Science.gov

Sample records for strong spatial dependency

  1. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial

  2. Spatial dependence of thrombolysis

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Hari Hara Sudhan; Zilberman-Rudenko, Jevgenia; McCarty, Owen; Maddala, Jeevan

    2016-11-01

    Thrombolysis under hemodynamic conditions is affected by both transport processes and reactions, thus profoundly dependent on the geometry of blood vessels or vasculature. Although thrombosis has long been observed clinically, a systematic and quantitative understanding has not been established in complex geometries such as vasculature, where various factors would affect thrombogenesis and its stability. A thrombus's location determines the effect of hydrodynamic forces on it and rate of tPA diffusion, that would result in either embolization or formation of micro-aggregates. Preliminary experiments have shown that thrombolysis is not uniform across an entire network with different locations lysing at different rates. Numerical simulations of thrombolysis under hemodynamics in a microfluidic geometry such as a ladder network with a focus on parameters such as reaction rate, shear gradient, velocity and diffusion established the lysis's dependence on geometry. Finite element simulations of blood flow coupled with reactions have been performed in COMSOL and the results were used to develop quantifiable metrics for thrombolysis in a complex geometry.

  3. NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE

    PubMed Central

    Zhao, Zhibiao; Zhang, Yiyun; Li, Runze

    2014-01-01

    We study non-parametric regression function estimation for models with strong dependence. Compared with short-range dependent models, long-range dependent models often result in slower convergence rates. We propose a simple differencing-sequence based non-parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance. PMID:25018572

  4. NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE.

    PubMed

    Zhao, Zhibiao; Zhang, Yiyun; Li, Runze

    2014-01-01

    We study non-parametric regression function estimation for models with strong dependence. Compared with short-range dependent models, long-range dependent models often result in slower convergence rates. We propose a simple differencing-sequence based non-parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance.

  5. Spatially: resolved heterogeneous dynamics in a strong colloidal gel

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto

    2015-05-01

    We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.

  6. Spatially explicit analyses unveil density dependence.

    PubMed Central

    Veldtman, Ruan; McGeoch, Melodie A.

    2004-01-01

    Density-dependent processes are fundamental in the understanding of species population dynamics. Whereas the benefits of considering the spatial dimension in population biology are widely acknowledged, the implications of doing so for the statistical detection of spatial density dependence have not been examined. The outcome of traditional tests may therefore differ from those that include ecologically relevant locational information on both the prey species and natural enemy. Here, we explicitly incorporate spatial information on individual counts when testing for density dependence between an insect herbivore and its parasitoids. The spatially explicit approach used identified significant density dependence more frequently and in different instances than traditional methods. The form of density dependence detected also differed between methods. These results demonstrate that the explicit consideration of patch location in density-dependence analyses is likely to significantly alter current understanding of the prevalence and form of spatial density dependence in natural populations. PMID:15590593

  7. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    PubMed

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

  8. Spatially dependent Kondo effect in Quantum Corrals

    NASA Astrophysics Data System (ADS)

    Rossi, Enrico; Morr, Dirk K.

    2007-03-01

    We study the Kondo screening of a single magnetic impurity placed inside a quantum corral consisting of non-magnetic impurities on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are experimentally measurable spatial variations of the Kondo temperature, TK, and of the critical Kondo coupling, Jcr. Moreover we find that the screening of the magnetic impurity is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns that provide further experimental signatures of the spatially dependent Kondo effect. Our results demonstrate that quantum corrals provide new possibilities to manipulate and explore the Kondo effect.

  9. Task-dependent activations of human auditory cortex during spatial discrimination and spatial memory tasks.

    PubMed

    Rinne, Teemu; Koistinen, Sonja; Talja, Suvi; Wikman, Patrik; Salonen, Oili

    2012-02-15

    In the present study, we applied high-resolution functional magnetic resonance imaging (fMRI) of the human auditory cortex (AC) and adjacent areas to compare activations during spatial discrimination and spatial n-back memory tasks that were varied parametrically in difficulty. We found that activations in the anterior superior temporal gyrus (STG) were stronger during spatial discrimination than during spatial memory, while spatial memory was associated with stronger activations in the inferior parietal lobule (IPL). We also found that wide AC areas were strongly deactivated during the spatial memory tasks. The present AC activation patterns associated with spatial discrimination and spatial memory tasks were highly similar to those obtained in our previous study comparing AC activations during pitch discrimination and pitch memory (Rinne et al., 2009). Together our previous and present results indicate that discrimination and memory tasks activate anterior and posterior AC areas differently and that this anterior-posterior division is present both when these tasks are performed on spatially invariant (pitch discrimination vs. memory) or spatially varying (spatial discrimination vs. memory) sounds. These results also further strengthen the view that activations of human AC cannot be explained only by stimulus-level parameters (e.g., spatial vs. nonspatial stimuli) but that the activations observed with fMRI are strongly dependent on the characteristics of the behavioral task. Thus, our results suggest that in order to understand the functional structure of AC a more systematic investigation of task-related factors affecting AC activations is needed.

  10. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    PubMed

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  11. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation.

    PubMed

    Jacquemyn, Hans; Brys, Rein; Merckx, Vincent S F T; Waud, Michael; Lievens, Bart; Wiegand, Thorsten

    2014-04-01

    Because orchids are dependent on mycorrhizal fungi for germination and establishment of seedlings, differences in the mycorrhizal communities associating with orchids can be expected to mediate the abundance, spatial distribution and coexistence of terrestrial orchids in natural communities. We assessed the small-scale spatial distribution of seven orchid species co-occurring in 25 × 25 m plots in two Mediterranean grasslands. In order to characterize the mycorrhizal community associating with each orchid species, 454 pyrosequencing was used. The extent of spatial clustering was assessed using techniques of spatial point pattern analysis. The community of mycorrhizal fungi consisted mainly of members of the Tulasnellaceae, Thelephoraceae and Ceratobasidiaceae, although sporadically members of the Sebacinaceae, Russulaceae and Cortinariaceae were observed. Pronounced differences in mycorrhizal communities were observed between species, whereas strong clustering and significant segregation characterized the spatial distribution of orchid species. However, spatial segregation was not significantly related to phylogenetic dissimilarity of fungal communities. Our results indicate that co-occurring orchid species have distinctive mycorrhizal communities and show strong spatial segregation, suggesting that mycorrhizal fungi are important factors driving niche partitioning in terrestrial orchids and may therefore contribute to orchid coexistence.

  12. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau.

    PubMed

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-08-24

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions.

  13. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau

    PubMed Central

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-01-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302–480 km, while the annual precipitation showed smaller scales of 111–182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388

  14. Dynamics of strongly coupled spatially distributed logistic equations with delay

    NASA Astrophysics Data System (ADS)

    Kashchenko, I. S.; Kashchenko, S. A.

    2015-04-01

    The dynamics of a system of two logistic delay equations with spatially distributed coupling is studied. The coupling coefficient is assumed to be sufficiently large. Special nonlinear systems of parabolic equations are constructed such that the behavior of their solutions is determined in the first approximation by the dynamical properties of the original system.

  15. Wavelength Dependent Strong Field Interactions with Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Szafruga, Urszula Bozena

    In the regime of strong-field physics the electric field of a laser begins to strongly rival the binding potential of an atomic or molecular species. During these interactions an ionized electron can be driven away and then back towards its parent ion by the strong laser field and undergo rescattering before being detected. The amount of energy an electron can acquire during propagation is proportional to the laser intensity and the square of the wavelength. Recent improvements in laser technology have allowed us to push strong-field studies from visible/near-infrared wavelengths to the mid-infrared regime and thereby greatly increase the electron's maximum recollision energy. These high energy scattering events imprint target dependent structural information on the electron angular distribution from which we can extract atomic and molecular specific properties. Further, Keldysh invariance suggests that we can control the dominant ionization mechanism (multiphoton absorption versus tunneling through the field modified potential) by choosing an appropriate laser wavelength, laser intensity and target atom. Exploratory investigations in strong-field physics have produced many fascinating results which have led to production of attosecond duration laser pulses and atomic/molecular imaging techniques. As technological improvements continue we are able to gain further insights into these interesting physical phenomena. In this work we examine photoelectron spectra and ion yields in order to gain a deeper understanding of the fundamental processes that underlie atomic and molecular strong field interactions. Alkali metal atoms at mid-infrared wavelengths possess similar Keldysh parameter values as noble gas atoms at near-infrared wavelengths, which have received much more investigative attention. Therefore, by examining alkali metal atoms at longer wavelengths we hope to expand on our understanding of the global, Keldysh invariant, and atom specific ionization features

  16. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  17. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  18. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires

    PubMed Central

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  19. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-04-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons.

  20. Parrondo Games with Two-Dimensional Spatial Dependence

    NASA Astrophysics Data System (ADS)

    Ethier, S. N.; Lee, Jiyeon

    Parrondo games with one-dimensional (1D) spatial dependence were introduced by Toral and extended to the two-dimensional (2D) setting by Mihailović and Rajković. MN players are arranged in an M × N array. There are three games, the fair, spatially independent game A, the spatially dependent game B, and game C, which is a random mixture or non-random pattern of games A and B. Of interest is μB (or μC), the mean profit per turn at equilibrium to the set of MN players playing game B (or game C). Game A is fair, so if μB ≤ 0 and μC > 0, then we say the Parrondo effect is present. We obtain a strong law of large numbers (SLLN) and a central limit theorem (CLT) for the sequence of profits of the set of MN players playing game B (or game C). The mean and variance parameters are computable for small arrays and can be simulated otherwise. The SLLN justifies the use of simulation to estimate the mean. The CLT permits evaluation of the standard error of a simulated estimate. We investigate the presence of the Parrondo effect for both small arrays and large ones. One of the findings of Mihailović and Rajković was that “capital evolution depends to a large degree on the lattice size.” We provide evidence that this conclusion is partly incorrect. A paradoxical feature of the 2D game B that does not appear in the 1D setting is that, for fixed M and N, the mean function μB is not necessarily a monotone function of its parameters.

  1. Visualizing Spatial Dependencies in Network Topology

    DTIC Science & Technology

    2010-07-12

    terrorism, and Security held in conjunction with the SIAM International Conference on Data Mining (SDM), April 2008. [18] S Openshaw and S Alvandies...spatial distributions. John Wiley & Sons, New York, 2 edition, 1999. [19] S. Openshaw and PJ Taylor. The modifiable areal unit problem. Quantitative

  2. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  3. Strongly enhanced field-dependent single-molecule electroluminescence

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Gonzalez, Jose I.; Dickson, Robert M.

    2002-08-01

    Individual, strongly electroluminescent Agn molecules (n = 28 atoms) have been electrically written within otherwise nonemissive silver oxide films. Exhibiting characteristic single-molecule behavior, these individual room-temperature molecules exhibit extreme electroluminescence enhancements (>104 vs. bulk and dc excitation on a per molecule basis) when excited with specific ac frequencies. Occurring through field extraction of electrons with subsequent reinjection and radiative recombination, single-molecule electroluminescence is enhanced by a general mechanism that avoids slow bulk material response. Thus, while we detail strong electroluminescence from single, highly fluorescent Agn molecules, this mechanism also yields strong ac-excited electroluminescence from similarly prepared, but otherwise nonemissive, individual Cu nanoclusters.

  4. Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

    SciTech Connect

    Sekino, M; Okamoto, Satoshi; Koshibae, W; Mori, Michiyasu; Maekawa, Sadamichi

    2014-01-01

    Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about nonmonotonic temperature dependence of the hermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.

  5. Spatial dependence of pairing in deformed nuclei

    SciTech Connect

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.

    2011-11-15

    The solution of time-dependent Hartree-Fock-Bogoliubov equations by the Wignerfunction-moments method leads to the appearance of refined low-lying modes whose description requires the accurate knowledge of the anomalous density matrix. It is shown that calculations with Woods-Saxon potential satisfy this requirement, producing an anomalous density matrix of the same quality as more complicated calculations with realistic forces.

  6. Time-dependent mixing in strongly stratified sheared turbulence

    NASA Astrophysics Data System (ADS)

    Caulfield, C. P.; Salehipour, Hesam; Peltier, W. R.

    2016-11-01

    We consider the time-dependent turbulent mixing of two flows with initial velocity U ̲ (z , 0)ex =U0ex tanh (z / d) and density ρ (z , 0) =ρr +ρ0 1 - tanh (z / δ) , with Re =U0 d / ν = 4000 , Pr = ν / κ = 8 , and Rib = gρ0 d /ρrU02 = 0 . 16 . When the length scale ratio R = d / δ = 1 , the flow is susceptible to a primary Kelvin-Helmholtz instability (KHI) which exhibits a rapid burst of turbulence, associated with an overturning of the relatively wide density interface, before entering a relatively rapid decay phase. Conversely, when R =√{ Pr } , the flow is susceptible to a primary Holmboe wave instability (HWI) which is much longer lived and 'scours' but does not disrupt the relatively sharp density interface. For both flows we see evidence of a kx- 5 / 3 power law in the streamwise turbulent kinetic energy spectrum for length scales larger than the Ozmidov scale l0 = (E /N3)1/2 where N2 = 2 Rib /Lz is the buoyancy frequency and E is the dissipation rate. However, the time-dependent evolution of the mixing efficiency η = M / (M + E) is markedly different, as shown by the time evolution of the two flows in Reb - η space, where Reb = E / νN2 .

  7. Orientation Tuning Depends on Spatial Frequency in Mouse Visual Cortex

    PubMed Central

    Yuste, Rafael

    2016-01-01

    Abstract The response properties of neurons to sensory stimuli have been used to identify their receptive fields and to functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus. This dependence can be easily explained if one assumed spatially asymmetric Gabor-type receptive fields. We propose that receptive fields of neurons in layer 2/3 of visual cortex are indeed spatially asymmetric, and that this asymmetry could be used effectively by the visual system to encode natural scenes. PMID:27699210

  8. PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY

    SciTech Connect

    Johansen, Anders; Youdin, Andrew; Mac Low, Mordecai-Mark

    2009-10-20

    We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the mid-plane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebble-to-gas column density ratio is 0.01, corresponding roughly to solar metallicity, clumping is weak, so the pebble density rarely exceeds the gas density. Doubling the column density ratio leads to a dramatic increase in clumping, with characteristic particle densities more than 10 times the gas density and maximum densities reaching several thousand times the gas density. This is consistent with unstratified simulations of the streaming instability that show strong clumping in particle-dominated flows. The clumps readily contract gravitationally into interacting planetesimals on the order of 100 km in radius. Our results suggest that the correlation between host star metallicity and exoplanets may reflect the early stages of planet formation. We further speculate that initially low-metallicity disks can be particle enriched during the gas dispersal phase, leading to a late burst of planetesimal formation.

  9. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation

    NASA Astrophysics Data System (ADS)

    El Said, Bassam; Ivanov, Dmitry; Long, Andrew C.; Hallett, Stephen R.

    2016-03-01

    3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite's mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven

  10. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    SciTech Connect

    Vatsavai, Raju

    2012-01-01

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to the new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.

  11. Detection of radial motion depends on spatial displacement.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2010-06-01

    Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude.

  12. Density dependence, spatial scale and patterning in sessile biota.

    PubMed

    Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J

    2005-09-01

    Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.

  13. Scale dependencies of hydrologic models to spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Koren, V. I.; Finnerty, B. D.; Schaake, J. C.; Smith, M. B.; Seo, D.-J.; Duan, Q.-Y.

    1999-04-01

    This study is focused on analyses of scale dependency of lumped hydrological models with different formulations of the infiltration processes. Three lumped hydrological models of differing complexity were used in the study: the SAC-SMA model, the Oregon State University (OSU) model, and the simple water balance (SWB) model. High-resolution (4×4 km) rainfall estimates from the next generation weather radar (NEXRAD) Stage III in the Arkansas-Red river basin were used in the study. These gridded precipitation estimates are a multi-sensor product which combines the spatial resolution of the radar data with the ground truth estimates of the gage data. Results were generated from each model using different resolutions of spatial averaging of hourly rainfall. Although all selected models were scale dependent, the level of dependency varied significantly with different formulations of the rainfall-runoff partitioning mechanism. Infiltration-excess type models were the most sensitive. Saturation-excess type models were less scale dependent. Probabilistic averaging of the point processes reduces scale dependency, however, its effectiveness varies depending on the scale and the spatial structure of rainfall.

  14. Level dependence of spatial processing in the primate auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2012-01-01

    Sound localization in both humans and monkeys is tolerant to changes in sound levels. The underlying neural mechanism, however, is not well understood. This study reports the level dependence of individual neurons' spatial receptive fields (SRFs) in the primary auditory cortex (A1) and the adjacent caudal field in awake marmoset monkeys. We found that most neurons' excitatory SRF components were spatially confined in response to broadband noise stimuli delivered from the upper frontal sound field. Approximately half the recorded neurons exhibited little change in spatial tuning width over a ∼20-dB change in sound level, whereas the remaining neurons showed either expansion or contraction in their tuning widths. Increased sound levels did not alter the percent distribution of tuning width for neurons collected in either cortical field. The population-averaged responses remained tuned between 30- and 80-dB sound pressure levels for neuronal groups preferring contralateral, midline, and ipsilateral locations. We further investigated the spatial extent and level dependence of the suppressive component of SRFs using a pair of sequentially presented stimuli. Forward suppression was observed when the stimuli were delivered from “far” locations, distant to the excitatory center of an SRF. In contrast to spatially confined excitation, the strength of suppression typically increased with stimulus level at both the excitatory center and far regions of an SRF. These findings indicate that although the spatial tuning of individual neurons varied with stimulus levels, their ensemble responses were level tolerant. Widespread spatial suppression may play an important role in limiting the sizes of SRFs at high sound levels in the auditory cortex. PMID:22592309

  15. Strong terahertz radiation generation by beating of two spatial-triangular beams in collisional magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Bakhtiari, Farhad; Jazayeri, Seyed Masud; Ghafary, Bijan

    2016-05-01

    A scheme of terahertz (THz) radiation generation is proposed by beating of two spatial-triangular laser beams in plasma with a spatially periodic density when electron-neutral collisions have taken into account. In this process, the laser beams exert a ponderomotive force on the electrons of the plasma and impart the oscillatory velocity at the difference frequency in the presence of a static magnetic field which is applied parallel to the direction of the lasers. We show that higher efficiency and stronger THz radiation are achieved when the parallel magnetic field is used to compare the perpendicular magnetic field. The effects of beam width of lasers, collision frequency, periodicity of density ripples, and magnetic field strength are analyzed for strong THz radiation generation. The THz field of the emitted radiations is found to be highly sensitive to collision frequency and magnetic field strength. In this scheme with the optimization of plasma parameters, the efficiency of order 21% is achieved.

  16. Localized attacks on spatially embedded networks with dependencies.

    PubMed

    Berezin, Yehiel; Bashan, Amir; Danziger, Michael M; Li, Daqing; Havlin, Shlomo

    2015-03-11

    Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures-even of finite fraction-if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems.

  17. Localized attacks on spatially embedded networks with dependencies

    PubMed Central

    Berezin, Yehiel; Bashan, Amir; Danziger, Michael M.; Li, Daqing; Havlin, Shlomo

    2015-01-01

    Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures—even of finite fraction—if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems. PMID:25757572

  18. Drivers of bacterial β-diversity depend on spatial scale

    PubMed Central

    Martiny, Jennifer B. H.; Eisen, Jonathan A.; Penn, Kevin; Allison, Steven D.; Horner-Devine, M. Claire

    2011-01-01

    The factors driving β-diversity (variation in community composition) yield insights into the maintenance of biodiversity on the planet. Here we tested whether the mechanisms that underlie bacterial β-diversity vary over centimeters to continental spatial scales by comparing the composition of ammonia-oxidizing bacteria communities in salt marsh sediments. As observed in studies of macroorganisms, the drivers of salt marsh bacterial β-diversity depend on spatial scale. In contrast to macroorganism studies, however, we found no evidence of evolutionary diversification of ammonia-oxidizing bacteria taxa at the continental scale, despite an overall relationship between geographic distance and community similarity. Our data are consistent with the idea that dispersal limitation at local scales can contribute to β-diversity, even though the 16S rRNA genes of the relatively common taxa are globally distributed. These results highlight the importance of considering multiple spatial scales for understanding microbial biogeography. PMID:21518859

  19. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe.

    PubMed

    Lenoir, Jonathan; Graae, Bente Jessen; Aarrestad, Per Arild; Alsos, Inger Greve; Armbruster, W Scott; Austrheim, Gunnar; Bergendorff, Claes; Birks, H John B; Bråthen, Kari Anne; Brunet, Jörg; Bruun, Hans Henrik; Dahlberg, Carl Johan; Decocq, Guillaume; Diekmann, Martin; Dynesius, Mats; Ejrnaes, Rasmus; Grytnes, John-Arvid; Hylander, Kristoffer; Klanderud, Kari; Luoto, Miska; Milbau, Ann; Moora, Mari; Nygaard, Bettina; Odland, Arvid; Ravolainen, Virve Tuulia; Reinhardt, Stefanie; Sandvik, Sylvi Marlen; Schei, Fride Høistad; Speed, James David Mervyn; Tveraabak, Liv Unn; Vandvik, Vigdis; Velle, Liv Guri; Virtanen, Risto; Zobel, Martin; Svenning, Jens-Christian

    2013-05-01

    conclude that thermal variability within 1-km(2) units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.

  20. Effect of Spatial-Dependent Utility on Social Group Domination

    NASA Astrophysics Data System (ADS)

    Rodriguez, Nathaniel; Meyertholen, Andrew

    2012-02-01

    The mathematical modeling of social group competition has garnered much attention. We consider a model originated by Abrams and Strogatz [Nature 424, 900 (2003)] that predicts the extinction of one of two social groups. This model assigns a utility to each social group, which is constant over the entire society. We find by allowing this utility to vary over a society, through the introduction of a network or spatial dependence, this model may result in the coexistence of the two social groups.

  1. Improved dependent component analysis for hyperspectral unmixing with spatial correlations

    NASA Astrophysics Data System (ADS)

    Tang, Yi; Wan, Jianwei; Huang, Bingchao; Lan, Tian

    2014-11-01

    In highly mixed hyerspectral datasets, dependent component analysis (DECA) has shown its superiority over other traditional geometric based algorithms. This paper proposes a new algorithm that incorporates DECA with the infinite hidden Markov random field (iHMRF) model, which can efficiently exploit spatial dependencies between image pixels and automatically determine the number of classes. Expectation Maximization algorithm is derived to infer the model parameters, including the endmembers, the abundances, the dirichlet distribution parameters of each class and the classification map. Experimental results based on synthetic and real hyperspectral data show the effectiveness of the proposed algorithm.

  2. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    SciTech Connect

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël; Fabrycky, Daniel C.

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  3. Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach

    SciTech Connect

    Caillat, J.; Scrinzi, A.; Koch, O.; Kreuzer, W.

    2005-01-01

    The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is given. Total ionization and electron spectra for the ground and first excited ionic channels are calculated for one-dimensional model systems with up to six active electrons. Strong correlation effects are found in the shape of photoelectron peaks and the dependence of ionization on molecule size.

  4. How to qualify and quantify directional dependencies in spatial random fields: Direction-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Hörning, Sebastian; Bárdossy, András

    2016-04-01

    Traditional geostatistical analysis is mainly based on variograms and/or covariance functions. A more advanced investigation of spatially distributed variables can be performed using rank order geostatistical methods. For example the rank correlation function in combination with the asymmetry function gives a more detailed insight in the spatial dependence structure of the data of interest. However, many physical processes, for example advection of solute in porous media, can lead to asymmetries that exhibit a certain direction, i.e. they lead to irreversibility in a spatial context. Reversibility is well known in time series analysis; however it is hardly utilized in geostatistics. Spatial reversibility or directional dependencies can neither be covered by the rank correlation function nor by the classical asymmetry function. Therefore, a statistical test based on a chi-squared test on empirical directional copulas will be introduced that enables testing for spatial reversibility. In order to quantify the strength of directional dependencies a new direction-dependent asymmetry function is introduced. Different examples, ranging from synthetical flow and transport experiments to real-world precipitation data, will be used to demonstrate the applicability of the test and the new measure. The difference to classical anisotropy will be shown and the chi-squared test will also be used to test for significance.

  5. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  6. Invasiveness of plant pathogens depends on the spatial scale of host distribution.

    PubMed

    Mikaberidze, Alexey; Mundt, Christopher C; Bonhoeffer, Sebastian

    2016-06-01

    Plant diseases often cause serious yield losses in agriculture. A pathogen's invasiveness can be quantified by the basic reproductive number, R₀. Since pathogen transmission between host plants depends on the spatial separation between them, R₀ is strongly influenced by the spatial scale of the host distribution. We present a proof of principle of a novel approach to estimate the basic reproductivenumber, R₀, of plant pathogens as a function of the size of a field planted with crops and its aspect ratio. This general approach is based on a spatially explicit population dynamical model. The basic reproductive number was found to increase with the field size at small field sizes and to saturate to a constant value at large field sizes. It reaches amaximum in square fields and decreases as the field becomes elongated. This pattern appears to be quite general: it holds for dispersal kernels that decrease exponentially or faster, as well as for fat-tailed dispersal kernels that decrease slower than exponential (i.e., power-law kernels). We used this approach to estimate R₀ in wheat stripe rust(an important disease caused by Puccinia striiformis), where we inferred both the transmission rates and the dispersal kernels from the measurements of disease gradients. For the two largest datasets, we estimated R₀ of P. striiformis in the limit of large fields to be of the order of 30. We found that the spatial extent over which R₀ changes strongly is quite fine-scaled (about 30 m of the linear extension of the field). Our results indicate that in order to optimize the spatial scale of deployment of fungicides or host resistances, the adjustments should be made at a fine spatial scale. We also demonstrated how the knowledge of the spatial dependence of R₀ can improve recommendations with regard to fungicide treatment.

  7. Strong Field Ionization Rate Depends on the Sign of the Magnetic Quantum Number

    DTIC Science & Technology

    2013-04-01

    xenon and krypton . It was found that spin-orbital coupling does not suppress the dependency of strong field ionization on atomic orientation. These...both   xenon  and   krypton .  It  was  found  that  spin-­‐orbital  coupling  does  not  suppress  the   dependency  of...spin-­‐orbital   coupling   in   krypton   and   xenon  does   not   suppress   the   dependency  of  strong  field

  8. Strong spatial genetic structure reduces reproductive success in the critically endangered plant genus Pseudomisopates.

    PubMed

    Amat, María E; Silvertown, Jonathan; Vargas, Pablo

    2013-01-01

    Clonal growth can be a double-edged sword for endangered species, because the short-term insurance against extinction may incur a longer-term hazard of creating small inbred populations with low fecundity. In the present study, we quantify the advantages and disadvantages of clonal growth regarding the fitness of the central Iberian monotypic endangered genus Pseudomisopates. Preliminary studies showed that the species is self-incompatible and exhibits extensive clonal growth with plants flowering profusely. However, seeds at many sites seemed to be unviable, and no seedlings have been observed in the field. A fully replicated nested sampling design (n = 100) was conducted to explore genetic (using seven SSR loci) and environmental factors potentially affecting seed viability, such as: 1) clonal and genetic diversity, 2) spatial genetic structure, and 3) environmental factors (shrub cover and grazing). Generalized Linear Mixed Models were fitted relating genetic and environmental variables to reproductive variables (seed viability and flower display). Our results indicate that the relatively low genotypic diversity of the population (PD = 0.23), as quantified by SSRs, and the strong spatial genetic structure observed are congruent with intense clonal growth. This clonal growth is enhanced by unfavorable environmental conditions, such as canopy closure and grazing. Under these circumstances, both flower display and mate availability decrease, thus hindering sexual reproduction. Indeed, a mixed reproductive system (clonal and sexual) to escape environmental stochasticity is crucial for the survival of Pseudomisopates, a species inhabiting a disturbance-prone ecosystem.

  9. Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity

    NASA Astrophysics Data System (ADS)

    Duan, Ran; Guo, Ai; Zhu, Changjiang

    2017-04-01

    We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient μ (ρ) = 1 +ρα and heat conductivity coefficient κ (θ) =θβ for all α ∈ [ 0 , ∞) and β ∈ (0 , + ∞).

  10. Retrieval induces hippocampal-dependent reconsolidation of spatial memory

    PubMed Central

    Rossato, Janine I.; Bevilaqua, Lia R.M.; Medina, Jorge H.; Izquierdo, Iván; Cammarota, Martín

    2006-01-01

    Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the dorsal hippocampus. However, if the number of nonreinforced retrieval trials is insufficient to induce long-lasting extinction, then a hippocampal protein synthesis-dependent reconsolidation process recovers the original memory. Inhibition of hippocampal protein synthesis after reversal learning sessions impairs retention of the reversed preference and blocks persistence of the original one, suggesting that reversal learning involves reconsolidation rather than extinction of the original memory. Our results suggest the existence of a hippocampal protein synthesis-dependent reconsolidation process that operates to recover or update retrieval-weakened memories from incomplete extinction. PMID:16882860

  11. Strong pore-size dependence of the optical properties in porous alumina membranes

    NASA Astrophysics Data System (ADS)

    Jeon, C. H.; Kim, D. H.; Lee, Y. S.; Han, J. K.; Choi, Y. C.; Bu, S. D.; Shin, H. Y.; Yoon, S.

    2013-11-01

    We report on the strong pore-size-dependent optical properties of porous alumina membranes (PAMs) by using the photoluminescence and the optical spectroscopic techniques. The pore diameters of our PAMs varied from 60 to 420 nm. All samples showed a sizable violet/blue emission with a strong temperature dependence. We found that the peak position of the emission shifted to higher energies with increasing pore diameter, which was in accord with the smaller binding energy extracted from the temperature dependence of the emission intensity. From the transmission spectra, we found that the effective bandgap of the PAMs shifted significantly to lower energies with increasing pore diameter, which indicated that the impurity states within the bandgap was affected strongly by the geometry of the PAM.

  12. Strong spatial variability in trace gasdynamics following experimental drought in a humid tropical forest

    NASA Astrophysics Data System (ADS)

    Wood, Tana E.; Silver, Whendee L.

    2012-09-01

    Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and indirectly through changes in nutrient availability. We used throughfall exclusion shelters to determine effects of short-term (3 month) drought on trace gas fluxes and nutrient availability in humid tropical forests in Puerto Rico. Exclusion and control plots were replicated within and across three topographic zones (ridge, slope, valley) to account for spatial heterogeneity typical of these ecosystems. Throughfall exclusion reduced soil moisture in all sites and lowered exchangeable phosphorus (P) on ridges and slopes. Drought decreased soil carbon dioxide (CO2) emissions by 30% in ridge sites and 28% in slope sites, and increased net methane (CH4) consumption by 480% in valley sites. Both valley and ridge sites became net nitrous oxide (N2O) sinks in response to soil drying. Emissions of CO2 and N2O, as well as CH4 consumption were positively related to exchangeable P and the nitrate:ammonium ratio. These findings suggest that drought has the potential to decrease net trace gas emissions from humid tropical forest soils. The differential response of trace gas emissions and nutrients from different topographic zones to drought underscores the complexity of biogeochemical cycling in these ecosystems and the importance of considering spatial heterogeneity when estimating whole system responses.

  13. Identifying the spatial scale of land use that most strongly influences overall river ecosystem health score.

    PubMed

    Sheldon, Fran; Peterson, Erin E; Boone, Ed L; Sippel, Suzanne; Bunn, Stuart E; Harch, Bronwyn D

    2012-12-01

    Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active near-stream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close

  14. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  15. The effect of spatial dependence on hazard validation

    NASA Astrophysics Data System (ADS)

    Iervolino, Iunio; Giorgio, Massimiliano; Cito, Pasquale

    2017-03-01

    In countries where best-practice probabilistic hazard studies and seismic monitoring networks are available, there is increasing interest in direct validation of hazard maps. It usually means trying to quantitatively understand whether probabilities estimated via hazard analysis are consistent with observed frequencies of exceedance of ground motion intensity thresholds. Because the exceedance events of interest are typically rare with respect to the time span covered by data from seismic networks, a common approach underlying these studies is to pool observations from different sites. The main reason for this is to collect a sample large enough to convincingly perform a statistical analysis. However, this requires accounting for the dependence among the stochastic processes counting exceedances of ground motion intensity measures thresholds at different sites. Neglecting this dependence may lead to potentially fallacious conclusions about inadequateness of probabilistic seismic hazard. This study addresses this issue revisiting a hazard validation exercise for Italy, showing that accounting for this kind of spatial dependence can change the results of formal testing.

  16. Spatial dynamics of a population with stage-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.

    2015-05-01

    We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.

  17. Strong limit on the spatial and temporal variations of the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2016-10-01

    Observed spectra of quasars provide a powerful tool to test the possible spatial and temporal variations of the fine-structure constant α = e 2/ћc over the history of the Universe. It is demonstrated that high sensitivity to the variation of α can be obtained from a comparison of the spectra of quasars and laboratories. We reported a new constraint on the variation of the fine-structure constant based on the analysis of the optical spectra of the fine-structure transitions in [NeIII], [NeV], [OIII], [OI] and [SII] multiplets from 14 Seyfert 1.5 galaxies. The weighted mean value of the α-variation derived from our analysis over the redshift range 0.035 < z < 0.281 Δα/α= (4.50 +/- 5.53) \\times 10-5. This result presents strong limit improvements on the constraint on Δα/α compared to the published in the literature

  18. Pulse-shape-dependent strong-field ionization viewed with velocity-map imaging

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas C.; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus

    2011-11-15

    We explore strong field molecular ionization with velocity map imaging of fragment ions produced by dissociation following ionization. Our measurements and ab initio electronic structure calculations allow us to identify various electronic states of the molecular cation populated during ionization, with multiple pathways to individual states highlighted by the pulse shape dependence. In addition, we show that relative populations can be reconstructed from our measurements. The results illustrate how strong field molecular ionization can be complicated by the presence and interaction of multiple cationic states during ionization.

  19. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  20. Spatial Visualization Abilities of Field Dependent/Independent Preservice Teachers

    ERIC Educational Resources Information Center

    Yazici, Ersen

    2014-01-01

    Introduction: Spatial skills have been a significant area of research in educational psychology for more years and it has two major dimensions as spatial visualization and spatial orientation. Mathematics educators acknowledge the influence of cognitive styles in the learning of mathematics. There are various recognized cognitive styles in the…

  1. Photon echo in exciton-plasmon nanomaterials: A time-dependent signature of strong coupling.

    PubMed

    Blake, Adam; Sukharev, Maxim

    2017-02-28

    We investigate the dynamics of the photon echo exhibited by exciton-plasmon systems under strong coupling conditions. Using a self-consistent model based on coupled Maxwell-Bloch equations, we investigate the femtosecond time dynamics of ensembles of interacting molecules optically coupled to surface plasmon supporting materials. It is shown that observed photon echoes under a two pulse pump-probe sequence are highly dependent on various material parameters such as molecular concentration and periodicity. Simulations of photon echoes in exciton-plasmon materials reveal a unique signature of the strong exciton-plasmon coupling, namely, a double-peak structure in spectra of recorded echo signals. This phenomenon is shown to be related to hybrid states (upper and lower polaritons) in exciton-plasmon systems under strong coupling conditions. It is also demonstrated that the double-peak echo is highly sensitive to mild deviations of the coupling from resonant conditions making it a great tool for ultrafast probes.

  2. Adaptive spatially dependent weighting scheme for tomosynthesis reconstruction

    NASA Astrophysics Data System (ADS)

    Levakhina, Yulia; Duschka, Robert; Vogt, Florian; Barkhausen, JOErg; Buzug, Thorsten M.

    2012-03-01

    Digital Tomosynthesis (DT) is an x-ray limited-angle imaging technique. An accurate image reconstruction in tomosynthesis is a challenging task due to the violation of the tomographic sufficiency conditions. A classical "shift-and-add" algorithm (or simple backprojection) suffers from blurring artifacts, produced by structures located above and below the plane of interest. The artifact problem becomes even more prominent in the presence of materials and tissues with a high x-ray attenuation, such as bones, microcalcifications or metal. The focus of the current work is on reduction of ghosting artifacts produced by bones in the musculoskeletal tomosynthesis. A novel dissimilarity concept and a modified backprojection with an adaptive spatially dependent weighting scheme (ωBP) are proposed. Simulated data of software phantom, a structured hardware phantom and a human hand raw-data acquired with a Siemens Mammomat Inspiration tomosynthesis system were reconstructed using conventional backprojection algorithm and the new ωBP-algorithm. The comparison of the results to the non-weighted case demonstrates the potential of the proposed weighted backprojection to reduce the blurring artifacts in musculoskeletal DT. The proposed weighting scheme is not limited to the tomosynthesis limitedangle geometry. It can also be adapted for Computed Tomography (CT) and included in iterative reconstruction algorithms (e.g. SART).

  3. Density-Dependent Differentiation of Bacteria in Spatially Structured Open Systems.

    PubMed

    Ribbe, Jan; Maier, Berenike

    2016-04-12

    Bacterial quorum sensing is usually studied in well-mixed populations residing within closed systems. The latter do not exchange mass with their surroundings; however, in their natural environment, such as the rhizosphere, bacteria live in spatially structured open systems. Here, we tested the hypothesis that trapping of bacteria within microscopic pockets of an open system triggers density-dependent differentiation. We designed a microfluidic device that trapped swimming bacteria within microscopic compartments. The geometry of the traps controlled their diffusive coupling to fluid flow that played a dual role as nutrient source and autoinducer sink. Bacillus subtilis differentiates into a state of competence in response to quorum sensing and nutrient limitation. Using a mutant strain with a high differentiation rate and fluorescent reporters for competence, we found that the cell density required for differentiation was 100-fold higher than that required in closed systems. A direct comparison of strongly and moderately coupled reservoirs showed that strong coupling supported early differentiation but required a higher number of bacteria for its initiation. Weak coupling resulted in retardation of growth and differentiation. We conclude that spatial heterogeneity can promote density-dependent differentiation in open systems, and propose that the minimal quorum is determined by diffusive coupling to the environment through a trade-off between retaining autoinducers and accessing nutrients.

  4. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.

    PubMed

    Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K

    2008-09-01

    To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats

  5. Spatial Dependency and Contextual Effects on Academic Achievement

    ERIC Educational Resources Information Center

    Matlock, Ki; Song, Joon Jin; Goering, Christian Z.

    2014-01-01

    This study investigated the influences of district-related variables on a district's academic performance. Arkansas augmented benchmark examination scores were used to measure a district's scholastic achievement. Spatial analysis fit each district's performance to its geographical location; spatial autocorrelation measured the amount of influence…

  6. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  7. Ellipticity dependence of neutral Rydberg excitation of atoms in strong laser fields

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Dong, Jingwei; Lv, Hang; Yang, Tianxiang; Lian, Yi; Jin, Mingxing; Xu, Haifeng; Ding, Dajun; Hu, Shilin; Chen, Jing

    2016-11-01

    Rydberg state excitation (RSE) of different atoms in elliptically polarized strong 800 nm laser fields is investigated experimentally, and the results are compared with calculations of the strong-field approximation (SFA) model and the semiclassical model. It is observed that the RSE probability declines with increasing laser ellipticity for all of the He, Ar, and Kr atoms. While the measured ellipticity dependence of He RSE is very consistent with the predictions of both the SFA and semiclassical calculations, the width of the ellipticity dependence for Ar and Kr atoms is wider than that of the SFA model but closer to the semiclassical calculations. Analysis indicates that unlike a tunneling-plus-rescattering process, the decline of the RSE yield with increasing ellipticity can be attributed to a decrease of electrons with low kinetic energy that could be captured in the Rydberg states by the Coulomb potential. It indicates that the atomic RSE process could be related to the very low or near-zero energy structure in the photoelectron spectrum in strong laser fields, which would stimulate further experimental and theoretical studies to reveal their underlying mechanisms.

  8. Luminosity Dependence and Redshift Evolution of Strong Emission-Line Diagnostics in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Songaila, A.

    2016-01-01

    We examine the redshift evolution of standard strong emission-line diagnostics for Hβ-selected star-forming galaxies using the local SDSS sample and a new z=0.2{--}2.3 sample obtained from Hubble Space Telescope WFC3 grism and Keck DEIMOS and MOSFIRE data. We use the SDSS galaxies to show that there is a systematic dependence of the strong emission-line properties on Balmer-line luminosity, which we interpret as showing that both the N/O abundance and the ionization parameter increase with increasing line luminosity. Allowing for the luminosity dependence tightens the diagnostic diagrams and the metallicity calibrations. The combined SDSS and high-redshift samples show that there is no redshift evolution in the line properties once the luminosity correction is applied, i.e., all galaxies with a given L({{H}}β ) have similar strong emission-line distributions at all the observed redshifts. We argue that the best metal diagnostic for the high-redshift galaxies may be a luminosity-adjusted version of the [N ii]6584/Hα metallicity relation. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  9. Ellipticity-dependent ionization/dissociation of carbon dioxide in strong laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Feng; Ma, Ri; Zuo, Wan-Long; Lv, Hang; Huang, Hong-Wei; Xu, Hai-Feng; Jin, Ming-Xing; Ding, Da-Jun

    2015-03-01

    Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions and various fragment ions (CO+, On+, and Cn+ (n = 1, 2)) are measured as a function of ellipticity of laser polarization in the intensity range from 5.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2. The results demonstrate that non-sequential double ionization, which is induced by laser-driven electron recollision, dominates double ionization of CO2 in the strong IR laser field with intensity lower than 2.0 × 1014 W/cm2. The electron recollision could also have contribution in strong-field multiple ionization and formation of fragments of CO2 molecules. The present study indicates that the intensity and ellipticity dependence of ions yields can be used to probe the complex dynamics of strong-field ionization/dissociation of polyatomic molecules. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11034003 and 11274140).

  10. Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2006-05-01

    We formulate the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schr"odinger equation for atoms in strong laser fields. Unlike for the normal diffusion Monte Carlo the wave function is represented by walkers with two kinds or colors which solve two coupled and nonlinear diffusion equations. Those diffusion equations are coupled by the potentials similar to those introduced by Shay which must be added to Schr"odingers equation to obtain classical dynamics equivalent to the quantum mechanics [1]. The potentials are calculated semi-analytically similarly to smoothing methods of smooth particle electrodynamics (SPD) with Gaussian smoothing kernels. We apply this method to strong field two electron ionization of Helium. We calculate two electron double ionization rate in full six-dimensional configuration space quantum mechanically. Comparison with classical mechanics and the low dimensional grid models is also provided. 1cm [1] D. Shay, Phys. Rev A 13, 2261 (1976)

  11. Bayesian spatially dependent variable selection for small area health modeling.

    PubMed

    Choi, Jungsoon; Lawson, Andrew B

    2016-06-16

    Statistical methods for spatial health data to identify the significant covariates associated with the health outcomes are of critical importance. Most studies have developed variable selection approaches in which the covariates included appear within the spatial domain and their effects are fixed across space. However, the impact of covariates on health outcomes may change across space and ignoring this behavior in spatial epidemiology may cause the wrong interpretation of the relations. Thus, the development of a statistical framework for spatial variable selection is important to allow for the estimation of the space-varying patterns of covariate effects as well as the early detection of disease over space. In this paper, we develop flexible spatial variable selection approaches to find the spatially-varying subsets of covariates with significant effects. A Bayesian hierarchical latent model framework is applied to account for spatially-varying covariate effects. We present a simulation example to examine the performance of the proposed models with the competing models. We apply our models to a county-level low birth weight incidence dataset in Georgia.

  12. STRONG GRAVITATIONAL LENS MODELING WITH SPATIALLY VARIANT POINT-SPREAD FUNCTIONS

    SciTech Connect

    Rogers, Adam; Fiege, Jason D.

