline waters when crossing density gradients via directed swimming. We raised larvae in the laboratory under ambient and predicted future pCO2 levels (385 and 1000 µatm) for 10 days, and then moved them to seawater at ambient pCO2 but with decreased, ambient, or elevated salinity, to monitor their respiration. While larvae raised under elevated pCO2 or exposed to stressful salinity conditions alone did not exhibit higher respiration rates than larvae held in ambient conditions, larvae exposed to elevated pCO2 followed by stressful salinity conditions consumed more oxygen. These results show that even when multiple stressors act sequentially rather than simultaneously, they can retain their capacity to detrimentally affect organisms. PMID:25295878

  2. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    PubMed

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  3. Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface

    NASA Astrophysics Data System (ADS)

    Drushka, Kyla; Asher, William E.; Ward, Brian; Walesby, Kieran

    2016-04-01

    Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is -0.04 psu when averaged over the 20°S-20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds -0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses.

  4. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting samples across the salinity gradients of coastal aquifers. In addition, locating and quantifying rates of submarine ground-water discharge remains a challenge due to the diffuse and spatially and temporally heterogeneous nature of discharge. As a result, with regard to the study of biogeochemical cycles and chemical loads to coastal waters, the seepage face and subterranean estuary are relatively new and under-studied zones in the aquatic cascade from watershed to sea. Processes occurring in those zones must be understood and considered for proper modeling and management of coastal water resources.

  5. A two-dimensional ocean model for long-term climatic simulations: Stability and coupling to atmospheric and sea ice models

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    1992-06-01

    A two-dimensional (latitude-depth) deep ocean model is presented which is coupled to a sea ice model and an Energy Balance Climate Model (EBCM), the latter having land-sea and surface-air resolution. The processes which occur in the ocean model are thermohaline overturning driven by the horizontal density gradient, shallow wind-driven overturning cells, convective overturning, and vertical and horizontal diffusion of heat and salt. The density field is determined from the temperature and salinity fields using a nonlinear equation of state. Mixed layer salinity is affected by evaporation, precipitation, runoff from continents, and sea ice freezing and melting, as well as by advective, convective, and diffusive exchanges with the deep ocean. The ocean model is first tested in an uncoupled mode, in which hemispherically symmetric mixed layer temperature and salinity, or salinity flux, are specified as upper boundary conditions. An experiment performed with previous models is repeated in which a mixed layer salinity perturbation is introduced in the polar half of one hemisphere after switching from a fixed salinity to a fixed salinity flux boundary condition. For small values of the vertical diffusion coefficient KV, the model undergoes self-sustained oscillations with a period of about 1500 years. With larger values of KV, the model locks into either an asymmetric mode with a single overturning cell spanning both hemispheres, or a symmetric quiescent state with downwelling near the equator, upwelling at high latitudes, and a warm deep ocean (depending on the value of KV). When the ocean model is forced with observed mixed layer temperature and salinity, no oscillations occur. The model successfully simulates the very weak meridional overturning and strong Antarctic Circumpolar Current at the latitudes of the Drake Passage. The coupled EBCM-deep ocean model displays internal oscillations with a period of 3000 years if the ocean fraction is uniform with latitude and KV and the horizontal diffusion coefficient in the mixed layer are not too large. Globally averaged atmospheric temperature changes of 2 K are driven by oscillations in the heat flux into or out of the deep ocean, with the sudden onset of a heat flux out of the deep ocean associated with the rapid onset of thermohaline overturning after a quiescent period, and the sudden onset of a heat flux into the deep ocean associated with the collapse of thermohaline overturning. When the coupled model is run with prescribed parameters (such as land-sea fraction and precipitation) varying with latitude based on observations, the model does not oscillate and produces a reasonable deep ocean temperature field but a completely unrealistic salinity field. Resetting the mixed layer salinity to observations on each time step (equivalent to the "flux correction" method used in atmosphere-ocean general circulation models) is sufficient to give a realistic salinity field throughout the ocean depth, but dramatically alters the flow field and associated heat transport. Although the model is highly idealized, the finding that the maximum perturbation in globally averaged heat flux from the deep ocean to the surface over a 100-year period is 1.4 W m-2 suggests that effect of continuing greenhouse gas increases, which could result in a heating perturbation of 10 W m-2 by the end of the next century, will swamp possible surface heating perturbations due to changes in oceanic circulation. On the other hand, the extreme sensitivity of the oceanic flow field to variations in precipitation and evaporation suggests that it will not be possible to produce accurate projections of regional climatic change in the near term, if at all.

  6. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates.