    2011-12-10

    Astronomical instruments generally possess spatially variant point-spread functions, which determine the amount by which an image pixel is blurred as a function of position. Several techniques have been devised to handle this variability in the context of the standard image deconvolution problem. We have developed an iterative gravitational lens modeling code called Mirage that determines the parameters of pixelated source intensity distributions for a given lens model. We are able to include the effects of spatially variant point-spread functions using the iterative procedures in this lensing code. In this paper, we discuss the methods to include spatially variant blurring effects and test the results of the algorithm in the context of gravitational lens modeling problems.

  13. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    SciTech Connect

    Rose, Harvey; Daughton, W; Yin, L

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  14. Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles.

    PubMed

    Ding, Si-Jing; Nan, Fan; Liu, Xiao-Li; Hao, Zhong-Hua; Zhou, Li; Zeng, Jie; Xu, Hong-Xing; Zhang, Wei; Wang, Qu-Quan

    2017-03-07

    Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.

  15. Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ding, Si-Jing; Nan, Fan; Liu, Xiao-Li; Hao, Zhong-Hua; Zhou, Li; Zeng, Jie; Xu, Hong-Xing; Zhang, Wei; Wang, Qu-Quan

    2017-03-01

    Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.

  16. Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles

    PubMed Central

    Ding, Si-Jing; Nan, Fan; Liu, Xiao-Li; Hao, Zhong-Hua; Zhou, Li; Zeng, Jie; Xu, Hong-Xing; Zhang, Wei; Wang, Qu-Quan

    2017-01-01

    Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer. PMID:28266619

  17. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  18. [Scale-dependency of spatial variability of soil available nutrients].

    PubMed

    Yang, Qi-Yong; Yang, Jing-Song; Liu, Guang-Ming

    2011-02-01

    With the support of GIS and by using classical statistics and geostatistics methods, the spatial variability of soil available P (AP) and available K (AK) in cultivated lands in Yucheng City of Shandong Province was approached at county and township scales. The results showed that both the soil AP and AK followed the logarithmic normal distribution, with the coefficient of variation (CV) at the two scales being 26.5% - 36.6% and presenting a moderate variation. With the decrease of the scale, the CV of the soil AP and AK increased. Both the soil AP and AK were spatially correlated with scale. At county scale, the soil AP and AK had a larger spatial correlation distance, being 9.0 km and 26.5 km, respectively; while at township scale, the soil AP and AK had a smaller spatial correlation distance, being 1.7 km and 2.8 km, respectively. The spatial distribution of the soil AP and AK at the two scales was obviously different, which was mainly affected by structural factors and random factors.

  19. Strong Spatial Influence on Colonization Rates in a Pioneer Zooplankton Metacommunity

    PubMed Central

    Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J.

    2012-01-01

    The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18–2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance. PMID:22792241

  20. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity.

    PubMed

    Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J

    2012-01-01

    The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18-2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance.

  1. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.

  2. On the frequency dependence and spatial coherence of PKP precursor amplitudes

    NASA Astrophysics Data System (ADS)

    Mancinelli, Nicholas; Shearer, Peter; Thomas, Christine

    2016-03-01

    Studies now agree that small-scale (˜10 km) weak (˜0.1%) velocity perturbations throughout the lowermost mantle generate the globally averaged amplitudes of 1 Hz precursors to the core phase, . The possible frequency dependence and spatial coherence of this scattered phase, however, has been given less attention. Using a large global data set of ˜150,000 PKP precursor recordings, we characterize the frequency dependence of PKP precursors at central frequencies ranging from 0.5 to 4 Hz. At greater frequencies, we observe more scattered energy (relative to the reference phase PKPdf), particularly at shorter ranges. We model this observation by invoking heterogeneity at length scales from 2 to 30 km. Amplitudes at 0.5 Hz, in particular, suggest the presence of more heterogeneity at scales >8 km than present in previously published models. Using a regional bootstrap approach, we identify large (>20°), spatially coherent regions of anomalously strong scattering beneath the West Pacific, Central/North America, and—to a lesser extent—East Africa. Finally, as proof of concept, we use array processing techniques to locate the origin of scattered energy observed in Southern California by the Anza and Southern California Seismic Networks. The energy appears to come primarily from out-of-plane scattering on the receiver side. We suggest that such improvised arrays can increase global coverage and may reveal whether a majority of precursor energy comes from localized heterogeneity in the lowermost mantle.

  3. Retrieval Induces Hippocampal-Dependent Reconsolidation of Spatial Memory

    ERIC Educational Resources Information Center

    Rossato, Janine I.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin; Bevilaqua, Lia R. M.

    2006-01-01

    Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the…

  4. Analytic Expansion for Ground-State Wavefunction of Time-Dependent Strong-Coupling Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Xie, Qiong-Tao

    2011-10-01

    The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schrödinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is shown that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.

  5. Runoff source or sink? Biocrust hydrological function strongly depends on the relative abundance of mosses

    NASA Astrophysics Data System (ADS)

    Bowker, M. A.; Eldridge, D. J.; Maestre, F. T.

    2012-04-01

    The redistribution of water in semi-arid environments is critical for overall ecosystem productivity. To a large degree, ecosystem engineers may determine the redistribution of water. Biological soil crusts (biocrusts) are one such group of ecosystem engineers. Their effects on infiltration have been somewhat controversial, varying from place to place and ranging from strongly positive to strongly negative. In addition, they coexist with and are modified by additional ecosystem engineers. We used a systems approach to examine the interactive effects of multiple engineers on infiltration processes across two analogous sets of interactors. First in Spain, we examined interactions among Stipa tenacissima, biocrusts, and the European rabbit; and in Australia, the interaction between biocrusts and the bilby (a rabbit-like marsupial). We focused on the effects of particular community properties of biocrusts such as species richness, total cover, species composition, and spatial patterning to characterize their variable effects on infiltration. We measured the early (sorptivity) and later (steady-state infiltration) stages of infiltration at two supply potentials using disk permeameters, which allowed us to determine the relative effects of different engineers and soil micropores on water flow through large macropores. In the Spanish case, structural equation modeling showed that both Stipa and biocrust cover exerted substantial and equal positive effects on infiltration under ponding, whereas indirectly, rabbit disturbance negatively affected infiltration by reducing crust cover; rabbits had negligible direct effects. The biocrust influence could be partitioned roughly equally between total cover and composition. All lichen species were negatively related to infiltration and almost all mosses were positively related to infiltration. In the Australian study, bilby forage pits had a direct and strong positive influence on steady state infiltration under ponding and most

  6. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  7. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    PubMed Central

    Kachel, Hamid S.; Patel, Rohit N.; Franzyk, Henrik; Mellor, Ian R.

    2016-01-01

    Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at −80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity. PMID:27901080

  8. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  9. Polarisation response of delay dependent absorption modulation in strong field dressed helium atoms probed near threshold

    NASA Astrophysics Data System (ADS)

    Simpson, E. R.; Sanchez-Gonzalez, A.; Austin, D. R.; Diveki, Z.; Hutchinson, S. E. E.; Siegel, T.; Ruberti, M.; Averbukh, V.; Miseikis, L.; Strüber, C. S.; Chipperfield, L.; Marangos, J. P.

    2016-08-01

    We present the first measurement of the vectorial response of strongly dressed helium atoms probed by an attosecond pulse train (APT) polarised either parallel or perpendicular to the dressing field polarisation. The transient absorption is probed as a function of delay between the APT and the linearly polarised 800 nm field of peak intensity 1.3× {10}14 {{W}} {{cm}}-2. The APT spans the photon energy range 16-42 eV, covering the first ionisation energy of helium (24.59 eV). With parallel polarised dressing and probing fields, we observe modulations with periods of one half and one quarter of the dressing field period. When the polarisation of the dressing field is altered from parallel to perpendicular with respect to the APT polarisation we observe a large suppression in the modulation depth of the above ionisation threshold absorption. In addition to this we present the intensity dependence of the harmonic modulation depth as a function of delay between the dressing and probe fields, with dressing field peak intensities ranging from 2 × 1012 to 2 × 1014 {{W}} {{cm}}-2. We compare our experimental results with a full-dimensional solution of the single-atom time-dependent (TD) Schrödinger equation obtained using the recently developed abinitio TD B-spline ADC method and find good qualitative agreement for the above threshold harmonics.

  10. Renormalization-scheme dependence of the strong coupling constantin quantum chromodynamics

    SciTech Connect

    Blumenfeld, A.; Moshe, M.

    1982-08-01

    Quantum chromodynamics (QCD) lacks a limit analogous to the Thomson limit of quantum electrodynamics (QED) for defining its coupling constant. Nevertheless, the strong coupling constant in QCD can be determined from measurable quantities in an approximately scheme-independent manner as -q/sup 2/..-->..infinity. At finite q/sup 2/, however, high-order terms in the renormalization-group functions introduce scheme-dependent terms into ..cap alpha../sub s/(q/sup 2/). A recently suggested method for estimating high-order terms in solutions of Callan-Symanzik equation, which is similar in nature to techniques employed in QED, enables us to determine the size of these scheme-dependent terms. We also discuss a modified minimal-subtraction (MS) scheme which is very appealing. It has the same ..beta.. function as the MS scheme (to all orders) but it equals the momentum-subtraction (MOM) scheme up to two-loop calculations and differs from it at higher orders. We denote this scheme as MOM.

  11. Strong nonlinear dependence of the spectral amplification factors of deep Vrancea earthquakes magnitude

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gheorghe; Ortanza Cioflan, Carmen; Marmureanu, Alexandru

    2010-05-01

    Nonlinear effects in ground motion during large earthquakes have long been a controversial issue between seismologists and geotechnical engineers. Aki wrote in 1993:"Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification( Local site effects on weak and strong ground motion, Tectonophysics,218,93-111). In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding of the effects of earthquake source, propagation path and local geological site conditions. The difficulty for seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and path propagation. The researchers from National Institute for Earth Physics ,in order to make quantitative evidence of large nonlinear effects, introduced the spectral amplification factor (SAF) as ratio between maximum spectral absolute acceleration (Sa), relative velocity (Sv) , relative displacement (Sd) from response spectra for a fraction of critical damping at fundamental period and peak values of acceleration(a-max),velocity (v-max) and displacement (d-max),respectively, from processed strong motion record and pointed out that there is a strong nonlinear dependence on earthquake magnitude and site conditions.The spectral amplification factors(SAF) are finally computed for absolute accelerations at 5% fraction of critical damping (β=5%) in five seismic stations: Bucharest-INCERC(soft soils, quaternary layers with a total thickness of 800 m);Bucharest-Magurele (dense sand and loess on 350m); Cernavoda Nuclear Power Plant site (marl, loess, limestone on 270 m) Bacau(gravel and loess on 20m) and Iassy (loess, sand, clay, gravel on 60 m) for last strong and deep Vrancea earthquakes: March 4,1977 (MGR =7.2 and h=95 km);August 30

  12. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Baring, Matthew G.; Eiles, Matthew T.; Wadiasingh, Zorawar; Taylor, Caitlin A.; Fitch, Catherine J.

    2014-08-01

    The quantum electrodynamical (QED) process of Compton scattering in strong magnetic fields is commonly invoked in atmospheric and inner magnetospheric models of x-ray and soft gamma-ray emission in high-field pulsars and magnetars. A major influence of the field is to introduce resonances at the cyclotron frequency and its harmonics, where the incoming photon accesses thresholds for the creation of virtual electrons or positrons in intermediate states with excited Landau levels. At these resonances, the effective cross section typically exceeds the classical Thomson value by over 2 orders of magnitude. Near and above the quantum critical magnetic field of 44.13 TeraGauss, relativistic corrections must be incorporated when computing this cross section. This profound enhancement underpins the anticipation that resonant Compton scattering is a very efficient process in the environs of highly magnetized neutron stars. This paper presents formalism for the QED magnetic Compton differential cross section valid for both subcritical and supercritical fields, yet restricted to scattered photons that are below pair creation threshold. Calculations are developed for the particular case of photons initially propagating along the field, and in the limit of zero vacuum dispersion, mathematically simple specializations that are germane to interactions involving relativistic electrons frequently found in neutron star magnetospheres. This exposition of relativistic, quantum, magnetic Compton cross sections treats electron spin dependence fully, since this is a critical feature for describing the finite decay lifetimes of the intermediate states. Such lifetimes are introduced to truncate the resonant cyclotronic divergences via standard Lorentz profiles. The formalism employs both the traditional Johnson and Lippmann (JL) wave functions and the Sokolov and Ternov (ST) electron eigenfunctions of the magnetic Dirac equation. The ST states are formally correct for self

  13. Dependence of Turbulence Spatial Correlation Lengths on Plasma Rotation

    NASA Astrophysics Data System (ADS)

    Parisi, Jason; Barnes, Michael; Parra, Felix I.; Roach, Colin M.

    2015-11-01

    We present the results from nonlinear gyrokinetic simulations in GS2 to investigate the parallel and perpendicular correlation lengths of electrostatic turbulence in tokamak plasmas with rotation. These correlation lengths are characterised for a range of parameters, including the E × B shear, γE. We observe that the correlation lengths decrease as γE increases. Simulation results are compared against scaling laws deduced from the critical balance conjecture, which states that nonlinear perpendicular decorrelation times and parallel streaming times are comparable at all spatial scales. This work received funding from Euratom grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045], and gyrokinetic calculations were performed on ARCHER via the Plasma HEC Consortium [EPSRC Grant No.EP/L000237/1].

  14. Strong reduction of the degree of spatial coherence of a laser beam propagating through a preformed plasma.

    PubMed

    Michel, P; Labaune, C; Bandulet, H C; Lewis, K; Depierreux, S; Hulin, S; Bonnaud, G; Tikhonchuk, V T; Weber, S; Riazuelo, G; Baldis, H A; Michard, A

    2004-04-30

    A strong reduction of the spatial coherence of a laser beam after its propagation through a plasma has been measured using a Fresnel biprism interferometer. The laser beam was diffraction limited; the coherence width was reduced from 40 mm in vacuum down to a few mm with the plasma. Numerical results based on a paraxial model exhibit a coherence degree close to the experimental one; they also prove the importance of taking into account the nonlocal transport effects in numerical simulations for such plasma conditions.

  15. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    SciTech Connect

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisture transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the

  16. Pressures at larger spatial scales strongly influence the ecological status of heavily modified river water bodies in Germany.

    PubMed

    Kail, Jochem; Wolter, Christian

    2013-06-01

    River biota are influenced by anthropogenic pressures that operate at different spatial scales. Understanding which pressures at which spatial scales affect biota is essential to manage and restore degraded rivers. In Europe, many river reaches were designated as Heavily Modified Water Bodies (HMWB) according to the European Water Framework Directive (WFD), where the ecological potential might mainly be determined by pressures at larger spatial scales outside the HMWB (e.g. hydromorphological alterations at the river network and land use at the catchment scale). In Germany, hydromorphological alterations and diffuse pollution were the main pressures. Therefore, the three objectives of this study were to (i) identify the hydromorphological pressures at the site, reach, and river network scale, and land use categories at the catchment scale which significantly affect the ecological status of HMWB in Germany, (ii) quantify the relative importance of these pressures at different spatial scales, and (iii) analyse the differences in response between fish and macroinvertebrates. The results indicated that: (i) At the reach scale, fish were most strongly influenced by channel-bank conditions whilst the naturalness of channel-planform was the best proxy for the ecological status of macroinvertebrates. At the catchment scale, urbanization was the most detrimental land use. (ii) The pressures at larger spatial scales (catchment land use and hydromorphological alterations in the river network) generally were more important than hydromorphological alterations at the reach scale. (iii) Fish were affected equally by both, hydromorphological alterations at the reach scale and large-scale pressures whereas the latter were far more important for the ecological status of macroinvertebrates. In conclusion, these results indicated that large-scale pressures may often limit the efficiency of reach-scale restoration, especially for macroinvertebrates, even in the absence of saprobic

  17. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe; Orús, Román; Bauer, Bela; Vidal, Guifré

    2010-04-01

    We explain how to implement, in the context of projected entangled-pair states (PEPSs), the general procedure of fermionization of a tensor network introduced in P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009). The resulting fermionic PEPS, similar to previous proposals, can be used to study the ground state of interacting fermions on a two-dimensional lattice. As in the bosonic case, the cost of simulations depends on the amount of entanglement in the ground state and not directly on the strength of interactions. The present formulation of fermionic PEPS leads to a straightforward numerical implementation that allowed us to recycle much of the code for bosonic PEPS. We demonstrate that fermionic PEPS are a useful variational ansatz for interacting fermion systems by computing approximations to the ground state of several models on an infinite lattice. For a model of interacting spinless fermions, ground state energies lower than Hartree-Fock results are obtained, shifting the boundary between the metal and charge-density wave phases. For the t-J model, energies comparable with those of a specialized Gutzwiller-projected ansatz are also obtained.

  18. Federal state differentials in the efficiency of health production in Germany: an artifact of spatial dependence?

    PubMed

    Felder, Stefan; Tauchmann, Harald

    2013-02-01

    Due to regional competition and patient migration, the efficiency of healthcare provision at the regional level is subject to spatial dependence. We address this issue by applying a spatial autoregressive model to longitudinal data from Germany at the district ('Kreis') level. The empirical model is specified to explain efficiency scores, which we derive through non-parametric order-m efficiency analysis of regional health production. The focus is on the role of health policy of federal states ('Bundesländer') for district efficiency. Regression results reveal significant spatial spillover effects. Notably, accounting for spatial dependence does not decrease but increases the estimated effect of federal states on district efficiency. It appears that genuinely more efficient states are less affected by positive efficiency spillovers, so that taking into account spatial dependence clarifies the importance of health policy at the state level.

  19. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    PubMed

    Flesch, Aaron D; Hutto, Richard L; van Leeuwen, Willem J D; Hartfield, Kyle; Jacobs, Sky

    2015-01-01

    Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches

  20. Spatial, Temporal, and Density-Dependent Components of Habitat Quality for a Desert Owl

    PubMed Central

    Flesch, Aaron D.; Hutto, Richard L.; van Leeuwen, Willem J. D.; Hartfield, Kyle; Jacobs, Sky

    2015-01-01

    Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches

  1. Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig

    2004-12-01

    Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) one WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.

  2. Spatially dependent cluster dynamics model of He plasma surface interaction in tungsten for fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Faney, T.; Krasheninnikov, S. I.; Wirth, B. D.

    2015-01-01

    In fusion reactors, plasma facing components (PFC) and, in particular, the divertor will be irradiated with high fluxes of low-energy (˜100 eV) helium and hydrogen ions. Tungsten is one of the leading candidate divertor materials for ITER and DEMO fusion reactors. However, the behaviour of tungsten under high dose, coupled helium/hydrogen exposure remains to be fully understood. The PFC response and performance changes are intimately related to microstructural changes, such as the formation of point defect clusters, helium and hydrogen bubbles or dislocation loops. Computational materials' modelling results are described here that investigate the mechanisms controlling microstructural evolution in tungsten. The aim of this study is to understand and predict sub-surface helium bubble growth under high flux helium ion implantation (˜1022 m-2 s-1) at high temperatures (>1000 K). We report results from a spatially dependent cluster dynamics model based on reaction-diffusion rate theory to describe the evolution of the microstructure under these conditions. The key input parameters to the model (diffusion coefficients, migration and binding energies, initial defect production) are determined from a combination of atomistic modelling and available experimental data. The results are in good agreement with results of an analytical model that is presented in a separate paper. In particular, it is found that the sub-surface evolution with respect to bubble size and concentration of the helium bubbles strongly depends on the flux and temperature.

  3. Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength.

    PubMed

    Morris, J E; Mazilu, M; Baumgartl, J; Cizmár, T; Dholakia, K

    2009-07-20

    We generate a broadband "white light" Airy beam and characterize the dependence of the beam properties on wavelength. Experimental results are presented showing that the beam's deflection coefficient and its characteristic length are wavelength dependent. In contrast the aperture coefficient is not wavelength dependent. However, this coefficient depends on the spatial coherence of the beam. We model this behaviour theoretically by extending the Gaussian-Schell model to describe the effect of spatial coherence on the propagation of Airy beams. The experimental results are compared to the model and good agreement is observed.

  4. Wavelength and shape dependent strong-field photoemission from silver nanotips

    NASA Astrophysics Data System (ADS)

    Bionta, M. R.; Weber, S. J.; Blum, I.; Mauchain, J.; Chatel, B.; Chalopin, B.

    2016-10-01

    We study optical field emission from silver nanotips, showing the combined influence of the illumination wavelength and the exact shape of the nanotip on the strong-field response. This is particularly relevant in the case of FIB milled nano tips, where the nanotip fabrication capabilities could become a new ingredient for the study of strong-field physics. The influence of the thermal load on the nanotip and its effect on the emission is studied as well by switching the repetition rate of the laser source from 1 kHz to 62 MHz, showing a clear transition towards the quenching of the strong-field emission.

  5. Strong spatial genetic structure in five tropical Piper species: should the Baker-Fedorov hypothesis be revived for tropical shrubs?

    PubMed

    Lasso, E; Dalling, J W; Bermingham, E

    2011-12-01

    Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker-Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200-750 m) populations showed significant genetic differentiation (Fst 0.11-0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03-0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus.

  6. Strong spatial genetic structure in five tropical Piper species: should the Baker–Fedorov hypothesis be revived for tropical shrubs?

    PubMed Central

    Lasso, E; Dalling, J W; Bermingham, E

    2011-01-01

    Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker–Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200–750 m) populations showed significant genetic differentiation (Fst 0.11–0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03–0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus. PMID:22393518

  7. Prokaryotes in Subsoil—Evidence for a Strong Spatial Separation of Different Phyla by Analysing Co-occurrence Networks

    PubMed Central

    Uksa, Marie; Schloter, Michael; Endesfelder, David; Kublik, Susanne; Engel, Marion; Kautz, Timo; Köpke, Ulrich; Fischer, Doreen

    2015-01-01

    Microbial communities in soil provide a wide range of ecosystem services. On the small scale, nutrient rich hotspots in soil developed from the activities of animals or plants are important drivers for the composition of microbial communities and their functional patterns. However, in subsoil, the spatial heterogeneity of microbes with differing lifestyles has been rarely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in top- and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophic and copiotrophic microbes was assessed. Four bacterial clusters were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, representing mostly copiotrophic bacteria, were affiliated mainly to the rhizosphere and drilosphere—both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia, bacterial phyla which harbor many oligotrophic bacteria, were the most abundant groups in bulk subsoil. The bacterial core microbiome in this soil was estimated to cover 7.6% of the bacterial sequencing reads including both oligotrophic and copiotrophic bacteria. In contrast the archaeal core microbiome includes 56% of the overall archaeal diversity. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea build a stable backbone of the soil prokaryotes due to their low variability in the different soil compartments. PMID:26635741

  8. Strong spatial segregation between wildcats and domestic cats may explain low hybridization rates on the Iberian Peninsula.

    PubMed

    Gil-Sánchez, J M; Jaramillo, J; Barea-Azcón, J M

    2015-12-01

    The European wildcat (Felis silvestris silvestris) is an endangered felid impacted by genetic introgression with the domestic cat (Felis silvestris catus). The problem of hybridization has had different effects in different areas. In non-Mediterranean regions pure forms of wildcats became almost extinct, while in Mediterranean regions genetic introgression is a rare phenomenon. The study of the potential factors that prevent the gene flow in areas of lower hybridization may be key to wildcat conservation. We studied the population size and spatial segregation of wildcats and domestic cats in a typical Mediterranean area of ancient sympatry, where no evidence of hybridization had been detected by genetic studies. Camera trapping of wild-living cats and walking surveys of stray cats in villages were used for capture-recapture estimations of abundance and spatial segregation. Results showed (i) a low density of wildcats and no apparent presence of putative hybrids; (ii) a very low abundance of feral cats in spite of the widespread and large population sources of domestic cats inhabiting villages; (iii) strong spatial segregation between wildcats and domestic/feral cats; and (iv) no relationship between the size of the potential population sources and the abundance of feral cats. Hence, domestic cats were limited in their ability to become integrated into the local habitat of wildcats. Ecological barriers (habitat preferences, food limitations, intra-specific and intra-guild competition, predation) may explain the severe divergences of hybridization impact observed at a biogeographic level. This has a direct effect on key conservation strategies for wildcats (i.e., control of domestic cats).

  9. Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang

    2015-05-01

    Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars. Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).

  10. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    DOE PAGES

    Yi, M.; Liu, Z. -K.; Zhang, Y.; ...

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phasemore » where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less

  11. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    SciTech Connect

    Yi, M.; Liu, Z. -K.; Zhang, Y.; Yu, R.; Zhu, J. -X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J. -H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S. -K.; Hussain, Z.; Mao, Z. Q.; Chu, C. W.; Fisher, I. R.; Si, Q.; Shen, Z. -X.; Lu, D. H.

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

  12. Strongly bias-dependent tunnel magnetoresistance in manganite spin filter tunnel junctions.

    PubMed

    Prasad, Bhagwati; Zhang, Wenrui; Jian, Jie; Wang, Haiyan; Blamire, Mark G

    2015-05-20

    A highly unconventional bias-dependent tunnel magnetoresistance (TMR) response is observed in Sm0.75 Sr0.25 MnO3 -based nanopillar spin filter tunnel junctions (SFTJs) with two different behaviors in two different thickness regimes of the barrier layer. Thinner barrier devices exhibit conventional SFTJ behaviors; however, for larger barrier thicknesses, the TMR-bias dependence is more complex and reverses sign at higher bias.

  13. Restricted dispersal reduces the strength of spatial density dependence in a tropical bird population

    PubMed Central

    Burgess, Malcolm D; Nicoll, Malcolm A.C; Jones, Carl G; Norris, Ken

    2008-01-01

    Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations—the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change. PMID:18285284

  14. Paramagnetic Meissner effect and strong time dependence at high fields in melt-textured high- T C superconductors

    NASA Astrophysics Data System (ADS)

    de Paiva Gouvêa, Cristol; Dias, Fábio Teixeira; das Neves Vieira, Valdemar; da Silva, Douglas Langie; Schaf, Jacob; Wolff-Fabris, Frederik; Rovira, Joan Josep Roa

    2013-05-01

    In this work we report on systematic field-cooled magnetization experiments in melt-textured YBa2Cu3O7- δ samples containing Y211 precipitates. Magnetic fields up to 14 T were applied either parallel or perpendicular to the ab planes and a strong paramagnetic response related to the superconducting state was observed. This effect is known as paramagnetic Meissner effect (PME). The magnitude of the PME increases when the field is augmented. This effect shows a strong paramagnetic relaxation, such that the paramagnetic moment increases as a function of the time. The pinning by the Y211 particles plays a crucial role in the explanation of this effect and our results suggest that the pinning capacity can produce a strong flux compression into the sample, originating the PME and the strong time dependence.

  15. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns

    PubMed Central

    Ryu, Jiwoo; Kim, Ko Keun; Mandic, Danilo P.

    2016-01-01

    Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. Then, the strong uncorrelating transform complex common spatial patterns (SUTCCSP) algorithm is applied to the rhythms so that the complex data, constructed with the mu and beta rhythms, becomes uncorrelated and its pseudocovariance provides supplementary power difference information between the two rhythms. The extracted features using SUTCCSP that maximize the interclass variances are classified using various classification algorithms for the separation of the left- and right-hand motor imagery EEG acquired from the Physionet database. This paper shows that the supplementary information of the power difference between mu and beta rhythms obtained using SUTCCSP provides an important feature for the classification of the left- and right-hand motor imagery tasks. In addition, MEMD is proved to be a preferred preprocessing method for the nonlinear and nonstationary EEG signals compared to the conventional IIR filtering. Finally, the random forest classifier yielded a high performance for the classification of the motor imagery tasks. PMID:27795702

  16. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns.

    PubMed

    Kim, Youngjoo; Ryu, Jiwoo; Kim, Ko Keun; Took, Clive C; Mandic, Danilo P; Park, Cheolsoo

    2016-01-01

    Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. Then, the strong uncorrelating transform complex common spatial patterns (SUTCCSP) algorithm is applied to the rhythms so that the complex data, constructed with the mu and beta rhythms, becomes uncorrelated and its pseudocovariance provides supplementary power difference information between the two rhythms. The extracted features using SUTCCSP that maximize the interclass variances are classified using various classification algorithms for the separation of the left- and right-hand motor imagery EEG acquired from the Physionet database. This paper shows that the supplementary information of the power difference between mu and beta rhythms obtained using SUTCCSP provides an important feature for the classification of the left- and right-hand motor imagery tasks. In addition, MEMD is proved to be a preferred preprocessing method for the nonlinear and nonstationary EEG signals compared to the conventional IIR filtering. Finally, the random forest classifier yielded a high performance for the classification of the motor imagery tasks.

  17. Strong molecular alignment dependence of H2 electron impact ionization dynamics.

    PubMed

    Ren, X; Pflüger, T; Xu, S; Colgan, J; Pindzola, M S; Senftleben, A; Ullrich, J; Dorn, A

    2012-09-21

    Low-energy (E(0) = 54 eV) electron impact single ionization of molecular hydrogen (H(2)) has been investigated as a function of molecular alignment in order to benchmark recent theoretical predictions [Colgan et al., Phys. Rev. Lett. 101, 233201 (2008) and Al-Hagan et al., Nature Phys. 5, 59 (2009)]. In contrast to any previous work, we observe distinct alignment dependence of the (e,2e) cross sections in the perpendicular plane in good overall agreement with results from time-dependent close-coupling calculations. The cross section behavior can be consistently explained by a rescattering of the ejected electron in the molecular potential resulting in an effective focusing along the molecular axis.

  18. Strong Molecular Alignment Dependence of H2 Electron Impact Ionization Dynamics

    NASA Astrophysics Data System (ADS)

    Ren, X.; Pflüger, T.; Xu, S.; Colgan, J.; Pindzola, M. S.; Senftleben, A.; Ullrich, J.; Dorn, A.

    2012-09-01

    Low-energy (E0=54eV) electron impact single ionization of molecular hydrogen (H2) has been investigated as a function of molecular alignment in order to benchmark recent theoretical predictions [Colgan , Phys. Rev. Lett.PRLTAO0031-9007 101, 233201 (2008)10.1103/PhysRevLett.101.233201 and Al-Hagan , Nature Phys.NPAHAX1745-2473 5, 59 (2009)10.1038/nphys1135]. In contrast to any previous work, we observe distinct alignment dependence of the (e,2e) cross sections in the perpendicular plane in good overall agreement with results from time-dependent close-coupling calculations. The cross section behavior can be consistently explained by a rescattering of the ejected electron in the molecular potential resulting in an effective focusing along the molecular axis.

  19. Spatial moment dynamics for collective cell movement incorporating a neighbour-dependent directional bias.

    PubMed

    Binny, Rachelle N; Plank, Michael J; James, Alex

    2015-05-06

    The ability of cells to undergo collective movement plays a fundamental role in tissue repair, development and cancer. Interactions occurring at the level of individual cells may lead to the development of spatial structure which will affect the dynamics of migrating cells at a population level. Models that try to predict population-level behaviour often take a mean-field approach, which assumes that individuals interact with one another in proportion to their average density and ignores the presence of any small-scale spatial structure. In this work, we develop a lattice-free individual-based model (IBM) that uses random walk theory to model the stochastic interactions occurring at the scale of individual migrating cells. We incorporate a mechanism for local directional bias such that an individual's direction of movement is dependent on the degree of cell crowding in its neighbourhood. As an alternative to the mean-field approach, we also employ spatial moment theory to develop a population-level model which accounts for spatial structure and predicts how these individual-level interactions propagate to the scale of the whole population. The IBM is used to derive an equation for dynamics of the second spatial moment (the average density of pairs of cells) which incorporates the neighbour-dependent directional bias, and we solve this numerically for a spatially homogeneous case.

  20. Strong Narrow-Band Luminescence from Silicon-Vacancy Color Centers in Spatially Localized Sub-10 nm Nanodiamond

    PubMed Central

    Catledge, Shane A.; Singh, Sonal

    2011-01-01

    Discrete nanodiamond particles of 500 nm and 6 nm average size were seeded onto silicon substrates and plasma treated using chemical vapor deposition to create silicon-vacancy color centers. The resulting narrow-band room temperature photoluminescence is intense, and readily observed even for weakly agglomerated sub-10 nm size diamond. This is in contrast to the well-studied nitrogen-vacancy center in diamond which has luminescence properties that are strongly dependant on particle size, with low probability for incorporation of centers in sub-10 nm crystals. We suggest the silicon-vacancy center to be a viable alternative to nitrogen-vacancy defects for use as a biomarker in the clinically-relevant sub-10 nm size regime, for which nitrogen defect-related luminescent activity and stability is reportedly poor. PMID:21603120

  1. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens

  2. The spatially dispersive eigenvalues of permittivity operator and frequency-dependent surface impedance for conductors without the dc dissipation

    NASA Astrophysics Data System (ADS)

    Dresvyannikov, M. A.; Chernyaev, A. P.; Karuzskii, A. L.; Mityagin, Yu. A.; Perestoronin, A. V.; Volchkov, N. A.

    2016-12-01

    An operator of the permittivity can completely describe alone a microwave response of conductors with the spatial dispersion. An eigenvalue problem for the nonself-adjoint permittivity operator Ễa was considered generally to search the wave solutions for conductors and superconductors. An appearance of additional solutions (additional waves) due to the spatial dispersion can strongly influence the properties of nanoelectronic devices or novel superconducting materials in the form of anomalous losses for example, and should be accounted in simulation and modeling of micro- and nanoelectronic devices. It was concluded that the modulus |Ž| of the surface impedance is proportional to the degree of frequency ω2/3 for all normal conductor solutions except that for the superconductor. There was some criticism related to the idea that the electrodynamics of superconductors should be in principle reduced to those for conductors as the temperature approaches and beyond the critical temperature. We demonstrate that appropriately taken into account effects of the spatial dispersion can give the general frequency dependence of the surface impedance for the obtained solutions including that for the superconductor. It is shown that an incorporation of the spatial dispersion leads to an appearance of the Meissner effect in perfect conductors in the same manner as in superconductors.

  3. Strongly anisotropic elastic moduli of nematic elastomers: analytical expressions and nonlinear temperature dependence.

    PubMed

    Zeng, Z; Jin, L; Huo, Y

    2010-05-01

    Exact formulae for the elastic moduli of the nematic elastomers are obtained by the implicit function method based on somewhat general energy functions. The formulae indicate that both the moduli parallel and perpendicular to the director of the nematic elastomers are smaller than the modulus of the classical elastomers because of the mechanical-nematic coupling. Moreover, the moduli are generally anisotropic due to the biaxiality induced by stretching the nematic elastomers perpendicular to the director. Then we get the explicit analytical expressions of the parallel and perpendicular moduli by making use of the Landau-de Gennes free energy and the neo-classical elastic energy. Very different from the classical elastomers, they are both strongly nonlinear functions of the temperature in the nematic phase. Furthermore, their ratio, the degree of anisotropy, changes with the temperature as well. The results agree qualitatively with some experiments. Better quantitative agreement is obtained by some modifications of the constitutive relation of the elastic energy.

  4. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  5. Spatial and temporal variability modify density dependence in populations of large herbivores.

    PubMed

    Wang, Guiming; Hobbs, N Thompson; Boone, Randall B; Illius, Andrew W; Gordon, Iain J; Gross, John E; Hamlin, Kenneth L

    2006-01-01

    A central challenge in ecology is to understand the interplay of internal and external controls on the growth of populations. We examined the effects of temporal variation in weather and spatial variation in vegetation on the strength of density dependence in populations of large herbivores. We fit three subsets of the model ln(Nt) = a + (1 + b) x ln(N(t-1)) + c x ln(N(t-2)) to five time series of estimates (Nt) of abundance of ungulates in the Rocky Mountains, USA. The strength of density dependence was estimated by the magnitude of the coefficient b. We regressed the estimates of b on indices of temporal heterogeneity in weather and spatial heterogeneity in resources. The 95% posterior intervals of the slopes of these regressions showed that temporal heterogeneity strengthened density-dependent feedbacks to population growth, whereas spatial heterogeneity weakened them. This finding offers the first empirical evidence that density dependence responds in different ways to spatial heterogeneity and temporal heterogeneity.

  6. Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer.

    PubMed

    Smith, Mica C; Chang, Chun-Hung; Chao, Wen; Lin, Liang-Chun; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2015-07-16

    The kinetics of the reaction of CH2OO with water vapor was measured directly with UV absorption at temperatures from 283 to 324 K. The observed CH2OO decay rate is second order with respect to the H2O concentration, indicating water dimer participates in the reaction. The rate coefficient of the CH2OO reaction with water dimer can be described by an Arrhenius expression k(T) = A exp(-Ea/RT) with an activation energy of -8.1 ± 0.6 kcal mol(-1) and k(298 K) = (7.4 ± 0.6) × 10(-12) cm(3) s(-1). Theoretical calculations yield a large negative temperature dependence consistent with the experimental results. The temperature dependence increases the effective loss rate for CH2OO by a factor of ~2.5 at 278 K and decreases by a factor of ~2 at 313 K relative to 298 K, suggesting that temperature is important for determining the impact of Criegee intermediate reactions with water in the atmosphere.

  7. Hepcidin Induction by Pathogens and Pathogen-Derived Molecules Is Strongly Dependent on Interleukin-6

    PubMed Central

    Rodriguez, Richard; Jung, Chun-Ling; Gabayan, Victoria; Deng, Jane C.; Ganz, Tomas; Nemeth, Elizabeta

    2014-01-01

    Hepcidin, the iron-regulatory hormone, is increased during infection or inflammation, causing hypoferremia. This response is thought to be a host defense mechanism that restricts iron availability to invading pathogens. It is not known if hepcidin is differentially induced by bacterial versus viral infections, whether the stimulation of pattern recognition receptors directly regulates hepcidin transcription, or which of the proposed signaling pathways are essential for hepcidin increase during infection. We analyzed hepcidin induction and its dependence on interleukin-6 (IL-6) in response to common bacterial or viral infections in mice or in response to a panel of pathogen-derived molecules (PAMPs) in mice and human primary hepatocytes. In wild-type (WT) mice, hepcidin mRNA was induced several hundred-fold both by a bacterial (Streptococcus pneumoniae) and a viral infection (influenza virus PR8) within 2 to 5 days. Treatment of mice and human primary hepatocytes with most Toll-like receptor ligands increased hepcidin mRNA within 6 h. Hepcidin induction by microbial stimuli was IL-6 dependent. IL-6 knockout mice failed to increase hepcidin in response to S. pneumoniae or influenza infection and had greatly diminished hepcidin response to PAMPs. In vitro, hepcidin induction by PAMPs in primary human hepatocytes was abolished by the addition of neutralizing IL-6 antibodies. Our results support the key role of IL-6 in hepcidin regulation in response to a variety of infectious and inflammatory stimuli. PMID:24478088

  8. Effective momentum-dependent potentials for atomic bound states and scattering in strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Christlieb, A.; Dharuman, G.; Verboncoeur, J.; Murillo, M. S.

    2016-10-01

    Modeling high energy-density experiments requires simulations spanning large length and time scales. These non-equilibrium experiments have time evolving ionization and partial degeneracy, obviating the direct use of the time-dependent Schrodinger equation. Therefore, efficient approximate methods are greatly needed. We have examined the accuracy of one such method based on an effective classical-dynamics approach employing effective momentum dependent potentials (MDPs) within a Hamiltonian framework that enables large-scale simulations. We have found that a commonly used formulation, based on Kirschbaum-Wilets MDPs leads to very accurate ground state energies and good first/second-ionization energies. The continuum scattering properties of free electrons were examined by comparing the momentum-transfer cross section (MTCS) predicted by KW MDP to a semi-classical phase-shift calculation. Optimizing the KW MDP parameters for the scattering process yielded poor MTCSs, suggesting a limitation of the use of KW MDP for plasmas. However, our new MDP yields MTCS values in much better agreement than KW MDP.

  9. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    PubMed

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  10. Energy dependence of fission-fragment mass distributions from strongly damped shape evolution

    NASA Astrophysics Data System (ADS)

    Randrup, J.; Möller, P.

    2013-12-01

    The recently developed treatment of Brownian shape evolution is refined to take account of the gradual decrease in microscopic effects as the nuclear excitation energy is raised. We construct effective potential-energy surfaces by multiplying the shell-plus-pairing correction term by a suppression factor that depends on the local excitation energy. While this approach is equivalent to the modification of the Fermi-gas level density parameter suggested by Ignatyuk [Sov. J. Nucl. Phys. 29, 450 (1979)], we adopt a more general functional form for the suppression factor, which is adjusted to measured charge yields for 234U(E*≈11MeV). The resulting model is benchmarked by comparison with 70 measured yields.

  11. Spatially Extended 21 cm Signal from Strongly Clustered Uv and X-Ray Sources in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Xu, Hao; Norman, Michael L.; Alvarez, Marcelo A.; Wise, John H.

    2015-03-01

    We present our prediction for the local 21 cm differential brightness temperature (δTb) from a set of strongly clustered sources of Population III (Pop III) and II (Pop II) objects in the early universe, by a numerical simulation of their formation and radiative feedback. These objects are located inside a highly biased environment, which is a rare, high-density peak (“Rarepeak”) extending to ∼7 comoving Mpc. We study the impact of ultraviolet and X-ray photons on the intergalactic medium (IGM) and the resulting δTb, when Pop III stars are assumed to emit X-ray photons by forming X-ray binaries very efficiently. We parameterize the rest-frame spectral energy distribution of X-ray photons, which regulates X-ray photon-trapping, IGM-heating, secondary Lyα pumping and the resulting morphology of δTb. A combination of emission (δTb > 0) and absorption (δTb < 0) regions appears in varying amplitudes and angular scales. The boost of the signal by the high-density environment (δ ∼ 0.64) and on a relatively large scale combines to make Rarepeak a discernible, spatially extended (θ ∼ 10‧) object for 21 cm observation at 13 ≲ z ≲ 17, which is found to be detectable as a single object by SKA with integration time of ∼1000 hr. Power spectrum analysis by some of the SKA precursors (Low Frequency Array, Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization) of such rare peaks is found to be difficult due to the rarity of these peaks, and the contribution only by these rare peaks to the total power spectrum remains subdominant compared to that by all astrophysical sources.

  12. Spatial resolution is dependent on image content for SPECT with iterative reconstruction incorporating distance dependent resolution (DDR) correction.

    PubMed

    Badger, Daniel; Barnden, Leighton

    2014-09-01

    The aim of this study is to determine the dependence of single photon emission computed tomography (SPECT) spatial resolution on the content of images for iterative reconstruction with distance dependent resolution (DDR) correction. An experiment was performed using a perturbation technique to measure change in resolution of line sources in simple and complex images with iterative reconstruction with increasing iteration. Projections of the line sources were reconstructed alone and again after the addition of projections of a uniform flood or a complex phantom. An alternative experiment used images of a realistic brain phantom and evaluated an effective spatial resolution by matching the images to the digital version of the phantom convolved with 3D Gaussian kernels. The experiments were performed using ordered subset expectation maximisation iterative reconstruction with and without the use of DDR correction. The results show a significant difference in reconstructed resolution between images of line sources depending on the content of the added image. The full width at half maximum of images of a line source reconstructed using DDR correction increased by 20-30 % when the added image was complex. Without DDR this difference was much smaller and disappeared with increasing iteration. Reported SPECT resolution should be taken as indicative only with regard to clinical imaging if the measurement is made using a point or line source alone and an iterative reconstruction algorithm is used.

  13. Hippocampus-dependent place learning enables spatial flexibility in C57BL6/N mice.

    PubMed

    Kleinknecht, Karl R; Bedenk, Benedikt T; Kaltwasser, Sebastian F; Grünecker, Barbara; Yen, Yi-Chun; Czisch, Michael; Wotjak, Carsten T

    2012-01-01

    Spatial navigation is a fundamental capability necessary in everyday life to locate food, social partners, and shelter. It results from two very different strategies: (1) place learning which enables for flexible way finding and (2) response learning that leads to a more rigid "route following." Despite the importance of knockout techniques that are only available in mice, little is known about mice' flexibility in spatial navigation tasks. Here we demonstrate for C57BL6/N mice in a water-cross maze (WCM) that only place learning enables spatial flexibility and relearning of a platform position, whereas response learning does not. This capability depends on an intact hippocampal formation, since hippocampus lesions by ibotenic acid (IA) disrupted relearning. In vivo manganese-enhanced magnetic resonance imaging revealed a volume loss of ≥60% of the hippocampus as a critical threshold for relearning impairments. In particular the changes in the left ventral hippocampus were indicative of relearning deficits. In summary, our findings establish the importance of hippocampus-dependent place learning for spatial flexibility and provide a first systematic analysis on spatial flexibility in mice.

  14. Angular Dependence of Jet Quenching Indicates Its Strong Enhancement Near the QCD Phase Transition

    SciTech Connect

    Liao, Jinfeng; Shuryak, Edward

    2008-10-22

    We study dependence of jet quenching on matter density, using 'tomography' of the fireball provided by RHIC data on azimuthal anisotropy v{sub 2} of high p{sub t} hadron yield at different centralities. Slicing the fireball into shells with constant (entropy) density, we derive a 'layer-wise geometrical limit' v{sub 2}{sup max} which is indeed above the data v{sub 2} < v{sub x}{sup max}. Interestingly, the limit is reached only if quenching is dominated by shells with the entropy density exactly in the near-T{sub c} region. We show two models that simultaneously describe the high p{sub t} v{sub 2} and R{sub AA} data and conclude that such a description can be achieved only if the jet quenching is few times stronger in the near-T{sub c} region relative to QGP at T > T{sub c}. One possible reason for that may be recent indications that the near-T{sub c} region is a magnetic plasma of relatively light color-magnetic monopoles.

  15. Angular dependence of jet quenching indicates its strong enhancement near the QCD phase transition.

    PubMed

    Liao, Jinfeng; Shuryak, Edward

    2009-05-22

    We study dependence of jet quenching on matter density, using "tomography" of the fireball provided by RHIC data on azimuthal anisotropy v_{2} of high p_{t} hadron yield at different centralities. Slicing the fireball into shells with constant (entropy) density, we derive a "layer-wise geometrical limit" v_{2};{max} which is indeed above the data v_{2} < v_{2};{max}. Interestingly, the limit is reached only if quenching is dominated by shells with the entropy density exactly in the near-T_{c} region. We show two models that simultaneously describe the high p_{t} v_{2} and R_{A-A} data and conclude that such a description can be achieved only if the jet quenching is few times stronger in the near-T_{c} region relative to QGP at T > T_{c}. One possible reason for such enhancement may be recent indications that the near-T_{c} region is a magnetic plasma of relatively light color-magnetic monopoles.

  16. Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity.

    PubMed

    Genung, Mark A; Crutsinger, Gregory M; Bailey, Joseph K; Schweitzer, Jennifer A; Sanders, Nathan J

    2012-01-01

    Intraspecific variation and genotypic diversity of host-plants can affect the structure of associated arthropod communities and the dynamics of populations. Similarly, neighboring plants can also affect interactions between host-plants and their associated arthropods. However, most studies on the effects of host-plant genotypes have largely ignored the potential effects of neighboring host-plants on arthropod communities. In this study, we used a common garden experiment to ask how spatial effects of neighboring patches, along with genotype identity and genotypic diversity in tall goldenrod (Solidago altissima), affect the abundances of a common goldenrod herbivore (Uroleucon nigrotuberculatum) and their dominant predator (Harmonia axyridis, a ladybird beetle). Aphid abundance varied 80-fold among genotypes, while ladybird beetle abundance was not affected by genotype identity. Additionally, there were strong effects of neighboring plots: aphid abundance in a focal plot was positively correlated to aphid abundance in nearby plots, suggesting strong spatial patterning in the abundance of aphids. Neither aphid nor ladybird beetle abundance was affected by genotypic diversity. However, focal plot genotypic diversity mediated the strength of the neighborhood effect (i.e., strong effects for genotype polyculture focal plots and weak effects for genotype monoculture focal plots). Our results show that aphids were directly influenced by host-plant genotype identity while ladybird beetles responded mainly to prey abundance, and suggest that genotypic diversity can influence the effects of spatial processes on the plant-herbivore interactions.

  17. Metabolic inhibition strongly inhibits Na+-dependent Mg2+ efflux in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2009-06-17

    We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25 degrees C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Delta[Mg2+]i/Deltat after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 microM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from approximately 0.9 mM to approximately 2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to approximately 50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for > or = 90 min. The initial Delta[Mg2+]i/Deltat was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Delta[Mg2+]i/Deltat (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Delta[Mg2+]i/Deltat measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (approximately 40 mM). Normalization of intracellular pH using 10 micro

  18. Stabilization and control of distributed systems with time-dependent spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1990-01-01

    This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.

  19. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    PubMed

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  20. Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Lin, Jing; Bao, Jingjing; Joseph, Roshan Prakash; Huang, Liping

    2017-04-01

    In Lamb wave inspection systems, the transfer functions of the transmitter and receiver, and the attenuation as Lamb wave propagates through the structure, result in frequency dependency in the amplitude of Lamb modes. This frequency dependency in amplitude also influences the testing resolution and complicates the damage evaluation. With the goal of spatial resolution improving, a frequency dependency compensation method is proposed. In this method, an accurate estimation of the frequency-dependent amplitude is firstly obtained, then a refined inverse filter is designed and applied to the raw Lamb mode signals to compensate the frequency dependency. An experimental example is introduced to illustrate the process of the proposed method. Besides, its sensitivity to the propagation distance and Taylor expansion order is thoroughly investigated. Finally, the proposed method is employed for damage detection. Its effectiveness in testing resolution improvement and damage identification could be obviously demonstrated by the imaging result of the damage.

  1. Task-dependent transfer of perceptual to memory representations during delayed spatial frequency discrimination.

    PubMed

    Lalonde, Jasmin; Chaudhuri, Avi

    2002-06-01

    Discrimination thresholds were obtained using a delayed spatial frequency discrimination task. In Experiment 1, we found that presentation of a mask 3 s before onset of a reference Gabor patch caused a selective, spatial frequency dependent interference in a subsequent discrimination task. However, a 10 s interval abolished this masking effect. In Experiment 2, the mask was associated with a second spatial frequency discrimination task so that a representation of the mask had to be coded into short-term perceptual memory. This experiment was performed to assess whether absence of masking in the 10 s condition of Experiment 1 might be due to decay of the mask information in the perceptual or the memory representational domain. The presence of this second discrimination task now caused similar interference effects on the primary discrimination task at both the 3 s and 10 s interstimulus intervals (ISI) conditions. Finally, to test the robustness of the masking effect, the nature of the secondary masking task was changed from a spatial frequency discrimination task to an orientation discrimination task in Experiment 3. The masking effect was now abolished in both the 3 and 10 s ISI conditions. Together, the results from these experiments are consistent with the idea of a two-level perceptual memory mechanism. The results also suggest that stimulus representations during a perceptual discrimination task are shared between the perceptual and memory representation domains in a task-dependent manner.

  2. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization

    PubMed Central

    Meddens, Marjolein B. M.; Pandzic, Elvis; Slotman, Johan A.; Guillet, Dominique; Joosten, Ben; Mennens, Svenja; Paardekooper, Laurent M.; Houtsmuller, Adriaan B.; van den Dries, Koen; Wiseman, Paul W.; Cambi, Alessandra

    2016-01-01

    Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area. PMID:27721497

  3. Relativistic scattering with a spatially dependent effective mass in the Dirac equation

    SciTech Connect

    Alhaidari, A. D.; Bahlouli, H.; Abdelmonem, M. S.; Al-Hasan, A.

    2007-06-15

    We formulate a relativistic algebraic method of scattering for systems with spatially dependent mass based on the J-matrix method. The reference Hamiltonian is the three-dimensional Dirac Hamiltonian but with a mass that is position-dependent with a constant asymptotic limit. Additionally, this effective mass distribution is locally represented in a finite dimensional function subspace. The spinor couples to spherically symmetric vector and pseudo scalar potentials that are short-range such that they are accurately represented by their matrix elements in the same finite dimensional subspace. We calculate the relativistic phase shift as a function of energy for a given configuration and study the effect of spatial variation of the mass on the energy resonance structure.

  4. Luteolin Inhibits Microglia and Alters Hippocampal-Dependent Spatial Working Memory in Aged Mice123

    PubMed Central

    Jang, Saebyeol; Dilger, Ryan N.; Johnson, Rodney W.

    2010-01-01

    A dysregulated overexpression of inflammatory mediators by microglia may facilitate cognitive aging and neurodegeneration. Considerable evidence suggests the flavonoid luteolin has antiinflammatory effects, but its ability to inhibit microglia, reduce inflammatory mediators, and improve hippocampal-dependent learning and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory mediators after lipopolysaccharide (LPS) stimulation. Supernatants from LPS-stimulated microglia caused discernible death in Neuro.2a cells. However, treating microglia with luteolin prior to LPS reduced neuronal cell death caused by conditioned supernatants, indicating luteolin was neuroprotective. In subsequent studies, adult (3–6 mo) and aged (22–24 mo) mice were fed control or luteolin (20 mg/d)-supplemented diet for 4 wk and spatial working memory was assessed as were several inflammatory markers in the hippocampus. Aged mice fed control diet exhibited deficits in spatial working memory and expression of inflammatory markers in the hippocampus indicative of increased microglial cell activity. Luteolin consumption improved spatial working memory and restored expression of inflammatory markers in the hippocampus compared with that of young adults. Luteolin did not affect either spatial working memory or inflammatory markers in young adults. Taken together, the current findings suggest dietary luteolin enhanced spatial working memory by mitigating microglial-associated inflammation in the hippocampus. Therefore, luteolin consumption may be beneficial in preventing or treating conditions involving increased microglial cell activity and inflammation. PMID:20685893

  5. Native Birds and Alien Insects: Spatial Density Dependence in Songbird Predation of Invading Oak Gallwasps

    PubMed Central

    Schönrogge, Karsten; Begg, Tracey; Stone, Graham N.

    2013-01-01

    Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris) at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource. PMID:23342048

  6. Surface-termination-dependent magnetism and strong perpendicular magnetocrystalline anisotropy of an FeRh(001) thin film

    NASA Astrophysics Data System (ADS)

    Jekal, Soyoung; Rhim, S. H.; Hong, S. C.; Son, Won-joon; Shick, A. B.

    2015-08-01

    The magnetism of FeRh (001) films strongly depends on film thickness and surface terminations. While the magnetic ground state of bulk FeRh is G -type antiferromagnetism, the Rh-terminated films exhibit ferromagnetism with strong perpendicular magnetocrystalline anisotropy whose energy +2.1 meV/□ is two orders of magnitude greater than bulk 3 d conventional magnetic metals (□ is the area of a two-dimensional unit cell). While the Goodenough-Kanamori-Anderson rule on the superexchange interaction is crucial in determining the magnetic ground phases of FeRh bulk and thin films, the magnetic phases are the results of interplay and competition between three mechanisms—the superexchange interaction, the Zener-type direct interaction, and energy gain by Rh magnetization.

  7. Temperature Dependence of the Properties of the Strong-Coupling Polaron in a Slab of Polar Crystal

    NASA Astrophysics Data System (ADS)

    Bao, Eerdunchaolu; Xiao, J. L.

    2003-03-01

    In this paper, the temperature dependence of the properties of polaron, which is weakly coupled with bulk LO phonons and strongly coupled with SO phonons, in a slab of polar crystal is studied by means of a modified second LLP transformation for the first time. An expressions for the self-trapping energy and the effective mass of the polaron in a slab of polar crystal as a function of the temperature and slab thickness are derived by using a linear combination operator and two modified LLP variational method. Our numerical results of the self-trapping energy and the effective mass for KCl show that the polaron self-trapping energy and effective mass in a polar crystal are strongly related to the slab thickness and the temperature. The self-trapping energy and the effective mass will decrease with increasing slab thickness and temperature.

  8. Enhanced Ca2+ binding of cardiac troponin reduces sarcomere length dependence of contractile activation independently of strong crossbridges.

    PubMed

    Korte, F Steven; Feest, Erik R; Razumova, Maria V; Tu, An-Yue; Regnier, Michael

    2012-10-01

    Calcium sensitivity of the force-pCa relationship depends strongly on sarcomere length (SL) in cardiac muscle and is considered to be the cellular basis of the Frank-Starling law of the heart. SL dependence may involve changes in myofilament lattice spacing and/or myosin crossbridge orientation to increase probability of binding to actin at longer SLs. We used the L48Q cardiac troponin C (cTnC) variant, which has enhanced Ca(2+) binding affinity, to test the hypotheses that the intrinsic properties of cTnC are important in determining 1) thin filament binding site availability and responsiveness to crossbridge activation and 2) SL dependence of force in cardiac muscle. Trabeculae containing L48Q cTnC-cTn lost SL dependence of the Ca(2+) sensitivity of force. This occurred despite maintaining the typical SL-dependent changes in maximal force (F(max)). Osmotic compression of preparations at SL 2.0 μm with 3% dextran increased F(max) but not pCa(50) in L48Q cTnC-cTn exchanged trabeculae, whereas wild-type (WT)-cTnC-cTn exchanged trabeculae exhibited increases in both F(max) and pCa(50). Furthermore, crossbridge inhibition with 2,3-butanedione monoxime at SL 2.3 μm decreased F(max) and pCa(50) in WT cTnC-cTn trabeculae to levels measured at SL 2.0 μm, whereas only F(max) was decreased with L48Q cTnC-cTn. Overall, these results suggest that L48Q cTnC confers reduced crossbridge dependence of thin filament activation in cardiac muscle and that changes in the Ca(2+) sensitivity of force in response to changes in SL are at least partially dependent on properties of thin filament troponin.

  9. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  10. Moving Forward in Space and Time: How Strong is the Conceptual Link between Spatial and Temporal Frames of Reference?

    PubMed Central

    Bender, Andrea; Rothe-Wulf, Annelie; Hüther, Lisa; Beller, Sieghard

    2012-01-01

    People often use spatial vocabulary to describe temporal relations, and this increasingly has motivated attempts to map spatial frames of reference (FoRs) onto time. Recent research suggested that speech communities, which differ in how they conceptualize space, may also differ in how they conceptualize time and, more specifically, that the preferences for spatial FoRs should carry over to the domain of time. Here, we scrutinize this assumption (a) by reviewing data from recent studies on temporal references, (b) by comparing data we had collected in previous studies on preferences for spatial and temporal FoRs in four languages, (c) by analyzing new data from dynamic spatial tasks that resemble the temporal tasks more closely, and (d) by assessing the co-variation of individual preferences of English speakers across space and time. While the first set of data paints a mixed picture, the latter three do not support the assumption of a close link between referencing preferences across domains. We explore possible reasons for this lack of consistency and discuss implications for research on temporal references. PMID:23162519

  11. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    PubMed Central

    Gowrishankar, TR; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-01-01

    Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the skin was solved by

  12. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity

    PubMed Central

    van der Post, Sietse T.; Hsieh, Cho-Shuen; Okuno, Masanari; Nagata, Yuki; Bakker, Huib J.; Bonn, Mischa; Hunger, Johannes

    2015-01-01

    Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm−1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface. PMID:26382651

  13. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.

    PubMed

    Amendola, Vincenzo; Scaramuzza, Stefano; Agnoli, Stefano; Polizzi, Stefano; Meneghetti, Moreno

    2014-01-01

    Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures.

  14. Natal departure timing from spatially varying environments is dependent of individual ontogenetic status.

    PubMed

    Cucherousset, Julien; Paillisson, Jean-Marc; Roussel, Jean-Marc

    2013-08-01

    Natal departure timing represents one of the first crucial decisions for juveniles born in spatially varying environments that ultimately disappear, but our knowledge on its determinants is limited. The present study aimed at understanding the determinants of juvenile natal departure by releasing individually tagged juvenile pike (Esox lucius L.) with variable body size and trophic position in a temporary flooded grassland. Specifically, we investigated whether natal departure depends on individual competitive status ('competition hypothesis'), physiological tolerance to environmental conditions ('physiological hypothesis') or individual trophic position and the spatial heterogeneity of trophic resources ('trophic hypothesis'). The results indicated that departure timing was negatively correlated with body size at release, showing that the dominance status among competing individuals was not the main trigger of juvenile departure. A positive correlation between departure timing and individual body size at departure was observed, suggesting that inter-individual variability in physiological tolerance did not explain departure patterns. While individual growth performances were similar irrespective of the timing of natal departure, stable isotope analyses revealed that juveniles with higher trophic position departed significantly earlier than individuals with lower trophic position. Therefore, the trade-off driving the use of spatially varying environments was most likely dependent upon the benefits associated with energetic returns than the costs associated with inter-individual competition or physiological stress. This result highlighted how ontogeny, and particularly ontogenetic niche shift, can play a central role in juvenile's decision to depart from natal habitats in a predatory species.

  15. Natal departure timing from spatially varying environments is dependent of individual ontogenetic status

    NASA Astrophysics Data System (ADS)

    Cucherousset, Julien; Paillisson, Jean-Marc; Roussel, Jean-Marc

    2013-08-01

    Natal departure timing represents one of the first crucial decisions for juveniles born in spatially varying environments that ultimately disappear, but our knowledge on its determinants is limited. The present study aimed at understanding the determinants of juvenile natal departure by releasing individually tagged juvenile pike ( Esox lucius L.) with variable body size and trophic position in a temporary flooded grassland. Specifically, we investigated whether natal departure depends on individual competitive status (`competition hypothesis'), physiological tolerance to environmental conditions (`physiological hypothesis') or individual trophic position and the spatial heterogeneity of trophic resources (`trophic hypothesis'). The results indicated that departure timing was negatively correlated with body size at release, showing that the dominance status among competing individuals was not the main trigger of juvenile departure. A positive correlation between departure timing and individual body size at departure was observed, suggesting that inter-individual variability in physiological tolerance did not explain departure patterns. While individual growth performances were similar irrespective of the timing of natal departure, stable isotope analyses revealed that juveniles with higher trophic position departed significantly earlier than individuals with lower trophic position. Therefore, the trade-off driving the use of spatially varying environments was most likely dependent upon the benefits associated with energetic returns than the costs associated with inter-individual competition or physiological stress. This result highlighted how ontogeny, and particularly ontogenetic niche shift, can play a central role in juvenile's decision to depart from natal habitats in a predatory species.

  16. Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wei, X. L.; Golberg, D.; Chen, Q.; Bando, Y.; Peng, L.-M.

    2011-11-01

    The spatial distribution of lateral electron emission from individual electrically biased carbon nanotubes (CNTs) along the tube axis is resolved for the first time by combining multiprobe simultaneous emission current collection and electron trajectory simulations. The spatial distribution is found to be asymmetric along the tube axis and depends on the direction of the electric field in CNTs. The average emission density of the half tube with a higher electric potential is higher than that of the other half with a lower electric potential. The electric-field-direction dependent asymmetric spatial distribution of the electron emission is absent in all pre-existing well-established mechanisms but is well explained in terms of the recently proposed phonon-assisted electron emission (PAEE). This, together with a quantitative description of experimentally measured emission currents, provides solid evidence for the validity of the PAEE mechanism. PAEE from CNTs is predicted to take place near room temperature; thus, it opens up a new and promising route for fabricating cold electron emitters with a high emission density and a low working voltage.

  17. Density-dependent prey mortality is determined by the spatial scale of predator foraging.

    PubMed

    McCarthy, Erin K; White, J Wilson

    2016-02-01

    Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.

  18. A gender- and sexual orientation-dependent spatial attentional effect of invisible images.

    PubMed

    Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng

    2006-11-07

    Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females.

  19. Three-dimensional electromagnetic strong turbulence: Dependence of the statistics and dynamics of strong turbulence on the electron to ion temperature ratio

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Cairns, Iver H.; Skjaeraasen, O.; Robinson, P. A.

    2012-02-01

    The temperature ratio Ti/Te of ions to electrons affects both the ion-damping rate and the ion-acoustic speed in plasmas. The effects of changing the ion-damping rate and ion-acoustic speed are investigated for electrostatic strong turbulence and electromagnetic strong turbulence in three dimensions. When ion damping is strong, density wells relax in place and act as nucleation sites for the formation of new wave packets. In this case, the density perturbations are primarily density wells supported by the ponderomotive force. For weak ion damping, corresponding to low Ti/Te, ion-acoustic waves are launched radially outwards when wave packets dissipate at burnout, thereby increasing the level of density perturbations in the system and thus raising the level of scattering of Langmuir waves off density perturbations. Density wells no longer relax in place so renucleation at recent collapse sites no longer occurs, instead wave packets form in background low density regions, such as superpositions of troughs of propagating ion-acoustic waves. This transition is found to occur at Ti/Te ≈ 0.1. The change in behavior with Ti/Te is shown to change the bulk statistical properties, scaling behavior, spectra, and field statistics of strong turbulence. For Ti/Te>rsim0.1, the electrostatic results approach the predictions of the two-component model of Robinson and Newman, and good agreement is found for Ti/Te>rsim0.15.

  20. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  1. A Self-consistent and Spatially Dependent Model of the Multiband Emission of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Lu, Fang-Wu; Gao, Quan-Gui; Zhang, Li

    2017-01-01

    A self-consistent and spatially dependent model is presented to investigate the multiband emission of pulsar wind nebulae (PWNe). In this model, a spherically symmetric system is assumed and the dynamical evolution of the PWN is included. The processes of convection, diffusion, adiabatic loss, radiative loss, and photon–photon pair production are taken into account in the electron’s evolution equation, and the processes of synchrotron radiation, inverse Compton scattering, synchrotron self-absorption, and pair production are included for the photon’s evolution equation. Both coupled equations are simultaneously solved. The model is applied to explain observed results of the PWN in MSH 15–52. Our results show that the spectral energy distributions (SEDs) of both electrons and photons are all a function of distance. The observed photon SED of MSH 15–52 can be well reproduced in this model. With the parameters obtained by fitting the observed SED, the spatial variations of photon index and surface brightness observed in the X-ray band can also be well reproduced. Moreover, it can be derived that the present-day diffusion coefficient of MSH 15–52 at the termination shock is {κ }0=6.6× {10}24 {{cm}}2 {{{s}}}-1, the spatial average has a value of \\bar{κ }=1.4× {10}25 {{cm}}2 {{{s}}}-1, and the present-day magnetic field at the termination shock has a value of {B}0=26.6 μ {{G}} and the spatial averaged magnetic field is \\bar{B}=14.9 μ {{G}}. The spatial changes of the spectral index and surface brightness at different bands are predicted.

  2. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall severity

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios; Zoccatelli, Davide; Creutin, Jean-Dominique; Borga, Marco

    2016-04-01

    Forecasting the occurrence of landslides and debris flows (collectively termed 'debris flows' hereinafter) is fundamental for issuing hazard warnings, and focuses largely on rainfall as a triggering agent. Debris flow forecasting relies very often on the identification of combinations of depth and duration of rainfall - rainfall thresholds - that trigger widespread debris flows. Rainfall estimation errors related to the sparse nature of raingauge data are enhanced in case of convective rainfall events characterized by limited spatial extent. Such errors have been shown to cause underestimation of the rainfall thresholds and, thus, less efficient forecasts of debris flows occurrence. This work examines the spatial organization of debris flows-triggering rainfall around the debris flow initiation points using high-resolution, carefully corrected radar data for a set of short duration (<30 h) storm events occurred in the eastern Italian Alps. The set includes eleven debris-flow triggering rainfall events that occurred in the study area between 2005 and 2014. The selected events are among the most severe in the region during this period and triggered a total of 99 debris flows that caused significant damage to people and infrastructures. We show that the spatial rainfall organisation depends on the severity (measured via the estimated return time-RT) of the debris flow-triggering rainfall. For more frequent events (RT<20 yrs) the rainfall spatial pattern systematically shows that debris flow location coincides with a local minimum, whereas for less frequent events (RT>20 yrs) the triggering rainfall presents a local peak corresponding to the debris flow initiation point. Dependence of these features on rainfall duration is quite limited. The characteristics of the spatial rainfall organisation are exploited to understand the performances and results of three different rainfall interpolation techniques: nearest neighbour (NN), inverse distance weighting (IDW) and

  3. Dependency of parameter values of a crop model on the spatial scale of simulation

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Tanaka, Yukiko; Sakurai, Gen; Ishigooka, Yasushi; Yokozawa, Masayuki

    2014-09-01

    Reliable regional-scale representation of crop growth and yields has been increasingly important in earth system modeling for the simulation of atmosphere-vegetation-soil interactions in managed ecosystems. While the parameter values in many crop models are location specific or cultivar specific, the validity of such values for regional simulation is in question. We present the scale dependency of likely parameter values that are related to the responses of growth rate and yield to temperature, using the paddy rice model applied to Japan as an example. For all regions, values of the two parameters that determine the degree of yield response to low temperature (the base temperature for calculating cooling degree days and the curvature factor of spikelet sterility caused by low temperature) appeared to change relative to the grid interval. Two additional parameters (the air temperature at which the developmental rate is half of the maximum rate at the optimum temperature and the value of developmental index at which point the crop becomes sensitive to the photoperiod) showed scale dependency in a limited region, whereas the remaining three parameters that determine the phenological characteristics of a rice cultivar and the technological level show no clear scale dependency. These results indicate the importance of using appropriate parameter values for the spatial scale at which a crop model operates. We recommend avoiding the use of location-specific or cultivar-specific parameter values for regional crop simulation, unless a rationale is presented suggesting these values are insensitive to spatial scale.

  4. Spatial dependence of high energy electrons and their radiations in pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Lu, Fang-Wu; Gao, Quan-Gui; Zhang, Li

    2016-06-01

    We investigate the spatial dependence of high energy electrons and their radiations in pulsar wind nebulae (PWNe). By assuming a time-dependent broken power-law injection and spatial dependence of convection velocity, magnetic field strength and diffusion coefficient on the radial distance of an expanding system, we numerically solve the Fokker-Planck transport equation including convection, diffusion, adiabatic loss and radiative loss in spherical coordinates, and investigate the effects of magnetic field, PWN age, maximum energy of electrons, and diffusion coefficient on electron spectra and non-thermal photon emissions. Our results indicate that (1) electron spectra and the corresponding photon spectra are a function of radial distance r of the expanding system; (2) for a given expansion velocity, the increase of the PWN age causes a slower decrease of the convection velocity (V ∝ r -β) and a more rapid decrease of the magnetic field strength (B ∝ r -1+β), but a more rapid increase of the diffusion coefficient (κ ∝ r 1-β) because the index β decreases with the PWN age; and (3) the lower energy part of the electron spectra is dominated by convection and adiabatic loss, but the higher energy part is dominated by the competition between synchrotron loss and diffusion, and such a competition is a function of radial distance. Therefore the diffusion effect has an important role in the evolution of electron spectra as well as non-thermal photon spectra in a PWN.

  5. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    PubMed

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory.

  6. Density-dependent home-range size revealed by spatially explicit capture–recapture

    USGS Publications Warehouse

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  7. Effect of the spatial structure of an acoustic field on Bragg's acoustooptic diffraction under strong acoustic anisotropy conditions

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Vainer, A. V.; Proklov, V. V.; Rezvov, Yu. G.

    2010-03-01

    Bragg’s acoustooptic diffraction in an acoustically anisotropic medium is considered taking into account the two-dimensional spatial diffraction structure of the acoustic beam. The conditions are determined under which reverse transfer of optical power from the diffracted to the transmitted beam in the regime of 100% efficiency of diffraction is considerably suppressed. It is shown that this effect is due to diffraction bending of wave fronts of the acoustic beam in the acoustooptic diffraction plane. The problem of optimization of the piezoelectric transducer size and the spatial position of the input light beam is solved using the criterion of the minimal required power of the acoustic field. The results of simulation in a wide range of the acoustooptic interaction parameters for a Gaussian light beam are reported. The correctness of the model is confirmed experimentally. Recommendations for designers of acoustooptic devices are formulated.

  8. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction–diffusion systems

    SciTech Connect

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-10-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.

  9. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  10. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-10-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.

  11. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  12. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.

    PubMed

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A

    2014-04-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.

  13. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    NASA Astrophysics Data System (ADS)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  14. Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO{sub 3}-based ceramics

    SciTech Connect

    Huan, Yu; Wang, Xiaohui Li, Longtu; Koruza, Jurij

    2015-11-16

    The nonlinear dielectric response in (Na{sub 0.52}K{sub 0.4425}Li{sub 0.0375})(Nb{sub 0.92−x}Ta{sub x}Sb{sub 0.08})O{sub 3} ceramics with different amounts of Ta was measured using subcoercive electric fields and quantified by the Rayleigh model. The irreversible extrinsic contribution, mainly caused by the irreversible domain wall translation, was strongly dependent on the domain configuration. The irreversible extrinsic contributions remained approximately the same within the single-phase regions, either orthorhombic or tetragonal, due to the similar domain morphology. However, in the polymorphic phase transition region, the domain wall density was increased by minimized domain size, as observed by transmission electron microscopy. This resulted in constrained domain wall motion due to self-clamping and reduced the irreversible extrinsic contribution.

  15. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  16. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    NASA Astrophysics Data System (ADS)

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  17. Fractionating the Neural Substrates of Transitive Reasoning: Task-Dependent Contributions of Spatial and Verbal Representations

    PubMed Central

    Mutreja, Rachna; Booth, James R.

    2013-01-01

    It has long been suggested that transitive reasoning relies on spatial representations in the posterior parietal cortex (PPC). Previous neuroimaging studies, however, have always focused on linear arguments, such as “John is taller than Tom, Tom is taller than Chris, therefore John is taller than Chris.” Using functional magnetic resonance imaging (fMRI), we demonstrate here that verbal representations contribute to transitive reasoning when it involves set-inclusion relations (e.g., “All Tulips are Flowers, All Flowers are Plants, therefore All Tulips are Plants”). In the present study, such arguments were found to engage verbal processing regions of the left inferior frontal gyrus (IFG) and left PPC that were identified in an independent localizer task. Specifically, activity in these verbal regions increased as the number of relations increased in set-inclusion arguments. Importantly, this effect was specific to set-inclusion arguments because left IFG and left PPC were not differentially engaged when the number of relations increased in linear arguments. Instead, such an increase was linked to decreased activity in a spatial processing region of the right PPC that was identified in an independent localizer task. Therefore, both verbal and spatial representations can underlie transitive reasoning, but their engagement depends upon the structure of the argument. PMID:22275478

  18. Fruit removal rate depends on neighborhood fruit density, frugivore abundance, and spatial context.

    PubMed

    Smith, Adam D; McWilliams, Scott R

    2014-03-01

    Fleshy-fruited plants depend fundamentally on interactions with frugivores for effective seed dispersal. Recent models of frugivory within spatially explicit networks make two general predictions regarding these interactions: rate of fruit removal increases (i.e., is facilitated) as densities of conspecific neighborhood fruits increase, and fruit removal rate varies positively with frugivore abundance. We conducted a field experiment that constitutes the first empirical and simultaneous test of these two primary predictions. We manipulated neighborhood abundances of arrowwood (Viburnum recognitum and Viburnum dentatum) fruits in southern New England's maritime shrub community and monitored removal rates by autumn-migrating birds. Focal arrowwood plants in neighborhoods with high conspecific fruit density sustained moderately decreased fruit removal rates (i.e., competition) relative to those in low-density neighborhoods, a result that agrees with most field research to date but contrasts with theoretical expectation. We suggest the spatial contexts that favor competition (i.e., high-abundance neighborhoods and highly aggregated landscapes) are considerably more common than the relatively uniform, low-aggregation fruiting landscapes that promote facilitation. Patterns of arrowwood removal by avian frugivores generally varied positively with, and apparently in response to, seasonal changes in migratory frugivore abundance. However, we suggest that dense stands of arrowwood concentrated frugivore activity at the neighborhood scale, thus counteracting geographic patterns of frugivore abundance. Our results underscore the importance of considering spatial context (e.g., fruit distribution and aggregation, frugivory hubs) in plant-avian frugivore interactions.

  19. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America

    PubMed Central

    Wang, Zhiheng; Brown, James H.; Tang, Zhiyao; Fang, Jingyun

    2009-01-01

    The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity. PMID:19628692

  20. Fractionating the neural substrates of transitive reasoning: task-dependent contributions of spatial and verbal representations.

    PubMed

    Prado, Jérôme; Mutreja, Rachna; Booth, James R

    2013-03-01

    It has long been suggested that transitive reasoning relies on spatial representations in the posterior parietal cortex (PPC). Previous neuroimaging studies, however, have always focused on linear arguments, such as "John is taller than Tom, Tom is taller than Chris, therefore John is taller than Chris." Using functional magnetic resonance imaging (fMRI), we demonstrate here that verbal representations contribute to transitive reasoning when it involves set-inclusion relations (e.g., "All Tulips are Flowers, All Flowers are Plants, therefore All Tulips are Plants"). In the present study, such arguments were found to engage verbal processing regions of the left inferior frontal gyrus (IFG) and left PPC that were identified in an independent localizer task. Specifically, activity in these verbal regions increased as the number of relations increased in set-inclusion arguments. Importantly, this effect was specific to set-inclusion arguments because left IFG and left PPC were not differentially engaged when the number of relations increased in linear arguments. Instead, such an increase was linked to decreased activity in a spatial processing region of the right PPC that was identified in an independent localizer task. Therefore, both verbal and spatial representations can underlie transitive reasoning, but their engagement depends upon the structure of the argument.

  1. Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency.

    PubMed

    Oelkers, R; Grosser, K; Lang, E; Geisslinger, G; Kobal, G; Brune, K; Lötsch, J

    1999-06-01

    Visual information is conducted by two parallel pathways (luminance- and contour-processing pathways) which are thought to be differentially affected in migraine and can be investigated by means of pattern-reversal visual evoked potentials (VEPs). Components and habituation of VEPs at four spatial frequencies were compared between 26 migraineurs (13 without aura, MO; 13 with aura, MA) and 28 healthy volunteers. Migraineurs were recorded in the headache-free interval (at least 72 h before and after an attack). Five blocks of 50 responses to chequerboards of 0.5, 1, 2 and 4 cycles per degree (c.p.d.) were sequentially averaged and analysed for latency and amplitude. Differences in VEPs were dependent on spatial frequency. Only when small checks were presented, i.e. at high spatial frequency (2 and 4 c.p.d.), was the latency of N2 significantly prolonged in MA and did it tend to be delayed in MO subjects. Habituation behaviour was not significantly different between groups under the stimulating conditions employed. Prolonged N2 latency might be explained by the lack or attenuation of a contour-specific component N130 in migraineurs, indicating an imbalance of the two visual pathways with relative predominance of the luminance-processing Y system. These results reflect an interictally persisting dysfunction of precortical visual processing which might be relevant in the pathophysiology of migraine.

  2. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  3. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    PubMed

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-07

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2).

  4. Spatial dependency of cholera prevalence on potential cholera reservoirs in an urban area, Kumasi, Ghana

    NASA Astrophysics Data System (ADS)

    Osei, Frank B.; Duker, Alfred A.; Augustijn, Ellen-Wien; Stein, Alfred

    2010-10-01

    Cholera has been a public health burden in Ghana since the early 1970s. Between 1999 and 2005, a total of 25,636 cases and 620 deaths were officially reported to the WHO. In one of the worst affected urban cities, fecal contamination of surface water is extremely high, and the disease is reported to be prevalent among inhabitants living in close proximity to surface water bodies. Surface runoff from dump sites is a major source of fecal and bacterial contamination of rivers and streams in the study area. This study aims to determine (a) the impacts of surface water contamination on cholera infection and (b) detect and map arbitrary shaped clusters of cholera. A Geographic Information System (GIS) based spatial analysis is used to delineate potential reservoirs of the cholera vibrios; possibly contaminated by surface runoff from open space refuse dumps. Statistical modeling using OLS model reveals a significant negative association between (a) cholera prevalence and proximity to all the potential cholera reservoirs ( R2 = 0.18, p < 0.001) and (b) cholera prevalence and proximity to upstream potential cholera reservoirs ( R2 = 0.25, p < 0.001). The inclusion of spatial autoregressive coefficients in the OLS model reveals the dependency of the spatial distribution of cholera prevalence on the spatial neighbors of the communities. A flexible scan statistic identifies a most likely cluster with a higher relative risk (RR = 2.04, p < 0.01) compared with the cluster detected by circular scan statistic (RR = 1.60, p < 0.01). We conclude that surface water pollution through runoff from waste dump sites play a significant role in cholera infection.

  5. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    PubMed

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate.

  6. Computer Simulation of Strong Ground Motion near a Fault Using Dynamic Fault Rupture Modeling: Spatial Distribution of the Peak Ground Velocity Vectors

    NASA Astrophysics Data System (ADS)

    Miyatake, T.

    Computer simulation was used to study the nature of the strong ground motion near a strike-slip fault. The faulting process was modeled by stress release with fixed rupture velocity in a uniform elastic half-space or layered half-space. The fourth-order 3-D finite-difference method with staggered grids was employed to compute both ground motions and slip histories on the fault. The fault rupture was assumed to start from a point and propagate circularly with 0.8 times shear-wave velocity. In the present paper, we focused on the spatial pattern of ground velocity vectors, i.e., the direction of strong motions. In the case of bilateral rupture propagation, the strong fault parallel ground motion appeared near the center of the fault. The fault normal motions of ground velocity appeared near the edges of the fault. In the case of unilateral rupture, the fault parallel motion appeared near the starting point however, the amplitude was lower than that for the bilateral rupture case. The fault normal motion was predominant near the terminal point of the rupture. The results were applied to the earthquake damage data, especially the directions that simple bodies overturned and wooden houses collapsed, caused by the 1927 Tango, the 1930 Kita-Izu, and the 1948 Fukui earthquakes. The spatial distributions of the direction data were found to reflect the strong ground motions generated from the earthquake source process.

  7. An exploration of the spatial scale over which orientation-dependent surround effects affect contour detection.

    PubMed

    Schumacher, Jennifer F; Quinn, Christina F; Olman, Cheryl A

    2011-07-21

    Contour detection is a crucial component of visual processing; however, performance on contour detection tasks can vary depending on the context of the visual scene. S. C. Dakin and N. J. Baruch (2009) showed that detection of a contour in an array of distracting elements depends on the orientation of flanking elements. Here, using a line of five collinear Gabor elements ("target contour") in a field of distractor Gabor elements, we systematically measured the effects of eccentricity, spacing, and spatial frequency on contour detection performance in three different contexts: randomly oriented distractors (control condition), flanking distractors (on either side of the collinear Gabors) aligned approximately parallel to the target contour, and flanking distractors aligned approximately orthogonal to the target contour. In the control condition, contour detection performance was best for larger Gabors (2 cpd) spaced farther apart (1.2°). Parallel flankers reduced performance for intermediate and large spacings and sizes compared to the control condition, while orthogonal flankers increased performance for the smallest spacing and size compared to the control condition. The results are fit by a model in which collinear facilitation, which is size-dependent but can persist for several degrees of visual angle, competes with orientation-dependent suppression from the flanking context when elements are separated by less than a degree of visual angle.

  8. Slowly progressive insulin-dependent (type 1) diabetes positive for anti-GAD antibody ELISA test may be strongly associated with a future insulin-dependent state.

    PubMed

    Oikawa, Yoichi; Tanaka, Hajime; Uchida, Junko; Atsumi, Yoshihiro; Osawa, Masaya; Katsuki, Takeshi; Kawai, Toshihide; Shimada, Akira

    2017-02-27

    Slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM), believed to be caused by β-cell destruction through islet-cell autoimmunity, gradually progresses to an insulin-dependent state over time. Although the presence of anti-glutamic acid decarboxylase antibody (GADA) is required for the diagnosis of SPIDDM, a recent change in the GADA assay kit from radioimmunoassay (RIA) to enzyme-linked immunosorbent assay (ELISA) yields mismatched GADA test results between the two kits, leading to confusion in understanding the pathological conditions of SPIDDM in Japan. Thus, this study aimed to clarify the difference in the clinical characteristics of GADA-ELISA-positive and GADA-ELISA-negative patients originally diagnosed as SPIDDM by GADA-RIA test. As a result, 42 of 63 original GADA-RIA-positive SPIDDM patients (66.7%) were found to be GADA-ELISA-positive, whereas the remaining 21 patients (33.3%) were found to be GADA-ELISA-negative. In patients with shorter disease duration, GADA-ELISA-positive patients showed significantly lower serum C-peptide levels than GADA-ELISA-negative patients. Meanwhile, in patients with longer disease duration, serum C-peptide levels were comparably decreased in GADA-ELISA-positive and GADA-ELISA-negative patients. A significant inverse correlation between serum C-peptide level and disease duration was observed in GADA-ELISA-negative patients, but not in GADA-ELISA-positive patients, suggesting that insulin secretory capacity may be gradually impaired over time also in GADA-ELISA-negative SPIDDM patients. In conclusion, physicians should be aware that GADA-ELISA-positive SPIDDM may be strongly associated with a future insulin-dependent state. Meanwhile, physicians should be careful in treating GADA-ELISA-negative SPIDDM patients diagnosed as type 2 DM, and cautiously follow the clinical course, in accordance with SPIDDM.

  9. Defining neighborhood boundaries in studies of spatial dependence in child behavior problems

    PubMed Central

    2013-01-01

    Background The purpose of this study was to extend the analysis of neighborhood effects on child behavioral outcomes in two ways: (1) by examining the geographic extent of the relationship between child behavior and neighborhood physical conditions independent of standard administrative boundaries such as census tracts or block groups and (2) by examining the relationship and geographic extent of geographic peers’ behavior and individual child behavior. Methods The study neighborhood was a low income, ethnic minority neighborhood of approximately 20,000 residents in a large city in the southwestern United States. Observational data were collected for 11,552 parcels and 1,778 face blocks in the neighborhood over a five week period. Data on child behavior problems were collected from the parents of 261 school-age children (81% African American, 14% Latino) living in the neighborhood. Spatial analysis methods were used to examine the spatial dependence of child behavior problems in relation to physical conditions in the neighborhood for areas surrounding the child’s home ranging from a radius of 50 meters to a radius of 1000 meters. Likewise, the spatial dependence of child behavior problems in relation to the behavior problems of neighborhood peers was examined for areas ranging from a radius 255 meters to a radius of 600 meters around the child’s home. Finally, we examined the joint influence of neighborhood physical conditions and geographic peers. Results Poor conditions of the physical environment of the neighborhood were related to more behavioral problems, and the geographic extent of the physical environment that mattered was an area with a radius between 400 and 800 meters surrounding the child’s home. In addition, the average level of behavior problems of neighborhood peers within 255 meters of the child’s home was also positively associated with child behavior problems. Furthermore, these effects were independent of one another. Conclusions These

  10. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  11. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    PubMed Central

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency

  12. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    PubMed

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  13. Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples

    NASA Astrophysics Data System (ADS)

    Göttsche, Malte; Kirchner, Gerald

    2015-10-01

    The fissile mass deduced from a neutron multiplicity counting measurement of high mass dense items is underestimated if the spatial dependence of the multiplication is not taken into account. It is shown that an appropriate physics-based correction successfully removes the bias. It depends on four correction coefficients which can only be exactly determined if the sample geometry and composition are known. In some cases, for example in warhead authentication, available information on the sample will be very limited. MCNPX-PoliMi simulations have been performed to obtain the correction coefficients for a range of spherical plutonium metal geometries, with and without polyethylene reflection placed around the spheres. For hollow spheres, the analysis shows that the correction coefficients can be approximated with high accuracy as a function of the sphere's thickness depending only slightly on the radius. If the thickness remains unknown, less accurate estimates of the correction coefficients can be obtained from the neutron multiplication. The influence of isotopic composition is limited. The correction coefficients become somewhat smaller when reflection is present.