    PubMed

    Szöcs, Eduard; Coring, Eckhard; Bäthe, Jürgen; Schäfer, Ralf B

    2014-01-15

    Salinization of rivers resulting from industrial discharge or road-deicing can adversely affect macroinvertebrates. Trait-based approaches are a promising tool in ecological monitoring and may perform better than taxonomy-based approaches. However only little is known how and which biological traits are affected by salinization. We investigated the effects of anthropogenic salinization on macroinvertebrate communities and biological traits in the Werra River, Germany and compared the taxonomic and trait response. We found a change in macroinvertebrate community and trait composition. Communities at saline sites were characterized by the three exotic species Gammarus tigrinus, Apocorophium lacustre and Potamopyrgus antipodarum. The frequencies of trait modalities long life cycle duration, respiration by gill, ovoviviparity, shredder and multivoltinism were statistically significantly increased at saline sites. The trait-based ordination resulted in a higher explained variance than the taxonomy-based ordination, indicating a better performance of the trait-based approach, resulting in a better discrimination between saline and non-saline sites. Our results are in general agreement with other studies from Europe, indicating a trait convergence for saline streams, being dominated by the traits ovoviviparity and multivoltinism. Three further traits (respiration by gill, life cycle duration and shredders) responded strongly to salinization, but this may primarily be attributed to the dominance of a single invasive species, G. tigrinus, at the saline sites in the Werra River. © 2013 Elsevier B.V. All rights reserved.

  7. Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage.

    PubMed

    Arribas, Paula; Andújar, Carmelo; Abellán, Pedro; Velasco, Josefa; Millán, Andrés; Ribera, Ignacio

    2014-02-01

    Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time-calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co-opted mechanism developed originally for drought resistance. © 2013 John Wiley & Sons Ltd.

  8. Hypoaigic influences on groundwater flux to a seasonally saline river

    NASA Astrophysics Data System (ADS)

    Trefry, M. G.; Svensson, T. J. A.; Davis, G. B.

    2007-03-01

    SummaryHypoaigic zones are aquifer volumes close to and beneath the shores of saline surface water bodies, and are characterized by the presence of time-dependent natural convection and chemical stratification. When transient and cyclic processes are involved there is significant potential for complex flow and reaction in the near-shore aquifer, presenting a unique challenge to pollutant risk assessment methodologies. This work considers the nature of some hypoaigic processes generated by the seasonally saline Canning River of Western Australia near a site contaminated by petroleum hydrocarbons. A dissolved hydrocarbon plume migrates within the shallow superficial aquifer to the nearby bank of the Canning River. Beneath the river bank a zone of complex fluid mixing is established by seasonal and tidal influences. Understanding this complexity and the subsequent ramifications for local biogeochemical conditions is critical to inferring the potential for degradation of advecting contaminants. A range of modelling approaches throws light on the overall topographic controls of discharge to the river, on the saline convection processes operating under the river bank, on the potential for fluid mixing, and on the various important time scales in the system. Saline distributions simulated within the aquifer hypoaigic zone are in at least qualitative agreement with previous field measurements at the site and are strongly affected by seasonal influences. Groundwater seepage velocities at the shoreline are found to be positively correlated with river salinity. Calculations of fluid age distributions throughout the system show sensitivity to dispersivity values; however, maximum fluid ages under the river appear to be diffusion limited to a few decades. The saline convection cell in the aquifer defines a zone of strong dispersive dilution of aged (many decades) deep aquifer fluids with relatively young (several months) riverine fluids. Seasonal recharge and river salinity cycles induce regular perturbations to the convection cell, yielding intra-annual variations of 50% in seepage velocity and almost 30% in wedge penetration distance at the plume location.

  9. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    PubMed Central

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-01-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd. PMID:26167100

  10. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea

    NASA Astrophysics Data System (ADS)

    Obolewski, Krystian; Bąkowska, Martyna

    2017-10-01

    The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water exchange) with the sea. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open sea, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water exchange with the sea, due to their sensitivity to environmental stress.

  11. Evaluation of Flow Paths and Confluences for Saltwater Intrusion and Its Influence on Fish Species Diversity in a Deltaic River Network

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cui, B.; Zhang, Z.; Fang, Y.; Jawitz, J. W.