  14. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice

    PubMed Central

    Nakamura, Tomoe Y.; Nakao, Shu; Nakajo, Yukako; Takahashi, Jun C.; Wakabayashi, Shigeo; Yanamoto, Hiroji

    2017-01-01

    Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production. PMID:28122057

  15. Seed harvesting by a generalist consumer is context-dependent: Interactive effects across multiple spatial scales

    USGS Publications Warehouse

    Ostoja, Steven M.; Schupp, Eugene W.; Klinger, Rob

    2013-01-01

    Granivore foraging decisions affect consumer success and determine the quantity and spatial pattern of seed survival. These decisions are influenced by environmental variation at spatial scales ranging from landscapes to local foraging patches. In a field experiment, the effects of seed patch variation across three spatial scales on seed removal by western harvester ants Pogonomyrmex occidentalis were evaluated. At the largest scale we assessed harvesting in different plant communities, at the intermediate scale we assessed harvesting at different distances from ant mounds, and at the smallest scale we assessed the effects of interactions among seed species in local seed neighborhoods on seed harvesting (i.e. resource–consumer interface). Selected seed species were presented alone (monospecific treatment) and in mixture with Bromus tectorum (cheatgrass; mixture treatment) at four distances from P. occidentalis mounds in adjacent intact sagebrush and non-native cheatgrass-dominated communities in the Great Basin, Utah, USA. Seed species differed in harvest, with B. tectorum being least preferred. Large and intermediate scale variation influenced harvest. More seeds were harvested in sagebrush than in cheatgrass-dominated communities (largest scale), and the quantity of seed harvested varied with distance from mounds (intermediate-scale), although the form of the distance effect differed between plant communities. At the smallest scale, seed neighborhood affected harvest, but the patterns differed among seed species considered. Ants harvested fewer seeds from mixed-seed neighborhoods than from monospecific neighborhoods, suggesting context dependence and potential associational resistance. Further, the effects of plant community and distance from mound on seed harvest in mixtures differed from their effects in monospecific treatments. Beyond the local seed neighborhood, selection of seed resources is better understood by simultaneously evaluating removal at

  16. Field Observations Of The 29 September Tsunami In American Samoa: Spatial Variability And Indications Of Strong Return Flow

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Richmond, B. M.; Gelfenbaum, G. R.; Watt, S.; Apotsos, A. A.; Buckley, M. L.; Dudley, W. C.; Peck, B.

    2009-12-01

    The 29 September 2009 tsunami caused 181 fatalities and displaced more than 5000 people on the islands of Samoa, American Samoa, and Tonga. This is the first tsunami to cause significant damage and fatalities on U.S. soil in more than 30 years. Scientists from around the world quickly mobilized to help document the tsunami water levels before this ephemeral data was forever lost as recovery activities and natural processes overtook the effected area. A USGS team collected data in American Samoa from October 6-22 and November 5-12, 2009. The tsunami was large, reaching elevations of greater than 15 m, however wave heights and devastation varied from village to village in American Samoa. Even within villages, some structures were completely destroyed, some flooded and left standing, and others barely touched. Wave heights, flow depths, runup heights, inundation distances, and flow directions were collected for use in ground-truthing inundation models. The team also collected nearshore bathymetry, topography and reef flat elevation, sediment samples, and documented the distribution and characteristics of both sand and boulder deposits. Eyewitness accounts of the tsunami were also videotaped. One striking aspect of this tsunami was the abundance of indicators of strong return flow. For example at Poloa in the northwest of Tutuila, where the runup was greater than 11 m along a 300-m stretch of coast and flow depths exceeded 4 m, the coral reef flat was strewn with debris including chairs, desks, and books from a school. On land, River channels were excavated and new channels formed as return flow scoured sediment and transported it offshore. Possible causes for the strong return flow and the relation between the stength of the return flow, inundation distance, and runup in American Samoa are presented. These relationships and others based on data collected by field survey teams will ultimately reduce loss of life and destruction from tsunamis in the Pacific and

  17. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type.

    PubMed

    Lagarde, Fabienne; Olivier, Ophélie; Zanella, Marie; Daniel, Philippe; Hiard, Sophie; Caruso, Aurore

    2016-08-01

    In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment.

  18. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  19. Context-dependent spatially periodic activity in the human entorhinal cortex.

    PubMed

    Nadasdy, Zoltan; Nguyen, T Peter; Török, Ágoston; Shen, Jason Y; Briggs, Deborah E; Modur, Pradeep N; Buchanan, Robert J

    2017-04-10

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.

  20. Spatial Dependence of Reduced Sulfur in Everglades Dissolved Organic Matter Controlled by Sulfate Enrichment.

    PubMed

    Poulin, Brett A; Ryan, Joseph N; Nagy, Kathryn L; Stubbins, Aron; Dittmar, Thorsten; Orem, William H; Krabbenhoft, David P; Aiken, George R

    2017-03-01

    Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid (HPOA) fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.

  1. The Molecular Bronchoscope: A Tool for Measurement of Spatially Dependent CO2 Concentrations in the Lungs.

    PubMed

    Ciaffoni, Luca; Couper, John H; Richmond, Graham; Hancock, Gus; Ritchie, Grant A D

    2016-09-06

    Respiratory physicians use bronchoscopy for visual assessment of the lungs' topography and collecting tissue samples for external analysis. We propose a novel bronchoscope tool that would enable spatially dependent measurements of the functioning of the lungs by determining local concentrations of carbon dioxide, which will be produced by healthy parts of the lung at rates that are higher than from portions where gas exchange is impaired. The gas analyzer is based on a compact laser absorption spectrometer making use of fiber optics for delivery and return of low intensity diode laser radiation to and from the measurement chamber at the distal end of a flexible conduit. The appropriate optical wavelength was chosen such that light is selectively absorbed only by gaseous CO2. The optical absorption takes place over a short path (8.8 mm) within a rigid, 12 mm long, perforated probe tip. Wavelength modulation spectroscopy was adopted as the analytical technique to reduce the noise on the optical signal and yield measurements of relative CO2 concentration every 180 ms with a precision as low as 600 part-per-million by volume. The primary objective of such a device is to see if additional spatial information about the lungs functionality can be gathered, which will complement visual observation.

  2. Activity-dependent spatially localized miRNA maturation in neuronal dendrites.

    PubMed

    Sambandan, Sivakumar; Akbalik, Güney; Kochen, Lisa; Rinne, Jennifer; Kahlstatt, Josefine; Glock, Caspar; Tushev, Georgi; Alvarez-Castelao, Beatriz; Heckel, Alexander; Schuman, Erin M

    2017-02-10

    MicroRNAs (miRNAs) regulate gene expression by binding to target messenger RNAs (mRNAs) and preventing their translation. In general, the number of potential mRNA targets in a cell is much greater than the miRNA copy number, complicating high-fidelity miRNA-target interactions. We developed an inducible fluorescent probe to explore whether the maturation of a miRNA could be regulated in space and time in neurons. A precursor miRNA (pre-miRNA) probe exhibited an activity-dependent increase in fluorescence, suggesting the stimulation of miRNA maturation. Single-synapse stimulation resulted in a local maturation of miRNA that was associated with a spatially restricted reduction in the protein synthesis of a target mRNA. Thus, the spatially and temporally regulated maturation of pre-miRNAs can be used to increase the precision and robustness of miRNA-mediated translational repression.

  3. Do adjustments in search behavior depend on the precision of spatial memory?

    PubMed

    Pfuhl, G; Barrera, L B G; Living, M; Biegler, R

    2013-03-01

    Various forms of uncertainty are important for decision making. How aware are we of the precision of knowledge, and how accessible it is? In three experiments, an assessment of the precision of spatial memory was needed to make optimal decisions. First, we examined search strategies in a search task in which the most efficient strategy was to head to one side of the target by a margin depending on the precision of spatial information, the "where to start" task. We found that nine out of of our 20 human subjects adapted the margin according to precision. Second, we let the subjects search for the location of a sample picture. On one-third of the trials, the target was not present, making it a "when to stop searching" task. We found that the subjects did not adjust their investment in search according to their precision. In the third experiment, we looked at whether there was transfer between the two tasks. Subjects who had been reminded of the relevance of uncertainty by the "where to start" task increased their search effort more in the "when to stop searching" task. Thus, the results show that the use of information about precision is not automatic, but can be triggered.

  4. Spatially Defined EGF Receptor Activation Reveals an F-Actin-Dependent Phospho-Erk Signaling Complex

    PubMed Central

    Singhai, Amit; Wakefield, Devin L.; Bryant, Kirsten L.; Hammes, Stephen R.; Holowka, David; Baird, Barbara

    2014-01-01

    We investigated the association of signaling proteins with epidermal growth factor (EGF) receptors (EGFR) using biotinylated EGF bound to streptavidin that is covalently coupled in an ordered array of micron-sized features on silicon surfaces. Using NIH-3T3 cells stably expressing EGFR, we observe concentration of fluorescently labeled receptors and stimulated tyrosine phosphorylation that are spatially confined to the regions of immobilized EGF and quantified by cross-correlation analysis. We observe recruitment of phosphorylated paxillin to activated EGFR at these patterned features, as well as β1-containing integrins that preferentially localize to more peripheral EGF features, as quantified by radial fluorescence analysis. In addition, we detect recruitment of EGFP-Ras, MEK, and phosphorylated Erk to patterned EGF in a process that depends on F-actin and phosphoinositides. These studies reveal and quantify the coformation of multiprotein EGFR signaling complexes at the plasma membrane in response to micropatterned growth factors. PMID:25468343

  5. Quantum emitter coupled to plasmonic nanotriangle: Spatially dependent emission and thermal mapping

    NASA Astrophysics Data System (ADS)

    Vasista, Adarsh B.; Kumar, G. V. Pavan

    2016-12-01

    Herein we report on our studies of radiative and non-radiative interaction between an individual quantum emitter and an anisotropic plasmonic nanostructure: a gold nanotriangle. Our theoretical and three-dimensional electromagnetic simulation studies highlight an interesting connection between: dipole-orientation of the quantum emitter, anisotropy of the plasmonic nanostructure and, radiative and non-radiative energy transfer processes between the emitter and the plasmonic geometry. For the out of plane orientation of quantum emitter, the total decay rate and non-radiative decay rate was found to be maximum, showing radiation extraction efficiency of 0.678. Also the radiative decay rate was greater for the same orientation, and showed a pronounced spatial dependence with respect to the nanotriangle. Our study has direct implication on two aspects: designing nanoparticle optical antennas to control emission from individual atoms and molecules and geometrical control of quenching of emission into plasmonic decay channels.

  6. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    PubMed

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  7. White spot syndrome virus entry is dependent on multiple endocytic routes and strongly facilitated by Cq-GABARAP in a CME-dependent manner

    PubMed Central

    Chen, Rong-yuan; Shen, Kai-li; Chen, Zhen; Fan, Wei-wei; Xie, Xiao-lu; Meng, Chuang; Chang, Xue-jiao; Zheng, Li-bing; Jeswin, Joseph; Li, Cheng-hua; Wang, Ke-jian; Liu, Hai-peng

    2016-01-01

    White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm. PMID:27385304

  8. What determines the spatial variability of soil respiration and its temperature dependence (Q10) at catchment scale (Rur Catchment, Germany)?

    NASA Astrophysics Data System (ADS)

    Meyer, Nele; Welp, Gerhard; Amelung, Wulf

    2016-04-01

    Climate change is suspected to alter temperature, soil moisture, and nutrient inputs to the soil. These factors are supposed to strongly influence soil respiration. The degree by which respiration will respond to these changes is crucial for assessing future CO2 feedbacks to the atmosphere. We assume that the temperature sensitivity of soil respiration (Q10) differs spatially depending on land use, soil unit, and texture owing to their diverse properties of soil organic matter quantity and quality. We further hypothesize that the Q10 value is additionally regulated by soil moisture and nutrient status. On the basis of soil and land use maps we divided the Rur catchment (Western Germany, 2350 km²) into so called environmental soil classes (ESC) that combine each a unique combination of the factors land use, soil unit, and texture. We took nine samples from each of the 12 most common ESC's and incubated them at five temperatures (5-25°C), at four soil moisture levels (30-75% water holding capacity), and with an unfertilized and a fertilized treatment. So far, our results indicate that both soil respiration and the Q10 value are spatially highly variable with Q10 values ranging from 1 to 4. The Q10 value is altered by the level of soil moisture and decreases when soils are as moist as 75% water holding capacity. Fertilization has no effect on the Q10 value. Currently, we are processing the whole data-set to derive the effect of ESC's on the Q10 value. Recent data suggest that forest soils are more sensitive to warming than cropland soils.

  9. Scale dependent importance of spatial heterogeneity in biogeochemical cycling at aquifer-river interfaces

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Blaen, Phillip; Hannah, David; Romejn, Paul; Gomez, Jesus; Kurz, Marie; Fleckenstein, Jan; Schmidt, Christian; Zarnetske, Jay; Cullin, Joe; Ward, Adam; Marti, Eugenia; Drummond, Jennifer; Schmadel, Noah; Knapp, Julia; Klaar, Megan; Mendoza, Clara

    2016-04-01

    The transport and transformation of carbon and nitrogen across aquifer - river interfaces are significantly altered along the streambed passage. Recent investigations have substantially improved the understanding of controls on streambed biogeochemical cycling, outlining a critical impact of exchange fluxes, temporal and spatial coincidence of reaction partners and streambed residence time distributions. Still, there is little understanding of the drivers of the widely observed strong spatial and temporal variability of interlinked carbon and nitrogen turnover at aquifer-river interfaces, including hotspots (locations) and hot moments (time periods) of increased reactivity. Previous research, predominantly with a surface water perspective, has mainly focused on the impact of bedform controlled hyporheic exchange fluxes and the chemical transformation of surface solutes transported along a hyporheic flow path. While such studies may explain nutrient turnover in the hyporheic zones of low-order streams in rather pristine headwater catchments, they fail to explain observations of spatially and temporally more variable nutrient turnover in streambeds with higher structural heterogeneity and relevant concentrations of autochthonous carbon and nitrogen. Here we combine laboratory, field and numerical modeling experiments from plot to stream reach/subcatchment scales to quantify the impacts of variability in physical and biogeochemical streambed properties on hyporheic nutrient (C, N, O) cycling. At the plot scale, hotspots of biogeochemical cycling have been found to be associated with peat and clay layers within streambed sediments, representing areas of significantly increased residence times and oxygen consumption what results in enhanced microbial metabolic activity and nitrogen removal capacity. We present distributed sensor network based up-scaling methods that allow identification of such features at larger reach scale. Numerical modeling based generalization

  10. The flexible focus: whether spatial attention is unitary or divided depends on observer goals.

    PubMed

    Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent

    2014-04-01

    The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.

  11. Spatial variation in the plasma sheet composition: Dependence on geomagnetic and solar activity

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Kistler, L. M.

    2014-04-01

    We study the spatial distribution of plasma sheet O+ and H+ ions using data from the COmposition and DIstribution Function (CODIF) instrument on board the Cluster spacecraft from 2001 to 2005. The densities are mapped along magnetic field lines to produce bidimensional density maps at the magnetospheric equatorial plane for various geomagnetic and solar activity levels (represented by the Kp and F10.7 indexes). We analyze the correlation of the O+ and H+ density with Kp and F10.7 in the midtail region at geocentric distances between 15 and 20 RE and in the near-Earth regions at radial distances between 7 and 8 RE. Near Earth the H+ density slightly increases with Kp and F10.7 while in the midtail region it is not correlated with Kp and F10.7. On the contrary, the amount of O+ ions significantly increases with Kp and F10.7 independently of the region. In the near-Earth region, the effects of solar EUV and geomagnetic activity on the O+ density are comparable. In the midtail region, the O+ density increases at a lower rate with solar EUV flux but strongly increases with geomagnetic activity although the effect is modulated by the solar EUV flux level. We also evidence a strong increase of the proportion of O+ ions with decreasing geocentric distance below ~10 RE. These results confirm the direct entry of O+ ions into the near-Earth plasma sheet and suggest that both energetic outflows from the auroral zone and cold outflow from the high-latitude ionosphere may contribute to feed the near-Earth plasma sheet with ionospheric ions.

  12. Spatial Dependence and Determinants of Dairy Farmers' Adoption of Best Management Practices for Water Protection in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Sharp, Basil

    2017-04-01

    This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.

  13. Retrosplenial cortex lesions impair water maze strategies learning or spatial place learning depending on prior experience of the rat.

    PubMed

    Cain, Donald P; Humpartzoomian, Richard; Boon, Francis

    2006-06-30

    There has been debate whether lesions strictly limited to retrosplenial (RS) cortex impair spatial navigation, and how robust and reliable any such impairment is. The present study used a detailed behavioral analysis with naive or strategies-pretrained rats given RS lesions and trained in a water maze (WM). Naive RS lesioned rats failed to acquire the required WM strategies throughout training. Strategies-pretrained RS lesioned rats were specifically impaired in spatial place memory without a WM strategies impairment. Additional training overcame the spatial memory impairment. Thus the behavioral consequences of the lesion depend on the specific previous experience of the animal. The use of appropriate training and testing techniques has revealed experience-dependant dissociable impairments in WM strategies learning and in spatial memory, indicating that RS cortex is involved in both forms of learning.

  14. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    SciTech Connect

    Hayrapetyan, A.G.; Grigoryan, K.K.; Petrosyan, R.G.; Fritzsche, S.

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.

  15. Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River.

    PubMed

    Long, Yan; Jiang, Xianjin; Guo, Qingwei; Li, Bingxin; Xie, Shuguang

    2017-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process can play an important role in the methane mitigation in the environment. However, the distribution of n-damo organisms in freshwater sediment ecosystem and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment n-damo community in the freshwater Dongjiang River using quantitative PCR assay and clone library analysis targeting n-damo pmoA gene. Sediment samples were collected at nine locations along the Dongjiang River in May and August in 2015. The remarkable temporal and spatial changes of sediment n-damo community abundance, richness, diversity, and structure occurred in the Dongjiang River and its tributaries. The n-damo pmoA gene in sediments of the Dongjiang River and its tributaries varied from 9.07 × 10(4) to 3.02 × 10(6) copies per gram dry sediment. Compared to the stem of the Dongjiang River, tributaries had relatively higher sediment n-damo community size. Sediment n-damo community abundance was higher in August than in May, while an opposite trend was observed for n-damo community richness and diversity. Sediment n-damo community structure showed a great difference between in May and August. Sediment nitrite nitrogen content was positively correlated to n-damo community abundance, but negatively to richness and diversity. Ammonia nitrogen content showed a positive correlation to n-damo community abundance, while n-damo community diversity was negatively correlated to the ratio of total organic carbon to total nitrogen (C/N). In addition, nitrite nitrogen as well as C/N might influence n-damo community structure.

  16. Up, Down, and All Around: Scale-Dependent Spatial Variation in Rocky-Shore Communities of Fildes Peninsula, King George Island, Antarctica

    PubMed Central

    Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván

    2014-01-01

    Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and

  17. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios I.; Zoccatelli, Davide; Creutin, Jean Dominique; Borga, Marco

    2017-02-01

    Forecasting the occurrence of debris flows is fundamental for issuing hazard warnings, and often focuses on rainfall as a triggering agent and on the use of empirical rainfall thresholds based on rain gauge observations. A recognized component of the uncertainty associated with the use of rainfall thresholds is related to the sampling of strongly varying rainfall variability with sparse rain gauge networks. In this work we examine the spatial distribution of rainfall depth in areas up to 10 km from the debris flow initiation points as a function of return period, and we exploit this information to analyze the errors expected in the estimation of debris flow triggering rainfall when rain gauge data are used. In particular, we investigate the impact of rain gauge density and of the use of different interpolation methods. High-resolution, adjusted radar rainfall estimates, representing the best available spatially-distributed rainfall estimates at the debris flows initiation point and in the surrounding area, are sampled by stochastically generated rain gauge networks characterized by varying densities. Debris flow triggering rainfall is estimated by means of three rainfall interpolation methods: nearest neighbor, inverse distance weighting and ordinary kriging. On average, triggering rainfall shows a local peak corresponding to the debris flow initiation point, with a decay of rainfall with distance which increases with the return period of the triggering rainfall. Interpolation of the stochastically generated rain gauge measurements leads to an underestimation of the triggering rainfall that, irrespective of the interpolation methods, increases with the return period and decreases with the rain gauge density. For small return period events and high rain gauge density, the differences among the methods are minor. With increasing the return period and decreasing the rain gauge density, the nearest neighbor method is less biased, because it makes use only of the

  18. Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Faney, T.; Wirth, B. D.

    2014-09-01

    In fusion reactors, plasma facing components (PFC) and in particular the divertor will be irradiated with high fluxes of low energy (˜100 eV) helium and hydrogen ions. Tungsten is one of the leading candidate divertor materials for ITER and DEMO fusion reactors. However, the behavior of tungsten under high dose, coupled helium/hydrogen exposure remains to be fully understood. The PFC response and performance changes are intimately related to microstructural changes, such as the formation of point defect clusters, helium and hydrogen bubbles or dislocation loops. Computational materials modeling has been used to investigate the mechanisms controlling microstructural evolution in tungsten following high dose, high temperature helium exposure. The aim of this study is to understand and predict helium implantation, primary defect production and defect diffusion, helium-defect clustering and interactions below a tungsten surface exposed to low energy helium irradiation. The important defects include interstitial clusters, vacancy clusters, helium interstitials and helium-vacancy clusters. We report results from a one-dimensional, spatially dependent cluster dynamics model based on the continuum reaction-diffusion rate theory to describe the evolution in space and time of all these defects. The key parameter inputs to the model (diffusion coefficients, migration and binding energies, initial defect production) are determined from a combination of atomistic materials modeling and available experimental data.

  19. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  20. Dependencies between stimuli and spatially independent fMRI sources: towards brain correlates of natural stimuli.

    PubMed

    Ylipaavalniemi, Jarkko; Savia, Eerika; Malinen, Sanna; Hari, Riitta; Vigário, Ricardo; Kaski, Samuel

    2009-10-15

    Natural stimuli are increasingly used in functional magnetic resonance imaging (fMRI) studies to imitate real-life situations. Consequently, challenges are created for novel analysis methods, including new machine-learning tools. With natural stimuli it is no longer feasible to assume single features of the experimental design alone to account for the brain activity. Instead, relevant combinations of rich enough stimulus features could explain the more complex activation patterns. We propose a novel two-step approach, where independent component analysis is first used to identify spatially independent brain processes, which we refer to as functional patterns. As the second step, temporal dependencies between stimuli and functional patterns are detected using canonical correlation analysis. Our proposed method looks for combinations of stimulus features and the corresponding combinations of functional patterns. This two-step approach was used to analyze measurements from an fMRI study during multi-modal stimulation. The detected complex activation patterns were explained as resulting from interactions of multiple brain processes. Our approach seems promising for analysis of data from studies with natural stimuli.

  1. Spatial and structural dependence of mechanical properties of porcine intervertebral disc.

    PubMed

    Causa, F; Manto, L; Borzacchiello, A; De Santis, R; Netti, P A; Ambrosio, L; Nicolais, L

    2002-12-01

    Structure-function relationship of natural tissues is crucial to design a device mimicking the structures present in human body. For this purpose, to provide guidelines to design an intervertebral disc (IVD) substitute, in this study the influence of the spatial location and structural components on the mechanical properties of porcine IVD was investigated. Local compressive stiffness (LCS) was measured on the overall disc, also constrained between the two adjacent vertebrae: the dependence on the lumbar position was evaluated. The compliance values in the anterior position (A) were higher than both in the central posterior (CP) and in the lateral-posterior (RP, LP) locations. The values of Young's Modulus (74.67+/-6.03 MPa) and compression break load (1.36x10(4)+/-0.09x10(4)N) of the disc were also evaluated by distributed compression test. The NP rheological behavior was typical of weak-gels, with elastic modulus G' always higher than viscous modulus G" all over the frequency range investigated (G' and G" respectively equal to 320 and 85 Pa at 1 Hz) and with the moduli trends were almost parallel to each other.

  2. The phenology of space: Spatial aspects of bison density dependence in Yellowstone National Park

    USGS Publications Warehouse

    Taper, M.L.; Meagher, M.; Jerde, C.L.

    2000-01-01

    The Yellowstone bison represent the only bison population in the United States that survived in the wild the near-extermination of the late 1800's. This paper capitalizes on a unique opportunity provided by the record of the bison population of Yellowstone National Park (YNP). This population has been intensely monitored for almost four decades. The analysis of long-term spatio-temporal data from 1970-1997 supports the following conclusions. 1) Even though the Yellowstone bison herd exhibits an extended period of what appears to be linear growth, this pattern can be explained with classical density dependent dynamics if one realizes that perhaps the primary response of the herd to increased density is range expansion. 2) Several spatial aspects of social behavior in the YNP bison may be behavioral adaptations by the bison to environmental changes. These behavioral strategies may buffer, temporarily at least, bison population dynamics from the immediate repercussions of possible environmental stress and habitat deterioration. 3) Bison ecological carrying capacity for YNP is on the order of 2800 to 3200 animals. 4) There do appear to be indications of changes in the bison dynamics that are associated with increasing use of sections of the interior road system in winter. 5) The possibility of habitat degradation is indicated.

  3. Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration

    PubMed Central

    Howe, Alan K.; Baldor, Linda C.; Hogan, Brian P.

    2005-01-01

    Historically, the cAMP-dependent protein kinase (PKA) has a paradoxical role in cell motility, having been shown to both facilitate and inhibit actin cytoskeletal dynamics and cell migration. In an effort to understand this dichotomy, we show here that PKA is regulated in subcellular space during cell migration. Immunofluorescence microscopy and biochemical enrichment of pseudopodia showed that type II regulatory subunits of PKA and PKA activity are enriched in protrusive cellular structures formed during chemotaxis. This enrichment correlates with increased phosphorylation of key cytoskeletal substrates for PKA, including the vasodilator-stimulated phosphoprotein (VASP) and the protein tyrosine phosphatase containing a PEST motif. Importantly, inhibition of PKA activity or its ability to interact with A kinase anchoring proteins inhibited the activity of the Rac GTPase within pseudopodia. This effect correlated with both decreased guanine nucleotide exchange factor activity and increased GTPase activating protein activity. Finally, inhibition of PKA anchoring, like inhibition of total PKA activity, inhibited pseudopod formation and chemotactic cell migration. These data demonstrate that spatial regulation of PKA via anchoring is an important facet of normal chemotactic cell movement. PMID:16176981

  4. Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration.

    PubMed

    Howe, Alan K; Baldor, Linda C; Hogan, Brian P

    2005-10-04

    Historically, the cAMP-dependent protein kinase (PKA) has a paradoxical role in cell motility, having been shown to both facilitate and inhibit actin cytoskeletal dynamics and cell migration. In an effort to understand this dichotomy, we show here that PKA is regulated in subcellular space during cell migration. Immunofluorescence microscopy and biochemical enrichment of pseudopodia showed that type II regulatory subunits of PKA and PKA activity are enriched in protrusive cellular structures formed during chemotaxis. This enrichment correlates with increased phosphorylation of key cytoskeletal substrates for PKA, including the vasodilator-stimulated phosphoprotein (VASP) and the protein tyrosine phosphatase containing a PEST motif. Importantly, inhibition of PKA activity or its ability to interact with A kinase anchoring proteins inhibited the activity of the Rac GTPase within pseudopodia. This effect correlated with both decreased guanine nucleotide exchange factor activity and increased GTPase activating protein activity. Finally, inhibition of PKA anchoring, like inhibition of total PKA activity, inhibited pseudopod formation and chemotactic cell migration. These data demonstrate that spatial regulation of PKA via anchoring is an important facet of normal chemotactic cell movement.

  5. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    PubMed

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be

  6. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    PubMed Central

    2011-01-01

    Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes). It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur. Conclusions Our theoretical

  7. Spatial structure arising from neighbour-dependent bias in collective cell movement.

    PubMed

    Binny, Rachelle N; Haridas, Parvathi; James, Alex; Law, Richard; Simpson, Matthew J; Plank, Michael J

    2016-01-01

    Mathematical models of collective cell movement often neglect the effects of spatial structure, such as clustering, on the population dynamics. Typically, they assume that individuals interact with one another in proportion to their average density (the mean-field assumption) which means that cell-cell interactions occurring over short spatial ranges are not accounted for. However, in vitro cell culture studies have shown that spatial correlations can play an important role in determining collective behaviour. Here, we take a combined experimental and modelling approach to explore how individual-level interactions give rise to spatial structure in a moving cell population. Using imaging data from in vitro experiments, we quantify the extent of spatial structure in a population of 3T3 fibroblast cells. To understand how this spatial structure arises, we develop a lattice-free individual-based model (IBM) and simulate cell movement in two spatial dimensions. Our model allows an individual's direction of movement to be affected by interactions with other cells in its neighbourhood, providing insights into how directional bias generates spatial structure. We consider how this behaviour scales up to the population level by using the IBM to derive a continuum description in terms of the dynamics of spatial moments. In particular, we account for spatial correlations between cells by considering dynamics of the second spatial moment (the average density of pairs of cells). Our numerical results suggest that the moment dynamics description can provide a good approximation to averaged simulation results from the underlying IBM. Using our in vitro data, we estimate parameters for the model and show that it can generate similar spatial structure to that observed in a 3T3 fibroblast cell population.

  8. Spatial structure arising from neighbour-dependent bias in collective cell movement

    PubMed Central

    Haridas, Parvathi; James, Alex; Law, Richard; Simpson, Matthew J.; Plank, Michael J.

    2016-01-01

    Mathematical models of collective cell movement often neglect the effects of spatial structure, such as clustering, on the population dynamics. Typically, they assume that individuals interact with one another in proportion to their average density (the mean-field assumption) which means that cell–cell interactions occurring over short spatial ranges are not accounted for. However, in vitro cell culture studies have shown that spatial correlations can play an important role in determining collective behaviour. Here, we take a combined experimental and modelling approach to explore how individual-level interactions give rise to spatial structure in a moving cell population. Using imaging data from in vitro experiments, we quantify the extent of spatial structure in a population of 3T3 fibroblast cells. To understand how this spatial structure arises, we develop a lattice-free individual-based model (IBM) and simulate cell movement in two spatial dimensions. Our model allows an individual’s direction of movement to be affected by interactions with other cells in its neighbourhood, providing insights into how directional bias generates spatial structure. We consider how this behaviour scales up to the population level by using the IBM to derive a continuum description in terms of the dynamics of spatial moments. In particular, we account for spatial correlations between cells by considering dynamics of the second spatial moment (the average density of pairs of cells). Our numerical results suggest that the moment dynamics description can provide a good approximation to averaged simulation results from the underlying IBM. Using our in vitro data, we estimate parameters for the model and show that it can generate similar spatial structure to that observed in a 3T3 fibroblast cell population. PMID:26893970

  9. Alignment- and orientation-dependent strong-field ionization of molecules: Field-induced orbital distortion effects

    NASA Astrophysics Data System (ADS)

    Spiewanowski, Maciej Dominik; Madsen, Lars Bojer

    2015-05-01

    Strong-field ionization (SFI) is a starting point for many strong-field phenomena, e.g., high-order harmonic generation, as well as a source of fundamental information about the ionized target. Therefore, investigation of SFI of atoms and molecules has been the aim for research since the first strong laser pulses became available. We present a recently developed method, adiabatic strong-field approximation, to study ionization yields as a function of alignment angle for CO2, CO, and OCS molecules. We show that orbital distortion plays an important role in explaining the position and relative strength of maxima in the yields for both polar and nonpolar molecules, even for targets with low polarizabilities at low laser intensities. In particular, we report that for ionization of CO2 the maximum in ionization yield shifts towards the experimentally-measured maximum with respect to the strong-field approximation. For ionization of the CO molecule, not only does the theory predict the preferred direction of ionization correctly, but also the ratio between yields for the two molecular orientations where the electric field points either towards the C or towards the O end. Finally, we find that ionization of OCS is more probable for the laser pointing from the O end towards the S end. Work supported by the Natural Sciences and Engineering Research Council of Canada, the ERC-StG (Project No. 277767-TDMET), and the VKR center of excellence, QUS- COPE.

  10. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.

    PubMed

    Elvander-Tottie, Elin; Eriksson, Therese M; Sandin, Johan; Ogren, Sven Ove

    2009-12-01

    Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal-dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5-HT(1A) receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5-HT(1A) receptors are important for hippocampal-dependent long-term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal-dependent spatial memory. Intraseptal infusion of the 5-HT(1A) receptor agonist (R)-8-OH-DPAT (1 or 4 microg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 microg/rat). While intraseptal administration of (R)-8-OH-DPAT (4 microg) combined with a subthreshold dose of the NMDA receptor antagonist D-AP5 (1 microg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5-HT(1A) receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5-HT(1A) and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal-dependent long-term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5-HT(1A) receptor activation on memory, which may be clinically relevant.

  11. Spatial Dependence and Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of Schwartz Values

    ERIC Educational Resources Information Center

    Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel

    2012-01-01

    In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…

  12. Numbers Are Associated with Different Types of Spatial Information Depending on the Task

    ERIC Educational Resources Information Center

    van Dijck, Jean-Philippe; Gevers, Wim; Fias, Wim

    2009-01-01

    In this study, we examined the nature of the spatial-numerical associations underlying the SNARC-effect by imposing a verbal or spatial working memory load during a parity judgment and a magnitude comparison task. The results showed a double dissociation between the type of working memory load and type of task. The SNARC-effect disappeared under…

  13. Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory

    EPA Science Inventory

    Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...

  14. The field dependence/independence cognitive style does not control the spatial perception of elevation.

    PubMed

    Hudson, Todd E; Li, Wenxun; Matin, Leonard

    2006-04-01

    Earlier work described the presence of a significant connection between an individual's ability to disregard distracting aspects of a visual field in the classical rod-and-frame test (RFT), in which a subject is required to set a rod so that it will appear vertical in the presence of a square frame that is roll tilted from vertical, and in paper-and-pencil tests, in which the subject is required to find a hidden figure embedded in a more complex figure (the Embedded Figures Test [EFT]; see, e.g., Witkin, Dyk, Faterson, Goodenough, & Karp, 1962; Witkin et al., 1954; Witkin, Oltman, Raskin, & Karp, 1971). This has led to a belief in the existence of a bipolar dimension of cognitive style that is utilized in such disembedding tasks--namely, the extent to which an individual is dependent on or independent from the influence of a distracting visual field. The influence of an inducing visual field on the perception of elevation measured by the setting of a visual target to appear at eye level (the visually perceived eye level [VPEL] discrimination) has also been found to be correlated with the RFT. We have thus explored the possible involvement of the dependence/independence cognitive style on the VPEL discrimination. Measurements were made on each of 18 subjects (9 of them female, 9 male) setting a small target to the VPEL in the presence of a pitched visual field across a range of six pitches from -30 degrees (topbackward) to +20 degrees (topforward) and on each of three tests generally recognized as tests of cognitive spatial abilities: the EFT, the Gestalt Completion Test, and the Snowy Pictures Test (SPT). Although there were significant pairwise correlations relating performance on the three cognitive tests (+.73, +.48, and +.71), the correlation of each of these three with the slope of the VPEL-versus-pitch function was not significant, as it was with the slope of the perception of visual pitch of the field (PVP)-versus-pitch function. VPEL, PVP, and a cognitive

  15. Anomalous band-filling dependence of the quasiparticle density of states and the gap ratio 2 Δ0/ kBTc in strong-coupling superconductors

    NASA Astrophysics Data System (ADS)

    Yasushi, Yokoya; Yoshiko, Oi Nakamura

    1996-02-01

    Within the framework of the Eliashberg theory including the energy-dependent Lorentzian electronic density of states (EDOS), the behavior of the quasiparticle density of states (QDOS) is studied for strong-coupling superconductors. Our numerical calculation shows that when the EDOS has structure it can give an additional structure to the QDOS besides the usual fine structures due to the strong electron-phonon coupling when the carrier concentration has appropriate values. It is also found that the inclusion of the energy-varying EDOS leads to unusual band-filling dependence of the gap ratio 2 Δ0/ kBTc: The calculation with the band-filling n being varied, reveals that the gap ratio does not necessarily take its maximum value of half-filling, but at a value of n far away from half-filling. This may occur as the electron-phonon coupling becomes very strong.

  16. Cerebral Correlates of Emotional and Action Appraisals During Visual Processing of Emotional Scenes Depending on Spatial Frequency: A Pilot Study.

    PubMed

    Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole

    2016-01-01

    Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal

  17. Cerebral Correlates of Emotional and Action Appraisals During Visual Processing of Emotional Scenes Depending on Spatial Frequency: A Pilot Study

    PubMed Central

    Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole

    2016-01-01

    Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task’s demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal

  18. Brazilian spatial dynamics in the long term (1872-2000): ``path dependency'' or ``reversal of fortune''?

    NASA Astrophysics Data System (ADS)

    Monasterio, Leonardo Monteiro

    2010-03-01

    This paper analyzes the spatial dynamics of Brazilian regional inequalities between 1872 and 2000 using contemporary tools. The first part of the paper provides new estimates of income per capita in 1872 by municipality using census and electoral information on income by occupation. The level of analysis is the Minimum Comparable Areas 1872-2000 developed by Reis et al. (Áreas mínimas comparáveis para os períodos intercensitários de 1872 a 2000, 2007). These areas are the least aggregation of adjacent municipalities required to allow consistent geographic area comparisons between census years. In the second section of the paper, Exploratory Spatial Data Analysis, Markov chains and stochastic kernel techniques (spatially conditioned) are applied to the dataset. The results suggest that, in broad terms, the spatial pattern of income distribution in Brazil during that period of time has remained stable.

  19. SPATIAL AGGREGATION IN A FOREST FLOOR INSECT DEPENDS ON SEASONAL CONGREGATION AND SCATTERING EFFECTS OF PREDATORS

    EPA Science Inventory

    Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...

  20. Categorical and coordinate processing in object recognition depends on different spatial frequencies.

    PubMed

    Saneyoshi, Ayako; Michimata, Chikashi

    2015-02-01

    Previous studies have suggested that processing categorical spatial relations requires high spatial frequency (HSF) information, while coordinate spatial relations require low spatial frequency (LSF) information. The aim of the present study was to determine whether spatial frequency influences categorical and coordinate processing in object recognition. Participants performed two object-matching tasks for novel, non-nameable objects consisting of "geons" (c.f. Brain Cogn 71:181-186, 2009). For each original stimulus, categorical and coordinate transformations were applied to create comparison stimuli. These stimuli were high-pass/low-cut-filtered or low-pass/high-cut-filtered by a filter with a 2D Gaussian envelope. The categorical task consisted of the original and categorical-transformed objects. The coordinate task consisted of the original and coordinate-transformed objects. The non-filtered object image was presented on a CRT monitor, followed by a comparison object (non-filtered, high-pass-filtered, and low-pass-filtered stimuli). The results showed that the removal of HSF information from the object image produced longer reaction times (RTs) in the categorical task, while removal of LSF information produced longer RTs in the coordinate task. These results support spatial frequency processing theory, specifically Kosslyn's hypothesis and the double filtering frequency model.

  1. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    PubMed

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m(2) plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  2. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    SciTech Connect

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek; Lyubinetsky, Igor

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Both STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.

  3. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new

  4. Time-dependent analytical R-matrix approach for strong-field dynamics. I. One-electron systems

    NASA Astrophysics Data System (ADS)

    Torlina, Lisa; Smirnova, Olga

    2012-10-01

    We develop a flexible analytical approach to describe strong-field dynamics in atoms and molecules. The approach is based on the ideas of the R-matrix method. Here, we illustrate and validate our approach by applying it to systems with one active electron bound by the Coulomb potential and benchmark our results against the standard theory of Perelomov, Popov, and Terent'ev [Sov. Phys. JETP0021-903710.1007/BF01132710 23, 924 (1966)]. We discuss corrections to the ionization amplitude associated with the interplay of the Coulomb potential and the laser field on the sub-laser cycle time scale and the shape of the tunneling wave packets associated with different instants of ionization.

  5. Luminance-dependence of spatial vision in budgerigars (Melopsittacus undulatus) and Bourke's parrots (Neopsephotus bourkii).

    PubMed

    Lind, Olle; Sunesson, Tony; Mitkus, Mindaugas; Kelber, Almut

    2012-01-01

    Budgerigars (Melopsittacus undulatus) and Bourke's parrots (Neopsephotus bourkii) are closely related birds with different activity patterns. Budgerigars are strictly diurnal while Bourke's parrots are active in dim twilight. Earlier studies show that the intensity threshold of colour vision is similar in both species while Bourke's parrots have larger eyes with a higher density of rods than budgerigars. In this study, we investigate whether this could be an adaptation for better spatial vision in dim light. We used two alternative forced-choice experiments to determine the spatial acuity of both species at light intensities ranging from 0.08 to 73 cd/m(2). We also determined the spatial contrast sensitivity function (CSF) for bright light in Bourke's parrots and compare it to existing data for budgerigars. The spatial acuity of Bourke's parrots was found to be similar to that of budgerigars at all light levels. Also the CSF of Bourke's parrots is similar to that of budgerigars with a sensitivity peak located between 2.1 and 2.6 cycles/degree. Our findings do not support the hypothesis that Bourke's parrots have superior spatial acuity in dim light compared to budgerigars and the adaptive value of the relatively rod-rich and large eyes of Bourke's parrots remains unclear.

  6. Bit error rate analysis of free-space optical system with spatial diversity over strong atmospheric turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Krishnan, Prabu; Sriram Kumar, D.

    2014-12-01

    Free-space optical communication (FSO) is emerging as a captivating alternative to work out the hindrances in the connectivity problems. It can be used for transmitting signals over common lands and properties that the sender or receiver may not own. The performance of an FSO system depends on the random environmental conditions. The bit error rate (BER) performance of differential phase shift keying FSO system is investigated. A distributed strong atmospheric turbulence channel with pointing error is considered for the BER analysis. Here, the system models are developed for single-input, single-output-FSO (SISO-FSO) and single-input, multiple-output-FSO (SIMO-FSO) systems. The closed-form mathematical expressions are derived for the average BER with various combining schemes in terms of the Meijer's G function.

  7. Spatially dependent parameter estimation and nonlinear data assimilation by autosynchronization of a system of partial differential equations

    NASA Astrophysics Data System (ADS)

    Kramer, Sean; Bollt, Erik M.

    2013-09-01

    Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a partial differential equation (PDE) model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modeling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing are discussed.

  8. Spatially dependent parameter estimation and nonlinear data assimilation by autosynchronization of a system of partial differential equations.

    PubMed

    Kramer, Sean; Bollt, Erik M

    2013-09-01

    Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a partial differential equation (PDE) model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modeling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing are discussed.

  9. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine.

    PubMed

    Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja; Nabi, Rafiq; Kozlowski, Pamela A; Montefiori, David C; LaBranche, Celia C; Wrammert, Jens; Keele, Brandon F; Balachandran, Harikrishnan; Sahu, Sujata; Lifton, Michelle; Santra, Sampa; Basu, Rahul; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-01-01

    Background.  In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods.  The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results.  Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions.  The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.

  10. Photodynamic tumor eradication with a novel targetable photosensitizer: strong vascular effects and dependence on treatment repetition versus potentiation.

    PubMed

    Savellano, Mark D; Owusu-Brackett, Nicci; Son, Ji; Ganga, Tanay; Leung, Nadia L; Savellano, Dagmar H

    2013-01-01

    A novel pyropheophorbide-a (PPa) derivative, Ac-sPPp, was developed in our lab for targeted photodynamic therapy (PDT) and combination therapies. Its versatile peptide moiety, high water-solubility, amphiphilicity, and micellar aggregation allow efficient coupling to targeting moieties and convenient mixing with other therapeutics. Photosensitizer immunoconjugate (PIC) targeted PDT, using Ac-sPPp conjugated to therapeutic anti-epidermal growth factor receptor (EGFR) antibody cetuximab, and PDT + chemotherapy combination treatment, using Ac-sPPp mixed with stealth liposomal doxorubicin (Doxil), were investigated as promising strategies for potentiating PDT and improving target specificity. Passively targeted PDT with Ac-sPPp only or surfactant-solubilized PPa was also investigated for comparison. The A-431 human vulvar squamous cell carcinoma, xenografted in nude mice, was chosen as a tumor model because of its high EGFR expression and sensitivity to liposomal doxorubicin in vitro. Fluorescence imaging and PDT experiments showed that Ac-sPPp formulations circulated far longer and provided superior tumor contrast and superior tumor control compared to PPa. Strong PDT vascular effects were observed by laser Doppler imaging regardless of whether Ac-sPPp was passively or actively targeted. Passively targeted Ac-sPPp PDT gave equivalent or better tumor control than PIC-targeted PDT or PDT + Doxil combination therapy, and when treatments were repeated, it also yielded the highest cure rate.

  11. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine

    PubMed Central

    Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja; Nabi, Rafiq; Kozlowski, Pamela A.; Montefiori, David C.; LaBranche, Celia C.; Wrammert, Jens; Keele, Brandon F.; Balachandran, Harikrishnan; Sahu, Sujata; Lifton, Michelle; Santra, Sampa; Basu, Rahul; Moss, Bernard; Robinson, Harriet L.; Amara, Rama Rao

    2016-01-01

    Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques. PMID:27006959

  12. Growth-Hormone Dynamics in Healthy Adults are Related to Age and Sex, and Strongly Dependent on Body Mass Index

    PubMed Central

    Roelfsema, Ferdinand; Veldhuis, Johannes D.

    2015-01-01

    Context Studies on 24-hour growth hormone (GH) secretion are rare. The influence of sex, age and adiposity are well recognized but generally derived from specific selected subject groups, not spanning sexes, many age decades, and a range of body weights. Objective The goal was to investigate GH dynamics in a group of 130 healthy adult subjects, both men and women, across 5 age decades, and a 2.5 fold range of body mass index (BMI). Methods GH was measured by a sensitive immunofluorometric assay. Secretion parameters were quantified by automated deconvolution and relative pattern randomness by approximate entropy (ApEn). Results Median age was 40, range 20–77 year. Median BMI was 26, range 18.3–49.8 kg/m2. Pulsatile 24-hour GH secretion was negatively correlated with age (P=0.002) and BMI (P<0.0001). Basal GH secretion negatively correlated with BMI (P=0.003) and not with age. The sex-dependent GH secretion (larger in women) was no longer detectable after 50 year. IGF-1 levels were lower in women after 50 year compared with men of similar age. ApEn showed age-related increase in both sexes and was higher in premenopausal and postmenopausal women than men of comparable age (P<0.0001). A single fasting GH measurement is non-informative of 24-hour GH secretion. Conclusion BMI dominates the negative regulation of 24-hour GH secretion across 5 decades of age in this till now largest cohort of healthy adults, who underwent 24-hour blood sampling. Sex also impacts GH secretion before age 50 yr and its regularity at all ages. Serum IGF-I differences partly depend on pre- or postmenopausal state. Finally, a single GH measurement is not informative of 24-hour GH secretion. PMID:26228064

  13. Auditory attention strategy depends on target linguistic properties and spatial configurationa)

    PubMed Central

    McCloy, Daniel R.; Lee, Adrian K. C.

    2015-01-01

    Whether crossing a busy intersection or attending a large dinner party, listeners sometimes need to attend to multiple spatially distributed sound sources or streams concurrently. How they achieve this is not clear—some studies suggest that listeners cannot truly simultaneously attend to separate streams, but instead combine attention switching with short-term memory to achieve something resembling divided attention. This paper presents two oddball detection experiments designed to investigate whether directing attention to phonetic versus semantic properties of the attended speech impacts listeners' ability to divide their auditory attention across spatial locations. Each experiment uses four spatially distinct streams of monosyllabic words, variation in cue type (providing phonetic or semantic information), and requiring attention to one or two locations. A rapid button-press response paradigm is employed to minimize the role of short-term memory in performing the task. Results show that differences in the spatial configuration of attended and unattended streams interact with linguistic properties of the speech streams to impact performance. Additionally, listeners may leverage phonetic information to make oddball detection judgments even when oddballs are semantically defined. Both of these effects appear to be mediated by the overall complexity of the acoustic scene. PMID:26233011

  14. Spatial dependence of inflaton in the presence of the torsion field

    NASA Astrophysics Data System (ADS)

    Kao, W. F.

    1992-03-01

    We show that, in a class of induced gravity models with (or without) torsion, the associated scalar field (the inflaton) has to be spatial independent in order to admit a Robertson-Walker type solution. Details of the proof are presented. The proof requires a great deal of mathematics which also serves as a pedagogical exercise by itself.

  15. Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era

    NASA Astrophysics Data System (ADS)

    Smerdon, Jason E.; Coats, Sloan; Ault, Toby R.

    2016-03-01

    The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five last millennium and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across the employed methods and spatially dependent reconstruction errors in all of the derived CFRs. Spectral biases in the reconstructed fields demonstrate that CFR methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are any spectral biases inherent in the underlying pseudoproxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly and the Little Ice Age, with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving larger mean differences between independent 300-year periods in the region. All of the characteristics of CFR performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields.

  16. Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness

    USGS Publications Warehouse

    Chalfoun, A.D.; Martin, T.E.

    2007-01-01

    1. Identifying the habitat features that influence habitat selection and enhance fitness is critical for effective management. Ecological theory predicts that habitat choices should be adaptive, such that fitness is enhanced in preferred habitats. However, studies often report mismatches between habitat preferences and fitness consequences across a wide variety of taxa based on a single spatial scale and/or a single fitness component. 2. We examined whether habitat preferences of a declining shrub steppe songbird, the Brewer's sparrow Spizella breweri, were adaptive when multiple reproductive fitness components and spatial scales (landscape, territory and nest patch) were considered. 3. We found that birds settled earlier and in higher densities, together suggesting preference, in landscapes with greater shrub cover and height. Yet nest success was not higher in these landscapes; nest success was primarily determined by nest predation rates. Thus landscape preferences did not match nest predation risk. Instead, nestling mass and the number of nesting attempts per pair increased in preferred landscapes, raising the possibility that landscapes were chosen on the basis of food availability rather than safe nest sites. 4. At smaller spatial scales (territory and nest patch), birds preferred different habitat features (i.e. density of potential nest shrubs) that reduced nest predation risk and allowed greater season-long reproductive success. 5. Synthesis and applications. Habitat preferences reflect the integration of multiple environmental factors across multiple spatial scales, and individuals may have more than one option for optimizing fitness via habitat selection strategies. Assessments of habitat quality for management prescriptions should ideally include analysis of diverse fitness consequences across multiple ecologically relevant spatial scales. ?? 2007 The Authors.

  17. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    SciTech Connect

    Mathew, D; Tanny, S; Parsai, E; Sperling, N

    2015-06-15

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class

  18. Integration of Distinct Objects in Visual Working Memory Depends on Strong Objecthood Cues Even for Different-Dimension Conjunctions.

    PubMed

    Balaban, Halely; Luria, Roy

    2016-05-01

    What makes an integrated object in visual working memory (WM)? Past evidence suggested that WM holds all features of multidimensional objects together, but struggles to integrate color-color conjunctions. This difficulty was previously attributed to a challenge in same-dimension integration, but here we argue that it arises from the integration of 2 distinct objects. To test this, we examined the integration of distinct different-dimension features (a colored square and a tilted bar). We monitored the contralateral delay activity, an event-related potential component sensitive to the number of objects in WM. The results indicated that color and orientation belonging to distinct objects in a shared location were not integrated in WM (Experiment 1), even following a common fate Gestalt cue (Experiment 2). These conjunctions were better integrated in a less demanding task (Experiment 3), and in the original WM task, but with a less individuating version of the original stimuli (Experiment 4). Our results identify the critical factor in WM integration at same- versus separate-objects, rather than at same- versus different-dimensions. Compared with the perfect integration of an object's features, the integration of several objects is demanding, and depends on an interaction between the grouping cues and task demands, among other factors.

  19. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  20. Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization

    DOE PAGES

    Goll, Daniel S.; Brovkin, Victor; Liski, Jari; ...

    2015-08-12

    The quantification of sources and sinks of carbon from land use and land cover changes (LULCC) is uncertain. We investigated how the parametrization of LULCC and of organic matter decomposition, as well as initial land cover, affects the historical and future carbon fluxes in an Earth System Model (ESM). Using the land component of the Max Planck Institute ESM, we found that the historical (1750–2010) LULCC flux varied up to 25% depending on the fraction of biomass which enters the atmosphere directly due to burning or is used in short-lived products. The uncertainty in the decadal LULCC fluxes of themore » recent past due to the parametrization of decomposition and direct emissions was 0.6 Pg C yr$-$1, which is 3 times larger than the uncertainty previously attributed to model and method in general. Preindustrial natural land cover had a larger effect on decadal LULCC fluxes than the aforementioned parameter sensitivity (1.0 Pg C yr$-$1). Regional differences between reconstructed and dynamically computed land covers, in particular, at low latitudes, led to differences in historical LULCC emissions of 84–114 Pg C, globally. This effect is larger than the effects of forest regrowth, shifting cultivation, or climate feedbacks and comparable to the effect of differences among studies in the terminology of LULCC. Finally, in general, we find that the practice of calibrating the net land carbon balance to provide realistic boundary conditions for the climate component of an ESM hampers the applicability of the land component outside its primary field of application.« less

  1. The influence of acute intense exercise on exogenous spatial attention depends on physical fitness level.

    PubMed

    Llorens, Francesc; Sanabria, Daniel; Huertas, Florentino

    2015-01-01

    We investigated the effect of a previous bout of intense exercise on exogenous spatial attention. In Experiment 1, a group of participants performed an exogenous spatial task at rest (without prior effort), immediately after intense exercise, and after recovering from an intense exercise. The analyses revealed that the typical "facilitation effect" (i.e., faster reaction times on cued than on uncued trials) immediately after exercise was positively correlated with participants' fitness level. In Experiment 2, a high-fit and a low-fit group performed the same task at rest (without prior effort) and immediately after an intense exercise. Results revealed that, after the bout of exercise, only low-fit participants showed reduced attentional effects compared to the rest condition. We argue that the normal functioning of exogenous attention was influenced by intense effort, affecting low-fit participants to a larger extent than to high-fit participants. As a consequence, target processing was prioritized over irrelevant stimuli.

  2. Spatial climate-dependent growth response of boreal mixedwood forest in western Canada

    NASA Astrophysics Data System (ADS)

    Jiang, Xinyu; Huang, Jian-Guo; Stadt, Kenneth J.; Comeau, Philip G.; Chen, Han Y. H.

    2016-04-01

    The western Canadian mixedwood boreal forests were projected to be significantly affected by regional drought. However, drought degrees were spatially different across elevations, longitudes and latitudes, which might cause different tree growth responses to climate change in different sub-regions within western Canada. In this way, regional classification of western Canadian boreal forests and understanding spatial tree growth responses to climate might be necessary for future forest management and monitoring. In this paper, tree-ring chronologies of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were obtained from mixed forest stands distributed across western Canada to study spatial tree growth response to climate based on three regional classification schemes (a phytogeographic sub-region classification, a natural sub-region classification and non-classification). Phytogeographic sub-region classification was estimated based on tree ring samples we collected in this study, while natural sub-region classification was previously developed based on analysis of regional differences in vegetation, soil, site and climate conditions. Results showed that air temperature did not significantly increase, while drought stress became more severe between 1985 to 2010. Relationships between trembling aspen growth and temperature differed between north and south parts of the study area, resulting from spatial difference in water supply. Trembling aspen growth was influenced by temperature or moisture variables of the previous years. White spruce growth was influenced primarily by moisture variables (current or previous year), and response coefficients between white spruce and drought conditions (represented by drought code) were negative in all phytogeographic sub-regions, suggesting that white spruce was more sensitive to drought stress under climate change. As a late-successional dominant species

  3. Hippocampal-dependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation.

    PubMed

    Klur, Sandra; Muller, Christophe; Pereira de Vasconcelos, Anne; Ballard, Theresa; Lopez, Joëlle; Galani, Rodrigue; Certa, Ulrich; Cassel, Jean-Christophe

    2009-09-01

    The hippocampus is involved in spatial memory processes, as established in a variety of species such as birds and mammals including humans. In humans, some hippocampal-dependent memory functions may be lateralized, the right hippocampus being predominantly involved in spatial navigation. In rodents, the question of possible lateralization remains open. Therefore, we first microdissected the CA1 subregion of the left and right dorsal hippocampi for analysis of mRNA expression using microarrays in rats having learnt a reference memory task in the Morris water-maze. Relative to untrained controls, 623 genes were differentially expressed in the right hippocampus, against only 74 in the left hippocampus, in the rats that had learnt the hidden platform location. Thus, in the right hippocampus, 299 genes were induced, 324 were repressed, and about half of them participate in signaling and transport, metabolism, and nervous system functions. In addition, most differentially expressed genes associated with spatial learning have been previously related to synaptic plasticity and memory. We then subjected rats to unilateral (left or right) or bilateral reversible functional inactivations in the dorsal hippocampus; lidocaine was infused either before each acquisition session or before retrieval of a reference spatial memory in the Morris water maze. We found that after drug-free acquisition, right or bilateral lidocaine inactivation (vs. left, or bilateral phosphate buffered saline (PBS) infusions) of the dorsal hippocampus just before a delayed (24 h) probe trial impaired performance. Conversely, left or bilateral hippocampus inactivation (vs. right, or bilateral PBS infusions) before each acquisition session weakened performance during a delayed, drug-free probe trial. Our data confirm a functional association between transcriptional activity within the dorsal hippocampus and spatial memory in the rat. Further, they suggest that there could be a leftward bias of hippocampal

  4. Sex Differences and Menstrual Cycle Dependent Changes in Cognitive Strategies during Spatial Navigation and Verbal Fluency.

    PubMed

    Scheuringer, Andrea; Pletzer, Belinda

    2017-01-01

    Men typically outperform women in spatial navigation tasks, while the advantage of women in verbal fluency is more controversial. Sex differences in cognitive abilities have been related to sex-specific cognitive strategies on the one hand and sex hormone influences on the other hand. However, sex hormone and menstrual cycle influences on cognitive strategies have not been previously investigated. In the present study we assessed cognitive strategy use during spatial navigation and verbal fluency in 51 men and 49 women. In order to evaluate sex hormone influences, all participants completed two test sessions, which were time-locked to the early follicular (low estradiol and progesterone) and mid-luteal cycle phase (high estradiol and progesterone) in women. As hypothesized, men outperformed women in navigation, whereas women outperformed men in phonemic verbal fluency. Furthermore, women switched more often between categories in the phonemic fluency condition, compared to men, indicating sex-specific strategy use. Sex differences in strategy use during navigation did, however, not follow the expected pattern. Menstrual cycle phase, however, did modulate strategy use during navigation as expected, with improved performance with the landmark strategy in the luteal, compared to the follicular phase. No menstrual cycle effects were observed on clustering or switching during verbal fluency. This suggests a modulation of cognitive strategy use during spatial navigation, but not during verbal fluency, by relative hormone increases during the luteal phase of the menstrual cycle.

  5. The effect of nicotine on visuospatial attention in chronic spatial neglect depends upon lesion location.

    PubMed

    Vossel, S; Kukolja, J; Thimm, M; Thiel, C M; Fink, G R

    2010-09-01

    The deficit to reorient attention from ipsilesional to contralesional space is one key feature of the spatial neglect syndrome. As previous studies suggest that reorienting of visuospatial attention is modulated by cholinergic neurotransmission, we investigated whether cholinergic stimulation with nicotine (Nicorette 2 mg, Pharmacia/Pfizer, Helsingborg, Sweden) facilitates attentional reorienting in spatial neglect patients. Nine nonsmoking patients with stable neglect symptoms were investigated in a within-subject cross-over design. We used a location-cueing paradigm and analysed reaction time (RT) differences between validly and invalidly cued, as well as between neutrally cued and uncued targets as a function of hemifield and drug. Moreover, since the nicotine effect is mediated by parietal brain areas in healthy subjects, we tested whether lesion location influences the pharmacological effect. Nicotine speeded RTs in valid and invalid trials nonspecifically, without modulating the validity effect in the location-cueing task in the whole group of patients. Lesion-symptom mapping revealed a relationship between lesion site and the pharmacological effect on reorienting to contralesional space in right parietal and temporal brain regions. We conclude that in patients with chronic spatial neglect the performance in the location-cueing paradigm can be modulated by a cholinergic stimulant provided that the lesion spares right parietal and temporal cortex.

  6. Sex Differences and Menstrual Cycle Dependent Changes in Cognitive Strategies during Spatial Navigation and Verbal Fluency

    PubMed Central

    Scheuringer, Andrea; Pletzer, Belinda

    2017-01-01

    Men typically outperform women in spatial navigation tasks, while the advantage of women in verbal fluency is more controversial. Sex differences in cognitive abilities have been related to sex-specific cognitive strategies on the one hand and sex hormone influences on the other hand. However, sex hormone and menstrual cycle influences on cognitive strategies have not been previously investigated. In the present study we assessed cognitive strategy use during spatial navigation and verbal fluency in 51 men and 49 women. In order to evaluate sex hormone influences, all participants completed two test sessions, which were time-locked to the early follicular (low estradiol and progesterone) and mid-luteal cycle phase (high estradiol and progesterone) in women. As hypothesized, men outperformed women in navigation, whereas women outperformed men in phonemic verbal fluency. Furthermore, women switched more often between categories in the phonemic fluency condition, compared to men, indicating sex-specific strategy use. Sex differences in strategy use during navigation did, however, not follow the expected pattern. Menstrual cycle phase, however, did modulate strategy use during navigation as expected, with improved performance with the landmark strategy in the luteal, compared to the follicular phase. No menstrual cycle effects were observed on clustering or switching during verbal fluency. This suggests a modulation of cognitive strategy use during spatial navigation, but not during verbal fluency, by relative hormone increases during the luteal phase of the menstrual cycle. PMID:28367133

  7. Precision treatment of single and double multiphoton ionization of He atoms by strong laser fields: Time-dependent generalized pseudospectral method in internal coordinates

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John; Chu, Shih-I.

    2012-06-01

    We have developed a new computational method for accurate and efficient numerical solution of the time-dependent Schr"odinger equation for two-electron atoms. Our approach is full-dimensional and makes use of the internal coordinates of the electrons in the plane defined by the electrons and the nucleus (r1, r2, and θ12) as well as Euler angles which determine the orientation of the plane in space. The internal coordinates can be optimally discretized by means of the generalized pseudospectral method while the Euler angles appear through the basis set functions with the definite total angular momentum and its projections. The results of the single and double ionization of the helium atom by strong 800 nm laser fields will be presented. The accurate time-dependent electron density obtained can be used for testing and improvement of various approximate exchange-correlation functionals of the time-dependent density functional theory.

  8. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  9. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    PubMed Central

    Zhou, Yixuan; E., Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-01-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements. PMID:27966549

  10. Variant 22: Spatially-Dependent: Transient Processes in MOX Fueled Core

    SciTech Connect

    Pavlovichev, A.M.

    2001-09-28

    This work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactors and presents the results of spatial kinetics calculational benchmarks. The examinations were carried out with the following purposes: to verify one of spatial neutronic kinetics model elaborated in KI, to understand sensibility of the model to neutronics difference of UOX and MOX cores, and to compare in future point and spatial kinetics models (on the base of a set of selected accidents) in view of eventual creation of RELAP option with 3D kinetics. The document contains input data and results of model operation of three emergency dynamic processes in the VVER-1000 core: (1) Central control rod ejection by pressure drop caused by destroying of the moving mechanism cover. (2) Overcooling of the reactor core caused by steam line rupture and non-closure of steam generator stop valve. (3) The boron dilution of coolant in part of the VVER-1000 core caused by penetration of the distillate slug into the core at start up of non-working loop. These accidents have been applied to: (1) Uranium reference core that is the so-called Advanced VVER-1000 core with Zirconium fuel pins claddings and guide tubes. A number of assemblies contained 18 boron BPRs while first year operating. (2) MOX core with about 30% MOX fuel. At a solving it was supposed that MOX-fuel thermophysical characteristics are identical to uranium fuel ones. The calculations were carried out with the help of the program NOSTRA/1/, simulating VVER dynamics that is briefly described in Chapter 1. Chapter 3 contains the description of reference Uranium and MOX cores that are used in calculations. The neutronics calculations of MOX core with about 30% MOX fuel are named ''Variant 2 1''. Chapters 4-6 contain the calculational results of three above mentioned benchmark accidents that compose in a whole the ''Variant 22''.

  11. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis

    PubMed Central

    Papusheva, Ekaterina; Heisenberg, Carl-Philipp

    2010-01-01

    Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis. PMID:20717145

  12. Increased Variability and Asymmetric Expansion of the Hippocampal Spatial Representation in a Distal Cue-Dependent Memory Task.

    PubMed

    Park, Seong-Beom; Lee, Inah

    2016-08-01

    Place cells in the hippocampus fire at specific positions in space, and distal cues in the environment play critical roles in determining the spatial firing patterns of place cells. Many studies have shown that place fields are influenced by distal cues in foraging animals. However, it is largely unknown whether distal-cue-dependent changes in place fields appear in different ways in a memory task if distal cues bear direct significance to achieving goals. We investigated this possibility in this study. Rats were trained to choose different spatial positions in a radial arm in association with distal cue configurations formed by visual cue sets attached to movable curtains around the apparatus. The animals were initially trained to associate readily discernible distal cue configurations (0° vs. 80° angular separation between distal cue sets) with different food-well positions and then later experienced ambiguous cue configurations (14° and 66°) intermixed with the original cue configurations. Rats showed no difficulty in transferring the associated memory formed for the original cue configurations when similar cue configurations were presented. Place field positions remained at the same locations across different cue configurations, whereas stability and coherence of spatial firing patterns were significantly disrupted when ambiguous cue configurations were introduced. Furthermore, the spatial representation was extended backward and skewed more negatively at the population level when processing ambiguous cue configurations, compared with when processing the original cue configurations only. This effect was more salient for large cue-separation conditions than for small cue-separation conditions. No significant rate remapping was observed across distal cue configurations. These findings suggest that place cells in the hippocampus dynamically change their detailed firing characteristics in response to a modified cue environment and that some of the firing

  13. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  14. Effect of finite detector-element width on the spatial-frequency-dependent detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Cunningham, Ian A.; Westmore, Michael S.; Fenster, Aaron

    1995-05-01

    Image blur in digital imaging systems results from both the spatial spreading of quanta representing the image in the detector system and from the integration of quanta over the finite detector element width. Linear-systems theory has often been used to describe these blurring mechanisms as a convolution, implying the existence of a corresponding modulation transfer function (MTF) in the spatial-frequency domain. This also implies that the resulting noise- power spectrum (NPS) is modified by the square of the blurring MTF. This deterministic approach correctly describes the effect of each blurring mechanism on the overall system MTF, but does not correctly describe image noise characteristics. This is because the convolution is a deterministic calculation, and neglects the statistical properties of the image quanta. Rabbani et al. developed an expression for the NPS following a stochastic spreading mechanism that correctly accounts for these statistical properties. Use of their results requires a modification in how we should interpret the convolution theorem. We suggest the use of a `stochastic' convolution operator, that uses the Rabbani equation for the NPS rather than the deterministic result. This approach unifies the description of both image blur and image noise into a single linear-systems framework. This method is then used to develop expressions for the signal, NPS, DQE, and pixel SNR for a hypothetical digital detector design that includes the effects of conversion to secondary quanta, stochastic spreading of the secondary quanta, and a finite detector-element width.

  15. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation.

    PubMed Central

    Neunlist, M; Tung, L

    1995-01-01

    Recent theoretical models of cardiac electrical stimulation or defibrillation predict a complex spatial pattern of transmembrane potential (Vm) around a stimulating electrode, resulting from the formation of virtual electrodes of reversed polarity. The pattern of membrane polarization has been attributed to the anisotropic structure of the tissue. To verify such model predictions experimentally, an optical technique using a fluorescent voltage-sensitive dye was used to map the spatial distribution of Vm around a 150-microns-radius extracellular unipolar electrode. An S1-S2 stimulation protocol was used, and vm was measured during an S2 pulse having an intensity equal to 10x the cathodal diastolic threshold of excitation. The recordings were obtained on the endocardial surface of bullfrog atrium in directions parallel and perpendicular to the cardiac fibers. In the longitudinal fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) but only in a region within 445 +/- 112 microns (and 616 +/- 78 microns for anodal pulses) from the center of the electrode (n = 9). Outside this region, vm reversed polarity and reached a local maximum at 922 +/- 136 microns (and 988 +/- 117 microns for anodal pulses) (n = 9). Beyond this point vm decayed to zero over a distance of 1.5-2 mm. In the transverse fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) at all distances from the electrode. The amplitude of the response decreased with distance from the electrode with an exponential decay constant of 343 +/- 110 microns for cathodal pulses and 253 +/- 91 microns for anodal pulses (n = 7). The results were qualitatively similar in both fiber directions when the atrium was bathed in a solution containing ionic channel blockers. A two-dimensional computer model was formulated for the case of highly anisotropic cardiac tissue and qualitatively accounts for nearly all the observed spatial and

  16. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

    SciTech Connect

    Yu, Lifeng Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H.

    2015-05-15

    Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

  17. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  18. The dependence of optimal fractionation schemes on the spatial dose distribution

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Salari, Ehsan; Ramakrishnan, Jagdish; Bortfeld, Thomas

    2013-01-01

    We consider the fractionation problem in radiation therapy. Tumor sites in which the dose-limiting organ at risk (OAR) receives a substantially lower dose than the tumor, bear potential for hypofractionation even if the α/β-ratio of the tumor is larger than the α/β-ratio of the OAR. In this work, we analyze the interdependence of the optimal fractionation scheme and the spatial dose distribution in the OAR. In particular, we derive a criterion under which a hypofractionation regimen is indicated for both a parallel and a serial OAR. The approach is based on the concept of the biologically effective dose (BED). For a hypothetical homogeneously irradiated OAR, it has been shown that hypofractionation is suggested by the BED model if the α/β-ratio of the OAR is larger than α/β-ratio of the tumor times the sparing factor, i.e. the ratio of the dose received by the tumor and the OAR. In this work, we generalize this result to inhomogeneous dose distributions in the OAR. For a parallel OAR, we determine the optimal fractionation scheme by minimizing the integral BED in the OAR for a fixed BED in the tumor. For a serial structure, we minimize the maximum BED in the OAR. This leads to analytical expressions for an effective sparing factor for the OAR, which provides a criterion for hypofractionation. The implications of the model are discussed for lung tumor treatments. It is shown that the model supports hypofractionation for small tumors treated with rotation therapy, i.e. highly conformal techniques where a large volume of lung tissue is exposed to low but nonzero dose. For larger tumors, the model suggests hyperfractionation. We further discuss several non-intuitive interdependencies between optimal fractionation and the spatial dose distribution. For instance, lowering the dose in the lung via proton therapy does not necessarily provide a biological rationale for hypofractionation.

  19. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    PubMed Central

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  20. Temporal and spatial distribution of tropospheric NO2 over arid areas of Central Asia by OMI Satellite observations: Evidence for a strong contribution of soil biogenic nitric oxide

    NASA Astrophysics Data System (ADS)

    Mamtimin, Buhalqem; Qi, Yue; Beirle, Steffen; Wagner, Thomas; Meixner, Franz X.

    2013-04-01

    We present results observations of tropospheric NO2 carried out by Ozone Monitoring Instrument (OMI) over the Central Asian arid areas from 2005 to 2011. We selected 8 oases (Ruoqiang, Milan, Waxxari, Qiemo, Minfeng, Shache, Awati and Kuche) in Taklimakan desert (part of the great Central Asian deserts). For these, spatial distributions, seasonal variations, and trends of tropospheric NO2 Vertical Column Densities (VCDs) retrieved are discussed. In the Taklimakan desert, oases are the centers of all human activities and the economy of the selected oases are dominated by oasis agriculture. Irrigation and fertilization favor the microbial production of nitric oxide in soils, which after emission is converted to NO2 by ozone. Consequently, tropospheric NO2-VCDs are a good proxy for biogenic NO emissions from soils. For contrast, we examined also the NO2-VCDs in the area of the growing megacity Urumqi (43.85°N, 87.62°E), which is known as an anthropogenic highly polluted city in the Central Asian deserts. For 2005-2011, all selected oases are hot spots of NO/NO2 in the Taklimakan desert. Higher NO2-VCDs were observed during growing seasons over all 8 oases. NO2-VCDs observed in summer generally increased from 2005 to 2011. NO2-VCDs over Urumqi were generally at least 1 order of magnitude higher than those over the oases. In contrast to the oases, wintertime NO2-VCDs over Urumqi are higher than in summer. We evaluated governmental statistical agricultural data of the 8 oasis, and compared the trends with corresponding summertime NO2-VCDs. Inter-annual trends of NO2-VCDs over the oases show similar patterns to those of N-fertilizer application and sown (and irrigated) areas. Highest NO2-VCDs observed in summer for agriculturally dominated oases are a strong indication that soil biogenic NO emission is the main contributor to the tropospheric NO2 over all 8 oases, while in Urumqi fossil fuel combustion, particularly during winter, is the main source for NO/NO2. With

  1. Population Change and Farm Dependence: Temporal and Spatial Variation in the U.S. Great Plains, 1900–2000

    PubMed Central

    CURTIS WHITE, KATHERINE J.

    2008-01-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  2. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Scheel, M. L. M.; Rohrer, M.; Huggel, Ch.; Santos Villar, D.; Silvestre, E.; Huffman, G. J.

    2011-08-01

    Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, for instance, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio. The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance. In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed. Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects and the TMPA processing scheme

  3. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Scheel, M. L. M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G. J.

    2010-10-01

    Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio. The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance. In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed. Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects and the TMPA processing scheme are discussed

  4. Oviposition preferences for ethanol depend on spatial arrangement and differ dramatically among closely related Drosophila species.

    PubMed

    Sumethasorn, Matt; Turner, Thomas L

    2016-11-15

    Recent work on the model fly Drosophila melanogaster has reported inconsistencies in their preference for laying eggs on intermediate concentrations of ethanol. In this study, we resolve this discrepancy by showing that this species strongly prefers ovipositing on ethanol when it is close to a non-ethanol substrate, but strongly avoids ethanol when options are farther apart. We also show fluidity of these behaviors among other Drosophila species: D. melanogaster is more responsive to ethanol than close relatives in that it prefers ethanol more than other species in the close-proximity case, but avoids ethanol more than other species in the distant case. In the close-proximity scenario, the more ethanol-tolerant species generally prefer ethanol more, with the exception of the island endemic D. santomea This species has the lowest tolerance in the clade, but behaves like D. melanogaster We speculate that this could be an adaptation to protect eggs from parasites or predators such as parasitoid wasps, as larvae migrate to non-toxic substrates after hatching. These natural differences among species are an excellent opportunity to study how genes and brains evolve to alter ethanol preferences, and provide an interesting model for genetic variation in preferences in other organisms, including humans.

  5. Oviposition preferences for ethanol depend on spatial arrangement and differ dramatically among closely related Drosophila species

    PubMed Central

    Turner, Thomas L.

    2016-01-01

    ABSTRACT Recent work on the model fly Drosophila melanogaster has reported inconsistencies in their preference for laying eggs on intermediate concentrations of ethanol. In this study, we resolve this discrepancy by showing that this species strongly prefers ovipositing on ethanol when it is close to a non-ethanol substrate, but strongly avoids ethanol when options are farther apart. We also show fluidity of these behaviors among other Drosophila species: D. melanogaster is more responsive to ethanol than close relatives in that it prefers ethanol more than other species in the close-proximity case, but avoids ethanol more than other species in the distant case. In the close-proximity scenario, the more ethanol-tolerant species generally prefer ethanol more, with the exception of the island endemic D. santomea. This species has the lowest tolerance in the clade, but behaves like D. melanogaster. We speculate that this could be an adaptation to protect eggs from parasites or predators such as parasitoid wasps, as larvae migrate to non-toxic substrates after hatching. These natural differences among species are an excellent opportunity to study how genes and brains evolve to alter ethanol preferences, and provide an interesting model for genetic variation in preferences in other organisms, including humans. PMID:27694106

  6. Empirical evidence for latitude dependence and asymmetry of geomagnetic spatial variation in mainland China

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Liu, Daizhi; Wang, Xiqin

    2016-05-01

    Spatiotemporal geomagnetic variation is a significant research topic of geomagnetism and space physics. Generated by convection and flows within the fluid outer core, latitude dependence and asymmetry, as the inherent spatiotemporal properties of geomagnetic field, have been extensively studied. We apply and modify an extension of existing method, Hidden Markov Model (HMM), which is an efficient tool for modeling the statistical properties of time series. Based on ground magnetic measurement data set in mainland China, first, we find the parameters of HMM can be used as the geomagnetic statistical signature to represent the spatiotemporal geomagnetic variations for each site. The results also support the existence of the geomagnetic latitude dependence more apparently. Furthermore, we provide solid empirical evidence for geomagnetic asymmetry relying on such ground magnetic measurement data set.

  7. Spatial representation of temporal information through spike-timing-dependent plasticity

    NASA Astrophysics Data System (ADS)

    Nowotny, Thomas; Rabinovich, Misha I.; Abarbanel, Henry D.

    2003-07-01

    We suggest a mechanism based on spike-timing-dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of temporal sequences, the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in a biologically realistic system. We investigate the dependence of learning success on entrainment time, system size, and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system, and late processing in the olfactory system of insects.

  8. Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations

    PubMed Central

    Cote, J.; Clobert, J.; Brodin, T.; Fogarty, S.; Sih, A.

    2010-01-01

    Dispersal is one of the most fundamental components of ecology, and affects processes as diverse as population growth, metapopulation dynamics, gene flow and adaptation. Although the act of moving from one habitat to another entails major costs to the disperser, empirical and theoretical studies suggest that these costs can be reduced by having morphological, physiological or behavioural specializations for dispersal. A few recent studies on different systems showed that individuals exhibit personality-dependent dispersal, meaning that dispersal tendency is associated with boldness, sociability or aggressiveness. Indeed, in several species, dispersers not only develop behavioural differences at the onset of dispersal, but display these behavioural characteristics through their life cycle. While personality-dependent dispersal has been demonstrated in only a few species, we believe that it is a widespread phenomenon with important ecological consequences. Here, we review the evidence for behavioural differences between dispersers and residents, to what extent they constitute personalities. We also examine how a link between personality traits and dispersal behaviours can be produced and how personality-dependent dispersal affects the dynamics of metapopulations and biological invasions. Finally, we suggest future research directions for population biologists, behavioural ecologists and conservation biologists such as how the direction and the strength of the relationship between personality traits and dispersal vary with ecological contexts. PMID:21078658

  9. Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition.

    PubMed

    Arnaiz, Silvia Lores; D'Amico, Gabriela; Paglia, Nora; Arismendi, Mariana; Basso, Nidia; del Rosario Lores Arnaiz, María

    2004-01-01

    In rodents, neuronal plasticity decreases and spatial learning and working memory deficits increase upon aging. Several authors have shown that rats reared in enriched environments have better cognitive performance in association with increased neuronal plasticity than animals reared in standard environments. We hypothesized that enriched environment could preserve animals from the age-associated neurological impairments, mainly through NO-dependent mechanisms of induction of neuronal plasticity. We present evidence that 27 months old rats from an enriched environment show a better performance in spatial working memory than standard reared rats of the same age. Both mtNOS and cytosolic nNOS activities were found significantly increased (73% and 155%, respectively) in female rats from enriched environment as compared with control animals kept in a standard environment. The enzymatic activity of complex I was 80% increased in rats from enriched environment as compared with control rats. We conclude that an extensively enriched environment prevents old rats from the aging-associated impairment of spatial cognition, synaptic plasticity and nitric oxide production.

  10. Simulated spatial and temporal dependence of chromium concentration in pure Fe and Fesbnd 14%Cr under high dpa ion irradiation

    NASA Astrophysics Data System (ADS)

    Vörtler, K.; Mamivand, M.; Barnard, L.; Szlufarska, I.; Garner, F. A.; Morgan, D.

    2016-10-01

    In this work we develop an ab initio informed rate theory model to track the spatial and temporal evolution of implanted ions (Cr+) in Fe and Fesbnd 14%Cr during high dose irradiation. We focus on the influence of the specimen surface, the depth dependence of ion-induced damage, the damage rate, and the consequences of ion implantation, all of which influence the depth dependence of alloy composition evolving with continued irradiation. We investigate chemical segregation effects in the material by considering the diffusion of the irradiation-induced defects. Moreover, we explore how temperature, grain size, grain boundary sink strength, and defect production bias modify the resulting distribution of alloy composition. Our results show that the implanted ion profile can be quite different than the predicted SRIM implantation profile due to radiation enhanced transport and segregation.

  11. Experimental observation of the elusive double-peak structure in R-dependent strong-field ionization rate of H2(+).

    PubMed

    Xu, Han; He, Feng; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2015-08-28

    When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the "critical distance". This phenomenon was first demonstrated theoretically in H2(+) and became known as "charge-resonance enhanced ionization" (CREI, in reference to a proposed physical mechanism) or simply "enhanced ionization"(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2(+). However, such double-peak structure has never been observed experimentally. It was even suggested that it is impossible to observe due to fast motion of the nuclear wavepackets. Here we report a few-cycle pump-probe experiment which clearly resolves that elusive double-peak structure. In the experiment, an expanding H2(+) ion produced by an intense pump pulse is probed by a much weaker probe pulse. The predicted double-peak structure is clearly seen in delay-dependent kinetic energy spectra of protons when pump and probe pulses are polarized parallel to each other. No structure is seen when the probe is polarized perpendicular to the pump.

  12. Does a hospital's quality depend on the quality of other hospitals? A spatial econometrics approach.

    PubMed

    Gravelle, Hugh; Santos, Rita; Siciliani, Luigi

    2014-11-01

    We examine whether a hospital's quality is affected by the quality provided by other hospitals in the same market. We first sketch a theoretical model with regulated prices and derive conditions on demand and cost functions which determine whether a hospital will increase its quality if its rivals increase their quality. We then apply spatial econometric methods to a sample of English hospitals in 2009-10 and a set of 16 quality measures including mortality rates, readmission, revision and redo rates, and three patient reported indicators, to examine the relationship between the quality of hospitals. We find that a hospital's quality is positively associated with the quality of its rivals for seven out of the sixteen quality measures. There are no statistically significant negative associations. In those cases where there is a significant positive association, an increase in rivals' quality by 10% increases a hospital's quality by 1.7% to 2.9%. The finding suggests that for some quality measures a policy which improves the quality in one hospital will have positive spillover effects on the quality in other hospitals.

  13. Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease.

    USGS Publications Warehouse

    Conner, Mary M.; Gross, John E.; Cross, Paul C.; Michael R, Ebinger; Gillies, Robert; Samuel, Michael D.; Miller, Michael W.

    2007-01-01

    For each scale, we presented a focal approach that would be useful for understanding the spatial pattern and epidemiology of CWD, as well as being a useful tool for CWD management. The focal approaches include risk analysis and micromaps for the regional scale, cluster analysis for the landscape scale, and individual based modeling for the fine scale of within population. For each of these methods, we used simulated data and walked through the method step by step to fully illustrate the “how to”, with specifics about what is input and output, as well as what questions the method addresses. We also provided a summary table to, at a glance, describe the scale, questions that can be addressed, and general data required for each method described in this e-book. We hope that this review will be helpful to biologists and managers by increasing the utility of their surveillance data, and ultimately be useful for increasing our understanding of CWD and allowing wildlife biologists and managers to move beyond retroactive fire-fighting to proactive preventative action.

  14. How within field abundance and spatial distribution patterns of earthworms and macropores depend on soil tillage

    NASA Astrophysics Data System (ADS)

    van Schaik, Loes; Palm, Juliane; Schröder, Boris

    2014-05-01

    Earthworms play a key role in soil systems. They are ecosystem engineers affecting soil structure as well as the transport and availability of water and solutes through their burrowing behaviour. There are three different ecological earthworm types with different burrowing behaviour that can result in varying local infiltration patterns: from rapid deep vertical infiltration to a stronger diffuse distribution of water and solutes in the upper soil layers. The small scale variation in earthworm abundance is often very high and within fields earthworm population processes might result in an aggregated pattern. The question arises how the local distribution of earthworms affects spatial distributions of macroporosity and how both are influenced by soil tillage. Therefore we performed a total number of 430 earthworm samplings on four differently tilled agricultural fields in the Weiherbach catchment (South East Germany). Additionally, at a limited amount of 32 locations on two of the fields we performed sprinkling experiments with brilliant blue and excavated the soil to count macropores at different soil depths (10 cm, 30 cm and 50 cm) to compare macropore distributions to the earthworm distributions.

  15. Recollection-dependent memory for event duration in large-scale spatial navigation.

    PubMed

    Brunec, Iva K; Ozubko, Jason D; Barense, Morgan D; Moscovitch, Morris

    2017-03-01

    Time and space represent two key aspects of episodic memories, forming the spatiotemporal context of events in a sequence. Little is known, however, about how temporal information, such as the duration and the order of particular events, are encoded into memory, and if it matters whether the memory representation is based on recollection or familiarity. To investigate this issue, we used a real world virtual reality navigation paradigm where periods of navigation were interspersed with pauses of different durations. Crucially, participants were able to reliably distinguish the durations of events that were subjectively "reexperienced" (i.e., recollected), but not of those that were familiar. This effect was not found in temporal order (ordinal) judgments. We also show that the active experience of the passage of time (holding down a key while waiting) moderately enhanced duration memory accuracy. Memory for event duration, therefore, appears to rely on the hippocampally supported ability to recollect or reexperience an event enabling the reinstatement of both its duration and its spatial context, to distinguish it from other events in a sequence. In contrast, ordinal memory appears to rely on familiarity and recollection to a similar extent.

  16. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2017-02-01

    The turbulent air-sea heat flux feedback (α, in {W m}^{-2} { K}^{-1}) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤10 ° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤10 {W m}^{-2} { K}^{-1}. In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2} { K}^{-1}. Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  17. Spatially-dependent Dynamic MAPK Modulation by the Nde1-Lis1-Brap Complex Patterns Mammalian CNS

    PubMed Central

    Lanctot, Alison A.; Peng, Chian-Yu; Pawlisz, Ashley S.; Joksimovic, Milan; Feng, Yuanyi

    2013-01-01

    Summary Regulating cell proliferation and differentiation in CNS development requires both extraordinary complexity and precision. Neural progenitors receive graded overlapping signals from midline signaling centers, yet each makes a unique cell fate decision in a spatiotemporally restricted pattern. The Nde1-Lis1 complex regulates individualized cell fate decisions based on the geographical location with respect to the midline. While cells distant from the midline fail to self-renew in the Nde1-Lis1 double mutant CNS, cells embedded in the signaling centers showed marked over-proliferation. A direct interaction between Lis1 and Brap, a MAPK signaling threshold modulator, mediates this differential response to mitogenic signal gradients. Nde1-Lis1 deficiency resulted in a spatially-dependent alteration of MAPK scaffold Ksr and hyper-activation of MAPK. Epistasis analyses supported synergistic Brap and Lis1 functions. These results suggest that a molecular complex composed of Nde1, Lis1, and Brap regulates the dynamic MAPK signaling threshold in a spatially-dependent fashion. PMID:23673330

  18. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies.