    2016-12-01

    Freshwater in a delta is often at risk of saltwater intrusion, which has been a serious issue in estuarine deltas all over the world. Salinity gradients and hydrologic connectivity in the deltas can be disturbed by saltwater intrusion, which can fluctuate frequently and locally in time and space to affect biotic processes and then to affect the distribution patterns of the riverine fishes throughout the river network. Therefore, identifying the major flow paths or locations at risk of saltwater intrusion in estuarine ecosystems is necessary for saltwater intrusion mitigation and fish species diversity conservation. In this study, we use the betweenness centrality (BC) as the weighted attribute of the river network to identify the critical confluences and detect the preferential flow paths for saltwater intrusion through the least-cost-path algorithm from graph theory approach. Moreover, we analyse the responses of the salinity and fish species diversity to the BC values of confluences calculated in the river network. Our results show that the most likely location of saltwater intrusion is not a simple gradient change from sea to land, but closely dependent on the river segments' characteristics. In addition, a significant positive correlation between the salinity and the BC values of confluences is determined in the Pearl River Delta. Changes in the BC values of confluences can produce significant variation in the fish species diversity. Therefore, the dynamics of saltwater intrusion are a growing consideration for understanding the patterns and subsequent processes driving fish community structure. Freshwater can be diverted into these major flow paths and critical confluences to improve river network management and conservation of fish species diversity under saltwater intrusion.

  12. Effects of Different Saline-Alkaline Conditions on the Characteristics of Phytoplankton Communities in the Lakes of Songnen Plain, China

    PubMed Central

    Zang, Shuying; Fan, Yawen; Ye, Huaxiang

    2016-01-01

    Many lakes located in the Songnen Plain of China exhibit a high saline-alkaline level. 25 lakes in the Songnen Plain were selected as research objects in this study. Water samples in these lakes were collected from June to August in 2008. Total Dissolved Solids (TDS) and Total Alkalinity (TA) were measured to assess the saline-alkaline level, and partial canonical correspondence analysis (CCA) was conducted as well. The results show that the majority of these lakes in the study area could be categorized into HCO3−-Na+-I type. According to the TDS assessment, of the total 25 lakes, there are 14 for freshwater, 7 for brackish water and 4 for saltwater; and the respective range of TA was from 0.98 to 40.52. The relationship between TA and TDS indicated significant linear relationship (R2 = 0.9292) in the HCO3−-Na+-I type lakes in the Songnen Plain. There was a general trend that cell density, genera richness and taxonomic diversity decreased with the increase of saline-alkaline gradient, whereas a contrary trend was observed for the proportion of dominant species. When the TDS values were above 3×103mg/L and the TA values were above 15mg/L, there was a significant reduction in cell density, genera richness and biodiversity, and their corresponding values were respectively below 10×106 (ind/L), 15 and approximately 2.5. Through the partial canonical correspondence analysis (CCA), 10.7% of the genera variation was explained by pure saline-alkaline variables. Cyclotella meneghiniana, Melosira ambigua and Melosira granulate were found to become the dominant species in most of these lakes, which indicated that there may be rather wide saline-alkaline niches for common dominant species. About one-quarters of the genera which have certain tolerance to salinity and alkalinity preferred to live in the regions with relatively higher saline-alkaline levels in this study. PMID:27749936

  13. Population and osmoregulatory responses of a euryhaline fish to extreme salinity fluctuations in coastal lagoons of the Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Wedderburn, Scotte D.; Bailey, Colin P.; Delean, Steven; Paton, David C.

    2016-01-01

    River flows and salinity are key factors structuring fish assemblages in estuaries. The osmoregulatory ability of a fish determines its capacity to tolerate rising salt levels when dispersal is unfeasible. Estuarine fishes can tolerate minor fluctuations in salinity, but a relatively small number of species in a few families can inhabit extreme hypersaline waters. The Murray-Darling Basin drains an extensive area of south-eastern Australia and river flows end at the mouth of the River Murray. The system is characterized by erratic rainfall and highly variable flows which have been reduced by intensive river regulation and water extraction. The Coorong is a coastal lagoon system extending some 110 km south-eastwards from the mouth. It is an inverted estuary with a salinity gradient that typically ranges from estuarine to triple that of sea water. Hypersalinity in the southern region suits a select suite of biota, including the smallmouth hardyhead Atherinosoma microstoma - a small-bodied, euryhaline fish with an annual life cycle. The population response of A. microstoma in the Coorong was examined during a period of considerable hydrological variation and extreme salinity fluctuations (2001-2014), and the findings were related to its osmoregulatory ability. Most notably, the species was extirpated from over 50% of its range during four continuous years without river flows when salinities exceeded 120 (2007-2010). These salinities exceeded the osmoregulatory ability of A. microstoma. Substantial river flows that reached the Coorong in late 2010 and continued into 2011 led salinities to fall below 100 throughout the Coorong by January 2012. Subsequently, A. microstoma recovered to its former range by January 2012. The findings show that the consequences of prolonged periods of insufficient river flows to temperate inverted estuaries will include substantial declines in the range of highly euryhaline fishes, which also may have wider ecological consequences.

  14. Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten

    2018-06-01

    We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.