    PubMed

    Zhang, Kunlei; Lu, Wenmiao; Marziliano, Pina

    2013-12-01

    Accurate segmentation of knee cartilage is required to obtain quantitative cartilage measurements, which is crucial for the assessment of knee pathology caused by musculoskeletal diseases or sudden injuries. This paper presents an automatic knee cartilage segmentation technique which exploits a rich set of image features from multi-contrast magnetic resonance (MR) images and the spatial dependencies between neighbouring voxels. The image features and the spatial dependencies are modelled into a support vector machine (SVM)-based association potential and a discriminative random field (DRF)-based interaction potential. Subsequently, both potentials are incorporated into an inference graphical model such that the knee cartilage segmentation is cast into an optimal labelling problem which can be efficiently solved by loopy belief propagation. The effectiveness of the proposed technique is validated on a database of multi-contrast MR images. The experimental results show that using diverse forms of image and anatomical structure information as the features are helpful in improving the segmentation, and the joint SVM-DRF model is superior to the classification models based solely on DRF or SVM in terms of accuracy when the same features are used. The developed segmentation technique achieves good performance compared with gold standard segmentations and obtained higher average DSC values than the state-of-the-art automatic cartilage segmentation studies.

  19. NOTE: Spatial dependence of the phase in localized bioelectrical impedance analysis

    NASA Astrophysics Data System (ADS)

    Shiffman, C. A.; Aaron, R.; Altman, A.

    2001-04-01

    The variety of phase functions, θ(z) = arctan X(z)/R(z), observed earlier on the thighs of healthy and seriously ill subjects via localized bioelectrical impedance analysis, can be represented by a model which combines realistic thigh shapes with homogeneous, axially symmetric conductivity tensors. While quantitative results depend sensitively on the way current is injected, it appears to be generally true that dθ/dz < 0 whenever φr > φz (and vice versa), where φr and φz are the phases of the radial and longitudinal conductivity components.

  20. Simulation of the dependence of spatial fluence profiles on tissue optical properties

    NASA Astrophysics Data System (ADS)

    Miller, S.; Mitra, K.

    2016-03-01

    Medical laser applications are promoted as safe, effective treatments for a multiplicity of concerns, ranging from hyperthermal skin rejuvenation to subcutaneous tumor ablation. Chromophore and structural protein concentration and distribution within a patient's tissue vary from patient to patient and dictate the interaction of incident radiative energy of a specific wavelength with the target tissue. Laser parameters must be matched to tissue optical and thermal properties in order to achieve the desired therapeutic results without inducing unnecessary tissue damage, although accurate tissue optical properties are not always measured prior to and during laser therapies. A weighted variable step size Monte Carlo simulation of laser irradiation of skin tissue was used to determine the effects of variations in absorption (μa) and scattering coefficients (μs) and the degree of anisotropy (g) on the radiant energy transport per mm2 in response to steady-state photon propagation. The three parameters were varied in a factorial experimental design for the ranges of 0.25/mm <= μa <= 2.0/mm, 30.0/mm <= μs <= 140.0/mm, and 0.65 <= g <= 0.99 in order to isolate their impacts on the overall fluence distribution. Box plots of the resulting fluence profiles were created and compared to identify ranges in which optical property variance could be considered to significantly impact the spatial variance of fluence within the simulation volume. Results indicated that accurate prediction of the fluence profiles that will be achieved by any given medical laser treatment is unlikely without pre-treatment assessment of the tissue optical properties of individual patients.

  1. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment.

    PubMed

    Gao, Yuan; Kuang, Yi; Du, Xuewen; Zhou, Jie; Chandran, Preethi; Horkay, Ferenc; Xu, Bing

    2013-12-10

    Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in a cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on the side chain of the lysine residue of the peptidic motif. These molecules, however, exhibit a different ability of self-assembly before and after enzymatic transformation (e.g., dephosphorylation). Fluorescent imaging reveals that self-assembly directly affects the distribution of these small molecules in a cellular environment. Moreover, cell viability tests suggest that the states and the locations of the molecular assemblies in the cellular environment control the phenotypes of the cells. For example, the molecular nanofibers of one of the small molecules apparently stabilize actin filaments and alleviate the insult of an F-actin toxin (e.g., latrunculin A). Combining fluorescent imaging and enzyme-instructed self-assembly of small peptidic molecules, this work demonstrates self-assembly as a key factor for dictating the spatial distribution of small molecules in a cellular environment. In addition, it illustrates a useful approach, based on enzyme-instructed self-assembly of small molecules, to modulate spatiotemporal profiles of small molecules in a cellular environment, which allows the use of the emergent properties of small molecules to control the fate of cells.

  2. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting

    NASA Astrophysics Data System (ADS)

    Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan

    2006-02-01

    Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or

  3. Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats.

    PubMed

    Zhang, Xue-Han; Liu, Shu-Su; Yi, Feng; Zhuo, Min; Li, Bao-Ming

    2013-03-13

    Hippocampal N-methyl-D-aspartate receptor (NMDAR) is required for spatial working memory. Although evidence from genetic manipulation mice suggests an important role of hippocampal NMDAR NR2B subunits (NR2B-NMDARs) in spatial working memory, it remains unclear whether or not the requirement of hippocampal NR2B-NMDARs for spatial working memory depends on the time of spatial information maintained. Here, we investigate the contribution of hippocampal NR2B-NMDARs to spatial working memory on delayed alternation task in T-maze (DAT task) and delayed matched-to-place task in water maze (DMP task). Our data show that infusions of the NR2B-NMDAR selective antagonists, Ro25-6981 or ifenprodil, directly into the CA1 region, impair spatial working memory in DAT task with 30-s delay (not 5-s delay), but severely impair error-correction capability in both 5-s and 30-s delay task. Furthermore, intra-CA1 inhibition of NR2B-NMDARs impairs spatial working memory in DMP task with 10-min delay (not 30-s delay). Our results suggest that hippocampal NR2B-NMDARs are required for spatial working memory in long-delay task, whereas spare for spatial working memory in short-delay task. We conclude that the requirement of NR2B-NMDARs for spatial working memory is delay-dependent in the CA1 region.

  4. Effects of surround articulation on lightness depend on the spatial arrangement of the articulated region

    NASA Astrophysics Data System (ADS)

    Zemach, Iris K.; Rudd, Michael E.

    2007-07-01

    We investigated the effect of surround articulation on the perceived lightness of a target disk. Surround articulation was manipulated by varying either the number of wedges in a surround consisting of wedges of alternating luminance or the number of checks in a surround consisting of a radial checkerboard pattern. In most conditions, increased articulation caused incremental targets to appear lighter and decremental targets to appear darker. But increasing the surround articulation in a way that did not increase the number of target-coaligned edges in the display did not affect the target lightness. We propose that the effects of surround articulation depend on the relationship between the orientations and contrast polarities of the target edges and those of edges present within the surround.

  5. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  6. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  7. THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.

    2013-08-20

    The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.

  8. Understanding spatial distributions: negative density-dependence in prey causes predators to trade-off prey quantity with quality.

    PubMed

    Bijleveld, Allert I; MacCurdy, Robert B; Chan, Ying-Chi; Penning, Emma; Gabrielson, Rich M; Cluderay, John; Spaulding, Eric L; Dekinga, Anne; Holthuijsen, Sander; ten Horn, Job; Brugge, Maarten; van Gils, Jan A; Winkler, David W; Piersma, Theunis

    2016-04-13

    Negative density-dependence is generally studied within a single trophic level, thereby neglecting its effect on higher trophic levels. The 'functional response' couples a predator's intake rate to prey density. Most widespread is a type II functional response, where intake rate increases asymptotically with prey density; this predicts the highest predator densities at the highest prey densities. In one of the most stringent tests of this generality to date, we measured density and quality of bivalve prey (edible cockles Cerastoderma edule) across 50 km² of mudflat, and simultaneously, with a novel time-of-arrival methodology, tracked their avian predators (red knots Calidris canutus). Because of negative density-dependence in the individual quality of cockles, the predicted energy intake rates of red knots declined at high prey densities (a type IV, rather than a type II functional response). Resource-selection modelling revealed that red knots indeed selected areas of intermediate cockle densities where energy intake rates were maximized given their phenotype-specific digestive constraints (as indicated by gizzard mass). Because negative density-dependence is common, we question the current consensus and suggest that predators commonly maximize their energy intake rates at intermediate prey densities. Prey density alone may thus poorly predict intake rates, carrying capacity and spatial distributions of predators.

  9. Understanding spatial distributions: negative density-dependence in prey causes predators to trade-off prey quantity with quality

    PubMed Central

    Chan, Ying-Chi; Penning, Emma; Cluderay, John; Spaulding, Eric L.; Dekinga, Anne; ten Horn, Job; Brugge, Maarten; Winkler, David W.

    2016-01-01

    Negative density-dependence is generally studied within a single trophic level, thereby neglecting its effect on higher trophic levels. The ‘functional response’ couples a predator's intake rate to prey density. Most widespread is a type II functional response, where intake rate increases asymptotically with prey density; this predicts the highest predator densities at the highest prey densities. In one of the most stringent tests of this generality to date, we measured density and quality of bivalve prey (edible cockles Cerastoderma edule) across 50 km² of mudflat, and simultaneously, with a novel time-of-arrival methodology, tracked their avian predators (red knots Calidris canutus). Because of negative density-dependence in the individual quality of cockles, the predicted energy intake rates of red knots declined at high prey densities (a type IV, rather than a type II functional response). Resource-selection modelling revealed that red knots indeed selected areas of intermediate cockle densities where energy intake rates were maximized given their phenotype-specific digestive constraints (as indicated by gizzard mass). Because negative density-dependence is common, we question the current consensus and suggest that predators commonly maximize their energy intake rates at intermediate prey densities. Prey density alone may thus poorly predict intake rates, carrying capacity and spatial distributions of predators. PMID:27053747

  10. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus.

    PubMed

    Gómez-Giménez, Belén; Llansola, Marta; Hernández-Rabaza, Vicente; Cabrera-Pastor, Andrea; Malaguarnera, Michele; Agusti, Ana; Felipo, Vicente

    2017-01-01

    The use of pesticides has been associated with impaired neurodevelopment in children. The aims of this work were to assess: 1) the effects on spatial learning of developmental exposure to pesticides 2) if the effects are sex-dependent and 3) if hippocampal neuroinflammation is associated with the impairment of spatial learning. We analyzed the effects of developmental exposure to four pesticides: chlorpyrifos, carbaryl, endosulfan and cypermethrin. Exposure was from gestational day 7 to post-natal day 21 and spatial learning and memory was assessed when the rats were young adults. The effects of pesticides on spatial learning were pesticide and gender-dependent. Carbaryl did not affect spatial learning in males or females. Endosulfan and chlorpyrifos impaired learning in males but not in females. Cypermethrin improved spatial learning in the Morris water maze both in males and females while impaired learning in the radial maze only in males. Spatial learning ability was lower in control female rats than in males. All pesticides induced neuroinflammation, increasing IL-1b content in the hippocampus and there is a negative correlation between IL-1b levels in the hippocampus and spatial learning. Neuroinflammation would contribute to the effects of pesticides on spatial learning.

  11. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications.

    PubMed

    Keating, Peter; King, Andrew J

    2013-12-27

    Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.

  12. Interleukin 4 strongly augments or inhibits DNA synthesis and differentiation of B-type chronic lymphocytic leukemia cells depending on the co-stimulatory activation and progression signals.

    PubMed

    Carlsson, M; Sundström, C; Bengtsson, M; Tötterman, T H; Rosén, A; Nilsson, K

    1989-05-01

    This study describes the opposing effects that interleukin (IL) 4 exerts on the B cell stimulatory factor (BSF-MP6) and IL 2-dependent proliferation and differentiation of cells of one selected B-type chronic lymphocytic leukemia cell clone (I83), which depend on the nature of the activation inducer. In I83 cells activated by a 1-h pulse of 12-O-tetradecanoylphorbol 13-acetate, the BSF-MP6-dependent DNA synthesis was strongly enhanced by 50-100 U/ml of recombinant IL 4. Recombinant IL 2 stimulation was necessary only when a suboptimal dose of BSF-MP6 was used. The differentiation was also markedly enhanced by IL 4 as measured by quantitation of IgM secretion both at the population (enzyme-linked immunosorbent assay analyses of the supernatant) and single-cell level (enzyme-linked immunospot technique), by morphological examination of the maturation stage and flow cytometric analysis of differentiation-associated surface antigens (CD11c, FMC7, PCA-1 and CD38). No Ig isotype switch was found. In contrast, DNA synthesis and differentiation of I83 cells, activated by Staphylococcus aureus Cowan strain I (SAC) and co-stimulated with BSF-MP6 plus IL 2, were strongly inhibited by IL 4, both when it was added simultaneously with SAC or after 2 days of SAC exposure. Analysis of the cell-cycle progression of SAC and BSF-MP6 plus IL 2 and IL 4-stimulated cells by acridine orange staining and fluorescence-activated cell sorter (FACS) analysis demonstrated an arrest of a minor cell population in G0 and a block of the transition of G1 cells to S phase. Neither the enhancing nor the inhibitory effect of IL 4 on the proliferation and differentiation of I83 cells was an indirect effect via IL 4-induced activation of contaminating T cells, monocytes or natural killer cells, as shown by experiments where these cell types were depleted by FACS sorting. Furthermore the expression of CD23 and CD25 was not inhibited by IL 4. The results thus demonstrate contrasting biological effects of

  13. Strongly Nonlinear Dependence of Energy Transfer Rate on sp(2) Carbon Content in Reduced Graphene Oxide-Quantum Dot Hybrid Structures.

    PubMed

    Dong, Yitong; Son, Dong Hee

    2015-01-02

    The dependence of the energy transfer rate on the content of sp(2)-hybridized carbon atoms in the hybrid structures of reduced graphene oxide (RGO) and Mn-doped quantum dot (QD(Mn)) was investigated. Taking advantage of the sensitivity of QD(Mn)'s dopant luminescence lifetime only to the energy transfer process without interference from the charge transfer process, the correlation between the sp(2) carbon content in RGO and the rate of energy transfer from QD(Mn) to RGO was obtained. The rate of energy transfer showed a strongly superlinear increase with increasing sp(2) carbon content in RGO, suggesting the possible cooperative behavior of sp(2) carbon domains in the energy transfer process as the sp(2) carbon content increases.

  14. Extensive enriched environments protect old rats from the aging dependent impairment of spatial cognition, synaptic plasticity and nitric oxide production.

    PubMed

    Lores-Arnaiz, S; Bustamante, J; Arismendi, M; Vilas, S; Paglia, N; Basso, N; Capani, F; Coirini, H; Costa, J J López; Arnaiz, M R Lores

    2006-05-15

    In aged rodents, neuronal plasticity decreases while spatial learning and working memory (WM) deficits increase. As it is well known, rats reared in enriched environments (EE) show better cognitive performances and an increased neuronal plasticity than rats reared in standard environments (SE). We hypothesized that EE could preserve the aged animals from cognitive impairment through NO dependent mechanisms of neuronal plasticity. WM performance and plasticity were measured in 27-month-old rats from EE and SE. EE animals showed a better spatial WM performance (66% increase) than SE ones. Cytosolic NOS activity was 128 and 155% higher in EE male and female rats, respectively. Mitochondrial NOS activity and expression were also significantly higher in EE male and female rats. Mitochondrial NOS protein expression was higher in brain submitochondrial membranes from EE reared rats. Complex I activity was 70-80% increased in EE as compared to SE rats. A significant increase in the area of NADPH-d reactive neurons was observed in the parietotemporal cortex and CA1 hippocampal region of EE animals.

  15. [Scale-dependency of spatial variability of surface soil moisture under different land use types in Heihe Oasis, China].

    PubMed

    Guo, De-Liang; Fan, Jun; Mi, Mei-Xia

    2013-05-01

    To study the surface soil moisture spatial variability and its scale effect is of significance to understand the real variability of soil moisture and to objectively provide a reference for constructing a logical sampling scheme. By using "re-sampling" method, this paper studied the scale-dependency of the spatial variability of soil surface moisture in the woodland and farmland in the oasis ecological system in the middle reaches of Heihe River. The results showed that the variation degree of the surface soil moisture in the test woodland and farmland increased with increasing soil moisture content, and the coefficient of variation (CV) became closer to the true value when the sampling scale increased. Under both dry and moist conditions, and when the sampling amplitude increased within a definite range, the CV, Moran's I index, nugget, and sill of soil moisture in the woodland and farmland as well as the variation range in the woodland all increased, while the variation range in the farmland under arid condition did not show a stable regular pattern. When the sampling density increased within a definite range, the nugget and variation range increased, but the CV, Moran's I index, and sill showed less change.

  16. Spatial emission distribution of InGaN/GaN light-emitting diodes depending on the pattern structures

    SciTech Connect

    Lee, Kwanjae; Lee, Hyunjung; Lee, Cheul-Ro; Kim, Jin Soo; Lee, Jin Hong; Ryu, Mee-Yi; Leem, Jae-Young

    2014-10-15

    Highlights: • We study carrier lifetimes of InGaN/GaN LEDs fabricated on different PSS. • Spatial EL distribution was investigated depending on the pattern structure. • The carrier lifetime of the LEDs was compared with the spatial EL distribution. - Abstract: We investigated the emission characteristics of InGaN/GaN light-emitting diodes (LEDs) fabricated on lens-shaped (LS) patterned-sapphire substrates (PSS) by using time-resolved photoluminescence (TRPL) and confocal-scanning-electroluminescence microscopy (CSEM). The carrier lifetimes evaluated from the TRPL spectra for the LEDs on the LS-PSS (LS-LEDs) at 10 K were relatively shorter than those of the LEDs on a conventional planar substrate (C-LED). However, the carrier lifetimes for the LS-LEDs were relatively long compared to that of the C-LED at room temperature. In the CSEM images of the LS-LEDs, the emission beam around the center region of the LS pattern was relatively weaker than that of the edge region. In addition, the beam profile for the LS-LEDs showed different shapes according to the pattern structures. The emission beam around the boundary region of the LS pattern showed periodic fluctuation with the peak-to-peak distance of 814 nm.

  17. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    DOE PAGES

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; ...

    2014-10-22

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were furthermore » correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.« less

  18. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    SciTech Connect

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; Strelcov, Evgheni; Kumar, Amit; Tselev, Alexander; Rahani, Ehasan Kabiri; Shenoy, Vivek B.; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi; Kalinin, Sergei V.

    2014-10-22

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.

  19. Spatial dependence of the local diffusion coefficient measured upstream of the November 12, 1978 interplanetary traveling shock

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Ipavich, F. M.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1985-01-01

    Characteristics of wuprathermal particles accelerated by quasi-parallel interplanetary traveling shocks have been generally explained in terms of a first order Fermi mechanism. Such models require diffusive scattering of particles upstream of the shock. This scattering is characterized by a local diffusion coefficient, kappa, which is determined by the local power density of waves in the upstream region. The dependence of the diffusion coefficient of suprathermal upstream protons on distance from the November 12, 1978 interplanetary traveling shock using a different approach is studied. Unlike previous studies this method, which is based on measurements of particle streaming and intensity gradients, does not rely on predictions. The local spatial variations of Kappa upstream of the November 12, 1978 shock have been chosen for study because the characteristics of this quasi-parallel shock have been extensively studied, and also because of its favorable geometry (i.e. B field nearly radial).

  20. Stable and efficient momentum-space solutions of the time-dependent Schrödinger equation for one-dimensional atoms in strong laser fields

    SciTech Connect

    Shvetsov-Shilovski, N.I. Räsänen, E.

    2014-12-15

    One-dimensional model systems have a particular role in strong-field physics when gaining physical insight by computing data over a large range of parameters, or when performing numerous time propagations within, e.g., optimal control theory. Here we derive a scheme that removes a singularity in the one-dimensional Schrödinger equation in momentum space for a particle in the commonly used soft-core Coulomb potential. By using this scheme we develop two numerical approaches to the time-dependent Schrödinger equation in momentum space. The first approach employs the expansion of the momentum-space wave function over the eigenstates of the field-free Hamiltonian, and it is shown to be more efficient for laser parameters usual in strong field physics. The second approach employs the Crank–Nicolson scheme or the method of lines for time-propagation. The both methods are readily applicable for large-scale numerical simulations in one-dimensional model systems.

  1. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    SciTech Connect

    Dey, Rik Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K.; Colombo, Luigi

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  2. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Rajaram, Harihar

    2016-12-01

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. We present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces and corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a 1/t dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. The DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.

  3. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  4. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    SciTech Connect

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces and corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.

  5. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation.

    PubMed

    Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F

    2015-02-01

    Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus.

  6. Scale Dependence of Statistics of Spatially Averaged Rain Rate Seen in TOGA COARE Comparison with Predictions from a Stochastic Model

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.

  7. The regulation of synaptic vesicle recycling by cGMP-dependent protein kinase type II in cerebellar granule cells under strong and sustained stimulation.

    PubMed

    Collado-Alsina, Andrea; Ramírez-Franco, Jorge; Sánchez-Prieto, José; Torres, Magdalena

    2014-06-25

    From the early periods of neurogenesis and migration, up until synaptogenesis, both nitric oxide (NO) and its downstream messenger, cGMP, are thought to influence the development of neurons. The NO/cGMP/cGMP-dependent protein kinase (cGK) pathway regulates the clustering and recruitment of synaptic proteins and vesicles to the synapse, adjusting the exoendocytic cycle to the intensity of activity and accelerating endocytosis following large-scale exocytosis. Here, we show that blockage of the N-methyl-D-aspartate receptor impairs the cycling of synaptic vesicles in a subset of boutons on cerebellar granule cells, an effect that was reversed by increasing cGMP. Furthermore, we demonstrate that presynaptic cGK type II (cGKII) plays a major role in this process. Using the FM1-43 dye to track vesicle recycling, we found that knockdown of cGKII and/or the application of a cGK inhibitor reduced the efficiency of synaptic vesicle recycling to a similar extent. Likewise, in cerebellar granule cells transfected with vGlut1-pHluorin to follow the exoendocytotic cycle, application of a cGK inhibitor slowed vesicle endocytosis when exocytosis was accelerated through strong and sustained stimulation. Additionally, ultrastructural analysis showed that cGKII knockdown or inhibition favored the formation of endosomal-like structures after strong and sustained stimulation. We conclude that cGKII controls the homeostatic balance of vesicle exocytosis and endocytosis in synaptic boutons of rat cerebellar granule cells.

  8. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain.

    PubMed

    Strobel, M; Pförtner, H; Tuchscherr, L; Völker, U; Schmidt, F; Kramko, N; Schnittler, H-J; Fraunholz, M J; Löffler, B; Peters, G; Niemann, S

    2016-09-01

    Host cell invasion is a major feature of Staphylococcus aureus and contributes to infection development. The intracellular metabolically active bacteria can induce host cell activation and death but they can also persist for long time periods. In this study a comparative analysis was performed of different well-characterized S. aureus strains in their interaction with a variety of host cell types. Staphylococcus aureus (strains 6850, USA300, LS1, SH1000, Cowan1) invasion was compared in different human cell types (epithelial and endothelial cells, keratinocytes, fibroblasts, osteoblasts). The number of intracellular bacteria was determined, cell inflammation was investigated, as well as cell death and phagosomal escape of bacteria. To explain strain-dependent differences in the secretome, a proteomic approach was used. Barrier cells took up high amounts of bacteria and were killed by aggressive strains. These strains expressed high levels of toxins, and possessed the ability to escape from phagolysosomes. Osteoblasts and keratinocytes ingested less bacteria, and were not killed, even though the primary osteoblasts were strongly activated by S. aureus. In all cell types S. aureus was able to persist. Strong differences in uptake, cytotoxicity, and inflammatory response were observed between primary cells and their corresponding cell lines, demonstrating that cell lines reflect only partially the functions and physiology of primary cells. This study provides a contribution for a better understanding of the pathomechanisms of S. aureus infections. The proteomic data provide important basic knowledge on strains commonly used in the analysis of S. aureus-host cell interaction.

  9. The weak field approximation and the strong field approximation for a quantum mechanical two-state system with an applied time-dependent force

    NASA Astrophysics Data System (ADS)

    Ropiak, Cynthia Ann

    A semi-classical treatment of the two-state atom subjected to a time-dependent applied force leads to a set of two coupled, complex, first-order ordinary differential equations governing the time evolution of the system's state vector that are to date, not solvable in closed form. Contained in this paper is a demonstration of how the system is parameterized by a single variable Θ, which in turn reduces the problem to one real, nonlinear, second-order ordinary differential equation. Utilizing a non-standard perturbation expansion in the variable `A' (the Field Strength Parameter) on this reduction subsequently allows for both a first-order Weak Field Approximation and a first-order Strong Field Approximation. In addition, a technique is outlined for obtaining the full power series solution in the Weak Field Limit (|A|<< l). However, a detailed discussion of the power series solution as well as its consequences is deferred due to the fact that it is presently a collaborative work in progress between Dr. Robert L. Anderson and myself. When applied to the specific case of both resonant and near-resonant linearly polarized light incident on an atom, both the Weak Field Approximation and the Strong Field Approximation are shown to be in good agreement with numerically generated solutions for the probability amplitudes of the state vector. Furthermore, this new Weak Field Approximation reveals the defect in the ansatz of discarding the `rapidly oscillating' term in the traditional Rotating Wave Approximation. Finally, the resonance case of the first-order Weak Field Approximation is found to contain large-time behavior. This large-time behavior is extracted and the new approximation is referred to as the Long-Time Weak Field Approximation. The resonance power series solution is demonstrated to contain large-time behavior, which is found to reduce to the first-order Long-Time Weak Field Approximation, but again a detailed analysis of the power series is deferred.

  10. Excision efficiency is not strongly coupled to transgenic rate: cell type-dependent transposition efficiency of sleeping beauty and piggyBac DNA transposons.

    PubMed

    Kolacsek, Orsolya; Erdei, Zsuzsa; Apáti, Agota; Sándor, Sára; Izsvák, Zsuzsanna; Ivics, Zoltán; Sarkadi, Balázs; Orbán, Tamás I

    2014-08-01

    The Sleeping Beauty (SB) and piggyBac (PB) DNA transposons represent an emerging new gene delivery technology, potentially suitable for human gene therapy applications. Previous studies pointed to important differences between these transposon systems, depending on the cell types examined and the methodologies applied. However, efficiencies cannot always be compared because of differences in applications. In addition, "overproduction inhibition," a phenomenon believed to be a characteristic of DNA transposons, can remarkably reduce the overall transgenic rate, emphasizing the importance of transposase dose applied. Therefore, because of lack of comprehensive analysis, researchers are forced to optimize the technology for their own "in-house" platforms. In this study, we investigated the transposition of several SB (SB11, SB32, SB100X) and PB (mPB and hyPB) variants in various cell types at three levels: comparing the excision efficiency of the reaction by real-time PCR, testing the overall transgenic rate by detecting cells with stable integrations, and determining the average copy number when using different transposon systems and conditions. We concluded that high excision activity is not always followed by a higher transgenic rate, as exemplified by the hyperactive transposases, indicating that the excision and the integration steps of transposition are not strongly coupled as previously thought. In general, all levels of transposition show remarkable differences depending on the transposase used and cell lines examined, being the least efficient in human embryonic stem cells (hESCs). In spite of the comparably low activity in those special cell types, the hyperactive SB100X and hyPB systems could be used in hESCs with similar transgenic efficiency and with reasonably low (2-3) transgene copy numbers, indicating their potential applicability for gene therapy purposes in the future.

  11. Excision Efficiency Is Not Strongly Coupled to Transgenic Rate: Cell Type-Dependent Transposition Efficiency of Sleeping Beauty and piggyBac DNA Transposons

    PubMed Central

    Kolacsek, Orsolya; Erdei, Zsuzsa; Apáti, Ágota; Sándor, Sára; Izsvák, Zsuzsanna; Ivics, Zoltán; Sarkadi, Balázs

    2014-01-01

    Abstract The Sleeping Beauty (SB) and piggyBac (PB) DNA transposons represent an emerging new gene delivery technology, potentially suitable for human gene therapy applications. Previous studies pointed to important differences between these transposon systems, depending on the cell types examined and the methodologies applied. However, efficiencies cannot always be compared because of differences in applications. In addition, “overproduction inhibition,” a phenomenon believed to be a characteristic of DNA transposons, can remarkably reduce the overall transgenic rate, emphasizing the importance of transposase dose applied. Therefore, because of lack of comprehensive analysis, researchers are forced to optimize the technology for their own “in-house” platforms. In this study, we investigated the transposition of several SB (SB11, SB32, SB100X) and PB (mPB and hyPB) variants in various cell types at three levels: comparing the excision efficiency of the reaction by real-time PCR, testing the overall transgenic rate by detecting cells with stable integrations, and determining the average copy number when using different transposon systems and conditions. We concluded that high excision activity is not always followed by a higher transgenic rate, as exemplified by the hyperactive transposases, indicating that the excision and the integration steps of transposition are not strongly coupled as previously thought. In general, all levels of transposition show remarkable differences depending on the transposase used and cell lines examined, being the least efficient in human embryonic stem cells (hESCs). In spite of the comparably low activity in those special cell types, the hyperactive SB100X and hyPB systems could be used in hESCs with similar transgenic efficiency and with reasonably low (2–3) transgene copy numbers, indicating their potential applicability for gene therapy purposes in the future. PMID:25045962

  12. Strong Interaction

    SciTech Connect

    Karsch, F.; Vogelsang, V.

    2009-09-29

    We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.

  13. Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf

    PubMed Central

    Sebbenn, A M; Carvalho, A C M; Freitas, M L M; Moraes, S M B; Gaino, A P S C; da Silva, J M; Jolivet, C; Moraes, M L T

    2011-01-01

    Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations. PMID:20372183

  14. Chemically Designed Molecular Interfaces in Cross-Linked Poly(ethylene glycol)/Silica Nanocomposites Reveal Strong Size-Dependent Trends in Gas Permeability

    NASA Astrophysics Data System (ADS)

    Su, Norman; Urban, Jeffrey

    2015-03-01

    Polymer nanocomposite membranes can exhibit gas separation performance that surpasses conventional polymeric membranes. While promising, the optimization of nanocomposite membranes requires a fundamental understanding of the transport mechanism and interfacial effects between the inorganic and polymer phase that is currently limited to empirical relationships. Synthesized nanocomposites often consist of poorly distributed and polydisperse inorganic nanomaterials. It is known that polymer dynamics can change drastically upon introduction of an inorganic phase, which can dramatically alter molecular transport behavior. Here, we systematically explore the role of nanoparticle sizes from 12 to 130 nm on polymer dynamics and permeability in a series of cross-linked poly(ethylene glycol)/silica nanocomposite membranes. The nanocomposites are well-dispersed and display excellent homogeneity throughout. Size-dependent broadening of the Tg indicates strong attractive interactions especially at high surface area loadings, which lead to deviations in permeability not captured by Maxwell's model. Chemical modifications of silica at this interface can yield significantly different polymer dynamics than previously observed with enhanced transport and mechanical properties.

  15. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer

    NASA Astrophysics Data System (ADS)

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G.; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  16. Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals

    NASA Astrophysics Data System (ADS)

    Tong, Yunjie; Hocke, Lia Maria; Licata, Stephanie C.; deB. Frederick, Blaise

    2012-10-01

    Low-frequency oscillations (LFOs) in the range of 0.01-0.15 Hz are commonly observed in functional imaging studies, such as blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) and functional near-infrared spectroscopy (fNIRS). Some of these LFOs are nonneuronal and are closely related to autonomic physiological processes. In the current study, we conducted a concurrent resting-state fMRI and NIRS experiment with healthy volunteers. LFO data was collected simultaneously at peripheral sites (middle fingertip and big toes) by NIRS, and centrally in the brain by BOLD fMRI. The cross-correlations of the LFOs collected from the finger, toes, and brain were calculated. Our data show that the LFOs measured in the periphery (NIRS signals) and in the brain (BOLD fMRI) were strongly correlated with varying time delays. This demonstrates that some portion of the LFOs actually reflect systemic physiological circulatory effects. Furthermore, we demonstrated that NIRS is effective for measuring the peripheral LFOs, and that these LFOs and the temporal shifts between them are consistent in healthy participants and may serve as useful biomarkers for detecting and monitoring circulatory dysfunction.

  17. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer

    PubMed Central

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G.; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  18. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect

    Harborth, Peter; Fuß, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ► First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ► High N{sub 2}O emissions from recently deposited material. ► N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ► Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20–200 g CO{sub 2} eq. m{sup −2} h{sup −1} magnitude (up to 428 mg N m{sup −2} h{sup −1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup −2} h{sup −1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  19. Fine-scale genetic analysis of Daphnia host populations infected by two virulent parasites - strong fluctuations in clonal structure at small temporal and spatial scales.

    PubMed

    Yin, Mingbo; Petrusek, Adam; Seda, Jaromir; Wolinska, Justyna

    2012-01-01

    Numerous theoretical studies suggest that parasites impose a strong selection pressure on their host, driving genetic changes within host populations. Yet evidence of this process in the wild is scarce. In the present study we surveyed, using high resolution microsatellite markers, the genetic structure of cyclically parthenogenetic Daphnia hosts within two different Daphnia communities belonging to the Daphnia longispina hybrid complex. One community, consisting of a single host species, was infected with the protozoan parasite Caullerya mesnili. The second community consisted of two parental Daphnia spp. and their hybrids, and was infected with the yeast parasite Metschnikowia. Significant differences in the clonal composition between random and infected sub-samples of Daphnia were detected on several occasions within both communities, indicating that host genotypes differ in resistance to both parasites. In addition, one parental species in the multi-taxon community was consistently under-infected, compared with the other taxa. Overall, our field data confirm that infection patterns are strongly affected by host genetic composition in various Daphnia-microparasite systems. Thus, parasite-driven selection operates in natural Daphnia populations and microparasites influence the clonal structure of host populations.

  20. The Min Oscillator Uses MinD-Dependent Conformational Changes in MinE to Spatially Regulate Cytokinesis.

    SciTech Connect

    Park, Kyung-Tase; Wu, Wei; Battaile, Kevin P.; Lovell, Scott; Holyoak, Todd; Lutkenhaus, Joe

    2011-09-16

    In E. coli, MinD recruits MinE to the membrane, leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring. How these proteins interact, however, is not clear because the MinD-binding regions of MinE are sequestered within a six-stranded {beta} sheet and masked by N-terminal helices. minE mutations that restore interaction between some MinD and MinE mutants were isolated. These mutations alter the MinE structure leading to release of the MinD-binding regions and the N-terminal helices that bind the membrane. Crystallization of MinD-MinE complexes revealed a four-stranded {beta} sheet MinE dimer with the released {beta} strands (MinD-binding regions) converted to {alpha} helices bound to MinD dimers. These results identify the MinD-dependent conformational changes in MinE that convert it from a latent to an active form and lead to a model of how MinE persists at the MinD-membrane surface.

  1. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis.

    PubMed

    Park, Kyung-Tae; Wu, Wei; Battaile, Kevin P; Lovell, Scott; Holyoak, Todd; Lutkenhaus, Joe

    2011-08-05

    In E. coli, MinD recruits MinE to the membrane, leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring. How these proteins interact, however, is not clear because the MinD-binding regions of MinE are sequestered within a six-stranded β sheet and masked by N-terminal helices. minE mutations that restore interaction between some MinD and MinE mutants were isolated. These mutations alter the MinE structure leading to release of the MinD-binding regions and the N-terminal helices that bind the membrane. Crystallization of MinD-MinE complexes revealed a four-stranded β sheet MinE dimer with the released β strands (MinD-binding regions) converted to α helices bound to MinD dimers. These results identify the MinD-dependent conformational changes in MinE that convert it from a latent to an active form and lead to a model of how MinE persists at the MinD-membrane surface.

  2. Quantum confinement in nonadditive space with a spatially dependent effective mass for Si and Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Filho, R. N. Costa

    2014-09-01

    We calculate the effect of a spatially dependent effective mass (SPDEM) [adapted from Costa Filho et al. (2011)] on an electron and a hole confined in a quantum well (QW). In the work of Costa Filho et al., the translation operator is modified to include an inverse character length scale, γ, which defines the SPDEM. The introduction of γ means that translations are no longer additive. In nonadditive space, we choose a 'skewed' Gaussian confinement potential defined by the replacement x →γ-1 ln(1 + γx) in the usual Gaussian potential. Within the parabolic approximation γ is inversely related to the QW thickness and we obtain analytic solutions to our confinement Hamiltonian. Our calculation yields a reduced dispersion relation for the gap energy (EG) as a function of QW thickness, D :EG D-1, compared to the effective mass approximation: EG D-2. Additionally, nonadditive space contracts the position space metric thus increasing the occupied momentum space and reducing the effective mass, in agreement with the relation: mo*-1 ∝∂2 E / ∂k2. The change in the effective mass is shown to be a function of the confinement potential via a point canonical transformation. Our calculation agrees with experimental measurements of EG for Si and Ge QWs.

  3. Breeding system and spatial isolation from congeners strongly constrain seed set in an insect-pollinated apomictic tree: Sorbus subcuneata (Rosaceae)

    PubMed Central

    Hamston, Tracey J.; Wilson, Robert J.; de Vere, Natasha; Rich, Tim C. G.; Stevens, Jamie R.; Cresswell, James E.

    2017-01-01

    In plants, apomixis results in the production of clonal offspring via seed and can provide reproductive assurance for isolated individuals. However, many apomicts require pollination to develop functional endosperm for successful seed set (pseudogamy) and therefore risk pollination-limitation, particularly in self-incompatible species that require heterospecific pollen. We used microsatellite paternity analysis and hand pollinations to investigate pollen-limitation in Sorbus subcuneata, a threatened endemic tree that co-occurs with its congener, S. admonitor. We confirmed that S. subcuneata is an obligate pseudogamous apomict, but open-pollinated flowers rarely produced seed (flower-to-seed conversion < 1%) even though they rapidly accumulated pollen on their stigmas. Manual heterospecific pollination by S. admonitor resulted in a high flower-to-seed conversion rate (65%), however, we estimate that the ratio of self: heterospecific pollination in open-pollinated flowers was at least 22:1. Despite the efficacy of heterospecific pollination, the contribution of S. admonitor trees to paternity in seed from open-pollinated flowers of S. subcuneata decreased rapidly with the spatial separation between paternal and maternal trees. Conservation efforts aimed at maintaining species with this breeding system must therefore manage the congeners in tandem which will also maintain the potential for rare heterospecific fertilisation that typically cause rapid diversification in these lineages. PMID:28338049

  4. Quantitative PCR Reveals Strong Spatial and Temporal Variation of the Wasting Disease Pathogen, Labyrinthula zosterae in Northern European Eelgrass (Zostera marina) Beds

    PubMed Central

    Bockelmann, Anna-Christina; Tams, Verena; Ploog, Jana; Schubert, Philipp R.; Reusch, Thorsten B. H.

    2013-01-01

    Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ∼90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg−1 Z. marina dry weight (mean: 5.7 L. zosterae cells mg−1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mg−1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae. PMID:23658711

  5. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    PubMed

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  6. The roles of scene gist and spatial dependency among objects in the semantic guidance of attention in real-world scenes.

    PubMed

    Wu, Chia-Chien; Wang, Hsueh-Cheng; Pomplun, Marc

    2014-12-01

    A previous study (Vision Research 51 (2011) 1192-1205) found evidence for semantic guidance of visual attention during the inspection of real-world scenes, i.e., an influence of semantic relationships among scene objects on overt shifts of attention. In particular, the results revealed an observer bias toward gaze transitions between semantically similar objects. However, this effect is not necessarily indicative of semantic processing of individual objects but may be mediated by knowledge of the scene gist, which does not require object recognition, or by known spatial dependency among objects. To examine the mechanisms underlying semantic guidance, in the present study, participants were asked to view a series of displays with the scene gist excluded and spatial dependency varied. Our results show that spatial dependency among objects seems to be sufficient to induce semantic guidance. Scene gist, on the other hand, does not seem to affect how observers use semantic information to guide attention while viewing natural scenes. Extracting semantic information mainly based on spatial dependency may be an efficient strategy of the visual system that only adds little cognitive load to the viewing task.

  7. Nitric oxide (NO) emissions from N-saturated subtropical forest soils are strongly affected by spatial and temporal variability in soil moisture

    NASA Astrophysics Data System (ADS)

    Kang, Ronghua; Dörsch, Peter; Mulder, Jan

    2016-04-01

    Subtropical forests in Southwest China have chronically high nitrogen (N) deposition. This results in high emission rates of N gasses, including N2O, NO and N2. In contrast to N2O, NO emission in subtropical China has received little attention, partly because its quantification is challenging. Here we present NO fluxes in a Masson pine-dominated headwater catchment with acrisols on mesic, well-drained hill slopes at TieShanPing (Chongqing, SW China). Measurements were conducted from July to September in 2015, using a dynamic chamber technique and a portable and highly sensitive chemiluminesence NOx analyzer (LMA-3M, Drummond Technology Inc, Canada). Mean NO fluxes as high as 120 μg N m-2 h-1 (± 56 μg N m-2 h-1) were observed at the foot of the hill slope. Mid-slope positions had intermediate NO emission rates (47 ± 17 μg N m-2 h-1), whereas the top of the hill slope showed the lowest NO fluxes (3 ± 3 μg N m-2 h-1). The magnitude of NO emission seemed to be controlled mainly by site-specific soil moisture, which was on average lower at the foot of the hill slope and in mid-slope positions than at the top of the hill slope. Rainfall episodes caused a pronounced decline in NO emission fluxes in all hill slope positions, whereas the subsequent gradual drying of the soil resulted in an increase. NO fluxes were negatively correlated with soil moisture (r2 = 0.36, p ˂ 0.05). The NO fluxes increased in the early morning, and decreased in the late afternoon, with peak emissions occurring between 2 and 3 pm. The diurnal variation of NO fluxes on mid-slope positions was positively correlated with soil temperature (r2 = 0.9, p ˂ 0.05). Our intensive measurements indicate that NO-N emissions in N-saturated subtropical forests are significant and strongly controlled by local hydrological conditions.

  8. SU-E-T-354: Peak Temperature Ratio of TLD Glow Curves to Investigate the Spatial Dependence of LET in a Clinical Proton Beam

    SciTech Connect

    Reft, C; Pankuch, M; Ramirez, H

    2014-06-01

    Purpose: Use the ratio of the two high temperature peaks (HTR) in TLD 700 glow curves to investigate spatial dependence of the linear energy transfer (LET) in proton beams. Studies show that the relative biological effectiveness (RBE) depends upon the physical dose as well as its spatial distribution. Although proton therapy uses a spatially invariant RBE of 1.1, studies suggest that the RBE increases in the distal edge of a spread out Bragg peak (SOBP) due to the increased LET. Methods: Glow curve studies in TLD 700 show that the 280 C temperature peak is more sensitive to LET radiation than the 210 C temperature peak. Therefore, the areas under the individual temperature peaks for TLDs irradiated in a proton beam normalized to the peak ratio for 6 MV photons are used to determine the HTR to obtain information on its LET. TLD 700 chips with dimensions 0.31×0.31×0.038 cc are irradiated with 90 MeV protons at varying depths in a specially designed blue wax phantom to investigate LET spatial dependence. Results: Five TLDs were placed at five different depths of the percent depth dose curve (PDD) of range 16.2 cm: center of the SOPB and approximately at the 99% distal edge, 90%, 75% and 25% of the PDD, respectively. HTR was 1.3 at the center of the SOBP and varied from 2.2 to 3.9 which can be related to an LET variation from 0.5 to 18 KeV/μ via calibration with radiation beams of varying LET. Conclusion: HTR data show a spatially invariant LET slightly greater than the 6 MV radiations in the SOBP, but a rapidly increasing LET at the end of the proton range. These results indicate a spatial variation in RBE with potential treatment consequences when selecting treatment margins to minimize the uncertainties in proton RBE.

  9. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    SciTech Connect

    Filipuzzi, M; Garrigo, E; Venencia, C; Germanier, A

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the

  10. DEFINITION OF MULTIVARIATE GEOCHEMICAL ASSOCIATIONS WITH POLYMETALLIC MINERAL OCCURRENCES USING A SPATIALLY DEPENDENT CLUSTERING TECHNIQUE AND RASTERIZED STREAM SEDIMENT DATA - AN ALASKAN EXAMPLE.

    USGS Publications Warehouse

    Jenson, Susan K.; Trautwein, C.M.

    1984-01-01

    The application of an unsupervised, spatially dependent clustering technique (AMOEBA) to interpolated raster arrays of stream sediment data has been found to provide useful multivariate geochemical associations for modeling regional polymetallic resource potential. The technique is based on three assumptions regarding the compositional and spatial relationships of stream sediment data and their regional significance. These assumptions are: (1) compositionally separable classes exist and can be statistically distinguished; (2) the classification of multivariate data should minimize the pair probability of misclustering to establish useful compositional associations; and (3) a compositionally defined class represented by three or more contiguous cells within an array is a more important descriptor of a terrane than a class represented by spatial outliers.

  11. Neuroprotective Mechanism of Lycium barbarum Polysaccharides against Hippocampal-Dependent Spatial Memory Deficits in a Rat Model of Obstructive Sleep Apnea

    PubMed Central

    Lam, Chun-Sing; Tipoe, George Lim; So, Kwok-Fai; Fung, Man-Lung

    2015-01-01

    Chronic intermittent hypoxia (CIH) is a hallmark of obstructive sleep apnea (OSA), which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP) against CIH-induced spatial memory deficits. Adult Sprague–Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1mg/kg) daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1) in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NFКB) canonical pathway was activated with a translocation of NFКB members (p65, p50) and increased expression levels of NFКB-dependent inflammatory cytokines and mediator (TNFα, IL-1β, COX-2); also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP) and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3). Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3) and extrinsic (FADD, cleaved caspase-8, Bid) signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis and

  12. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate

    PubMed Central

    Konishi, T.; Clarke, E.; Burrows, C. W.; Bomphrey, J. J.; Murray, R.; Bell, G. R.

    2017-01-01

    The lateral ordering of arrays of self-assembled InAs-GaAs quantum dots (QDs) has been quantified as a function of growth rate, using the Hopkins-Skellam index (HSI). Coherent QD arrays have a spatial distribution which is neither random nor ordered, but intermediate. The lateral ordering improves as the growth rate is increased and can be explained by more spatially regular nucleation as the QD density increases. By contrast, large and irregular 3D islands are distributed randomly on the surface. This is consistent with a random selection of the mature QDs relaxing by dislocation nucleation at a later stage in the growth, independently of each QD’s surroundings. In addition we explore the statistical variability of the HSI as a function of the number N of spatial points analysed, and we recommend N > 103 to reliably distinguish random from ordered arrays. PMID:28211899

  13. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate

    NASA Astrophysics Data System (ADS)

    Konishi, T.; Clarke, E.; Burrows, C. W.; Bomphrey, J. J.; Murray, R.; Bell, G. R.

    2017-02-01

    The lateral ordering of arrays of self-assembled InAs-GaAs quantum dots (QDs) has been quantified as a function of growth rate, using the Hopkins-Skellam index (HSI). Coherent QD arrays have a spatial distribution which is neither random nor ordered, but intermediate. The lateral ordering improves as the growth rate is increased and can be explained by more spatially regular nucleation as the QD density increases. By contrast, large and irregular 3D islands are distributed randomly on the surface. This is consistent with a random selection of the mature QDs relaxing by dislocation nucleation at a later stage in the growth, independently of each QD’s surroundings. In addition we explore the statistical variability of the HSI as a function of the number N of spatial points analysed, and we recommend N > 103 to reliably distinguish random from ordered arrays.

  14. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease.

    PubMed

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-02-01

    Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats.

  15. Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats

    PubMed Central

    Inostroza, Marion; Cid, Elena; Brotons-Mas, Jorge; Gal, Beatriz; Aivar, Paloma; Uzcategui, Yoryani G.

    2011-01-01

    Cognitive impairment is a major concern in temporal lobe epilepsy (TLE). While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA) from two different rat strains (Wistar and Sprague-Dawley) using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se. PMID:21829459

  16. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-01

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80 K /m are studied under various applied magnetic fields from 5 to 20 μ T . We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity rfl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of d T /d s dependence of Rfl/Ba are also discussed.

  17. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  18. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    PubMed Central

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  19. The hormone therapy, Premarin, impairs hippocampus-dependent spatial learning and memory and reduces activation of new granule neurons in response to memory in female rats.

    PubMed

    Barha, Cindy K; Galea, Liisa A M

    2013-03-01

    Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.

  20. pH dependence of tailing in reversed-phase chromatography of a cationic dye: measurement of the strong adsorption site surface density.

    PubMed

    Smith, Emily A; Wirth, Mary J

    2004-12-10

    A question that has interested Dr. J.J. Kirkland is addressed: what is the nature of the silanols that cause tailing to persist at low pH in reversed-phase chromatography? Chromatograms for a cationic dye, 1,1'-didodecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI), were studied at varying pH using an Agilent SB-C8 column and 80% ACN/water for six DiI concentrations ranging from 0.9 to 316 microM. The chromatograms showed increased retention and tailing from pH 1 to 5, as expected. Simulations of the chromatograms agreed well with experiment for a bi-Langmuir isotherm with weak (C8) and strong (silica) adsorption sites. The simulation parameters revealed that the number of strong adsorption sites decreases by 40% from pH 1 to 5, which indicates that the silanols causing tailing are in the SiOH, not the SiO-, form. This seems paradoxical because tailing increases with increasing pH. The simulation parameters reveal that this increased tailing from pH 1 to 5 owes to doubling of the partition coefficient for DiI to the strong adsorption site, which more than compensates for the decreasing number of sites. We attribute this increased partition coefficient to increased long-range coulombic interactions with the increasingly abundant SiO- groups at higher pH, which boosts DiI's partition coefficient for both the C8 and SiOH sites. The picture thus emerges that for DiI, higher pH causes increased tailing because the SiO- groups exacerbate tailing that actually originates from adsorption to SiOH groups.

  1. Diagnostic differentiation of mild cognitive impairment due to Alzheimer's disease using a hippocampus-dependent test of spatial memory.

    PubMed

    Moodley, Kuven; Minati, Ludovico; Contarino, Valeria; Prioni, Sara; Wood, Ruth; Cooper, Rebecca; D'Incerti, Ludovico; Tagliavini, Fabrizio; Chan, Dennis

    2015-08-01

    The hippocampus is one of the earliest brain regions affected in Alzheimer's disease (AD) and tests of hippocampal function have the potential to detect AD in its earliest stages. Given that the hippocampus is critically involved in allocentric spatial memory, this study applied a short test of spatial memory, the 4 Mountains Test (4MT), to determine whether test performance can differentiate mild cognitive impairment (MCI) patients with and without CSF biomarker evidence of underlying AD and whether the test can distinguish patients with MCI and mild AD dementia when applied in different cultural settings. Healthy controls (HC), patients with MCI, and mild AD dementia were recruited from study sites in UK and Italy. Study numbers were: HC (UK 20, Italy 10), MCI (UK 21, Italy 14), and AD (UK 11, Italy 9). Nineteen UK MCI patients were grouped into CSF biomarker-positive (MCI+, n = 10) and biomarker-negative (MCI-, n = 9) subgroups. Behavioral data were correlated with hippocampal volume and cortical thickness of the precuneus and posterior cingulate gyrus. Spatial memory was impaired in both UK and Italy MCI and AD patients. Test performance additionally differentiated between MCI+ and MCI- subgroups (P = 0.001). A 4MT score of ≤8/15 was associated with 100% sensitivity and 90% specificity for detection of early AD (MCI+ and mild AD dementia) in the UK population, and with 100% sensitivity and 50% specificity for detection of MCI and AD in the Italy sample. 4MT performance correlated with hippocampal volume in the UK population and cortical thickness of the precuneus in both study populations. In conclusion, performance on a hippocampus-sensitive test of spatial memory differentiates MCI due to AD with high diagnostic sensitivity and specificity. The observation that similar diagnostic sensitivity was obtained in two separate study populations, allied to the scalability and usability of the test in community memory clinics, supports future application of the 4MT

  2. Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise

    PubMed Central

    Basu, Sukanya; Vadaie, Nadia; Prabhakar, Aditi; Li, Boyang; Adhikari, Hema; Pitoniak, Andrew; Chow, Jacky; Chavel, Colin A.; Cullen, Paul J.

    2016-01-01

    A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site–selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway. PMID:27001830

  3. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.

    PubMed

    Nugent, Allison C; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A

    2017-02-01

    Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc.

  4. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation.

    PubMed

    Zhang, Peng; Lau, Y Y

    2016-01-28

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission.

  5. Strong composition-dependent variation of MCs + calibration factors in TiO x and GeO x ( x ≤ 2) films

    NASA Astrophysics Data System (ADS)

    Gnaser, Hubert; Le, Yongkang; Su, Weifeng

    2006-07-01

    The emission of MCs + secondary ions (M designates the analyte species) from TiO x (0.2 ≤ x ≤ 2) and GeO x (0.001 ≤ x ≤ 0.8) films under Cs + bombardment was examined. The relative calibration factors of OCs +/TiCs + and OCs +/GeCs + were determined and were found to depend pronouncedly on the O/Ti and O/Ge atomic concentration ratios. Specifically, with increasing oxygen content OCs + ions form much more efficiently (as compared to TiCs + or GeCs + ions), an enhancement amounting to more than a factor of 10 for the highest oxygen concentrations. Concurrently, the formation of TiOCs + or GeOCs + ions increases drastically. For both oxide systems, an empirical relation for the oxygen-concentration dependence of the relative calibration factors could be established.

  6. Extremely strong temperature-dependent Davydow-splitting effects in the polarized IR spectra of the hydrogen bond: Pyrazole and quinolin-2(1H)-one crystals

    NASA Astrophysics Data System (ADS)

    Hachuła, Barbara; Flakus, Henryk T.; Tyl, Aleksandra; Polasz, Anna

    2014-04-01

    Polarized IR spectra were recorded in the spectral range of the νN-H and νN-D proton stretching vibration bands for the isotopically neat and isotopically diluted crystals of pyrazole (Pzl) and quinolin-2(1H)-one (2HQ). The spectra measured in the temperature range of 77-293 K have shown that temperature extremely strongly influenced the magnitude of the Davydow-splitting effects in the crystalline spectra. Two different competing vibrational Davydow-coupling mechanisms involving hydrogen bonds, i.e., the ‘tail-to-head' and the ‘side-to-side', were responsible for the generation of the temperature effects in the polarized spectra.

  7. Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

    PubMed Central

    Gonzales, Edson Luck T.; Yang, Sung Min; Choi, Chang Soon; Mabunga, Darine Froy N.; Kim, Hee Jin; Cheong, Jae Hoon; Ryu, Jong Hoon; Koo, Bon-Nyeo; Shin, Chan Young

    2015-01-01

    Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner. PMID:25995824

  8. An Analysis of the Truncated Bid- and ROS-dependent Spatial Propagation of Mitochondrial Permeabilization Waves during Apoptosis*

    PubMed Central

    Jacob, Selma F.; Würstle, Maximilian L.; Delgado, M. Eugenia; Rehm, Markus

    2016-01-01

    Apoptosis is a form of programmed cell death that is essential for the efficient elimination of surplus, damaged, and transformed cells during metazoan embryonic development and adult tissue homeostasis. Situated at the interface of apoptosis initiation and execution, mitochondrial outer membrane permeabilization (MOMP) represents one of the most fundamental processes during apoptosis signal transduction. It was shown that MOMP can spatiotemporally propagate through cells, in particular in response to extrinsic apoptosis induction. Based on apparently contradictory experimental evidence, two distinct molecular mechanisms have been proposed to underlie the propagation of MOMP signals, namely a reaction-diffusion mechanism governed by anisotropies in the production of the MOMP-inducer truncated Bid (tBid), or a process that drives the spatial propagation of MOMP by sequential bursts of reactive oxygen species. We therefore generated mathematical models for both scenarios and performed in silico simulations of spatiotemporal MOMP signaling to identify which one of the two mechanisms is capable of qualitatively and quantitatively reproducing the existing data. We found that the explanatory power of each model was limited in that only a subset of experimental findings could be replicated. However, the integration of both models into a combined mathematical description of spatiotemporal tBid and reactive oxygen species signaling accurately reproduced all available experimental data and furthermore, provided robustness to spatial MOMP propagation when mitochondria are spatially separated. Our study therefore provides a theoretical framework that is sufficient to describe and mechanistically explain the spatiotemporal propagation of one of the most fundamental processes during apoptotic cell death. PMID:26699404

  9. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    SciTech Connect

    Peixoto, Alexandre Pessoa; Costa, J. C. da

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  10. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001-2011.

    PubMed

    Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming

    2014-07-01

    There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001-2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures.

  11. Self-intermediate scattering function of strongly interacting three-dimensional lattice gases: time- and wave-vector-dependent tracer diffusion coefficient.

    PubMed

    Skarpalezos, Loukas; Argyrakis, Panos; Vikhrenko, Vyacheslav S

    2014-05-01

    We investigate the self-intermediate scattering function (SISF) in a three-dimensional (3D) cubic lattice fluid (interacting lattice gas) with attractive nearest-neighbor interparticle interactions at a temperature slightly above the critical one by means of Monte Carlo simulations. A special representation of SISF as an exponent of the mean tracer diffusion coefficient multiplied by the geometrical factor and time is considered to highlight memory effects that are included in time and wave-vector dependence of the diffusion coefficient. An analytical expression for the diffusion coefficient is suggested to reproduce the simulation data. It is shown that the particles' mean-square displacement is equal to the time integral of the diffusion coefficient. We make a comparison with the previously considered 2D system on a square lattice. The main difference with the two-dimensional case is that the time dependence of particular characteristics of the tracer diffusion coefficient in the 3D case cannot be described by exponentially decreasing functions, but requires using stretched exponentials with rather small values of exponents, of the order of 0.2. The hydrodynamic values of the tracer diffusion coefficient (in the limit of large times and small wave vectors) defined through SIFS simulation results agree well with the results of its direct determination by the mean-square displacement of the particles in the entire range of concentrations and temperatures.

  12. Spatial-dependent Propagation of Cosmic Rays Results in the Spectrum of Proton, Ratios of P/P, and B/C, and Anisotropy of Nuclei

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Tian, Zhen; Jin, Chao

    2016-03-01

    Recent precise measurements of cosmic ray spectra revealed an anomalous hardening at ∼200 GV, observed by the ATIC, CREAM, PAMELA, and AMS02 experiments. Particularly, the latest observation of the \\bar{p}/p ratio by AMS02 demonstrated a flat distribution, which further validated the spectral anomalies of secondary particles. All those new phenomena indicated that the conventional propagation model of cosmic rays meets a challenge. In this work, the spatial-dependent diffusion coefficient D(r,z,p) is employed by tracing the source distribution under the physical picture of the two-halo model in the DRAGON package. Under such a scenario, the model calculation will result in two-component spectra for primary nuclei. Due to the smaller rigidity dependence of D(r,z,p) in the galactic disk, the ratios secondary-to-primary will inevitably be flatter and the expected anisotropy of cosmic rays will be much more attenuated than in the conventional model. As a result, we can reproduce the spectral hardening of protons, the flat ratios of \\bar{p}/p and B/C, and consistent anisotropy from ∼100 GeV to ∼100 TeV by only adopting one set of spatial-dependent diffusion coefficients D(r,z,p) in a galactic disk.

  13. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    NASA Astrophysics Data System (ADS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  14. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  15. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE PAGES

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-20

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  16. Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves.

    PubMed

    Niewiadomska, Ewa; Polzien, Lisa; Desel, Christine; Rozpadek, Piotr; Miszalski, Zbigniew; Krupinska, Karin

    2009-07-01

    Senescence of tobacco leaves is distributed non-uniformly over a leaf blade. While photosynthetic competence and expression of photosynthesis-associated genes decline in interveinal areas of the leaf lamina with advancing age of the leaf, they are maintained at high levels in the tissue surrounding the veins. In contrast, expression of senescence-associated genes (SAG) was enhanced in both areas of the leaf blade. Accumulation of hydrogen peroxide was shown to precede the phase of senescence initiation in the veinal tissue. In the interveinal tissue, the level of hydrogen peroxide was increased with senescence progression and paralleled by an increase in the level of superoxide anions. It is hypothesized that the spatial differences in superoxide anions are important for the non-uniform down-regulation of photosynthesis-associated genes (PAG), while hydrogen peroxide is responsible for up-regulation of SAG.

  17. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for

  18. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

    PubMed

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+).

  19. The Urban Heat Island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity.

    PubMed

    Kaiser, Aurélien; Merckx, Thomas; Van Dyck, Hans

    2016-06-01

    Climate alteration is one of the most cited ecological consequences of urbanization. However, the magnitude of this impact is likely to vary with spatial scale. We investigated how this alteration affects the biological fitness of insects, which are especially sensitive to ambient conditions and well-suited organisms to study urbanization-related changes in phenotypic traits. We monitored temperature and relative air humidity in wooded sites characterized by different levels of urbanization in the surroundings. Using a split-brood design experiment, we investigated the effect of urbanization at the local (i.e., 200 × 200 m) and landscape (i.e., 3 × 3 km) scale on two key traits of biological fitness in two closely related butterfly species that differ in thermal sensitivity. In line with the Urban Heat Island concept, urbanization led to a 1°C increase in daytime temperature and an 8% decrease in daytime relative humidity at the local scale. The thermophilous species Lasiommata megera responded at the local scale: larval survival increased twofold in urban compared to rural sites. Urbanized sites tended to produce bigger adults, although this was the case for males only. In the woodland species Pararge aegeria, which has recently expanded its ecological niche, we did not observe such a response, neither at the local, nor at the landscape scale. These results demonstrate interspecific differences in urbanization-related phenotypic plasticity and larval survival. We discuss larval pre-adaptations in species of different ecological profiles to urban conditions. Our results also highlight the significance of considering fine-grained spatial scales in urban ecology.

  20. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1.

    PubMed

    Nienborg, Hendrikje; Hasenstaub, Andrea; Nauhaus, Ian; Taniguchi, Hiroki; Huang, Z Josh; Callaway, Edward M

    2013-07-03

    A characteristic feature in the primary visual cortex is that visual responses are suppressed as a stimulus extends beyond the classical receptive field. Here, we examined the role of inhibitory neurons expressing somatostatin (SOM⁺) or parvalbumin (PV⁺) on surround suppression and preferred receptive field size. We recorded multichannel extracellular activity in V1 of transgenic mice expressing channelrhodopsin in SOM⁺ neurons or PV⁺ neurons. Preferred size and surround suppression were measured using drifting square-wave gratings of varying radii and at two contrasts. Consistent with findings in primates, we found that the preferred size was larger for lower contrasts across all cortical depths, whereas the suppression index (SI) showed a trend to decrease with contrast. We then examined the effect of these metrics on units that were suppressed by photoactivation of either SOM⁺ or PV⁺ neurons. When activating SOM⁺ neurons, we found a significant increase in SI at cortical depths >400 μm, whereas activating PV⁺ neurons caused a trend toward lower SIs regardless of cortical depth. Conversely, activating PV⁺ neurons significantly increased preferred size across all cortical depths, similar to lowering contrast, whereas activating SOM⁺ neurons had no systematic effect on preferred size across all depths. These data suggest that SOM⁺ and PV⁺ neurons contribute differently to spatial integration. Our findings are compatible with the notion that SOM⁺ neurons mediate surround suppression, particularly in deeper cortex, whereas PV⁺ activation decreases the drive of the input to cortex and therefore resembles the effects on spatial integration of lowering contrast.

  1. Spatial distribution of steep lunar craters may be linked to size-dependent orbital distribution of impactors

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu; Werner, Stephanie; Lee, Jui-Chi; Trang, David; Ip, Wing-Huen; Reyes-Ruiz, Mauricio

    2016-10-01

    The depth/diameter (d/D) ratio of simple lunar craters (D<15km) is known to be ~0.2 at the time of formation; larger complex craters (D>15km) have smaller d/D ratios. We examine the spatial distribution of high d/D ratio (>0.18) craters using LU60645GT catalogue (Salamunićcar et al. 2012). We select craters larger than 8km for which the census is known to be almost complete over the whole lunar surface. We find that the number density of steep craters in maria is significantly lower than in highlands, which may be explained by the age differences of the background surfaces. We also find that the spatial density of steep craters in the equatorial region is lower than in the polar region. On the contrary, higher cratering flux on the lunar equator has been claimed: from the numerical calculations with the orbital distribution of observed Earth Crossing Objects (ECOs) larger than 1km (Le Feuvre & Wieczorek 2008; Ito & Malhotra 2010) and from the distribution of steepest slopes at a 25m baseline (Kreslavsky & Head, 2016). In order to reconcile our findings with previous observations, we hypothesize that the cratering rate at low latitudes has been higher for meter to decameter size ECOs than for kilometer size objects since the Late Imbrian epoch; smaller objects have triggered more frequent mass wasting on the pre-existing large steep craters (D>8km, d/D>0.18) at low latitudes, thereby reducing the surviving number of steep craters. Our hypothesis is supported by the finding that the power-law slope in the H magnitude distribution for the low inclination ECOs (i<15 deg) is steeper than for the high inclination objects. Renu Malhotra acknowledges research support from NSF (grant AST-1312498).

  2. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning.

    PubMed

    Rodriguez, Kevin; Perales, Mariano; Snipes, Stephen; Yadav, Ram Kishor; Diaz-Mendoza, Mercedes; Reddy, G Venugopala

    2016-10-11

    The homeodomain transcription factor WUSCHEL (WUS) promotes stem cell maintenance in inflorescence meristems of Arabidopsis thaliana WUS, which is synthesized in the rib meristem, migrates and accumulates at lower levels in adjacent cells. Maintenance of WUS protein levels and spatial patterning distribution is not well-understood. Here, we show that the last 63-aa stretch of WUS is necessary for maintaining different levels of WUS protein in the rib meristem and adjacent cells. The 63-aa region contains the following transcriptional regulatory domains: the acidic region, the WUS-box, which is conserved in WUS-related HOMEOBOX family members, and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR-like) domain. Our analysis reveals that the opposing functions of WUS-box, which is required for nuclear retention, and EAR-like domain, which participates in nuclear export, are necessary to maintain higher nuclear levels of WUS in cells of the rib meristem and lower nuclear levels in adjacent cells. We also show that the N-terminal DNA binding domain, which is required for both DNA binding and homodimerization, along with the homodimerization sequence located in the central part of the protein, restricts WUS from spreading excessively and show that the homodimerization is critical for WUS function. Our analysis also reveals that a higher level of WUS outside the rib meristem leads to protein destabilization, suggesting a new tier of regulation in WUS protein regulation. Taken together our data show that processes that influence WUS protein levels and spatial distribution are highly coupled to its transcriptional activity.

  3. Prey-predator dynamics in rotifers: density-dependent consequences of spatial heterogeneity due to surface attachment.

    PubMed

    Vadstein, Olav; Olsen, Lasse M; Andersen, Tom

    2012-08-01

    Classical models of prey-predator interactions assume that per capita prey consumption is dependent on prey density alone and that prey consumption (functional response) and consumer proliferation (numerical response) operate on the same timescales and without time lags. Several modifications have been proposed for resolving this timescale discrepancy, including variants where the functional response depends on both prey and predator densities. A microcosm system with the rotifer Brachionus 'Nevada' feeding on the prasinophyte Tetraselmis sp. showed significant (P < 0.0005) increases in steady-state biomasses of both prey and predators with increasing carrying capacity (represented by total phosphorus of the growth medium), which is inconsistent with predictions based on the traditional prey-only-dependent functional response. We provide data indicating that surfaces where the predator can attach provide a high-quality habitat for rotifers, which can result in a predator-dependent functional response. We also show that partitioning between the attached and free-swimming habitats was fast compared to the timescale of the numerical response. When attached to surfaces, rotifers maximized net energy gain by avoiding the high cost of swimming and by increased food capture due to reduced viscous drag. A mathematical model with prey-dependent functional response and wall-attached and free-swimming fractions of the population describes our data adequately. We discuss the implications of this finding for extrapolating microcosm experiments to systems with other surface-to-volume ratios, and to what extent our findings may apply to other popular model organisms for prey-predator interaction.

  4. Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes--active membranes studied by cryo-SEM.

    PubMed

    Rhinow, Daniel; Hampp, Norbert A

    2008-10-16

    Bacteriorhodopsin (BR) undergoes a conformational change during the photocycle and the proton transport through the membrane. For the first time, we could demonstrate by direct imaging of freely suspended native purple membranes (PMs) that the flat disk-like shape of PMs changes dramatically as soon as most of the BRs are in a state characterized by a deprotonated Schiff base. Light-induced shape changes are easily observed with mutated BRs of the BR-D96N type, i.e., all variants which show an increased M 2 lifetime. On the other hand, large-scale shape changes are induced by pH changes with PM containing mutated BRs of the BR-D85T type, where Asp85 is replaced for a neutral amino acid. In such PMs, all BRs are titrated simultaneously and the resulting shape of the membranes depends on the initial shape only. As the majority of PMs in the "flat" state are more or less round disks, the bent membranes often comprise bowl-like and tube-like bent structures. The method presented here enables one to derive size changes of membrane-embedded BRs on the single molecule level from "macroscopic", easily accessible data like the curvature radii observed in cryo-SEM. The potential of BR as a pH-controlled and/or light-controlled microscaled biological actuator needs further consideration.

  5. Strong pH dependence of coupling efficiency of the Na+ - translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae.

    PubMed

    Toulouse, Charlotte; Claussen, Björn; Muras, Valentin; Fritz, Günter; Steuber, Julia

    2017-02-01

    The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5-8.5), while Q reduction activity exhibited a maximum at pH 7.5-8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5-8.0, is caused by the backflow of the coupling cation through the channel in NqrB.

  6. Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate

    SciTech Connect

    Li, Fei; Zhang, Dongxia; Rong, Shiguang; Xu, Ying

    2013-11-15

    The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.

  7. Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization

    SciTech Connect

    Goll, Daniel S.; Brovkin, Victor; Liski, Jari; Raddatz, Thomas; Thum, Tea; Todd-Brown, Kathe E. O.

    2015-08-12

    The quantification of sources and sinks of carbon from land use and land cover changes (LULCC) is uncertain. We investigated how the parametrization of LULCC and of organic matter decomposition, as well as initial land cover, affects the historical and future carbon fluxes in an Earth System Model (ESM). Using the land component of the Max Planck Institute ESM, we found that the historical (1750–2010) LULCC flux varied up to 25% depending on the fraction of biomass which enters the atmosphere directly due to burning or is used in short-lived products. The uncertainty in the decadal LULCC fluxes of the recent past due to the parametrization of decomposition and direct emissions was 0.6 Pg C yr$-$1, which is 3 times larger than the uncertainty previously attributed to model and method in general. Preindustrial natural land cover had a larger effect on decadal LULCC fluxes than the aforementioned parameter sensitivity (1.0 Pg C yr$-$1). Regional differences between reconstructed and dynamically computed land covers, in particular, at low latitudes, led to differences in historical LULCC emissions of 84–114 Pg C, globally. This effect is larger than the effects of forest regrowth, shifting cultivation, or climate feedbacks and comparable to the effect of differences among studies in the terminology of LULCC. Finally, in general, we find that the practice of calibrating the net land carbon balance to provide realistic boundary conditions for the climate component of an ESM hampers the applicability of the land component outside its primary field of application.

  8. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    SciTech Connect

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  9. Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging

    PubMed Central

    Huppert, Theodore J.; Hoge, Rick D.; Dale, Anders M.; Franceschini, Maria A.; Boas, David A.

    2009-01-01

    Akin to functional magnetic resonance imaging (fMRI), diffuse optical imaging (DOI) is a noninvasive method for measuring localized changes in hemoglobin levels within the brain. When combined with fMRI methods, multimodality approaches could offer an integrated perspective on the biophysics, anatomy, and physiology underlying each of the imaging modalities. Vital to the correct interpretation of such studies, control experiments to test the consistency of both modalities must be performed. Here, we compare DOI with blood oxygen level-dependent (BOLD) and arterial spin labeling fMRI-based methods in order to explore the spatial agreement of the response amplitudes recorded by these two methods. Rather than creating optical images by regularized, tomographic reconstructions, we project the fMRI image into optical measurement space using the optical forward problem. We report statistically better spatial correlation between the fMRI-BOLD response and the optically measured deoxyhemoglobin (R=0.71, p=1 × 10−7) than between the BOLD and oxyhemoglobin or total hemoglobin measures (R=0.38, p=0.04|0.37, p=0.05, respectively). Similarly, we find that the correlation between the ASL measured blood flow and optically measured total and oxyhemoglobin is stronger (R=0.73, p=5 × 10−6 and R=0.71, p=9 × 10−6, respectively) than the flow to deoxyhemoglobin spatial correlation (R=0.26, p=0.10). PMID:17212541

  10. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Wei; Jovanovic, Igor

    2016-09-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses.

  11. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    PubMed Central

    Lin, Ming-Wei; Jovanovic, Igor

    2016-01-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses. PMID:27596951

  12. Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing.

    PubMed

    Martínez-Sánchez, María V; Periago, Adela; Legaz, Isabel; Gimeno, Lourdes; Mrowiec, Anna; Montes-Barqueros, Natividad R; Campillo, José A; Bolarin, José M; Bernardo, María V; López-Álvarez, María R; González, Consuelo; García-Garay, María C; Muro, Manuel; Cabañas-Perianes, Valentin; Fuster, Jose L; García-Alonso, Ana M; Moraleda, José M; Álvarez-Lopez, María R; Minguela, Alfredo

    2016-04-01

    -missing-self cancers, e.g., myeloma, mainly depends on NKc licensing.

  13. Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing

    PubMed Central

    Martínez-Sánchez, María V.; Periago, Adela; Legaz, Isabel; Gimeno, Lourdes; Mrowiec, Anna; Montes-Barqueros, Natividad R.; Campillo, José A.; Bolarin, José M.; Bernardo, María V.; López-Álvarez, María R.; González, Consuelo; García-Garay, María C.; Muro, Manuel; Cabañas-Perianes, Valentin; Fuster, Jose L.; García-Alonso, Ana M.; Moraleda, José M.; Álvarez-Lopez, María R.; Minguela, Alfredo

    2016-01-01

    -missing-self cancers, e.g., myeloma, mainly depends on NKc licensing. PMID:27141379

  14. Competition and time-dependent behavior in spatial iterated prisoner’s dilemma incorporating adaptive zero-determinant strategies

    NASA Astrophysics Data System (ADS)

    Li, Yong; Xu, Chen; Liu, Jie; Hui, Pak Ming

    2016-10-01

    We propose and study the competitiveness of a class of adaptive zero-determinant strategies (ZDSs) in a population with spatial structure against four classic strategies in iterated prisoner’s dilemma. Besides strategy updating via a probabilistic mechanism by imitating the strategy of a better performing opponent, players using the ZDSs can also adapt their strategies to take advantage of their local competing environment with another probability. The adapted ZDSs could be extortionate-like to avoid being continually cheated by defectors or to take advantage of unconditional cooperators. The adapted ZDSs could also be a compliance strategy so as to cooperate with the conditionally cooperative players. This flexibility makes adaptive ZDSs more competitive than nonadaptive ZDSs. Results show that adaptive ZDSs can either dominate over other strategies or at least coexist with them when the ZDSs are allowed to adapt more readily than to imitate other strategies. The effectiveness of the adaptive ZDSs relies on how fast they can adapt to the competing environment before they are replaced by other strategies. The adaptive ZDSs generally work well as they could adapt gradually and make use of other strategies for suppressing their enemies. When adaptation happens more readily than imitation for the ZDSs, they outperform other strategies over a wide range of cost-to-benefit ratios.

  15. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.

  16. Age-Dependent Netrin-1 Signaling Regulates NG2+ Glial Cell Spatial Homeostasis in Normal Adult Gray Matter.

    PubMed

    Birey, Fikri; Aguirre, Adan

    2015-04-29

    Neuron-glial antigen 2-positive (NG2(+)) glial cells are the most proliferative glia type in the adult CNS, and their tile-like arrangement in adult gray matter is under tight regulation. However, little is known about the cues that govern this unique distribution. To this end, using a NG2(+) glial cell ablation model in mice, we examined the repopulation dynamics of NG2(+) glial cells in the mature and aged mice gray matter. We found that some resident NG2(+) glial cells that escaped depletion rapidly enter the cell cycle to repopulate the cortex with altered spatial distribution. We reveal that netrin-1 signaling is involved in the NG2(+) glial cell early proliferative, late repopulation, and distribution response after ablation in the gray matter. However, ablation of NG2(+) glial cell in older animals failed to stimulate a similar repopulation response, possibly because of a decrease in the sensitivity to netrin-1. Our findings indicate that endogenous netrin-1 plays a role in NG2(+) glial cell homeostasis that is distinct from its role in myelination.

  17. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  18. Multiparity-induced enhancement of hippocampal neurogenesis and spatial memory depends on ovarian hormone status in middle age.

    PubMed

    Barha, Cindy K; Lieblich, Stephanie E; Chow, Carmen; Galea, Liisa A M

    2015-08-01

    Menopause is associated with cognitive decline, and previous parity can increase or delay the trajectory of cognitive aging. Furthermore, parity enables the hippocampus to respond to estrogens in middle age. The present study investigated how previous parity and estrogens influence cognition, neurogenesis, and neuronal activation in response to memory retrieval in the hippocampus of middle-aged females. Multiparous and nulliparous rats were ovariectomized (OVX) or received sham surgery and were treated with vehicle, 17β-estradiol, 17α-estradiol, or estrone. Rats were trained on the spatial working and reference memory versions of the Morris water maze. Multiparous rats had a significantly greater density of immature neurons in the hippocampus, enhanced acquisition of working memory, but poorer reference memory compared with nulliparous rats. Furthermore, OVX increased, while treatment with estrogens reduced, the density of immature neurons, regardless of parity. OVX improved reference memory only in nulliparous rats. Thus, motherhood has long-lasting effects on the neuroplasticity and function of the hippocampus. These findings have wide-ranging implications for the treatment of age-associated decline in women.

  19. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Guo, Yi-Qing; Hu, Hong-Bo

    2016-01-01

    The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra (ΔΦ = Φe- -Φe+) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary. Supported by Natural Sciences Foundation of China (11135010)

  20. Temporal and spatial gait parameters in patients dependent on walking assistance after stroke: reliability and agreement between simple and advanced methods of assessment.

    PubMed

    Høyer, Ellen; Opheim, Arve; Strand, Liv Inger; Moe-Nilssen, Rolf

    2014-01-01

    The aim of this study was to investigate the reliability of temporal and spatial gait parameters in patients dependent on walking assistance after severe stroke, and to examine agreement between simple and advanced methods. Twenty-one patients, admitted for in-patient multidisciplinary rehabilitation, were assessed repeatedly for walking function, both in a test corridor and a gait laboratory (3D camera system) before and after 11 weeks of rehabilitation. The test-retest reliability was examined using intraclass correlation (ICC1.1), and measurement error was reported by within-subject standard deviation (Sw). The agreement between different methods for assessing walking speed, cadence and step length was explored by Bland-Altman plots. High to excellent test-retest reliability was found between trials, both when assessed in the corridor (ICC: 0.93-0.99) and in the laboratory (ICC: 0.88-0.99). Agreement between methods was satisfactory at baseline and was higher after the rehabilitation period. Agreement was found to be slightly better at lower walking speeds and for shorter step lengths. The results implicate that temporal-spatial gait parameters may be measured reliably by both simple and advanced methods in dependent walkers after stroke. A high level of agreement was found between the two methods for walking speed, cadence and average step length at both test points.

  1. Possible interaction of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II on reversal of spatial memory impairment induced by morphine.

    PubMed

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser

    2015-03-15

    The opioid system plays an important role in learning and memory by modulation of different molecules in the brain. The aim of the present study was to investigate the role of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II (CaMKII) on the morphine-induced modulation of spatial memory consolidation in male rats. Spatial memory was assessed in Morris water maze task by a single training session of eight trials followed by a probe trial and visible test 24h later. Our data indicated that post-training administration of L-arginine, a nitric oxide precursor (6 and 9 µg/rat, intra-CA1) significantly decreased amnesia induced by morphine (10 mg/kg) in spatial memory consolidation. A reversal effect of L-arginine on morphine-induced amnesia prevented by KN-93 (N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl) phenyl]-N-[2-hydroxyethyl] methoxybenzenesulfnamide), CaMKII inhibitor, (10 nmol/0.5 µl/site). In addition, post-training injection of L-NAME, (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (10 and 15 µg/rat) or KN-93 (10 nmol/0.5 µl/site) with lower dose of morphine (2.5 mg/kg), which did not induce amnesia by itself, caused inhibition of memory consolidation. We also showed that co-administration of L-arginine (9 µg/rat) and morphine (10 mg/kg) significantly increased CaMKII activity in the rat hippocampus. On the other hand, administration of L-NAME (10 µg/rat) led to a decrease in the haippocampal activity of CaMKII in morphine-treated (2.5mg/kg) animals. These results indicate that acute single exposure to morphine can modulate consolidation of spatial memory, which may be mediated by a hippocampal nitrergic system and CaMKII activity.

  2. Impaired hippocampus-dependent spatial flexibility and sociability represent autism-like phenotypes in GluK2 mice.

    PubMed

    Micheau, Jacques; Vimeney, Alice; Normand, Elisabeth; Mulle, Christophe; Riedel, Gernot

    2014-09-01

    Autism is a complex neurodevelopmental disorder with high heritability. grik2 (which encodes the GluK2 subunit of kainate receptors) has been identified as a susceptibility gene in Autism Spectrum Disorders (ASD), but its role in the core and associated symptoms of ASD still remains elusive. We used mice lacking GluK2 (GluK2 KO) to examine their endophenotype with a view to modeling aspects of autism, including social deficits, stereotyped and repetitive behavior and decreased cognitive abilities. Anxiety was recorded in the elevated plus maze, social behavior in a three-chamber apparatus, and cognition in different water maze protocols. Deletion of the GluK2 gene reduced locomotor activity and sociability as indicated by the social interaction task. In addition, GluK2 KO mice learnt to locate a hidden platform in a water maze surrounded by a curtain with hanging cues faster than wild-type mice. They maintained a bias toward the target quadrant when some of these cues were removed, at which point wild-types orthogonalized the behavior and showed no memory. However, GluK2 KO mice were impaired in spatial reversal learning. These behavioral data together with previously published electrophysiology showing severe anomalies in CA3 network activity, suggest a computational shift in this network for enhanced propensity of pattern completion that would explain the loss of behavioral flexibility in GluK2 KO mice. Although a single mutation cannot recapitulate the entire core symptoms of ASD, our data provide evidence for glutamatergic dysfunction underlying a number of social- and cognition-related phenotypes relevant to ASD.

  3. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1983-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  4. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1982-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  5. Integration of synchronous synaptic input in CA1 pyramidal neuron depends on spatial and temporal distributions of the input.

    PubMed

    Tigerholm, Jenny; Migliore, Michele; Fransén, Erik

    2013-01-01

    Highly synchronized neural firing has been discussed in relation to learning and memory, for instance sharp-wave activity in hippocampus. We were interested to study how a postsynaptic CA1 pyramidal neuron would integrate input of different levels of synchronicity. In previous work using computational modeling we studied how the integration depends on dendritic conductances. We found that the transient A-type potassium channel K(A) was able to selectively suppress input of high synchronicity. In recent years, compartmentalization of dendritic integration has been shown. We were therefore interested to study the influence of localization and pattern of synaptic input over the dendritic tree of the CA1 pyramidal neuron. We find that the selective suppression increases when synaptic inputs are placed on oblique dendrites further out from the soma. The suppression also increases along the radial axis from the apical trunk out to the end of oblique dendrites. We also find that the K(A) channel suppresses the occurrence of dendritic spikes. Moreover, recent studies have shown interaction between synaptic inputs. We therefore studied the influence of apical tuft input on the integration studied above. We find that excitatory input provides a modulatory influence reducing the capacity of K(A) to suppress synchronized activity, thus facilitating the excitatory drive of oblique dendritic input. Conversely, inhibitory tuft input increases the suppression by K(A) providing a larger control of oblique depolarizing factors on the CA1 pyramidal neuron in terms of what constitutes the most effective level of synchronicity. Furthermore, we show that the selective suppression studied above depends on the conductance of the K(A) channel. K(A) , as several other potassium channels, is modulated by several neuromodulators, for instance acetylcholine and dopamine, both of which have been discussed in relation to learning and memory. We suggest that dendritic conductances and their

  6. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    PubMed

    Berndt, Anthony J E; Tang, Jonathan C Y; Ridyard, Marc S; Lian, Tianshun; Keatings, Kathleen; Allan, Douglas W

    2015-12-01

    Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly

  7. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons

    PubMed Central

    Ridyard, Marc S.; Lian, Tianshun; Keatings, Kathleen; Allan, Douglas W.

    2015-01-01

    Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly

  8. Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Kauffmann, Guinevere; Börner, Gerhard; Kang, Xi; Wang, Lan

    2007-04-01

    By comparing semi-analytic galaxy catalogues with data from the Sloan Digital Sky Survey (SDSS), we show that current galaxy formation models reproduce qualitatively the dependence of galaxy clustering and pairwise peculiar velocities on luminosity, but some subtle discrepancies with the data still remain. The comparisons are carried out by constructing a large set of mock galaxy redshift surveys that have the same selection function as the SDSS Data Release Four (DR4). The mock surveys are based on two sets of semi-analytic catalogues presented by Croton et al. and Kang et al. From the mock catalogues, we measure the redshift-space projected two-point correlation function wp(rp), the power spectrum P(k) and the pairwise velocity dispersion (PVD) in Fourier space σ12(k) and in configuration space σ12(rp), for galaxies in different luminosity intervals. We then compare these theoretical predictions with the measurements derived from the SDSS DR4. On large scales and for galaxies brighter than L*, both sets of mock catalogues agree well with the data. For fainter galaxies, however, both models predict stronger clustering and higher pairwise velocities than observed. We demonstrate that this problem can be resolved if the fraction of faint satellite galaxies in massive haloes is reduced by ~30 per cent compared to the model predictions. A direct look into the model galaxy catalogues reveals that a significant fraction (15 per cent) of faint galaxies (-18 < M0.1r - 5 log10h < -17) reside in haloes with Mvir > 1013 Msolar, and this population is predominantly red in colour. These faint red galaxies are responsible for the high PVD values of low-luminosity galaxies on small scales.

  9. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates.