  15. Structure and Dynamics of the Thermohaline Staircases in the Beaufort Gyre

    DTIC Science & Technology

    2007-09-01

    diffusive layering created by heating a salt gradient from below, after Figure 6 (Kelley 2003) A is the first quasi - stationary interface. B is the...sources Crapper (1975), Turner (1965), and Newell (1984) from Kelley (1990). The solid line is the empirical fit....12 Figure 11. Schematic of Ice...Salinity, Potential Temperature and Density plots show thermohaline xi step characteristics. b) Sound velocity profiles showing the step data

  16. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.

    PubMed

    Han, Gang; Wang, Peng; Chung, Tai-Shung

    2013-07-16

    The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m(2) using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting.

  17. Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.

    2016-02-01

    Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.

  18. Integrating hydrologic and geophysical data to constrain coastal surficial aquifer processes at multiple spatial and temporal scales

    USGS Publications Warehouse

    Schultz, Gregory M.; Ruppel, Carolyn; Fulton, Patrick; Hyndman, David W.; Day-Lewis, Frederick D.; Singha, Kamini

    2007-01-01

    Since 1997, repeated, coincident geophysical surveys and extensive hydrologic studies in shallow monitoring wells have been used to study static and dynamic processes associated with surface water-groundwater interaction at a range of spatial scales at the estuarine and ocean boundaries of an undeveloped, permeable barrier island in the Georgia part of the U.S. South Atlantic Bight. Because geophysical and hydrologic data measure different parameters, at different resolution and precision, and over vastly different spatial scales, reconciling the coincident data or even combining complementary inversion, hydrogeochemcial analyses and well-based groundwater monitoring, and, in some cases, limited vegetation mapping to demonstrate the utility of an integrative, multidisciplinary approach for elucidating groundwater processes at spatial scales (tens to thousands of meters) that are often difficult to capture with traditional hydrologic approaches. The case studies highlight regional aquifer characteristics, varying degrees of lateral saltwater intrusion at estuarine boundaries, complex subsurface salinity gradients at the ocean boundary, and imaging of submarsh groundwater discharge and possible free convection in the pore waters of a clastic marsh. This study also documents the use of geophysical techniques for detecting temporal changes in groundwater salinity regimes under natural (not forced) gradients at intratidal to interannual (1998-200 Southeastern U.S.A. drought) time scales.

  19. Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain

    PubMed Central

    2016-01-01

    Iron that precipitates under aerobic conditions in natural aquatic systems scavenges dissolved organic matter (DOM) from solution. Subterranean estuaries (STEs) are of major importance for land–ocean biogeochemical fluxes. Their specific redox boundaries, coined the “iron curtain” due to the abundance of precipitated iron(III) (oxy)hydroxides, are hot spots for the removal and redissolution of iron, associated nutrients, and DOM. We used ultra-high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to molecularly characterize the iron-coagulating fractions of 32 groundwater and seawater DOM samples along a salinity gradient from a shallow STE on Spiekeroog Island, North Sea, Germany, and linked our findings to trace metal and nutrient concentrations. We found systematic iron coagulation of large (>450 Da), oxygen-rich, and highly aromatic DOM molecules of terrestrial origin. The extent of coagulation increased with growing terrestrial influence along the salinity gradient. Our study is the first to show that the iron curtain may be capable of retaining terrigenous DOM fractions in marine sediments. We hypothesize that the iron curtain serves as an inorganic modulator for the supply of DOM from groundwaters to the sea, and that the STE has the potential to act as a temporal storage or even sink for terrigenous aromatic DOM compounds. PMID:27976873

  20. Seasonal variation and mixing behaviour of glutathione, thioacetamide and fulvic acids in a temperate macrotidal estuary (Aulne, NW France)

    NASA Astrophysics Data System (ADS)

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Riso, Ricardo

    2017-01-01

    Fulvic acids and two dissolved reduced sulphur substances (RSS) were analysed for one year along the whole salinity gradient in the Aulne estuary (north-western France) using differential pulse cathodic stripping voltammetry. Concentrations of glutathione-like (GSH-like), thioacetamide-like (TA-like) and fulvic acid-like (FA-like) compounds ranged from 0.2 to 38 nmol L-1, from 0.02 to 6.6 μmol L-1 and from 0.1 to 4 mgC L-1, respectively. Our results indicated primarily allochthonous-continental sources for all three compounds. The behaviour of GSH-like compounds along the salinity gradient was globally conservative, with minor losses (<25%), possibly limited due to metal complexation. TA-like compounds generally displayed non-conservative behaviour with important removals. In terms of the TA-like budget, losses were counterbalanced by exceptional inputs occurring in the flood period (February). FA-like compounds were intensely degraded (∼50%) in the last section of the river and then behaved conservatively in the estuary. The annual flux of FA-like compounds to coastal waters was 2800 ± 600 tC. This flux was mainly (74%) delivered during the high discharge period, in accordance with its known pedogenic origin.

Top