    PubMed

    Lachish, Shelly; Knowles, Sarah C L; Alves, Ricardo; Wood, Matthew J; Sheldon, Ben C

    2011-11-01

    1. Investigating the ecological context in which host-parasite interactions occur and the roles of biotic and abiotic factors in forcing infection dynamics is essential to understanding disease transmission, spread and maintenance. 2. Despite their prominence as model host-pathogen systems, the relative influence of environmental heterogeneity and host characteristics in influencing the infection dynamics of avian blood parasites has rarely been assessed in the wild, particularly at a within-population scale. 3. We used a novel multievent modelling framework (an extension of multistate mark-recapture modelling) that allows for uncertainty in disease state, to estimate transmission parameters and assess variation in the infection dynamics of avian malaria in a large, longitudinally sampled data set of breeding blue tits infected with two divergent species of Plasmodium parasites. 4. We found striking temporal and spatial heterogeneity in the disease incidence rate and the likelihood of recovery within this single population and demonstrate marked differences in the relative influence of environmental and host factors in forcing the infection dynamics of the two Plasmodium species. 5. Proximity to a permanent water source greatly influenced the transmission rates of P. circumflexum, but not of P. relictum, suggesting that these parasites are transmitted by different vectors. 6. Host characteristics (age/sex) were found to influence infection rates but not recovery rates, and their influence on infection rates was also dependent on parasite species: P. relictum infection rates varied with host age, whilst P. circumflexum infection rates varied with host sex. 7. Our analyses reveal that transmission of endemic avian malaria is a result of complex interactions between biotic and abiotic components that can operate on small spatial scales and demonstrate that knowledge of the drivers of spatial and temporal heterogeneity in disease transmission will be

  10. Inelastic x-ray scattering study of superconducting SmFeAsO1-xFy single crystals: Evidence for strong momentum-dependent doping-induced renormalizations of optical phonons

    NASA Astrophysics Data System (ADS)

    Le Tacon, M.; Forrest, T. R.; Rüegg, Ch.; Bosak, A.; Walters, A. C.; Mittal, R.; Rønnow, H. M.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.; Hill, J. P.; Krisch, M.; McMorrow, D. F.

    2009-12-01

    We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO0.60F0.35 single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.

  11. Scale-dependent relationships between the spatial distribution of a limiting resource and plant species diversity in an African grassland ecosystem.

    PubMed

    Anderson, T Michael; McNaughton, Samuel J; Ritchie, Mark E

    2004-04-01

    One cornerstone of ecological theory is that nutrient availability limits the number of species that can inhabit a community. However, the relationship between the spatial distribution of limiting nutrients and species diversity is not well established because there is no single scale appropriate for measuring variation in resource distribution. Instead, the correct scale for analyzing resource variation depends on the range of species sizes within the community. To quantify the relationship between nutrient distribution and plant species diversity, we measured NO(3)(-) distribution and plant species diversity in 16 paired, modified Whittaker grassland plots in Serengeti National Park, Tanzania. Semivariograms were used to quantify the spatial structure of NO(3)(-) from scales of 0.4-26 m. Plant species diversity (Shannon-Weiner diversity index; H ') was quantified in 1-m(2) plots, while plant species richness was measured at multiple spatial scales between 1 and 1000 m(2). Small-scale variation in NO(3)(-) (<0.4 m) was positively correlated with 1-m(2) H ', while 1000-m(2) species richness was a log-normal function of average NO(3)(-) patch size. Nine of the 16 grassland plots had a fractal (self-similar across scales) NO(3)(-) spatial distribution; of the nine fractal plots, five were adjacent to plots that had a non-fractal distribution of NO(3)(-). This finding offered the unique opportunity to test predictions of Ritchie and Olff (1999): when the spatial distribution of limiting resources is fractal, communities should display a left-skewed log-size distribution and a log-normal relationship between net primary production and species richness. These predictions were supported by comparisons of plant size distributions and biomass-richness relationships in paired plots, one with a fractal and one with a non-fractal distribution of NO(3)(-). In addition, fractal plots had greater large-scale richness than paired non-fractal plots (1,0-1000 m(2)), but neither

  12. Are Automatic Conceptual Cores the Gold Standard of Semantic Processing? The Context-Dependence of Spatial Meaning in Grounded Congruency Effects.

    PubMed

    Lebois, Lauren A M; Wilson-Mendenhall, Christine D; Barsalou, Lawrence W

    2015-11-01

    According to grounded cognition, words whose semantics contain sensory-motor features activate sensory-motor simulations, which, in turn, interact with spatial responses to produce grounded congruency effects (e.g., processing the spatial feature of up for sky should be faster for up vs. down responses). Growing evidence shows these congruency effects do not always occur, suggesting instead that the grounded features in a word's meaning do not become active automatically across contexts. Researchers sometimes use this as evidence that concepts are not grounded, further concluding that grounded information is peripheral to the amodal cores of concepts. We first review broad evidence that words do not have conceptual cores, and that even the most salient features in a word's meaning are not activated automatically. Then, in three experiments, we provide further evidence that grounded congruency effects rely dynamically on context, with the central grounded features in a concept becoming active only when the current context makes them salient. Even when grounded features are central to a word's meaning, their activation depends on task conditions.

  13. Development of spatial integration depends on top-down and interhemispheric connections that can be perturbed in migraine: a DCM analysis.

    PubMed

    Fornari, Eleonora; Rytsar, Romana; Knyazeva, Maria G

    2014-05-01

    In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.

  14. Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH3NH3PbI3 perovskite films.

    PubMed

    Fu, Xiao; Jacobs, Daniel A; Beck, Fiona J; Duong, The; Shen, Heping; Catchpole, Kylie R; White, Thomas P

    2016-08-10

    Organometal halide perovskite-based solar cells have rapidly achieved high efficiency in recent years. However, many fundamental recombination mechanisms underlying the excellent performance are still not well understood. Here we apply confocal photoluminescence microscopy to investigate the time and spatial characteristics of light-induced trap de-activation in CH3NH3PbI3 perovskite films. Trap de-activation is characterized by a dramatic increase in PL emission during continuous laser illumination accompanied by a lateral expansion of the PL enhancement far beyond the laser spot. These observations are attributed to an oxygen-assisted trap de-activation process associated with carrier diffusion. To model this effect, we add a trap de-activation term to the standard semiconductor carrier recombination and diffusion models. With this approach we are able to reproduce the observed temporal and spatial dependence of laser induced PL enhancement using realistic physical parameters. Furthermore, we experimentally investigate the role of trap diffusion in this process, and demonstrate that the trap de-activation is not permanent, with the traps appearing again once the illumination is turned off. This study provides new insights into recombination and trap dynamics in perovskite films that could offer a better understanding of perovskite solar cell performance.

  15. Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface.

    PubMed

    Lee, Shao-Chen; Lin, Chien-Chu; Wang, Chia-Hui; Wu, Po-Long; Huang, Hsuan-Wei; Chang, Chung-I; Wu, Wen-guey

    2014-07-18

    Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.

  16. Spatial distribution of infectious stages of the nematode Syngamus trachea within pheasant (Phasianus colchicus) release pens on estates in the South West of England: Potential density dependence?

    PubMed

    Gethings, O J; Sage, R B; Leather, S R

    2015-09-15

    The spatial distribution of the infectious stages of parasites with a direct life cycle is one of the most important factors influencing infectious disease dynamics, and acquisition rates will generally increase as the contact time between parasite and host increases. For animal species that are constrained by feeding opportunities, one might expect disease patterns to be highly skewed within confined systems. The aim of the present study was to identify to what extent, if any, eggs of avian parasites are aggregated within the release pen, and to evaluate what effect, if any, this aggregation had on the distribution of the adult stages within the host species. The abundance of Syngamus trachea eggs were highly aggregated within pens, with high levels of contamination driven by a combination of feeder placement, soil moisture and host-mediated heterogeneities in immuno-competence. The log mean and log variance of egg abundance was highly linear (R(2)=0.97-0.99), with an estimated slope (b) of between 1.79 and 1.97 for individual sites, and 2.11 when sites were combined, which indicated aggregation relative to an estimated Poisson slope of unity. Although the placement of feeders and environmental moisture could be contributing to parasite aggregation, density-dependent processes appear to be ensuring the population does not become too over or under-dispersed, in order to maintain the transmission-virulence equilibrium. To the best of our knowledge, this is the first paper to explicitly demonstrate the high spatial aggregation of eggs around feeding sites and the first to suggest possible density-dependent regulatory mechanisms stabilising disease dynamics between S. trachea and ring necked Pheasants (Phasianus colchicus).

  17. Nanoscale electrodynamics of strongly correlated quantum materials.

    PubMed

    Liu, Mengkun; Sternbach, Aaron J; Basov, D N

    2017-01-01

    Electronic, magnetic, and structural phase inhomogeneities are ubiquitous in strongly correlated quantum materials. The characteristic length scales of the phase inhomogeneities can range from atomic to mesoscopic, depending on their microscopic origins as well as various sample dependent factors. Therefore, progress with the understanding of correlated phenomena critically depends on the experimental techniques suitable to provide appropriate spatial resolution. This requirement is difficult to meet for some of the most informative methods in condensed matter physics, including infrared and optical spectroscopy. Yet, recent developments in near-field optics and imaging enabled a detailed characterization of the electromagnetic response with a spatial resolution down to 10 nm. Thus it is now feasible to exploit at the nanoscale well-established capabilities of optical methods for characterization of electronic processes and lattice dynamics in diverse classes of correlated quantum systems. This review offers a concise description of the state-of-the-art near-field techniques applied to prototypical correlated quantum materials. We also discuss complementary microscopic and spectroscopic methods which reveal important mesoscopic dynamics of quantum materials at different energy scales.

  18. Nanoscale electrodynamics of strongly correlated quantum materials

    NASA Astrophysics Data System (ADS)

    Liu, Mengkun; Sternbach, Aaron J.; Basov, D. N.

    2017-01-01

    Electronic, magnetic, and structural phase inhomogeneities are ubiquitous in strongly correlated quantum materials. The characteristic length scales of the phase inhomogeneities can range from atomic to mesoscopic, depending on their microscopic origins as well as various sample dependent factors. Therefore, progress with the understanding of correlated phenomena critically depends on the experimental techniques suitable to provide appropriate spatial resolution. This requirement is difficult to meet for some of the most informative methods in condensed matter physics, including infrared and optical spectroscopy. Yet, recent developments in near-field optics and imaging enabled a detailed characterization of the electromagnetic response with a spatial resolution down to 10 nm. Thus it is now feasible to exploit at the nanoscale well-established capabilities of optical methods for characterization of electronic processes and lattice dynamics in diverse classes of correlated quantum systems. This review offers a concise description of the state-of-the-art near-field techniques applied to prototypical correlated quantum materials. We also discuss complementary microscopic and spectroscopic methods which reveal important mesoscopic dynamics of quantum materials at different energy scales.

  19. Temperature and Field Dependences of Parameters of the Equivalent Circuit Elements of MIS Structures Based on MBE n-Hg0.775Cd0.225Te in the Strong Inversion Mode

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-11-01

    A technique is proposed for the determining the parameters of the equivalent circuit elements in strong inversion mode using the measurement results of the admittance of MIS structures based on n-Hg0.775Cd0.225Te grown by molecular beam epitaxy. It is shown that at 77 K and frequencies above 10 kHz, the capacitancevoltage characteristics of MIS structures based on n-Hg0.775Cd0.225Te with a near-surface graded gap layer have a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. It is established that the electron concentration in the near-surface graded-gap layer exceeds an average concentration found by the Hall method by more than 2 times. The proposed technique was used for determining the temperature dependences of the insulator capacitance, capacitance and differential resistance of the space-charge region, and capacitance of the inversion layer in MIS structures based on n-Hg0.775Cd0.225Te without a graded-gap layer. The temperature and voltage dependences of the parameters of the equivalent circuit elements in strong inversion are calculated. The results of calculation are qualitatively consistent with the results obtained from the measurements of the admittance.

  20. Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus.

    PubMed

    Quadrato, Giorgia; Benevento, Marco; Alber, Stefanie; Jacob, Carolin; Floriddia, Elisa M; Nguyen, Tuan; Elnaggar, Mohamed Y; Pedroarena, Christine M; Molkentin, Jeffrey D; Di Giovanni, Simone

    2012-06-05

    New neurons generated in the adult dentate gyrus are constantly integrated into the hippocampal circuitry and activated during encoding and recall of new memories. Despite identification of extracellular signals that regulate survival and integration of adult-born neurons such as neurotrophins and neurotransmitters, the nature of the intracellular modulators required to transduce those signals remains elusive. Here, we provide evidence of the expression and transcriptional activity of nuclear factor of activated T cell c4 (NFATc4) in hippocampal progenitor cells. We show that NFATc4 calcineurin-dependent activity is required selectively for survival of adult-born neurons in response to BDNF signaling. Indeed, cyclosporin A injection and stereotaxic delivery of the BDNF scavenger TrkB-Fc in the mouse dentate gyrus reduce the survival of hippocampal adult-born neurons in wild-type but not in NFATc4(-/-) mice and do not affect the net rate of neural precursor proliferation and their fate commitment. Furthermore, associated with the reduced survival of adult-born neurons, the absence of NFATc4 leads to selective defects in LTP and in the encoding of hippocampal-dependent spatial memories. Thus, our data demonstrate that NFATc4 is essential in the regulation of adult hippocampal neurogenesis and identify NFATc4 as a central player of BDNF-driven prosurvival signaling in hippocampal adult-born neurons.

  1. Hippocampal-dependent memory in the plus-maze discriminative avoidance task: The role of spatial cues and CA1 activity.

    PubMed

    Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H

    2016-05-01

    The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to

  2. The properties of tests for spatial effects in discrete Markov chain models of regional income distribution dynamics

    NASA Astrophysics Data System (ADS)

    Rey, Sergio J.; Kang, Wei; Wolf, Levi

    2016-10-01

    Discrete Markov chain models (DMCs) have been widely applied to the study of regional income distribution dynamics and convergence. This popularity reflects the rich body of DMC theory on the one hand and the ability of this framework to provide insights on the internal and external properties of regional income distribution dynamics on the other. In this paper we examine the properties of tests for spatial effects in DMC models of regional distribution dynamics. We do so through a series of Monte Carlo simulations designed to examine the size, power and robustness of tests for spatial heterogeneity and spatial dependence in transitional dynamics. This requires that we specify a data generating process for not only the null, but also alternatives when spatial heterogeneity or spatial dependence is present in the transitional dynamics. We are not aware of any work which has examined these types of data generating processes in the spatial distribution dynamics literature. Results indicate that tests for spatial heterogeneity and spatial dependence display good power for the presence of spatial effects. However, tests for spatial heterogeneity are not robust to the presence of strong spatial dependence, while tests for spatial dependence are sensitive to the spatial configuration of heterogeneity. When the spatial configuration can be considered random, dependence tests are robust to the dynamic spatial heterogeneity, but not so to the process mean heterogeneity when the difference in process means is large relative to the variance of the time series.

  3. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues

    NASA Astrophysics Data System (ADS)

    Fernández Ferrari, M. Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  4. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE PAGES

    Ritter, C.; Provino, A.; Manfrinetti, P.; ...

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  5. Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential

    NASA Astrophysics Data System (ADS)

    Ikhdair, Sameer M.

    2009-06-01

    The analytic solutions of the spatially-dependent mass Schrödinger equation of diatomic molecules with the centrifugal term l(l+1)/r2 for the generalized q-deformed Morse potential are obtained approximately by means of a parametric generalization of the Nikiforov-Uvarov (NU) method combined with the Pekeris approximation scheme. The energy eigenvalues and the corresponding normalized radial wave functions are calculated in closed form with a physically motivated choice of a reciprocal Morse-like mass function, m(r)=m0/(1-δe)2,0⩽δ<1, where a and re are the range of the potential and the equilibrium position of the nuclei. The constant mass case when δ→0 is also studied. The energy states for H 2, LiH, HCl and CO diatomic molecules are calculated and compared favourably well with those obtained by using other approximation methods for arbitrary vibrational n and rotational l quantum numbers.

  6. Anomalous decay of photon echo in a quantum dot ensemble in the strong excitation regime

    SciTech Connect

    Suemori, Ryosuke; Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-12-04

    We investigated the coherent dynamics of exciton ground-state transitions in an 150-layer-stacked strain-compensated InAs quantum dot ensemble using photon echo (PE) technique in the strong excitation regime. The time delay dependence of PE signal intensity shows a drastic change depending on the excitation intensity and the aperture position placed in front of a detector. Our results suggest that the excitation-intensity-dependent spatial distribution of PE signal intensity plays an important role in observing PE signal decay in the strong excitation regime.

  7. Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks

    PubMed Central

    Bhattacharya, Aparajita; Desai, Harsh; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.

    2016-01-01

    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times

  8. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    USGS Publications Warehouse

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    temperature, reservoir storage, reservoir elevation, specific conductance, dissolved oxygen, pH, unfiltered salinity, unfiltered total nitrogen, filtered total nitrogen, unfiltered nitrate plus nitrite, unfiltered phosphorus, filtered phosphorus, unfiltered carbon, carbon in suspended sediment, total hardness, unfiltered noncarbonate hardness, filtered noncarbonate hardness, unfiltered calcium, filtered calcium, unfiltered magnesium, filtered magnesium, unfiltered sodium, filtered sodium, unfiltered potassium, filtered potassium, filtered chloride, filtered sulfate, unfiltered fluoride, and filtered fluoride. When possible, USGS and Texas Commission on Environmental Quality water-quality properties and constituents were matched using the database parameter codes for individual physical properties and constituents, descriptions of each physical property or constituent, and their reporting units. This report presents a collection of delimited text files of source-aggregated, spatially pooled, depth-dependent, instantaneous water-quality data as well as instantaneous, daily, and monthly storage and elevation reservoir data.

  9. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics

    PubMed Central

    1982-01-01

    The activation of cyclic AMP-dependent protein kinase has been found to be the predominant mode by which cyclic AMP (cAMP) leads to alterations of a large variety of cellular functions. The activation of the kinase results in the release of the catalytic subunit which as the free enzyme possesses phosphotransferase activity for a variety of specific protein substrates. Using a sensitive and specific cytofluorometric technique we monitored the appearance of free catalytic subunit in Reuber H35 hepatoma cells in culture after incubation with N6-1'-O- dibutyryl-cyclic AMP (DBcAMP), 8-bromoadenosine-3':5'-cyclic monophosphate (8-BrcAMP), and glucagon. The cytochemical method employs the heat-stable inhibitor of the free catalytic subunit which has been conjugated to fluorescein isothiocyanate (F:PKI) and was validated as described in the companion paper (Fletcher and Byus. 1982. J. Cell Biol. 93:719-726). Here we studied the temporal and spatial kinetics of the free catalytic subunit following activation of cAMP-dependent protein kinase by increasing concentrations of DBcAMP,8-BrcAMP, and glucagon. Under similar conditions protein kinase activation was also assessed biochemically in H35 cell supernatants by assaying the protein kinase activity ratio. Incubation of the hepatoma cells with DBcAMP (0.1 mM) led to an increase in the activity ratio from 0.2 in control cultures to a value of nearly 1.0 within a 1- to 2-h period. During this same period using the F:PKI probe, a significant increase in cytoplasmic and nucleolar fluorescence indicative of the release of the free catalytic subunit was coincidentally observed. In contrast to the rapid appearance of catalytic subunit in the cytoplasm and nucleolus of the cell within 5-15 min of the addition of DBcAMP, discernible nucleoplasmic fluorescence did not occur until after 1 h. H35 cell cultures incubated with 8-BrcAMP (0.01-1.0 mM) exhibited a more rapid activation of the protein kinase measured cytochemically compared

  10. Role of Sialidase in Long-Term Potentiation at Mossy Fiber-CA3 Synapses and Hippocampus-Dependent Spatial Memory

    PubMed Central

    Minami, Akira; Saito, Masakazu; Mamada, Shou; Ieno, Daisuke; Hikita, Tomoya; Takahashi, Tadanobu; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2016-01-01

    Sialic acid bound to glycans in glycolipids and glycoproteins is essential for synaptic plasticity and memory. Sialidase (EC 3.2.1.18), which has 4 isozymes including Neu1, Neu2, Neu3 and Neu4, regulates the sialylation level of glycans by removing sialic acid from sialylglycoconjugate. In the present study, we investigated the distribution of sialidase activity in rat hippocampus and the role of sialidase in hippocampal memory processing. We previously developed a highly sensitive histochemical imaging probe for sialidase activity, BTP3-Neu5Ac. BTP3-Neu5Ac was cleaved efficiently by rat Neu2 and Neu4 at pH 7.3 and by Neu1 and Neu3 at pH 4.6. When a rat hippocampal acute slice was stained with BTP3-Neu5Ac at pH 7.3, mossy fiber terminal fields showed relatively intense sialidase activity. Thus, the role of sialidase in the synaptic plasticity was investigated at mossy fiber terminal fields. The long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses was impaired by 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), a sialidase inhibitor. DANA also failed to decrease paired-pulse facilitation after LTP induction. We also investigated the role of sialidase in hippocampus-dependent spatial memory by using the Morris water maze. The escape latency time to reach the platform was prolonged by DANA injection into the hippocampal CA3 region or by knockdown of Neu4 without affecting motility. The results show that the regulation of sialyl signaling by Neu4 is involved in hippocampal memory processing. PMID:27783694

  11. Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Gerten, Dieter; Krause, Michael; Lucht, Wolfgang; Cramer, Wolfgang

    2013-03-01

    In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries’ capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries.

  12. Are Automatic Conceptual Cores the Gold Standard of Semantic Processing? The Context-Dependence of Spatial Meaning in Grounded Congruency Effects

    ERIC Educational Resources Information Center

    Lebois, Lauren A. M.; Wilson-Mendenhall, Christine D.; Barsalou, Lawrence W.

    2015-01-01

    According to grounded cognition, words whose semantics contain sensory-motor features activate sensory-motor simulations, which, in turn, interact with spatial responses to produce grounded congruency effects (e.g., processing the spatial feature of "up" for sky should be faster for up vs. down responses). Growing evidence shows these…

  13. Strong polaritonic interaction between flux-flow and phonon resonances in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions: Angular dependence and the alignment procedure

    NASA Astrophysics Data System (ADS)

    Motzkau, H.; Katterwe, S. O.; Rydh, A.; Krasnov, V. M.

    2013-08-01

    Bi2Sr2CaCu2O8+x single crystals represent natural stacks of atomic scale intrinsic Josephson junctions, formed between metallic CuO2-Ca-CuO2 and ionic insulating SrO-2BiO-SrO layers. Electrostriction effect in the insulating layers leads to excitation of c-axis phonons by the ac-Josephson effect. Here we study experimentally the interplay between and velocity matching (Eck) electromagnetic resonances in the flux-flow state of small mesa structures with c-axis optical phonons. A very strong interaction is reported, which leads to formation of phonon-polaritons with infrared and Raman-active transverse optical phonons. A special focus in this work is made on analysis of the angular dependence of the resonances. We describe an accurate sample alignment procedure that prevents intrusion of Abrikosov vortices in fields up to 17 T, which is essential for achieving high-quality resonances at record high frequencies up to 13 THz.

  14. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  15. Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus.

    PubMed

    Bousiges, Olivier; Vasconcelos, Anne Pereira de; Neidl, Romain; Cosquer, Brigitte; Herbeaux, Karine; Panteleeva, Irina; Loeffler, Jean-Philippe; Cassel, Jean-Christophe; Boutillier, Anne-Laurence

    2010-12-01

    Numerous genetic studies have shown that the CREB-binding protein (CBP) is an essential component of long-term memory formation, through its histone acetyltransferase (HAT) function. E1A-binding protein p300 and p300/CBP-associated factor (PCAF) have also recently been involved in memory formation. By contrast, only a few studies have reported on acetylation modifications during memory formation, and it remains unclear as to how the system is regulated during this dynamic phase. We investigated acetylation-dependent events and the expression profiles of these HATs during a hippocampus-dependent task taxing spatial reference memory in the Morris water maze. We found a specific increase in H2B and H4 acetylation in the rat dorsal hippocampus, while spatial memory was being consolidated. This increase correlated with the degree of specific acetylated histones enrichment on some memory/plasticity-related gene promoters. Overall, a global increase in HAT activity was measured during this memory consolidation phase, together with a global increase of CBP, p300, and PCAF expression. Interestingly, these regulations were altered in a model of hippocampal denervation disrupting spatial memory consolidation, making it impossible for the hippocampus to recruit the CBP pathway (CBP regulation and acetylated-H2B-dependent transcription). CBP has long been thought to be present in limited concentrations in the cells. These results show, for the first time, that CBP, p300, and PCAF are dynamically modulated during the establishment of a spatial memory and are likely to contribute to the induction of a specific epigenetic tagging of the genome for hippocampus-dependent (spatial) memory consolidation. These findings suggest the use of HAT-activating molecules in new therapeutic strategies of pathological aging, Alzheimer's disease, and other neurodegenerative disorders.

  16. Meta-ecosystem dynamics and functioning on finite spatial networks.

    PubMed

    Marleau, Justin N; Guichard, Frédéric; Loreau, Michel

    2014-02-22

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient-autotrophs-herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory.

  17. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  18. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task.

    PubMed

    Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo

    2014-10-15

    Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals.

  19. The role of habituation in hippocampus-dependent spatial working memory tasks: evidence from GluA1 AMPA receptor subunit knockout mice.

    PubMed

    Sanderson, David J; Bannerman, David M

    2012-05-01

    Spatial alternation, win-shift behavior has been claimed to be a test of working memory in rodents that requires active maintenance of relevant, trial-specific information. In this review, we describe work with GluA1 AMPA receptor subunit knockout mice that show impaired spatial alternation, but normal spatial reference memory. Due to their selective impairment on spatial alternation, GluA1 knockout mice provide a means by which the psychological processes underlying alternation can be examined. We now argue that the spatial alternation deficit in GluA1 knockout mice is due to an inability to show stimulus-specific, short-term habituation to recently experienced stimuli. Short-term habituation involves a temporary reduction in attention paid to recently presented stimuli, and is thus a distinct process from those that are involved in working memory in humans. We have recently demonstrated that GluA1 knockout mice show impaired short-term habituation, but, surprisingly, show enhanced long-term spatial habituation. Thus, GluA1 deletion reveals that there is competition between short-term and long-term processes in memory.

  20. Remaking Memories: Reconsolidation Updates Positively Motivated Spatial Memory in Rats

    ERIC Educational Resources Information Center

    Jones, Bethany; Bukoski, Elizabeth; Nadel, Lynn; Fellous, Jean-Marc

    2012-01-01

    There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a…

  1. Spatially and Temporally Varying Associations between Temporary Outmigration and Natural Resource Availability in Resource-Dependent Rural Communities in South Africa: A Modeling Framework

    PubMed Central

    Leyk, Stefan; Maclaurin, Galen J.; Hunter, Lori M.; Nawrotzki, Raphael; Twine, Wayne; Collinson, Mark; Erasmus, Barend

    2012-01-01

    Migration-environment models tend to be aspatial within chosen study regions, although associations between temporary outmigration and environmental explanatory variables likely vary across the study space. This research extends current approaches by developing migration models considering spatial non-stationarity and temporal variation – through examination of the migration-environment association at nested geographic scales (i.e. whole-population, village, and subvillage) within a specific study site. Demographic survey data from rural South Africa, combined with indicators of natural resource availability from satellite imagery, are employed in a nested modeling approach that brings out distinct patterns of spatial variation in model associations derived at finer geographic scales. Given recent heightened public and policy concern with the human migratory implications of climate change, we argue that consideration of spatial variability adds important nuance to scientific understanding of the migration-environment association. PMID:23008525

  2. Mg2+-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane

    PubMed Central

    Takihara, Hayato; Akase, Yumiko; Sunairi, Michio; Iwabuchi, Noriyuki

    2016-01-01

    We recently reported that a close relationship exists between alkane carbon-chain length, cell growth, and translocation frequency in Rhodococcus. In the present study, we examined the regulation of the spatial arrangement of cells in aqueous-alkane two phase cultures. An analysis of the effects of minerals on cell localization revealed that changes in the concentration of MgSO4 in two phase cultures containing n-dodecane (C12) altered cell localization from translocation to adhesion and vice versa. Our results indicate that the spatial arrangement of cells in two phase culture systems is controlled through the regulation of MgSO4 concentrations. PMID:27180641

  3. Heavy metal contaminations in a soil-rice system: identification of spatial dependence in relation to soil properties of paddy fields.

    PubMed

    Zhao, Keli; Liu, Xingmei; Xu, Jianming; Selim, H M

    2010-09-15

    In order to identify spatial relationship of heavy metals in soil-rice system at a regional scale, 96 pairs of rice and soil samples were collected from Wenling in Zhejiang province, China, which is one of the well-known electronic and electric waste recycling centers. The results indicated some studied areas had potential contaminations by heavy metals, especially by Cd. The spatial distribution of Cd, Cu, Pb and Zn illustrated that the highest concentrations were located in the northwest areas and the accumulation of these metals may be due to the industrialization, agricultural chemicals and other human activities. In contrast, the concentration of Ni decreased from east to west and the mean concentration was below the background value, indicating the distribution of Ni may be naturally controlled. Enrichment index (EI) was used to describe the availability of soil heavy metals to rice. The spatial distribution of EIs for Cd, Ni and Zn exhibited a west-east structure, which was similar with the spatial structures of pH, OM, sand and clay. Cross-correlograms further quantitatively illustrated the EIs were significantly correlated with most soil properties, among which; soil pH and OM had the strongest correlations with EIs. However, EI of Cu showed relative weak correlations with soil properties, especially soil pH and OM had no correlations with EI of Cu, indicating the availability of Cu may be influenced by other factors.

  4. SPATIALLY RESOLVED H{alpha} MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT z {approx} 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES

    SciTech Connect

    Nelson, Erica June; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Foerster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Da Cunha, Elisabete; Schmidt, Kasper B.; Kriek, Mariska; Quadri, Ryan

    2012-03-10

    We investigate the buildup of galaxies at z {approx} 1 using maps of H{alpha} and stellar continuum emission for a sample of 57 galaxies with rest-frame H{alpha} equivalent widths >100 A in the 3D-HST grism survey. We find that the H{alpha} emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median H{alpha} effective radius r{sub e} (H{alpha}) is 4.2 {+-} 0.1 kpc but the sizes span a large range, from compact objects with r{sub e} (H{alpha}) {approx} 1.0 kpc to extended disks with r{sub e} (H{alpha}) {approx} 15 kpc. Comparing H{alpha} sizes to continuum sizes, we find =1.3 {+-} 0.1 for the full sample. That is, star formation, as traced by H{alpha}, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured H{alpha} sizes, we derive star formation rate surface densities, {Sigma}{sub SFR}. We find that {Sigma}{sub SFR} ranges from {approx}0.05 M{sub Sun} yr{sup -1} kpc{sup -2} for the largest galaxies to {approx}5 M{sub Sun} yr{sup -1} kpc{sup -2} for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z {approx} 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z {approx} 1.

  5. Spatial optical solitons in highly nonlocal media

    NASA Astrophysics Data System (ADS)

    Alberucci, Alessandro; Jisha, Chandroth P.; Smyth, Noel F.; Assanto, Gaetano

    2015-01-01

    We theoretically investigate the propagation of bright spatial solitary waves in highly nonlocal media possessing radial symmetry in a three-dimensional cylindrical geometry. Focusing on a thermal nonlinearity, modeled by a Poisson equation, we show how the profile of the light-induced waveguide strongly depends on the extension of the nonlinear medium in the propagation direction as compared to the beamwidth. We demonstrate that self-trapped beams undergo oscillations in size, either periodically or aperiodically, depending on the input waist and power. The—usually neglected—role of the longitudinal nonlocality as well as the detrimental effect of absorptive losses are addressed.

  6. Influence of sea surface on the tropical atmosphere: Scale dependent feedbacks

    SciTech Connect

    Sherwood, S.

    1995-09-01

    Total deep cloud cover in the tropics may not be not sensitive to the underlying SST field, but its spatial distribution seems to be strongly sensitive to the SST distribution. This would make the stability of the ocean-atmosphere system to SST perturbations, and the important mechanisms for maintaining stability, dependent on the spatial arrangement of the perturbation. 2 refs., 2 figs.

  7. Modelling the spread of Wolbachia in spatially heterogeneous environments.

    PubMed

    Hancock, Penelope A; Godfray, H Charles J

    2012-11-07

    The endosymbiont Wolbachia infects a large number of insect species and is capable of rapid spread when introduced into a novel host population. The bacteria spread by manipulating their hosts' reproduction, and their dynamics are influenced by the demographic structure of the host population and patterns of contact between individuals. Reaction-diffusion models of the spatial spread of Wolbachia provide a simple analytical description of their spatial dynamics but do not account for significant details of host population dynamics. We develop a metapopulation model describing the spatial dynamics of Wolbachia in an age-structured host insect population regulated by juvenile density-dependent competition. The model produces similar dynamics to the reaction-diffusion model in the limiting case where the host's habitat quality is spatially homogeneous and Wolbachia has a small effect on host fitness. When habitat quality varies spatially, Wolbachia spread is usually much slower, and the conditions necessary for local invasion are strongly affected by immigration of insects from surrounding regions. Spread is most difficult when variation in habitat quality is spatially correlated. The results show that spatial variation in the density-dependent competition experienced by juvenile host insects can strongly affect the spread of Wolbachia infections, which is important to the use of Wolbachia to control insect vectors of human disease and other pests.

  8. Studies on Strong Interactions

    NASA Astrophysics Data System (ADS)

    Coriano, Claudio

    Five studies, four in Quantum field theory and one in fermionic molecular dynamics are presented. In the first study, introduced in chapter one and developed in chapter two of this dissertation, we formulate an extension of QCD sum rules to Compton scattering of the pion at intermediate energy. The chapter is based on the research paper Fixed angle pion Compton scattering and QCD sum rules by Prof. George Sterman and the author, which has been submitted for publication as a regular article. In chapter 3 we discuss the relation between traditional bosonic exchange models of nuclear strong interaction and soliton models, in the particular case of the sine-Gordon model. The chapter is based on the research paper "Scattering in soliton models and bosonic exchange descriptions", by R. R. Parwani, H. Yamagishi, I. Zahed and the author, and is published in Phys. Rev. D 45 (1992), 2542. A preprint of this paper (Preprint 1) has been included as an Appendix to the Chapter. In Chapter 4 we discuss aspects of the propagation of quantized fields in classical backgrounds, using the light-cone expansion of the propagator. The chapter is based on the research papers "Electrodynamics in the presence of an axion", published by the author in Modern Physics Letters A 7 (1992), 1253, and on the paper "Singularity of Green's function and the effective action in massive Yang Mills theories, by Prof. H. Yamagishi and the author. This last paper is published in Physical Review D 41 (1990), 3226 and its reprint appears in the final part of the Chapter (Reprint 1). In chapter 5, entitled "On the time dependent Rayleigh-Ritz equations", we discuss aspects of the variational approach to fermionic molecular dynamics. This investigation by R. Parwani, H. Yamagishi and the author has been published in Nucl. Physics A 522 (1991), 591. A preprint of this research paper has been inserted in the final part of the Chapter (Preprint 2).

  9. Partially strong WW scattering

    SciTech Connect

    Cheung Kingman; Chiang Chengwei; Yuan Tzuchiang

    2008-09-01

    What if only a light Higgs boson is discovered at the CERN LHC? Conventional wisdom tells us that the scattering of longitudinal weak gauge bosons would not grow strong at high energies. However, this is generally not true. In some composite models or general two-Higgs-doublet models, the presence of a light Higgs boson does not guarantee complete unitarization of the WW scattering. After partial unitarization by the light Higgs boson, the WW scattering becomes strongly interacting until it hits one or more heavier Higgs bosons or other strong dynamics. We analyze how LHC experiments can reveal this interesting possibility of partially strong WW scattering.

  10. An Automated Method for Extracting Spatially Varying Time-Dependent Quantities from an ALEGRA Simulation Using VisIt Visualization Software

    DTIC Science & Technology

    2014-07-01

    Visualization software such as VisIt presents an alternative method to examine data through the use of EXODUS databases.3 In addition, VisIt...extracting transient quantities that vary spatially from an EXODUS database using a VisIt macro written in the Python programming language. 2...Graphics; Sandia National Laboratories: Albuquerque, NM, September 1991. Revised April 1994. 3 Schoof, L. A.; Yarberry, V. R. EXODUS II: A Finite

  11. Higgs-induced spectroscopic shifts near strong gravity sources

    SciTech Connect

    Onofrio, Roberto

    2010-09-15

    We explore the consequences of the mass generation due to the Higgs field in strong gravity astrophysical environments. The vacuum expectation value of the Higgs field is predicted to depend on the curvature of spacetime, potentially giving rise to peculiar spectroscopic shifts, named hereafter 'Higgs shifts'. Higgs shifts could be searched through dedicated multiwavelength and multispecies surveys with high spatial and spectral resolution near strong gravity sources such as Sagittarius A* or broad searches for signals due to primordial black holes. The possible absence of Higgs shifts in these surveys should provide limits to the coupling between the Higgs particle and the curvature of spacetime, a topic of interest for a recently proposed Higgs-driven inflationary model. We discuss some conceptual issues regarding the coexistence between the Higgs mechanism and gravity, especially for their different handling of fundamental and composite particles.

  12. One Dimensional Time-Dependent Tunnelling of Excitons

    NASA Astrophysics Data System (ADS)

    Kilcullen, Patrick; Salayka-Ladouceur, Logan; Malmgren, Kevin; Reid, Matthew; Shegelski, Mark R. A.

    2017-03-01

    We study the time-dependent tunnelling of excitons in one dimension using numerical integration based on the Crank-Nicholson method. A complete development of the time-dependent simulator is provided. External barriers studied include single and double delta barriers. We find that the appearance of transmission resonances depends strongly on the dielectric constant, relative effective masses, and initial spatial spread of the wavefunction. A discussion regarding applications to realistic systems is provided.

  13. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  14. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    SciTech Connect

    Fridman, Yu. A. Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-12-15

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  15. Moderately strong pump-induced ultrafast dynamics in solution

    NASA Astrophysics Data System (ADS)

    Shen, H. F.; Zhang, Yizhu; Yan, T.-M.; Wang, Z. Y.; Jiang, Y. H.

    2016-09-01

    The transient transmittance spectra of laser dye IR144 in methanol were investigated experimentally in the moderately strong pump-probe field. Observed emission spectra in the red edge of the incident-field bandwidth, created by resonant impulsive stimulated Raman scattering (RISRS), display significant nonlinear intensity dependence as the pulse intensity increases. Dynamic perspectives of RISRS spectra can be understood well in a wavepacket picture. The excitation of high vibrational levels in the ground electronic state leading to the redshift of emissions presents high dependence of the pump-pulse intensity and ultrafast dynamical features, mapping the spatial overlap and separation of ground and excited wave functions and resolving the ultrafast vibrational relaxation in the femtosecond regime.

  16. Living Bones, Strong Bones

    NASA Video Gallery

    In this classroom activity, engineering, nutrition, and physical activity collide when students design and build a healthy bone model of a space explorer which is strong enough to withstand increas...

  17. The Strong Nuclear Force

    SciTech Connect

    Lincoln, Don

    2016-05-24

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  18. The Strong Nuclear Force

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  19. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  20. Flavin-dependent alcohol oxidase from the yeast Pichia pinus. Spatial localization of the coenzyme FAD in the protein structure: hot-tritium bombardment and ESR experiments.

    PubMed Central

    Averbakh, A Z; Pekel, N D; Seredenko, V I; Kulikov, A V; Gvozdev, R I; Rudakova, I P

    1995-01-01

    The spatial localization of the coenzyme FAD in the quaternary structure of the alcohol oxidase from the yeast Pichia pinus was studied by tritium planigraphy and ESR methods. In the present paper we measured the specific radioactivity of FAD labelled as a part of the alcohol oxidase complex. The specific-radioactivity ratio for two FAD portions (FMN and AMP) was calculated. ESR experiments show 4 A (0.4 nm) to be the depth of immersion of paramagnetic isoalloxazines into alcohol oxidase octamer molecules. It is suggested that FAD molecules are bound to the surface of the octamer, rather than to the subunit interfaces. The orientation of the prosthetic group FAD in the alcohol oxidase protein is discussed. PMID:7654201

  1. THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. III. THE SPATIAL DEPENDENCE OF MAGNETIC ACTIVITY IN THE GALAXY

    SciTech Connect

    Sebastian Pineda, J.; West, Andrew A.; Bochanski, John J.; Burgasser, Adam J.

    2013-09-15

    We analyze the magnetic activity of 59,318 M dwarfs from the Sloan Digital Sky Survey Data Release 7. This analysis explores the spatial distribution of M dwarf activity as a function of both vertical distance from the Galactic plane (Z) and planar distance from the Galactic center (R). We confirm the established trends of decreasing magnetic activity (as measured by H{alpha} emission) with increasing distance from the mid-plane of the disk and find evidence of a trend in Galactocentric radii. We measure a non-zero radial gradient in the activity fraction in our analysis of stars with spectral types dM3 and dM4. The activity fraction increases with R and can be explained by a decreasing mean stellar age with increasing distance from the Galactic center.

  2. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness

    NASA Astrophysics Data System (ADS)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  3. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    PubMed

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  4. On Strong Anticipation

    PubMed Central

    Stepp, N.; Turvey, M. T.

    2009-01-01

    We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086

  5. Yugoslav strong motion network

    NASA Astrophysics Data System (ADS)

    Mihailov, Vladimir

    1985-04-01

    Data concerning ground motion and the response of structures during strong earthquakes are necessary for seismic hazard evaluation and the definition of design criteria for structures to be constructed in seismically active zones. The only way to obtain such data is the installation of a strong-motion instrument network. The Yugoslav strong-motion programme was created in 1972 to recover strong-motion response data used by the structural engineering community in developing earthquake resistant design. Instruments, accelerographs SMA-1 and seismoscopes WM-1, were installed in free-field stations and on structures (high-rise buildings, dams, bridges, etc.). A total number of 176 accelerographs and 137 seismoscopes have been installed and are operating in Yugoslavia. The strong-motion programme in Yugoslavia consists of five subactivities: network design, network operation, data processing, network management and research as well as application. All these activities are under the responsibility of IZIIS in cooperation with the Yugoslav Association of Seismology. By 1975 in the realisation of this project participated the CALTECH as cooperative institution in the joint American-Yugoslav cooperative project. The results obtained which are presented in this paper, and their application in the aseismic design justify the necessity for the existence of such a network in Yugoslavia.

  6. A critical review of chronic stress effects on spatial learning and memory.

    PubMed

    Conrad, Cheryl D

    2010-06-30

    The purpose of this review is to evaluate the effects of chronic stress on hippocampal-dependent function, based primarily upon studies using young, adult male rodents and spatial navigation tasks. Despite this restriction, variability amongst the findings was evident and how or even whether chronic stress influenced spatial ability depended upon the type of task, the dependent variable measured and how the task was implemented, the type and duration of the stressors, housing conditions of the animals that include accessibility to food and cage mates, and duration from the end of the stress to the start of behavioral assessment. Nonetheless, patterns emerged as follows: For spatial memory, chronic stress impairs spatial reference memory and has transient effects on spatial working memory. For spatial learning, however, chronic stress effects appear to be task-specific: chronic stress impairs spatial learning on appetitively motivated tasks, such as the radial arm maze or holeboard, tasks that evoke relatively mild to low arousal components from fear. But under testing conditions that evoke moderate to strong arousal components from fear, such as during radial arm water maze testing, chronic stress appears to have minimal impairing effects or may even facilitate spatial learning. Chronic stress clearly impacts nearly every brain region and thus, how chronic stress alters hippocampal spatial ability likely depends upon the engagement of other brain structures during behavioral training and testing.

  7. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  8. Spatially embedded growing small-world networks

    PubMed Central

    Zitin, Ari; Gorowara, Alexander; Squires, Shane; Herrera, Mark; Antonsen, Thomas M.; Girvan, Michelle; Ott, Edward

    2014-01-01

    Networks in nature are often formed within a spatial domain in a dynamical manner, gaining links and nodes as they develop over time. Motivated by the growth and development of neuronal networks, we propose a class of spatially-based growing network models and investigate the resulting statistical network properties as a function of the dimension and topology of the space in which the networks are embedded. In particular, we consider two models in which nodes are placed one by one in random locations in space, with each such placement followed by configuration relaxation toward uniform node density, and connection of the new node with spatially nearby nodes. We find that such growth processes naturally result in networks with small-world features, including a short characteristic path length and nonzero clustering. We find no qualitative differences in these properties for two different topologies, and we suggest that results for these properties may not depend strongly on the topology of the embedding space. The results do depend strongly on dimension, and higher-dimensional spaces result in shorter path lengths but less clustering. PMID:25395180

  9. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body